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Bulk-Robustness for Assignment Problems

Assignment Problem:
» Input: Bipartite graph G = (V, E) with V = Au B, edge costs c € RF
» Feasible sets: Perfect matchings M ¢ E (assuming |A| = |B|)

» Goal: Minimize cost c(M) =3 .y Ce
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» Input: Bipartite graph G = (V, E) with V = Au B, edge costs c € RF
» Feasible sets: Perfect matchings M ¢ E (assuming |A| = |B|)

» Goal: Minimize cost c(M) =3 .y Ce

Bulk-Robustness:
» Possible (or likely) failure scenarios are given (explicitly or implicitly).

» Goal: Buy edges such that for every scenario, there still exists a perfect
matching using the (bought) edges that survived.
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Bulk-Robustness for Assignment Problems

Assignment Problem:
» Input: Bipartite graph G = (V, E) with V = Au B, edge costs c € RF
» Feasible sets: Perfect matchings M ¢ E (assuming |A| = |B|)

» Goal: Minimize cost c(M) =3 .y Ce

Bulk-Robustness:
» Possible (or likely) failure scenarios are given (explicitly or implicitly).

» Goal: Buy edges such that for every scenario, there still exists a perfect
matching using the (bought) edges that survived.

Literature:

» Concept formally introduced by Adjiashvili, Stiller & Zenklusen
(MPA 2015)

> Classical related problems: k-edge connected spanning subgraph problem
robustifies spanning-tree problem against failure of any (k —1)-edge set.
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{fi},...,{fe}} with fi € E.
» Edge costs ¢ ¢ RF
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{fi},..., {fe}} with fi € E.

» Edge costs ¢ ¢ RF

Goal:
» Find X ¢ E with minimum c(X) such that
» for all F € F, the subgraph (V, X \ F) contains a perfect matching.
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{fi},..., {fe}} with f; € E.

» Edge costs ¢ ¢ RF

Goal:
» Find X ¢ E with minimum c(X) such that
» for all F € F, the subgraph (V, X \ F) contains a perfect matching.

Algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016):
» Approximation factor: O (log|V|)
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{fi},...,{fe}} with fi € E.
» Edge costs ¢ ¢ RF

Goal:
» Find X ¢ E with minimum c(X) such that
» for all F € F, the subgraph (V, X \ F) contains a perfect matching.

Algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016):

» Approximation factor: O (log|V|)
» Outline:
@ Solve LP relaxation of IP formulation.
@® Decompose LP optimum of some failure-specific part into convex
combination of perfect matchings. _
©® Randomly select one such matching M according to decomposition
distribution.
@ Augment current solution by edges that improve connectivity.
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{b1},...,{b¢}} with b;j € B.

» Node costs c € RE
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{b1},...,{b¢}} with b;j € B.

» Node costs c € RE

Goal:
» Find X ¢ B with minimum c(X) such that

» for all F € F, the subgraph G[Auw X \ F] contains an A-perfect matching
(a matching that covers A).
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{b1},...,{b¢}} with b;j € B.

» Node costs c € RE

Goal:
» Find X ¢ B with minimum c(X) such that

» for all F € F, the subgraph G[Auw X \ F] contains an A-perfect matching
(a matching that covers A).

Algorithm by Adjiashvili, Bindewald & Michaels (2017):
» Approximation factor: log|A| + 2
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Input:
» Bipartite graph G = (V,E) with V=AuB
» Failure scenarios F = {{b1},...,{b¢}} with b;j € B.

» Node costs c € RE

Goal:
» Find X ¢ B with minimum c(X) such that

» for all F € F, the subgraph G[Auw X \ F] contains an A-perfect matching
(a matching that covers A).

Algorithm by Adjiashvili, Bindewald & Michaels (2017):

» Approximation factor: log|A| + 2
» Outline:

® Compute an A-perfect matching w.r.t. certain costs.
® Reduce the remaining problem to a set-cover instance.
© Solve the latter by the greedy algorithm.
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Generalization

Input:
» Bipartite graph G = (V,E) with V=AuB

» Failure scenarios F = {F1,..., Fe} with F; ¢ E with cardinalities k(F) for
all FeF

» Edge costs ¢ ¢ RF

Goal:
» Find X ¢ E with minimum c(X) such that
» for all F € F, the subgraph (V, X \ F) contains a matching of size k(F).
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Generalization

Input:
» Bipartite graph G = (V,E) with V=AuB

» Failure scenarios F = {Fi,..., F¢} with F; ¢ E with cardinalities k(F) for
all Fe F

» Edge costs ¢ ¢ RF

Goal:
» Find X ¢ E with minimum c(X) such that
» for all F € F, the subgraph (V, X \ F) contains a matching of size k(F).

Special cases:

» Edge failures: Set k(F;) :=|Al = |B| and F; := {fi} for all i € [£].
» Node failures: Set k(F;) :=|A| and F;:=d(b;) for all i e [£].
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Integer Programming Models
Straight-forward model (see Adjiashvili et al., ICALP 2016):

min ¢ x
st. x> y" forall Fe F (1)
¥ e Putrymaen(G — F) forall FeF (2)
Xe € Ly forall ec E 3

> Has O (|F|-|E|) variables and constraints.
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Straight-forward model (see Adjiashvili et al., ICALP 2016):

min ¢'x
s.t. X > y(F) forall FeF
¥ e Putrymaen(G — F) forall FeF
Xe € Loy foralleec E

> Has O (|F|-|E|) variables and constraints.
Polyhedral combinatorics helps:
» What does this mean for x?7

dy:x>2y, ye Pk(F)-match(G/)
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Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min ¢ x
st. x> y" forall Fe F (1)
¥ e Putrymaen(G — F) forall FeF (2)
Xe € Ly forall ec E 3

> Has O (|F|-|E|) variables and constraints.
Polyhedral combinatorics helps:
» What does this mean for x?7
Ay x>y, y€Prrymacn(G)

> Projection onto x is the

of the s
» Inequalities known (Fulkerson '70): o
> x> |S|-|V|+k(F) forall ScV ° o

ecE[S]
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Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min ¢ x
st. x> y" forall Fe F (1)
¥ e Putrymaen(G — F) forall FeF (2)
Xe € Ly forall ec E 3

> Has O (|F|-|E|) variables and constraints.

Equivalent (derived from dominant):

min c'x
st. > x> |S|-|V|+k(F) forall ScV forall FeF 4)
ecE[S]\F
Xe € Ly forall ec E (5)

» Has O (|E|) variables and O (|F|- 2“/‘) constraints.

> For every F € F, separation problem reduces to a minimum-cut problem.
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Setup:
» Complete bipartite graphs with |A| =|B|=n
» Uniform failures F = {{e} | ec E}
» Unit costs c =1
» Time limit 600 s
Running times for LP relaxation
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Setup:
» Erd8s-Rényi graphs with |A| = |B|=n, p=0.4
» Uniform failures F = {{e} | ec E}
» Unit costs c=1
» Time limit 600 s
Running times for LP relaxation
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Models in Practice: IP Bounds

Setup:
» Complete bipartite graphs with |A| = |B|=n
» Uniform failures F = {{e} | e € E}
» Unit costs c =1
> Time limit 600s

Results for compact model

n | Root bound Root time [s] | Final bound Time [s] | Optimum
5 6.25 0.1 10.00 5.8 10

6 7.20 1.0 9.73 600 12

7 8.17 3.7 9.20 600 14

8 9.29 7.4 9.86 600 16

9 10.13 20.1 10.29 600 18
10 11.11 67.2 11.25 600 20
11 12.10 184.74 12.10 600 22
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Models in Practice: IP Bounds

Setup:
» Complete bipartite graphs with |A| = |B|=n
» Uniform failures F = {{e} | e € E}
» Unit costs c =1
> Time limit 600s

Results for dominant model

n | Root bound Root time [s] | Final bound Time [s] | Optimum
5 6.25 0.0 10.00 0.2 10

6 7.20 0.0 12.00 4.6 12

7 8.17 0.0 14.00 179.5 14

8 9.29 0.0 13.00 600 16

9 10.13 0.0 13.45 600 18
10 11.11 0.0 13.92 600 20
11 12.10 0.0 14.40 600 22
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Solving with Gurobi

Setup:
» Combination of complete graph, singleton failures and unit costs has lots
of symmetry.

» Gurobi detects this and can prove lower bound earlier.
> For n=9, we observe this:

Results for compact model with Gurobi

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 9.14286 0 3648 64.00000 9.14286 85.7% & 4s
0 0 9.14286 0 3648 64.00000 9.14286 85.7% = 6s
0 2 9.14286 0 3648 64.00000 9.14286 85.7% - 13s
2 2 0.00000 1 3521 64.00000 10.00000 84.4% 5738 15s

525 355 13.00000 16 1267 16.00000 11.73810 26.6% 1526 205s
542 349 infeasible 16 16.00000 13.42857 16.1% 1509 210s
548 352 13.80000 19 2011 16.00000 13.80000 13.7% 1519 216s
559 345 15.00000 19 1923 16.00000 14.00000 12.5% 1525 220s

Explored 568 nodes (899200 simplex iterations) in 223.95 seconds
Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0%
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Solving with Gurobi

Setup:
» Combination of complete graph, singleton failures and unit costs has lots
of symmetry.

» Gurobi detects this and can prove lower bound earlier.
> For n=9, we observe this:

Results for compact model with Gurobi

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 9.14286 0 3648 64.00000 9.14286 85.7% & 4s
0 0 9.14286 0 3648 64.00000 9.14286 85.7% = 6s
0 2 9.14286 0 3648 64.00000 9.14286 85.7% - 13s
2 2 0.00000 1 3521 64.00000 10.00000 84.4% 5738 15s

525 355 13.00000 16 1267 16.00000 11.73810 26.6% 1526 205s
542 349 infeasible 16 16.00000 13.42857 16.1% 1509 210s
548 352 13.80000 19 2011 16.00000 13.80000 13.7% 1519 216s
559 345 15.00000 19 1923 16.00000 14.00000 12.5% 1525 220s

Explored 568 nodes (899200 simplex iterations) in 223.95 seconds
Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0%

Note: This effect vanishes as soon as the graph is not symmetric anymore.
RWTH
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Strengthening the Model

Chvatal-Gomory cuts:
» Consider Fi, ..., F; with constant k(F;) = k for all i € [£] (£22).
» Sum up all inequalities for fixed S with |S|—|V|+ k > 1.
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Strengthening the Model

Chvatal-Gomory cuts:
» Consider Fi, ..., F; with constant k(F;) = k for all i € [£] (£22).
» Sum up all inequalities for fixed S with |S|—|V|+ k > 1.

> [Hicll]|e¢Fi}lxe 2 (S|~ |V + k)

ecE[S]

» Scale it by 1/(¢-1).
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Chvatal-Gomory cuts:
» Consider Fi, ..., F; with constant k(F;) = k for all i € [£] (£22).
» Sum up all inequalities for fixed S with |S|—|V|+ k > 1.
>, Hiell]e¢Fi}lxe> (S|~ |V]+k)

ecE[S]
» Scale it by 1/(¢-1).

ielllle¢ R}l . £ .o
s o (IS]- VI )

ecE[S]
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Strengthening the Model

Chvatal-Gomory cuts:
» Consider Fi, ..., F; with constant k(F;) = k for all i € [£] (£22).
» Sum up all inequalities for fixed S with |S|—|V|+ k > 1.

> [Hicll]|e¢Fi}lxe 2 (S|~ |V + k)

ecE[S]
» Scale it by 1/(¢-1).

[Giellles R}l . £ .o
s o (IS]- VI )

ecE[S]

> x is integer and nonnegative, so round up coefficients and right-hand side.
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Chvatal-Gomory cuts:
» Consider Fi, ..., F; with constant k(F;) = k for all i € [£] (£22).
» Sum up all inequalities for fixed S with |S|—|V|+ k > 1.
>, Hiell]e¢Fi}lxe> (S|~ |V]+k)

ecE[S]
» Scale it by 1/(¢-1).
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> x is integer and nonnegative, so round up coefficients and right-hand side.

2 ifeinno F;
{0 ifeinall i Pxe>|S|-|V]+k+1
ecE[S] [ 1  otherwise
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Strengthening the Model

Chvatal-Gomory cuts:
» Consider Fi, ..., F; with constant k(F;) = k for all i € [£] (£22).
» Sum up all inequalities for fixed S with |S|—|V|+ k > 1.
>, Hiell]e¢Fi}lxe> (S|~ |V]+k)

ecE[S]
» Scale it by 1/(¢-1).

[Giellles R}l . £ .o
s o (IS]- VI )

ecE[S]

> x is integer and nonnegative, so round up coefficients and right-hand side.

2 ifeinno F;
{0 ifeinall i Pxe>|S|-|V]+k+1
ecE[S] [ 1  otherwise

v

Weakened for coefficients with e in no F;.
» Strengthened for coefficients with e in all F;.
» Stronger right-hand side.

Matthias Walter Solving Bulk-Robust Assignment Problems to Optimality Magdeburg 2017 11 /18



. Robust Assignments
Separation Problem Loooo i

Models
000000

CG Cuts
0®00000

Input:
» Bipartite graph G = (V/, E) with bipartition V = Au B.
» Edge weights w ¢ Rf
> Parameter k.

Goal:

» Find S ¢ V with |S]| > |V| - k + 1 minimizing w(E[S]) - |S|+|V|-k
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Input:
» Bipartite graph G = (V/, E) with bipartition V = Au B.
» Edge weights w ¢ Rf
> Parameter k.
Goal:
» Find S ¢ V with |S]| > |V| - k + 1 minimizing w(E[S]) - |S|+|V|-k

IP Model:
> Variables y and z with
»yw=1 < veS
» Ze=1 < ecE[S]

min - Z Y+ Z We Ze

veV ecE
s.t. —Ya—Yb+ Zap> -1 for all {a,b} € E
y(A) +y(B) 2 |V[-k+1
v, z binary

Observe: TU system plus a single inequality.
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Separation Problem

Relation to the dominant separation problem:
> Find S ¢ V with |S| > |V| - k minimizing w(E[S]) - |S|+|V|-k
» For k = 3|V| (perfect matchings), |S| > 2|V can be ignored via

S:=A and E[S]=2
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Setup:
» Complete bipartite graphs with |A| = |B|=n
» Uniform failures F = {{e} | ec E}
> Unit costs c =1
> Time limit 600s
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Models in Practice: IP Bounds with CG Cuts Loooo 000000 0008000

Setup:
» Complete bipartite graphs with |A| = |B|=n
» Uniform failures F = {{e} | ec E}
» Unit costs c =1
» Time limit 600s

Results for dominant / CG model

n Dominant +CG Optimum
5 | 10.00 0.2s | 10.00 0.4s 10

6 | 12.00 46s | 12.00 0.9s 12

7 | 1400 179.5s | 14.00 2.7s 14

8 | 13.00 600.0s | 16.00 11.3s 16

9 | 1345 600.0s | 18.00 26.5s 18
10 | 13.92 600.0s | 20.00 92.8s 20
11 | 1440 600.0s | 22.00 332.1s 22
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Robust Assignments Models CG Cuts

Models in Practice: IP Bounds with CG Cuts Loooo 000000 0008000

Setup:
» Complete bipartite graphs with |A| = |B|=n
» Uniform failures F = {{e} | ec E}
» Unit costs c =1
» Time limit 600s
» Special case of CG cuts are strengthened degree inequalities x(d(v)) > 2.

» These already prove a dual bound of 2n. Let's add those in the beginning!

Results for dominant / CG model

n Dominant +CG +Initial Degree | Optimum
5 | 10.00 0.2s | 10.00 0.4s | 10.00 0.0s | 10

6 | 12.00 4.6s | 12.00 0.9s | 12.00 0.0s | 12

7 | 1400 179.5s | 14.00 2.7s | 14.00 0.0s | 14

8 | 13.00 600.0s | 16.00 11.3s | 16.00 0.0s | 16

9 | 13.45 600.0s | 18.00 26.5s | 18.00 0.0s | 18
10 | 13.92 600.0s | 20.00 92.8s | 20.00 0.0s | 20
11 | 1440 600.0s | 22.00 332.1s | 22.00 0.1s | 22
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Setup:
» Erd8s-Rényi graphs with |A| = |B|=n, p=0.4
» Uniform failures F = {{e} | e € E}
» Unit costs ¢ = 1
> Time limit 600s

Results for dominant / CG model

n +CG +Initial Degree | Optimum
5 | 10.00 0.4s | 10.00 0.0s | 10
6 | 12.00 1.0s | 12.00 0.0s | 12
7 | 14.00 29s | 14.00 0.0s | 14
8 | 16.00 11.8s | 16.00 0.0s | 16
9 | 18.00 27.2s | 18.00 0.0s | 18
10 | 20.00 3.3s | 20.00 0.0s | 20
11 | 22.00 8.9s | 22.00 0.0s | 22
12 | 22.00 22.6s | 22.00 23.6s | 22
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. . . Robust Assignments
Models in Practice: IP Bounds with CG Cuts Loooo i 000000 0000800

Setup:
» Erd8s-Rényi graphs with |A| = |B|=n, p=0.4
» Uniform failures F = {{e} | e € E}
» Unit costs ¢ = 1
> Time limit 600s

Results for dominant / CG model

n +CG +Initial Degree | Optimum
5 | 10.00 0.4s | 10.00 0.0s | 10
6 | 12.00 1.0s | 12.00 0.0s | 12
7 | 14.00 29s | 14.00 0.0s | 14
8 | 16.00 11.8s | 16.00 0.0s | 16
9 | 18.00 27.2s | 18.00 0.0s | 18
10 | 20.00 3.3s | 20.00 0.0s | 20
11 | 22.00 8.9s | 22.00 0.0s | 22
12 | 22.00 22.6s | 22.00 23.6s | 22

Observations:
> Have to average over many instances to get authoritative statistics.
» No strengthened degree constraints if less than two scenarios F with
k(F) = %|V\
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. . . Robust Assignments
Models in Practice: IP Bounds with CG Cuts Loooo i 000000 0000080

Setup:
» Complete bipartite graphs with |A| =|B|=n
» Uniform failures F = {{e} | e € E}
» Unit costs, random c. € {1,2,3} for all e € E independently.
> Time limit 600s

Results for dominant / CG model

n | Dominant+CG | +Initial Degree | Optimum
5 | 12.00 0.2s | 12.00 0.0s | 12
6 | 15.00 0.7s | 15.00 0.0s | 15
7 | 17.00 1.4s | 17.00 0.0s | 17
8 | 20.00 3.9s | 20.00 0.0s | 20
9 | 20.00 8.9s | 20.00 0.0s | 20
10 | 21.00 15.0s | 21.00 0.0s | 21
11 | 22.00 44.6s | 22.00 0.0s | 22
12 | 29.00 128.1s | 29.00 0.0s | 29
13 | 27.00 303.3s | 27.00 0.0s | 27

Observations:

» Random costs make reduce solution times.
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. . . Robust Assignments
Models in Practice: IP Bounds with CG Cuts Loooo i 000000 0000008

Setup:
» Complete bipartite graphs with |A| = n and |B| =[1.5n]
» Node failures F = {6(b) | be B}
> Unit costs c =1
» Time limit 600s

Results for dominant / CG model

n Dominant+CG +Initial Degree | Optimum
5 10.00 1.0s | 10.00 0.1s | 10

6 12.00 2.6s | 12.00 0.1s | 12

7 14.00 6.8s | 14.00 0.4s | 14

8 16.00 60.5s | 16.00 7.0s | 16

9 18.00 297.3s | 18.00 5.1s | 18
10 | > 11.00 600.0s | 20.00 0.5s | 20

11 | >12.00 600.0s | 22.00 21.0s | 22
13 | >13.00 600.0s | 24.00 34.0s | 24
14 | >14.00 600.0s | 26.00 41.4s | 26
15 | >15.00 600.0s | 28.00 25.7s | 28
15 | >16.00 600.0s | 30.00 46.4s | 30

Observations:
> Initial degree constraints are again very strong.

> i 1 |
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Thanks!

Things you’ve seen:
» Speed-up of dominant formulation vs. compact one.
» Derivation of Chvétal-Gomory (CG) cuts.
» Strength of CG cuts, in particular strengthened degree.

Things you might see in the future:
» Even faster code to exploit different strengths of CG cuts.
» More (structured) instances

» More experiments (averaging over random instance)
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