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Robust Assignments Models CG Cuts

Bulk-Robustness for Assignment Problems

Assignment Problem:

▸ Input: Bipartite graph G = (V ,E) with V = A ⊍B, edge costs c ∈ RE

▸ Feasible sets: Perfect matchings M ⊆ E (assuming ∣A∣ = ∣B ∣)

▸ Goal: Minimize cost c(M) ∶= ∑e∈M ce

Bulk-Robustness:

▸ Possible (or likely) failure scenarios are given (explicitly or implicitly).

▸ Goal: Buy edges such that for every scenario, there still exists a perfect
matching using the (bought) edges that survived.

Literature:

▸ Concept formally introduced by Adjiashvili, Stiller & Zenklusen
(MPA 2015)

▸ Classical related problems: k-edge connected spanning subgraph problem
robustifies spanning-tree problem against failure of any (k − 1)-edge set.

▸ LP-based O (log(∣V ∣))-approximation algorithm by Adjiashvili, Bindewald
& Michaels (ICALP 2016)
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Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Example:
Hardness:

▸ SetCover reduces to the
problem.

▸ For any d < 1, it admits no
(d log ∣V ∣)-approximation,
unless
NP ⊆DTIME(∣V ∣

log log ∣V ∣).

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 2 / 18



Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Node Failures

Input:
▸ Bipartite graph G = (V ,E) with V = A ⊍B
▸ Failure scenarios F = {δ(b1), . . . , δ(b`)} with bi ∈ B.
▸ Edge costs c ∈ RE

Goal:
▸ Find X ⊆ E with minimum c(X) such that
▸ for all F ∈ F , the subgraph (V ,X ∖ F) contains an A-perfect matching (a

matching that covers A).

Example:

Related Problem:
▸ Related version where nodes from B are bought (in contrast to edges) has

approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
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Robust Assignments Models CG Cuts

General Case

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {F1, . . . ,F`} with Fi ⊆ E
with cardinalities k(F) for all F ∈ F

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that
for all F ∈ F , the subgraph (V ,X ∖ F) contains a matching of size k(F).

Special Cases:

▸ Edge failures: Set k(Fi) ∶= ∣A∣ = ∣B ∣ and Fi ∶= {fi} for all i ∈ [`].

▸ Node failures: Set k(Fi) ∶= ∣A∣ and Fi ∶= δ(bi) for all i ∈ [`].
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Robust Assignments Models CG Cuts

Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min c⊺x

s.t. x ≥ y (F) for all F ∈ F (1)

y (F)
∈ Pk(F)-match(G − F) for all F ∈ F (2)

xe ∈ Z+ for all e ∈ E (3)

▸ Has O (∣F ∣ ⋅ ∣E ∣) variables and constraints.
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▸ Has O (∣F ∣ ⋅ ∣E ∣) variables and constraints.

Polyhedral combinatorics helps:

▸ What does this mean for x?

∃y ∶ x ≥ y , y ∈ Pk(F)-match(G
′
)

▸ Projection onto x is the dominant
of the k(F)-matching polytope.

▸ Inequalities known
(Fulkerson 1970):

∑
e∈E[S]

xe ≥ ∣S ∣ − ∣V ∣ + k(F) for all S ⊆ V
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▸ Has O (∣F ∣ ⋅ ∣E ∣) variables and constraints.

Equivalent (derived from dominant):

min c⊺x

s.t. ∑
e∈E[S]∖F

xe ≥ ∣S ∣ − ∣V ∣ + k(F) for all S ⊆ V for all F ∈ F (4)

xe ∈ Z+ for all e ∈ E (5)

▸ Has O (∣E ∣) variables and O (∣F ∣ ⋅ 2∣V ∣
) constraints.

▸ For every F ∈ F , separation problem reduces to a minimum s-t-cut
problem.

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Aussois 2018 5 / 18



Robust Assignments Models CG Cuts

Models in Practice: LP Relaxation

Setup:
▸ All experiments done with SCIP 5.0.0 (recently released).

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n
▸ Uniform failures F = {{e} ∣ e ∈ E}, unit costs c = 1
▸ Time limit 600 s, no heuristics, no general purpose cuts
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Robust Assignments Models CG Cuts

Models in Practice: IP Bounds

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}, unit costs c = 1

▸ Time limit 600 s, no general purpose cuts

Results for compact vs. dominant model (IP)

Compact model Dominant model
n Opt Root time Final bnd Time Root time Final bnd Time
5 10 0.0 10.0 6.7 0.0 10 0.2
6 12 0.1 12.0 252.5 0.0 12 0.2
7 14 0.4 10.5 600.0 0.0 14 0.3
8 16 1.7 10.8 600.0 0.0 16 22.6
9 18 5.8 11.1 600.0 0.0 18 0.4

10 20 14.8 11.4 600.0 0.0 20 243.2
11 22 41.2 12.2 600.0 0.0 14.8 600.0
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Robust Assignments Models CG Cuts

Strengthening the Model

Chvátal-Gomory cuts:

▸ Consider F1, . . . ,F` with constant k(Fi) = k for all i ∈ [`] (` ≥ 2).

▸ Sum up all inequalities for fixed S with ∣S ∣ − ∣V ∣ + k ≥ 1.

∑
e∈E[S]

∣ {i ∈ [`] ∣ e ∈ E ∖ Fi} ∣xe ≥ `(∣S ∣ − ∣V ∣ + k)

▸ Scale it by 1/(` − 1).

∑
e∈E[S]

∣ {i ∈ [`] ∣ e ∈ E ∖ Fi} ∣

` − 1
xe ≥

`

` − 1
(∣S ∣ − ∣V ∣ + k)

▸ x is integer and nonnegative, so round up coefficients and right-hand side.

∑
e∈E[S]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 if e in no Fi

0 if e in all Fi

1 otherwise

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

xe ≥ ∣S ∣ − ∣V ∣ + k +1

▸ Weakened for coefficients with e in no Fi .

▸ Strengthened for coefficients with e in all Fi .

▸ Stronger right-hand side.
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Robust Assignments Models CG Cuts

Separation Problem

Input:

▸ Bipartite graph G = (V ,E) with bipartition V = A ⊍B.

▸ Edge weights w ∈ RE
+

▸ Parameter k.

Goal:

▸ Find S ⊆ V with ∣S ∣ ≥ ∣V ∣ − k + 1 minimizing w(E[S]) − ∣S ∣ + ∣V ∣ − k

IP Model:

▸ Variables y and z with

▸ yv = 1 ⇐⇒ v ∈ S

▸ ze = 1 ⇐⇒ e ∈ E[S]

min −∑
v∈V

yv +∑
e∈E

weze

s.t. −ya − yb + za,b ≥ −1 for all {a,b} ∈ E

y(A) + y(B) ≥ ∣V ∣ − k + 1

y , z binary

Observe: TU system plus a single inequality.
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Robust Assignments Models CG Cuts

Bad News: NP-hardness

Separation problem:

▸ Input: bipartite graph G = (V ,E), a nonnegative vector w ∈ QE
+ and a

number ` ∈ N.

▸ Goal: find a set S ⊆ V with ∣S ∣ ≥ ` that minimizes w(E[S]) − ∣S ∣.

Some NP-hard problem:

▸ Input: bipartite Graph G = (V ,E), numbers m,n ∈ N.

▸ Goal: is there a set of at most n nodes that cover at least m of G ’s edges?

▸ Hardness: Apollonino & Simeone (2014)

Reduction idea:

▸ Node complementing (` ∶= ∣V ∣ − n) and proper scaling (w ∶= (∣V ∣ + 1)1E )

▸ Existence of S with ∣S ∣ ≤ n and ∣ {e ∈ E ∣ e ∩ S ≠ ∅} ∣ ≥ m is equivalent to
existence of S̄ with ∣S̄ ∣ ≥ ` and

∣E ∖ E[S̄]∣ ≥ m ⇐⇒ ∣E[S̄]∣ ≤ (∣E ∣ −m)

⇐⇒ (∣V ∣ + 1)∣E[S̄]∣ ≤ (∣V ∣ + 1)(∣E ∣ −m)

⇐⇒ (∣V ∣ + 1)∣E[S̄]∣−∣S̄ ∣ ≤ (∣V ∣ + 1)(∣E ∣ −m)

⇐⇒ w(E[S̄])−∣S̄ ∣ ≤ (∣V ∣ + 1)(∣E ∣ −m).

(note that 0 ≤ ∣S̄ ∣ < ∣V ∣ + 1)
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Robust Assignments Models CG Cuts

Good News: Nice Heuristic Approach

Main idea:

▸ Let’s move y(A) + y(B) ≥ ∣V ∣ − k + 1 into the objective function!

▸ Lagrange multiplier is one-dimensional: (binary) search for good values.

▸ Subproblem again reduces to mininum s-t-cut problem.

▸ If it returns a set S then we have a most-violated inequality among all
inequalities with this ∣S ∣.

Desirable side-effect:

∑
e∈E[S]

{0,1,2} xe ≥ ∣S ∣ − ∣V ∣ + k +1

▸ Chvátal-Gomory strengthening is stronger for small right-hand sides.

▸ We can control ∣S ∣ via Lagrange multipliers to get a small right-hand side.

▸ Experimentally best strategy: aim for violated cuts with minimum ∣S ∣.
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Robust Assignments Models CG Cuts

Models in Practice: CG Cuts

Setup:
▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n
▸ Uniform failures F = {{e} ∣ e ∈ E}, unit costs c = 1
▸ Time limit 600 s, no general purpose cuts

▸ Special case of CG cuts are strengthened degree inequalities x(δ(v)) ≥ 2.
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▸ Note that we are solving the IP and not just the relaxation!
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Robust Assignments Models CG Cuts

Models in Practice: CG Cuts

Setup:

▸ Erdős-Rényi graphs with ∣A∣ = ∣B ∣ = n, p = 0.5

▸ Uniform failures F = {{e} ∣ e ∈ E}, unit costs c = 1

▸ Time limit 600 s, no general purpose cuts
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Models in Practice: CG Cuts

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Random costs ce ∈ {1, . . . ,2} for all e ∈ E independently.

▸ Time limit 600 s, no general purpose cuts
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Robust Assignments Models CG Cuts

Models in Practice: CG Cuts

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Random costs ce ∈ {1, . . . ,4} for all e ∈ E independently.

▸ Time limit 600 s, no general purpose cuts
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Robust Assignments Models CG Cuts

Models in Practice: IP Bounds with CG Cuts

Setup:

▸ Complete bipartite graphs with ∣A∣ = n and ∣B ∣ = ⌊1.5n⌋

▸ Node failures F = {δ(b) ∣ b ∈ B}, unit costs c = 1

▸ Time limit 600 s, no general purpose cuts
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Remark: Problem is on primal side, i.e., finding an optimal solution!
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Robust Assignments Models CG Cuts

Thanks!

Things you’ve seen:

▸ Speed-up of dominant formulation vs. compact one.

▸ Derivation of Chvátal-Gomory (CG) cuts.

▸ Fast heuristic separation with Lagrange multiplier.

▸ Strength of CG cuts, in particular strengthened degree.

Things you might see in the future:
▸ Structured instances:

▸ . . . obtained from the SetCover reduction
▸ . . . obtained from other sources (QAPLIB?)
▸ . . . yours?

▸ Implementation of / comparison with approximation algorithm
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