Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Twitter. Yet at activating data is transmitted to third parties.Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Google. Yet at activating data is transmitted to third parties.Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Xing. Yet at activating data is transmitted to third parties.

For timely dissemination of unpublished works, we have a preprint series, the repORts.

Publications


2018

  • M. Bastubbe, M.E. Lübbecke and J.T. Witt (2018).
    A Computational Investigation on the Strength of Dantzig-Wolfe Reformulations. M. Bastubbe, M.E. Lübbecke and J.T. Witt Experimental Algorithms - SEA 2018. Dagstuhl Publishing, Saarbrücken/Wadern, Leibniz International Proceedings in Informatics to appear in Volume 103 pp. 11:1-11:12. [bib]
  • M.E. Lübbecke and J.T. Witt (2018).
    The Strength of Dantzig-Wolfe Reformulations for the Stable Set and Related Problems. Discrete Optimization to appear (2018-): [bib]
  • T. Fischer, G. Hegde, F. Matter, M. Pesavento, M.E. Pfetsch and A.M. Tillmann (2018).
    Joint Antenna Selection and Phase-Only Beam Using Mixed-Integer Nonlinear Programming. Proc. WSA (ITG Workshop on Smart Antennas) to appear (2018-): [bib] [ArXiv]
  • C. Brauer, D.A. Lorenz and A.M. Tillmann (2018).
    A primal-dual homotopy algorithm for ℓ1-minimization with ℓ∞-constraints. Computational Optimization and Applications to appear (2018-): 1-36. [doi] [bib] [ArXiv]

2017

  • J. Brinker, M. Lübbecke, Y. Takeda and B. Corves (2017).
    Optimization of the Reconfiguration Planning of Handling Systems based on Parallel Manipulators with Delta-Like Architecture. IEEE Robotics and Automation Letters 2 (2017-): 1802-1808. [doi] [bib]
  • Chr. Büsing, S. Kirchner, A.M.C.A. Koster and A. Thome (2017).
    The Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost. Networks 69 (2017-): 67-82. [www] [bib]
  • J.T. Witt, M.E. Lübbecke and B. Reed (2017).
    Polyhedral results on the stable set problem in graphs containing even or odd pairs. Math. Prog. (2017-): [doi] [bib]
  • J.-B. Gauthier, J. Desrosiers and M.E. Lübbecke (2017).
    A Strongly Polynomial Contraction-Expansion Algorithm for Network Flow Problems. Computers & Operations Research 84 (2017-): 16-32. [pdf] [doi] [bib]
  • M. Kruber, M.E. Lübbecke and A. Parmentier (2017).
    Learning When to Use a Decomposition. In Salvagnin, D. and Lombardi, M. (Eds.) Integration of AI and OR Techniques in Constraint Programming. Springer, Lecture Notes in Computer Science 10335 pp. 202–210. [doi] [www] [bib]

2016

  • M. Bergner, M.E. Lübbecke and J.T. Witt (2016).
    A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs. Journal of Experimental Algorithmics (JEA) 21 (2016-): Article No. 1.2. [doi] [bib]
  • S. Goderbauer, B. Bahl, P. Voll, M. Lübbecke, A. Bardow and A. Koster (2016).
    An adaptive discretization MINLP algorithm for optimal synthesis of decentralized energy supply systems. Computers & Chemical Engineering 95 (2016-): 38–48. [doi] [www] [bib]
  • S. Goderbauer (2016).
    Mathematische Optimierung der Wahlkreiseinteilung für die Deutsche Bundestagswahl - Modelle und Algorithmen für eine bessere Beachtung der gesetzlichen Vorgaben. Springer Spektrum, Springer BestMasters, [doi] [www] [bib]
  • (2016).
    Operations Research Proceedings 2014. In M.E. Lübbecke, A.M.C.A. Koster, P. Letmathe, R. Madlener, B. Peis and G. Walther (Eds.) Springer International Publishing, [doi] [www] [bib]
  • M. Bohlin, S. Gestrelius, F.H.W. Dahms, M. Mihalák and H. Flier (2016).
    Optimization Methods for Multistage Freight Train Formation. Transportation Science 50 (2016-): 823-840. [doi] [bib]
  • S. Goderbauer (2016).
    Political Districting for Elections to the German Bundestag: An Optimization-Based Multi-Stage Heuristic Respecting Administrative Boundaries. Operations Research Proceedings 2014. Springer, pp. 181-187. [doi] [www] [bib]
  • M. Walter, P. Damci-Kurt, S. S. Dey and S. Kücükyavuz (2016).
    On a cardinality-constrained transportation problem with market choice. Operations Research Letters 44 (2016-): 170-173. [doi] [www] [bib] [ArXiv]
  • V. Kaibel, J. Lee, M. Walter and S. Weltge (2016).
    Extended Formulations for Independence Polytopes of Regular Matroids. Graphs and Combinatorics 32 (2016-): 1931-1944. [doi] [www] [bib]
  • M. Walter (2016).
    Investigating Polyhedra by Oracles and Analyzing Simple Extensions of Polytopes. Otto-von-Guericke Universität Magdeburg [www] [bib]
  • Chr. Büsing, S. Kirchner and A. Thome (2016).
    The Capacitated Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost. Electronic Notes in Discrete Mathematics (2016-): 141-144. [www] [bib]
  • A.M. Tillmann, Y.C. Eldar and J. Mairal (2016).
    Dictionary Learning from Phaseless Measurements. Proc. ICASSP 2016. pp. 4702-4706. [doi] [bib]
  • A.M. Tillmann, Y.C. Eldar and J. Mairal (2016).
    DOLPHIn – Dictionary Learning for Phase Retrieval. IEEE Transactions on Signal Processing 64 (24) (2016-): 6485-6500. [doi] [bib] [ArXiv]

2015

  • M.E. Lübbecke and J.T. Witt (2015).
    Separation of Generic Cutting Planes in Branch-and-Price Using a Basis. M.E. Lübbecke and J.T. Witt Experimental Algorithms - SEA 2015. Springer, Berlin, Lect. Notes Comput. Sci. 9125 pp. 110-121. [pdf] [doi] [bib]
  • M. Bergner, A. Caprara, A. Ceselli, F. Furini, M.E. Lübbecke, E. Malaguti and E. Traversi (2015).
    Automatic Dantzig–Wolfe reformulation of mixed integer programs. Math. Prog. 149 (1-2): 391-424. [pdf] [doi] [bib]
  • J.B. Gauthier, J. Desrosiers and M.E. Lübbecke (2015).
    About the minimum mean cycle-canceling algorithm. Discrete Appl. Math. 196 (2015-): 115-134. [pdf] [doi] [bib]
  • J.B. Gauthier, J. Desrosiers and M.E. Lübbecke (2015).
    Tools for primal degenerate linear programs: IPS, DCA, and PE. EURO Journal on Transportation and Logistics (2015-): [pdf] [doi] [bib]
  • M.E. Lübbecke (2015).
    Comments on: An Overview of Curriculum-Based Course Timetabling. TOP 23 (2015-): 359-361. [doi] [bib]
  • E.T. Coughlan, M.E. Lübbecke and J. Schulz (2015).
    A Branch-Price-and-Cut Algorithm for Multi-Mode Resource Leveling. European J. Oper. Res. 245 (2015-): 70-80. [doi] [bib]
  • M. Conforti, V. Kaibel, M. Walter and S. Weltge (2015).
    Subgraph polytopes and independence polytopes of count matroids. Operations Research Letters 43 (2015-): 457-460. [doi] [www] [bib]
  • V. Kaibel and M. Walter (2015).
    Simple extensions of polytopes. Math. Program. Ser. B 154 (2015-): 381-406. [doi] [www] [bib]
  • D.A. Lorenz, M.E. Pfetsch and A.M. Tillmann (2015).
    Solving Basis Pursuit: Heuristic Optimality Check and Solver Comparison. ACM Transactions on Mathematical Software 41 (2) (2015-): [doi] [bib]

Displaying results 1 to 30 out of 105

Page 1

Page 2

Page 3

Page 4

Next >

Copyright Notice: The documents distributed here have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.