Solving Bulk-Robust Assignment Problems to Optimality

Matthias Walter (RWTH Aachen)

Joint work with

David Adjiashvili (ETH Zürich), Viktor Bindewald & Dennis Michaels (TU Dortmund)

Aussois Combinatorial Optimization Workshop, 2018

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Assignment Problem:

- ▶ Input: Bipartite graph G = (V, E) with $V = A \cup B$, edge costs $c \in \mathbb{R}^{E}$
- ▶ Feasible sets: Perfect matchings $M \subseteq E$ (assuming |A| = |B|)
- Goal: Minimize cost $c(M) \coloneqq \sum_{e \in M} c_e$

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Assignment Problem:

- ▶ Input: Bipartite graph G = (V, E) with $V = A \cup B$, edge costs $c \in \mathbb{R}^{E}$
- ▶ Feasible sets: Perfect matchings $M \subseteq E$ (assuming |A| = |B|)
- Goal: Minimize cost $c(M) \coloneqq \sum_{e \in M} c_e$

Bulk-Robustness:

- Possible (or likely) failure scenarios are given (explicitly or implicitly).
- Goal: Buy edges such that for every scenario, there still exists a perfect matching using the (bought) edges that survived.

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Assignment Problem:

- ▶ Input: Bipartite graph G = (V, E) with $V = A \cup B$, edge costs $c \in \mathbb{R}^{E}$
- ▶ Feasible sets: Perfect matchings $M \subseteq E$ (assuming |A| = |B|)
- Goal: Minimize cost $c(M) \coloneqq \sum_{e \in M} c_e$

Bulk-Robustness:

- Possible (or likely) failure scenarios are given (explicitly or implicitly).
- Goal: Buy edges such that for every scenario, there still exists a perfect matching using the (bought) edges that survived.

Literature:

- Concept formally introduced by Adjiashvili, Stiller & Zenklusen (MPA 2015)
- Classical related problems: k-edge connected spanning subgraph problem robustifies spanning-tree problem against failure of any (k - 1)-edge set.
- + LP-based $\mathcal{O}(\log(|V|))$ -approximation algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016)

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a perfect matching.

Example:

- SetCover reduces to the problem.
- For any d < 1, it admits no (d log |V|)-approximation, unless NP ⊆ DTIME(|V|^{log log |V|}).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\delta(b_1), \ldots, \delta(b_\ell)\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Example:

Related Problem:

General Case

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios *F* = {*F*₁,...,*F*_ℓ} with *F_i* ⊆ *E* with cardinalities *k*(*F*) for all *F* ∈ *F*
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a matching of size k(F).

General Case

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios *F* = {*F*₁,...,*F*_ℓ} with *F_i* ⊆ *E* with cardinalities *k*(*F*) for all *F* ∈ *F*
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

 Find X ⊆ E with minimum c(X) such that for all F ∈ F, the subgraph (V, X \ F) contains a matching of size k(F).

Special Cases:

- Edge failures: Set $k(F_i) := |A| = |B|$ and $F_i := \{f_i\}$ for all $i \in [\ell]$.
- Node failures: Set $k(F_i) := |A|$ and $F_i := \delta(b_i)$ for all $i \in [\ell]$.

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\top}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{0} \in \mathbb{Z}_{+}$ for all $e \in F$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\top}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{0} \in \mathbb{Z}_{+}$ for all $e \in F$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

What does this mean for x?

$$\exists y: x \ge y, y \in P_{k(F)-match}(G')$$

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\top}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{0} \in \mathbb{Z}_{+}$ for all $e \in F$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

What does this mean for x?

$$\exists y: x \ge y, y \in P_{k(F)-match}(G')$$

 Projection onto x is the dominant of the k(F)-matching polytope.

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\top}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1)
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2)
 $x_{e} \in \mathbb{Z}_{+}$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

What does this mean for x?

 $\exists y: x \ge y, y \in P_{k(F)-match}(G')$

- Projection onto x is the dominant of the k(F)-matching polytope.
- Inequalities known (Fulkerson 1970):

$$\sum_{e \in E[S]} x_e \ge |S| - |V| + k(F) \text{ for all } S \subseteq V$$

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\top}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{e} \in \mathbb{Z}_{+}$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Equivalent (derived from dominant):

$$\min_{e \in E[S] \setminus F} c^{\top} x$$
s.t.
$$\sum_{e \in E[S] \setminus F} x_e \ge |S| - |V| + k(F) \quad \text{for all } S \subseteq V \text{ for all } F \in \mathcal{F}$$

$$x_e \in \mathbb{Z}_+ \qquad \text{for all } e \in E$$

$$(5)$$

- Has $\mathcal{O}(|\mathcal{E}|)$ variables and $\mathcal{O}(|\mathcal{F}| \cdot 2^{|\mathcal{V}|})$ constraints.
- ▶ For every $F \in F$, separation problem reduces to a minimum *s*-*t*-cut problem.

Models in Practice: LP Relaxation

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Setup:

- All experiments done with SCIP 5.0.0 (recently released).
- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- > Time limit 600 s, no heuristics, no general purpose cuts

Matthias Walter

Models in Practice: LP Relaxation

Setup:

- Erdős-Rényi graphs with |A| = |B| = n, p = 0.5
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no heuristics, no general purpose cuts

Running times for LP relaxation

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Models in Practice: IP Bounds

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no general purpose cuts

	Compact model			Dom	inant model		
n	Opt	Root time	Final bnd	Time	Root time	Final bnd	Time
5	10	0.0	10.0	6.7	0.0	10	0.2
6	12	0.1	12.0	252.5	0.0	12	0.2
7	14	0.4	10.5	600.0	0.0	14	0.3
8	16	1.7	10.8	600.0	0.0	16	22.6
9	18	5.8	11.1	600.0	0.0	18	0.4
10	20	14.8	11.4	600.0	0.0	20	243.2
11	22	41.2	12.2	600.0	0.0	14.8	600.0

Results for compact vs. dominant model (IP)

í	Robust Assignments	Models	CG Cuts
5	0000	0000	●00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_{ℓ} with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

1	Robust Assignments	Models	CG Cuts
1	0000	0000	●00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_{ℓ} with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} |\{i \in [\ell] \mid e \in E \setminus F_i\}| x_e \ge \ell(|S| - |V| + k)$$

Rot	oust Assignments	Models	CG Cuts
00	00	0000	•00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_{ℓ} with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \in E \setminus F_i \right\} \right| x_e \ge \ell(|S| - |V| + k)$$

Scale it by 1/(ℓ − 1).

ſ	Robust Assignments	Models	CG Cuts
	0000	0000	●00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} |\{i \in [\ell] \mid e \in E \setminus F_i\}| x_e \ge \ell(|S| - |V| + k)$$

$$\sum_{e \in E[S]} \frac{\left|\left\{i \in [\ell] \mid e \in E \setminus F_i\right\}\right|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

1	Robust Assignments	Models	CG Cuts
1	0000	0000	●00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} |\{i \in [\ell] \mid e \in E \setminus F_i\}| x_e \ge \ell(|S| - |V| + k)$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{\left|\{i \in [\ell] \mid e \in E \setminus F_i\}\right|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

• x is integer and nonnegative, so round up coefficients and right-hand side.

ſ	Robust Assignments	Models	CG Cuts
1	0000	0000	•00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \in E \setminus F_i \right\} \left| x_e \ge \ell(|S| - |V| + k) \right. \right.$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{\left|\{i \in [\ell] \mid e \in E \setminus F_i\}\right|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

• x is integer and nonnegative, so round up coefficients and right-hand side.

$$\sum_{e \in E[S]} \left\{ \begin{array}{ll} 2 & \text{if } e \text{ in } no \ F_i \\ 0 & \text{if } e \text{ in } all \ F_i \\ 1 & \text{otherwise} \end{array} \right\} x_e \ge |S| - |V| + k + 1$$

1	Robust Assignments	Models	CG Cuts
	0000	0000	●00000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} |\{i \in [\ell] \mid e \in E \setminus F_i\}| x_e \ge \ell(|S| - |V| + k)$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{\left| \{i \in [\ell] \mid e \in E \smallsetminus F_i\} \right|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

• x is integer and nonnegative, so round up coefficients and right-hand side.

$$\sum_{e \in E[S]} \left\{ \begin{array}{ll} 2 & \text{if } e \text{ in } no \ F_i \\ 0 & \text{if } e \text{ in } all \ F_i \\ 1 & \text{otherwise} \end{array} \right\} x_e \ge |S| - |V| + k + 1$$

- Weakened for coefficients with e in no F_i .
- Strengthened for coefficients with e in all F_i .
- Stronger right-hand side.

Separation Problem

Robust Assignments	Models	CG Cuts
0000	0000	00000000

Input:

- Bipartite graph G = (V, E) with bipartition $V = A \cup B$.
- Edge weights $w \in \mathbb{R}^{E}_{+}$
- Parameter k.

Goal:

Find $S \subseteq V$ with $|S| \ge |V| - k + 1$ minimizing w(E[S]) - |S| + |V| - k

Separation Problem

Rot	oust Assignments	Models	CG Cuts
00	00	0000	00000000

Input:

- Bipartite graph G = (V, E) with bipartition $V = A \cup B$.
- Edge weights $w \in \mathbb{R}^{E}_{+}$
- Parameter k.

Goal:

• Find $S \subseteq V$ with $|S| \ge |V| - k + 1$ minimizing w(E[S]) - |S| + |V| - k

IP Model:

- Variables y and z with
- $y_v = 1 \iff v \in S$
- $z_e = 1 \iff e \in E[S]$

$$\begin{array}{ll} \min & -\sum_{v \in V} y_v + \sum_{e \in E} w_e z_e \\ \text{s.t.} & -y_a - y_b + & z_{a,b} \ge -1 & \text{for all } \{a, b\} \in E \\ & y(A) + y(B) & \ge |V| - k + 1 \\ & y, & z \text{ binary} \end{array}$$

Observe: TU system plus a single inequality.

Matthias Walter

Solving Bulk-Robust Assignment Problems to Optimality

1	Robust Assignments	Models	CG Cuts
	0000	0000	000000000

Bad News: NP-hardness

Separation problem:

- ▶ Input: bipartite graph G = (V, E), a nonnegative vector $w \in \mathbb{Q}_+^E$ and a number $\ell \in \mathbb{N}$.
- Goal: find a set $S \subseteq V$ with $|S| \ge \ell$ that minimizes w(E[S]) |S|.

Some NP-hard problem:

- ▶ Input: bipartite Graph G = (V, E), numbers $m, n \in \mathbb{N}$.
- Goal: is there a set of at most *n* nodes that cover at least *m* of *G*'s edges?
- Hardness: Apollonino & Simeone (2014)

1	Robust Assignments	Models	CG Cuts
1	0000	0000	000000000

Bad News: NP-hardness

Separation problem:

- ▶ Input: bipartite graph G = (V, E), a nonnegative vector $w \in \mathbb{Q}_+^E$ and a number $\ell \in \mathbb{N}$.
- Goal: find a set $S \subseteq V$ with $|S| \ge \ell$ that minimizes w(E[S]) |S|.

Some NP-hard problem:

- ▶ Input: bipartite Graph G = (V, E), numbers $m, n \in \mathbb{N}$.
- Goal: is there a set of at most *n* nodes that cover at least *m* of *G*'s edges?
- Hardness: Apollonino & Simeone (2014)

Reduction idea:

• Node complementing $(\ell := |V| - n)$ and proper scaling $(w := (|V| + 1)\mathbb{1}_E)$

ſ	Robust Assignments	Models	CG Cuts
ļ	0000	0000	000000000

Bad News: NP-hardness

Separation problem:

- ▶ Input: bipartite graph G = (V, E), a nonnegative vector $w \in \mathbb{Q}_+^E$ and a number $\ell \in \mathbb{N}$.
- Goal: find a set $S \subseteq V$ with $|S| \ge \ell$ that minimizes w(E[S]) |S|.

Some NP-hard problem:

- ▶ Input: bipartite Graph G = (V, E), numbers $m, n \in \mathbb{N}$.
- Goal: is there a set of at most *n* nodes that cover at least *m* of *G*'s edges?
- Hardness: Apollonino & Simeone (2014)

Reduction idea:

- Node complementing $(\ell := |V| n)$ and proper scaling $(w := (|V| + 1)\mathbb{1}_E)$
- Existence of S with |S| ≤ n and |{e ∈ E | e ∩ S ≠ Ø}|≥ m is equivalent to existence of S with |S|≥ ℓ and

$$\begin{split} |E \setminus E[\overline{S}]| \ge m \iff |E[\overline{S}]| \le (|E| - m) \\ \iff (|V| + 1)|E[\overline{S}]| \le (|V| + 1)(|E| - m) \\ \iff (|V| + 1)|E[\overline{S}]| - |\overline{S}| \le (|V| + 1)(|E| - m) \\ \iff w(E[\overline{S}]) - |\overline{S}| \le (|V| + 1)(|E| - m). \end{split}$$

(note that $0 \leq |\overline{S}| < |V| + 1$)

Matthias Walter

Solving Bulk-Robust Assignment Problems to Optimality

Good News: Nice Heuristic Approach

ſ	Robust Assignments	Models	CG Cuts
5	0000	0000	000000000

Main idea:

- Let's move $y(A) + y(B) \ge |V| k + 1$ into the objective function!
- Lagrange multiplier is one-dimensional: (binary) search for good values.
- Subproblem again reduces to mininum *s*-*t*-cut problem.
- If it returns a set S then we have a most-violated inequality among all inequalities with this |S|.

Good News: Nice Heuristic Approach

ſ	Robust Assignments	Models	CG Cuts
ļ	0000	0000	000000000

Main idea:

- Let's move $y(A) + y(B) \ge |V| k + 1$ into the objective function!
- · Lagrange multiplier is one-dimensional: (binary) search for good values.
- Subproblem again reduces to mininum *s*-*t*-cut problem.
- If it returns a set S then we have a most-violated inequality among all inequalities with this |S|.

Desirable side-effect:

$$\sum_{e \in E[S]} \{0, 1, 2\} x_e \ge |S| - |V| + k + 1$$

- Chvátal-Gomory strengthening is stronger for small right-hand sides.
- We can control |S| via Lagrange multipliers to get a small right-hand side.
- Experimentally best strategy: aim for violated cuts with minimum |S|.

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no general purpose cuts

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no general purpose cuts

Running times for IP

Note that we are solving the IP and not just the relaxation!

Matthias Walter

Solving Bulk-Robust Assignment Problems to Optimality

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no general purpose cuts
- ▶ Special case of CG cuts are strengthened degree inequalities $x(\delta(v)) \ge 2$.

Running times for IP

Note that we are solving the IP and not just the relaxation!

Matthias Walter

Solving Bulk-Robust Assignment Problems to Optimality

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Setup:

- Erdős-Rényi graphs with |A| = |B| = n, p = 0.5
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no general purpose cuts

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{ \{ e \} \mid e \in E \}$
- ▶ Random costs $c_e \in \{1, ..., 2\}$ for all $e \in E$ independently.
- Time limit 600 s, no general purpose cuts

Robust .	Assignments	Models	CG Cuts
0000		0000	0000000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{ \{ e \} \mid e \in E \}$
- ▶ Random costs $c_e \in \{1, ..., 4\}$ for all $e \in E$ independently.
- Time limit 600 s, no general purpose cuts

Robi	ust Assignments	Models	CG Cuts
000	00	0000	000000000

Models in Practice: IP Bounds with CG Cuts

Setup:

- Complete bipartite graphs with |A| = n and $|B| = \lfloor 1.5n \rfloor$
- Node failures $\mathcal{F} = \{\delta(b) \mid b \in B\}$, unit costs $c = \mathbb{1}$
- Time limit 600 s, no general purpose cuts

Running times for IP

Remark: Problem is on primal side, i.e., finding an optimal solution!

Matthias Walter

Solving Bulk-Robust Assignment Problems to Optimality

 Robust Assignments
 Models
 CG Cuts

 0000
 000000000
 000000000

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Thanks!

Things you've seen:

- Speed-up of dominant formulation vs. compact one.
- Derivation of Chvátal-Gomory (CG) cuts.
- Fast heuristic separation with Lagrange multiplier.
- Strength of CG cuts, in particular strengthened degree.

Robust Assignments	Models	CG Cuts
0000	0000	000000000

Thanks!

Things you've seen:

- Speed-up of dominant formulation vs. compact one.
- Derivation of Chvátal-Gomory (CG) cuts.
- Fast heuristic separation with Lagrange multiplier.
- Strength of CG cuts, in particular strengthened degree.

Things you might see in the future:

- Structured instances:
 - ... obtained from the SetCover reduction
 - ... obtained from other sources (QAPLIB?)
 - ... yours?
- Implementation of / comparison with approximation algorithm

