Solving Bulk-Robust Assignment Problems to Optimality

Matthias Walter (RWTH Aachen)

Joint work with

David Adjiashvili (ETH Zürich),
Viktor Bindewald & Dennis Michaels (TU Dortmund)

Aussois Combinatorial Optimization Workshop, 2018
Bulk-Robustness for Assignment Problems

Assignment Problem:

- **Input:** Bipartite graph $G = (V, E)$ with $V = A \cup B$, edge costs $c \in \mathbb{R}^E$
- **Feasible sets:** Perfect matchings $M \subseteq E$ (assuming $|A| = |B|$)
- **Goal:** Minimize cost $c(M) := \sum_{e \in M} c_e$
Bulk-Robustness for Assignment Problems

Assignment Problem:

- Input: Bipartite graph $G = (V, E)$ with $V = A \cup B$, edge costs $c \in \mathbb{R}^E$
- Feasible sets: Perfect matchings $M \subseteq E$ (assuming $|A| = |B|$)
- Goal: Minimize cost $c(M) := \sum_{e \in M} c_e$

Bulk-Robustness:

- Possible (or likely) failure scenarios are given (explicitly or implicitly).
- Goal: Buy edges such that for every scenario, there still exists a perfect matching using the (bought) edges that survived.
Bulk-Robustness for Assignment Problems

Assignment Problem:
- Input: Bipartite graph $G = (V, E)$ with $V = A \cup B$, edge costs $c \in \mathbb{R}^E$
- Feasible sets: Perfect matchings $M \subseteq E$ (assuming $|A| = |B|$)
- Goal: Minimize cost $c(M) := \sum_{e \in M} c_e$

Bulk-Robustness:
- Possible (or likely) failure scenarios are given (explicitly or implicitly).
- Goal: Buy edges such that for every scenario, there still exists a perfect matching using the (bought) edges that survived.

Literature:
- Concept formally introduced by Adjiashvili, Stiller & Zenklusen (MPA 2015)
- Classical related problems: k-edge connected spanning subgraph problem robustifies spanning-tree problem against failure of any $(k - 1)$-edge set.
- LP-based $O(\log(|V|))$-approximation algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016)
Bulk-Robust Assignments with Edge Failures

Input:

- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$
- Edge costs $c \in \mathbb{R}^E$
Input:

- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:

- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph \(G = (V, E) \) with \(V = A \cup B \)
- Failure scenarios \(\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\} \) with \(f_i \in E \).
- Edge costs \(c \in \mathbb{R}^E \)

Goal:
- Find \(X \subseteq E \) with minimum \(c(X) \) such that for all \(F \in \mathcal{F} \), the subgraph \((V, X \setminus F)\) contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any \(d < 1 \), it admits no \((d \log |V|)\)-approximation, unless \(\text{NP} \subseteq \text{DTIME}(|V|^\log \log |V|) \).
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $\text{NP} \subseteq \text{DTIME}(|V|^\log^\log |V|)$.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $\text{NP} \subseteq \text{DTIME}(|V|^{\log \log |V|})$.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $\text{NP} \subseteq \text{DTIME}(|V|^{\log \log |V|})$.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $NP \subseteq DTIME(|V|^\log \log |V|)$.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $\text{NP} \subseteq \text{DTIME}(\log^{|V|})$.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $\text{NP} \subseteq \text{DTIME}(|V|^{\log \log |V|})$.
Bulk-Robust Assignments with Edge Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Example:

Hardness:
- SetCover reduces to the problem.
- For any $d < 1$, it admits no $(d \log |V|)$-approximation, unless $\text{NP} \subseteq \text{DTIME}(|V|^{\log \log |V|})$.
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$
- Edge costs $c \in \mathbb{R}^E$

Related Problem: Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph \(G = (V, E) \) with \(V = A \cup B \)
- Failure scenarios \(\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\} \) with \(b_i \in B \).
- Edge costs \(c \in \mathbb{R}^E \)

Goal:
- Find \(X \subseteq E \) with minimum \(c(X) \) such that
- for all \(F \in \mathcal{F} \), the subgraph \((V, X \setminus F) \) contains an \(A \)-perfect matching (a matching that covers \(A \)).

Example:

Related Problem:
- Related version where nodes from \(B \) are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
Bulk-Robust Assignments with Node Failures

Input:
- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$
- Edge costs $c \in \mathbb{R}^E$

Goal:
- Find $X \subseteq E$ with minimum $c(X)$ such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:
- Related version where nodes from B are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
General Case

Input:

- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{F_1, \ldots, F_\ell\}$ with $F_i \subseteq E$
 with cardinalities $k(F)$ for all $F \in \mathcal{F}$
- Edge costs $c \in \mathbb{R}^E$

Goal:

- Find $X \subseteq E$ with minimum $c(X)$ such that
 for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a matching of size $k(F)$.
General Case

Input:

- Bipartite graph $G = (V, E)$ with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{F_1, \ldots, F_\ell\}$ with $F_i \subseteq E$
 with cardinalities $k(F)$ for all $F \in \mathcal{F}$
- Edge costs $c \in \mathbb{R}^E$

Goal:

- Find $X \subseteq E$ with minimum $c(X)$ such that
 for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a matching of size $k(F)$.

Special Cases:

- Edge failures: Set $k(F_i) := |A| = |B|$ and $F_i := \{f_i\}$ for all $i \in [\ell]$.
- Node failures: Set $k(F_i) := |A|$ and $F_i := \delta(b_i)$ for all $i \in [\ell]$.
Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad x \geq y^{(F)} \quad \text{for all } F \in \mathcal{F} \\
& \quad y^{(F)} \in P_{k(F)\text{-match}}(G - F) \quad \text{for all } F \in \mathcal{F} \\
& \quad x_e \in \mathbb{Z}_+ \quad \text{for all } e \in E
\end{align*}
\]

- Has \(O(|\mathcal{F}| \cdot |E|) \) variables and constraints.
Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad x \geq y^{(F)} \quad \text{for all } F \in \mathcal{F} \quad (1) \\
& \quad y^{(F)} \in P_{k(F)}\text{-match}(G - F) \quad \text{for all } F \in \mathcal{F} \quad (2) \\
& \quad x_e \in \mathbb{Z}_+ \quad \text{for all } e \in E \quad (3)
\end{align*}
\]

- Has \(\mathcal{O}(|\mathcal{F}| \cdot |E|) \) variables and constraints.

Polyhedral combinatorics helps:

- What does this mean for \(x \)?

\[
\exists y : x \geq y, \quad y \in P_{k(F)}\text{-match}(G')
\]
Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad x \geq y^{(F)} & \text{for all } F \in \mathcal{F} \\
& \quad y^{(F)} \in P_{k(F)}\text{-match}(G - F) & \text{for all } F \in \mathcal{F} \\
& \quad x_e \in \mathbb{Z}^+ & \text{for all } e \in E
\end{align*}
\]

- Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

- What does this mean for x?

\[
\exists y : x \geq y, \; y \in P_{k(F)}\text{-match}(G')
\]

- Projection onto x is the dominant of the $k(F)$-matching polytope.
Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

$$\begin{align*}
\text{min} & \quad c^\top x \\
\text{s.t.} & \quad x \geq y^{(F)} & \text{for all } F \in \mathcal{F} \\
& \quad y^{(F)} \in P_{k(F)}\text{-match}(G - F) & \text{for all } F \in \mathcal{F} \\
& \quad x_e \in \mathbb{Z}_+ & \text{for all } e \in E
\end{align*}$$

- Has $O(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

- What does this mean for x?

$$\exists y : x \geq y, \quad y \in P_{k(F)}\text{-match}(G')$$

- Projection onto x is the dominant of the $k(F)$-matching polytope.

- Inequalities known (Fulkerson 1970):

$$\sum_{e \in E[S]} x_e \geq |S| - |V| + k(F) \quad \text{for all } S \subseteq V$$
Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad x \geq y^{(F)} & \text{for all } F \in \mathcal{F} \\
& \quad y^{(F)} \in \mathcal{P}_{k(F)\text{-match}}(G - F) & \text{for all } F \in \mathcal{F} \\
& \quad x_e \in \mathbb{Z}_+ & \text{for all } e \in E
\end{align*}
\]

\>

\>

\>

\>

Has \(\mathcal{O}(|\mathcal{F}| \cdot |E|)\) variables and constraints.

Equivalent (derived from dominant):

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad \sum_{e \in E[S] \setminus F} x_e \geq |S| - |V| + k(F) & \text{for all } S \subseteq V \text{ for all } F \in \mathcal{F} \\
& \quad x_e \in \mathbb{Z}_+ & \text{for all } e \in E
\end{align*}
\]

\>

\>

\>

\>

Has \(\mathcal{O}(|E|)\) variables and \(\mathcal{O}(|\mathcal{F}| \cdot 2^{|V|})\) constraints.

\>

\>

\>

For every \(F \in \mathcal{F}\), separation problem reduces to a minimum \(s-t\)-cut problem.
Models in Practice: LP Relaxation

Setup:
- All experiments done with SCIP 5.0.0 (recently released).
- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no heuristics, no general purpose cuts

Running times for LP relaxation
Models in Practice: LP Relaxation

Setup:

- Erdős-Rényi graphs with $|A| = |B| = n$, $p = 0.5$
- Uniform failures $\mathcal{F} = \{e\mid e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no heuristics, no general purpose cuts

Running times for LP relaxation

- **Compact**
- **Dominant**
Models in Practice: IP Bounds

Setup:
- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $F = \{\{e\} | e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no general purpose cuts

Results for compact vs. dominant model (IP)

<table>
<thead>
<tr>
<th>n</th>
<th>Opt</th>
<th>Compact model</th>
<th>Dominant model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Root time</td>
<td>Final bnd</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.1</td>
<td>12.0</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>0.4</td>
<td>10.5</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>1.7</td>
<td>10.8</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>5.8</td>
<td>11.1</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>14.8</td>
<td>11.4</td>
</tr>
</tbody>
</table>
Strengthening the Model

Chvátal-Gomory cuts:
- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.
Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_{ℓ} with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.

$$\sum_{e \in E[S]} \left| \{ i \in [\ell] \mid e \in E \setminus F_i \} \right| x_e \geq \ell(|S| - |V| + k)$$

Strengthening the Model
Strengthening the Model

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.

$$\sum_{e \in E[S]} \{ i \in [\ell] \mid e \in E \setminus F_i \} x_e \geq \ell(|S| - |V| + k)$$

- Scale it by $1/(\ell - 1)$.
Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.

$$\sum_{e \in E[S]} |\{i \in [\ell] \mid e \in E \setminus F_i\}|x_e \geq \ell(|S| - |V| + k)$$

- Scale it by $1/(\ell - 1)$.

$$\sum_{e \in E[S]} \frac{|\{i \in [\ell] \mid e \in E \setminus F_i\}|}{\ell - 1}x_e \geq \frac{\ell}{\ell - 1}(|S| - |V| + k)$$
Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.

$$\sum_{e \in E[S]} \left| \{i \in [\ell] \mid e \in E \setminus F_i \} \right| x_e \geq \ell(|S| - |V| + k)$$

- Scale it by $1/(\ell - 1)$.

$$\sum_{e \in E[S]} \frac{\left| \{i \in [\ell] \mid e \in E \setminus F_i \} \right|}{\ell - 1} x_e \geq \frac{\ell}{\ell - 1}(|S| - |V| + k)$$

- x is integer and nonnegative, so round up coefficients and right-hand side.
Strengthening the Model

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \in E \setminus F_i \right\} \right| x_e \geq \ell(\ell - 1)(|S| - |V| + k)$$

- Scale it by $1/(\ell - 1)$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \in E \setminus F_i \right\} \right| \frac{x_e}{\ell - 1} \geq \frac{\ell}{\ell - 1}(|S| - |V| + k)$$

- x is integer and nonnegative, so round up coefficients and right-hand side.

$$\sum_{e \in E[S]} \begin{cases} 2 & \text{if } e \text{ in no } F_i \\ 0 & \text{if } e \text{ in all } F_i \\ 1 & \text{otherwise} \end{cases} x_e \geq |S| - |V| + k + 1$$
Strengthening the Model

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ ($\ell \geq 2$).
- Sum up all inequalities for fixed S with $|S| - |V| + k \geq 1$.

$$\sum_{e \in E[S]} |\{ i \in [\ell] \mid e \in E \setminus F_i \}| x_e \geq \ell(|S| - |V| + k)$$

- Scale it by $1/(\ell - 1)$.

$$\sum_{e \in E[S]} \frac{|\{ i \in [\ell] \mid e \in E \setminus F_i \}|}{\ell - 1} x_e \geq \frac{\ell}{\ell - 1}(|S| - |V| + k)$$

- x is integer and nonnegative, so round up coefficients and right-hand side.

$$\sum_{e \in E[S]} \begin{cases} 2 & \text{if } e \text{ in no } F_i \\ 0 & \text{if } e \text{ in all } F_i \\ 1 & \text{otherwise} \end{cases} x_e \geq |S| - |V| + k + 1$$

- **Weakened** for coefficients with e in no F_i.
- **Strengthened** for coefficients with e in all F_i.
- **Stronger** right-hand side.
Separation Problem

Input:
- Bipartite graph $G = (V, E)$ with bipartition $V = A \cup B$.
- Edge weights $w \in \mathbb{R}_+^E$
- Parameter k.

Goal:
- Find $S \subseteq V$ with $|S| \geq |V| - k + 1$ minimizing $w(E[S]) - |S| + |V| - k$
Separation Problem

Input:
- Bipartite graph $G = (V, E)$ with bipartition $V = A \cup B$.
- Edge weights $w \in \mathbb{R}^E_+$
- Parameter k.

Goal:
- Find $S \subseteq V$ with $|S| \geq |V| - k + 1$ minimizing $w(E[S]) - |S| + |V| - k$

IP Model:
- Variables y and z with
 - $y_v = 1 \iff v \in S$
 - $z_e = 1 \iff e \in E[S]$

\[
\begin{align*}
\min \quad & -\sum_{v \in V} y_v + \sum_{e \in E} w_e z_e \\
\text{s.t.} \quad & -y_a - y_b + z_{a,b} \geq -1 \quad \text{for all } \{a, b\} \in E \\
& y(A) + y(B) \geq |V| - k + 1 \\
& y, \quad z \text{ binary}
\end{align*}
\]

Observe: TU system plus a single inequality.
Bad News: NP-hardness

Separation problem:
- Input: bipartite graph $G = (V, E)$, a nonnegative vector $w \in \mathbb{Q}_+^E$ and a number $\ell \in \mathbb{N}$.
- Goal: find a set $S \subseteq V$ with $|S| \geq \ell$ that minimizes $w(E[S]) - |S|$.

Some NP-hard problem:
- Input: bipartite Graph $G = (V, E)$, numbers $m, n \in \mathbb{N}$.
- Goal: is there a set of at most n nodes that cover at least m of G's edges?
- Hardness: Apollonino & Simeone (2014)
Bad News: NP-hardness

Separation problem:
- Input: bipartite graph $G = (V, E)$, a nonnegative vector $w \in \mathbb{Q}_+^E$ and a number $\ell \in \mathbb{N}$.
- Goal: find a set $S \subseteq V$ with $|S| \geq \ell$ that minimizes $w(E[S]) - |S|$.

Some NP-hard problem:
- Input: bipartite Graph $G = (V, E)$, numbers $m, n \in \mathbb{N}$.
- Goal: is there a set of at most n nodes that cover at least m of G's edges?
- Hardness: Apollonino & Simeone (2014)

Reduction idea:
- Node complementing ($\ell := |V| - n$) and proper scaling ($w := (|V| + 1)\mathbb{1}_E$)
Bad News: NP-hardness

Separation problem:
- Input: bipartite graph $G = (V, E)$, a nonnegative vector $w \in \mathbb{Q}_+^E$ and a number $\ell \in \mathbb{N}$.
- Goal: find a set $S \subseteq V$ with $|S| \geq \ell$ that minimizes $w(E[S]) - |S|$.

Some NP-hard problem:
- Input: bipartite Graph $G = (V, E)$, numbers $m, n \in \mathbb{N}$.
- Goal: is there a set of at most n nodes that cover at least m of G's edges?
- Hardness: Apollonino & Simeone (2014)

Reduction idea:
- Node complementing ($\ell := |V| - n$) and proper scaling ($w := (|V| + 1)1_E$)
- Existence of S with $|S| \leq n$ and $|\{e \in E \mid e \cap S \neq \emptyset\}| \geq m$ is equivalent to existence of \bar{S} with $|\bar{S}| \geq \ell$ and

$$|E \setminus E[\bar{S}]| \geq m \iff |E[\bar{S}]| \leq (|E| - m)$$

$$\iff (|V| + 1)|E[\bar{S}]| \leq (|V| + 1)(|E| - m)$$

$$\iff (|V| + 1)|E[\bar{S}]| - |\bar{S}| \leq (|V| + 1)(|E| - m)$$

$$\iff w(E[\bar{S}]) - |\bar{S}| \leq (|V| + 1)(|E| - m).$$

(note that $0 \leq |\bar{S}| < |V| + 1$)
Good News: Nice Heuristic Approach

Main idea:

- Let’s move $y(A) + y(B) \geq |V| - k + 1$ into the objective function!
- Lagrange multiplier is one-dimensional: (binary) search for good values.
- Subproblem again reduces to minimum s-t-cut problem.
- If it returns a set S then we have a most-violated inequality among all inequalities with this $|S|$.
Good News: Nice Heuristic Approach

Main idea:
- Let’s move $y(A) + y(B) \geq |V| - k + 1$ into the objective function!
- Lagrange multiplier is one-dimensional: (binary) search for good values.
- Subproblem again reduces to minimum s-t-cut problem.
- If it returns a set S then we have a most-violated inequality among all inequalities with this $|S|$.

Desirable side-effect:

\[
\sum_{e \in E[S]} \{0, 1, 2\} x_e \geq |S| - |V| + k + 1
\]

- Chvátal-Gomory strengthening is stronger for small right-hand sides.
- We can control $|S|$ via Lagrange multipliers to get a small right-hand side.
- Experimentally best strategy: aim for violated cuts with minimum $|S|$.
Models in Practice: CG Cuts

Setup:
- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no general purpose cuts

Running times for IP

![Graph showing running times for CG and CG+degree](image-url)
Models in Practice: CG Cuts

Setup:

- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no general purpose cuts

Running times for IP

- Note that we are solving the IP and not just the relaxation!
Models in Practice: CG Cuts

Setup:
- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no general purpose cuts
- Special case of CG cuts are strengthened degree inequalities $x(\delta(v)) \geq 2$.

Running times for IP

- Note that we are solving the IP and not just the relaxation!
Models in Practice: CG Cuts

Setup:

- Erdős-Rényi graphs with $|A| = |B| = n$, $p = 0.5$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = 1$
- Time limit 600 s, no general purpose cuts

Running times for IP
Models in Practice: CG Cuts

Setup:

- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Random costs $c_e \in \{1, \ldots, 2\}$ for all $e \in E$ independently.
- Time limit 600 s, no general purpose cuts

Running times for IP

![Running time graph](image-url)
Models in Practice: CG Cuts

Setup:
- Complete bipartite graphs with $|A| = |B| = n$
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Random costs $c_e \in \{1, \ldots, 4\}$ for all $e \in E$ independently.
- Time limit 600 s, no general purpose cuts

Running times for IP
Setup:
- Complete bipartite graphs with $|A| = n$ and $|B| = \lceil 1.5n \rceil$
- Node failures $\mathcal{F} = \{\delta(b) \mid b \in B\}$, unit costs $c = 1$
- Time limit 600 s, no general purpose cuts

Remark: Problem is on primal side, i.e., finding an optimal solution!
Thanks!

Things you’ve seen:

- Speed-up of dominant formulation vs. compact one.
- Derivation of Chvátal-Gomory (CG) cuts.
- Fast heuristic separation with Lagrange multiplier.
- Strength of CG cuts, in particular strengthened degree.
Thanks!

Things you’ve seen:

- Speed-up of dominant formulation vs. compact one.
- Derivation of Chvátal-Gomory (CG) cuts.
- Fast heuristic separation with Lagrange multiplier.
- Strength of CG cuts, in particular strengthened degree.

Things you might see in the future:

- Structured instances:
 - . . . obtained from the SetCover reduction
 - . . . obtained from other sources (QAPLIB?)
 - . . . yours?
- Implementation of / comparison with approximation algorithm