Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Facebook. Yet at activating data is transmitted to third parties.Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Twitter. Yet at activating data is transmitted to third parties.Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Google. Yet at activating data is transmitted to third parties.Two clicks for more data protection: Only if you click here, the button will be active and you can send your recommendation to Xing. Yet at activating data is transmitted to third parties.

For timely dissemination of unpublished works, we have a preprint series, the repORts.

Publications


-

  • (2010).
    Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. In T. Erlebach and M. Lübbecke (Eds.) Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany [doi] [bib]

B

  • M. Bergner, A. Caprara, A. Ceselli, F. Furini, M.E. Lübbecke, E. Malaguti and E. Traversi (2015).
    Automatic Dantzig–Wolfe reformulation of mixed integer programs. Math. Prog. 149 (1-2): 391-424. [pdf] [doi] [bib]
  • M. Bergner, A. Caprara, F. Furini, M.E. Lübbecke, E. Malaguti and E. Traversi (2011).
    Partial convexification of general MIPs by Dantzig-Wolfe reformulation. In O. Günlük and G.J. Woeginger (Eds.) Integer Programming and Combinatorial Optimization. Springer, Berlin Lect. Notes Comput. Sci. 6655: pp. 39-51. [doi] [bib]
  • M. Bergner, M.E. Lübbecke and J.T. Witt (2016).
    A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs. Journal of Experimental Algorithmics (JEA) 21 (2016-): Article No. 1.2. [doi] [bib]
  • M. Bergner, M.E. Lübbecke and J.T. Witt (2014).
    A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs. In J. Gudmundsson and J. Katajainen (Eds.) Experimental Algorithms - SEA 2014. Springer, Berlin, Lect. Notes Comput. Sci. 8504 pp. 34-45. [pdf] [doi] [bib]
  • K.-P. Bernatzki, M.R. Bussieck, T. Lindner and M.E. Lübbecke (1998).
    Optimal Scrap Combination for Steel Production. OR Spectrum 20: 251-258. [pdf] [doi] [bib]
  • T. Berthold, S. Heinz, M.E. Lübbecke, R.H. Möhring and J. Schulz (2010).
    A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling. In A. Lodi, M. Milano and P. Toth (Eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2010). Springer, Berlin Lect. Notes Comput. Sci. 6140: pp. 313-317. [pdf] [doi] [bib]
  • J.-B. Gauthier, J. Desrosiers and M.E. Lübbecke (2017).
    A Strongly Polynomial Contraction-Expansion Algorithm for Network Flow Problems. Computers & Operations Research 84 (2017-): 16-32. [pdf] [doi] [bib]
  • M. Bohlin, S. Gestrelius, F.H.W. Dahms, M. Mihalák and H. Flier (2016).
    Optimization Methods for Multistage Freight Train Formation. Transportation Science 50 (2016-): 823-840. [doi] [bib]
  • J. Brinker, M. Lübbecke, Y. Takeda and B. Corves (2017).
    Optimization of the Reconfiguration Planning of Handling Systems based on Parallel Manipulators with Delta-Like Architecture. IEEE Robotics and Automation Letters 2 (2017-): 1802-1808. [doi] [bib]
  • C. Büsing (2009).
    The Exact Subgraph Recoverable Robust Shortest Path Problem. Robust and Online Large-Scale Optimization. Springer, Berlin, Lect. Notes Comput. Sci. 5868: pp. 231-248. [doi] [bib]
  • C. Büsing (2012).
    Recoverable robust shortest path problems. Networks 59: 181-189. [doi] [bib]
  • C. Büsing (2011).
    Recoverable Robustness in Combinatorial Optimization. Cuvillier Verlag, [bib]
  • C. Büsing (2010).
    Graphen- und Netzwerkoptimierung. Spektrum Akademischer Verlag, [bib]
  • C. Büsing and F. D'Andreagiovanni (2014).
    A New Theoretical Framework for Robust Optimization Under Multi-Band Uncertainty. In Helber, St., Breitner, M., Rösch, D. and Schön, C. (Eds.) Operations Research Proceedings 2012. Springer, Berlin, pp. 115-121. [doi] [bib]
  • C. Büsing and F. D'Andreagiovanni (2012).
    New results about multi-band uncertainty in Robust Optimization. C. Büsing and F. D'Andreagiovanni Experimental Algorithms - SEA 2012. Springer Berlin Heidelberg, Lect. Notes Comput. Sci. 7276: pp. 63-74. [doi] [bib]
  • C. Büsing, F. D'Andreagiovanni and A. Raymond (2013).
    Robust optimization under multiband uncertainty. In Cornelissen, K., Hoeksma, R., Hurink, J. and Manthey, B. (Eds.) CTW. CTIT Workshop Proceedings WP 13-01: pp. 35-38. [bib]
  • C. Büsing and G. Hoever (2012).
    Kreuz und quer durchs Land der Graphen - Projekte aus der Graphentheorie für Schülerinnen und Schüler. Der Mathematikunterricht 58: 52-63. [bib]
  • Chr. Büsing, S. Kirchner, A.M.C.A. Koster and A. Thome (2017).
    The Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost. Networks 69 (2017-): 67-82. [www] [bib]
  • Chr. Büsing, S. Kirchner and A. Thome (2016).
    The Capacitated Budgeted Minimum Cost Flow Problem with Unit Upgrading Cost. Electronic Notes in Discrete Mathematics (2016-): 141-144. [www] [bib]
  • C. Büsing, A. M. C. A. Koster and M. Kutschka (2011).
    Recoverable Robust Knapsacks: The Discrete Scenario Case. Optimization Letters 5: 379-392. [doi] [bib]
  • C. Büsing, A. M. C. A. Koster and M. Kutschka (2011).
    Recoverable Robust Knapsacks: Gamma-Scenarios. International Network Optimization Conference, INOC 2011. 6701: pp. 583-588. [doi] [bib]
  • C. Büsing and J. Maue (2010).
    Robust Algorithms for Sorting Railway Cars. In de Berg, M. and Meyer, U. (Eds.) Algorithms - ESA 2010. Springer, Berlin, Lect. Notes Comput. Sci. 6346: pp. 350-361. [doi] [bib]
  • C. Büsing and S. Stiller (2011).
    Line planning, path constrained network flow and inapproximability. Networks 57: 106-113. [doi] [bib]
  • M.R. Bussieck, T. Lindner and M.E. Lübbecke (2004).
    A Fast Algorithm for Near Optimal Line Plans. Math. Methods Oper. Res. 59 (2): 205-220. [pdf] [doi] [bib]
  • M.R. Bussieck and M.E. Lübbecke (1998).
    The Vertex Set of a 0/1-Polytope is Strongly \(\mathcal{P}\)-Enumerable. Comput. Geom. 11 (2): 103-109. [pdf] [doi] [bib]
  • M.R. Bussieck, M.E. Lübbecke, T. Winter and U.T. Zimmermann (1998).
    Discrete optimization in rail transport. M.R. Bussieck, M.E. Lübbecke, T. Winter and U.T. Zimmermann Proceedings of 11th Baikal International School-Seminar on Optimization Methods and their Applications. Irkutsk, Baikal pp. 225-234. [bib]

Displaying results 1 to 30 out of 101

Page 1

Page 2

Page 3

Page 4

Next >

Copyright Notice: The documents distributed here have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.