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Robust Assignments Models CG Cuts

Bulk-Robustness for Assignment Problems

Assignment Problem:

▸ Input: Bipartite graph G = (V ,E) with V = A ⊍B, edge costs c ∈ RE

▸ Feasible sets: Perfect matchings M ⊆ E (assuming ∣A∣ = ∣B ∣)

▸ Goal: Minimize cost c(M) ∶= ∑e∈M ce

Bulk-Robustness:

▸ Possible (or likely) failure scenarios are given (explicitly or implicitly).

▸ Goal: Buy edges such that for every scenario, there still exists a perfect
matching using the (bought) edges that survived.

Literature:

▸ Concept formally introduced by Adjiashvili, Stiller & Zenklusen
(MPA 2015)

▸ Classical related problems: k-edge connected spanning subgraph problem
robustifies spanning-tree problem against failure of any (k − 1)-edge set.
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Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Edge Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{f1} , . . . ,{f`}} with fi ∈ E .

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that

▸ for all F ∈ F , the subgraph (V ,X ∖ F) contains a perfect matching.

Algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016):

▸ Approximation factor: O(log ∣V ∣)

▸ Outline:
1 Solve LP relaxation of IP formulation.
2 Decompose LP optimum of some failure-specific part into convex

combination of perfect matchings.
3 Randomly select one such matching M̄ according to decomposition

distribution.
4 Augment current solution by edges that improve connectivity.
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Robust Assignments Models CG Cuts

Bulk-Robust Assignments with Node Failures

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {{b1} , . . . ,{b`}} with bi ∈ B.

▸ Node costs c ∈ RB

Goal:

▸ Find X ⊆ B with minimum c(X) such that

▸ for all F ∈ F , the subgraph G[A ⊍X ∖ F ] contains an A-perfect matching
(a matching that covers A).

Algorithm by Adjiashvili, Bindewald & Michaels (2017):

▸ Approximation factor: log ∣A∣ + 2
▸ Outline:

1 Compute an A-perfect matching w.r.t. certain costs.
2 Reduce the remaining problem to a set-cover instance.
3 Solve the latter by the greedy algorithm.
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Robust Assignments Models CG Cuts

Generalization

Input:

▸ Bipartite graph G = (V ,E) with V = A ⊍B

▸ Failure scenarios F = {F1, . . . ,F`} with Fi ⊆ E with cardinalities k(F) for
all F ∈ F

▸ Edge costs c ∈ RE

Goal:

▸ Find X ⊆ E with minimum c(X) such that

▸ for all F ∈ F , the subgraph (V ,X ∖ F) contains a matching of size k(F).

Special cases:

▸ Edge failures: Set k(Fi) ∶= ∣A∣ = ∣B ∣ and Fi ∶= {fi} for all i ∈ [`].

▸ Node failures: Set k(Fi) ∶= ∣A∣ and Fi ∶= δ(bi) for all i ∈ [`].
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Robust Assignments Models CG Cuts

Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min c⊺x

s.t. x ≥ y (F) for all F ∈ F (1)

y (F)
∈ Pk(F)-match(G − F) for all F ∈ F (2)

xe ∈ Z+ for all e ∈ E (3)

▸ Has O(∣F∣ ⋅ ∣E ∣) variables and constraints.
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▸ Has O(∣F∣ ⋅ ∣E ∣) variables and constraints.

Polyhedral combinatorics helps:

▸ What does this mean for x?

∃y ∶ x ≥ y , y ∈ Pk(F)-match(G
′
)

▸ Projection onto x is the dominant
of the k(F)-matching polytope.

▸ Inequalities known (Fulkerson ’70):

∑
e∈E[S]

xe ≥ ∣S ∣ − ∣V ∣ + k(F) for all S ⊆ V
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Integer Programming Models

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min c⊺x

s.t. x ≥ y (F) for all F ∈ F (1)

y (F)
∈ Pk(F)-match(G − F) for all F ∈ F (2)

xe ∈ Z+ for all e ∈ E (3)

▸ Has O(∣F∣ ⋅ ∣E ∣) variables and constraints.

Equivalent (derived from dominant):

min c⊺x

s.t. ∑
e∈E[S]∖F

xe≥ ∣S ∣ − ∣V ∣ + k(F) for all S ⊆ V for all F ∈ F (4)

xe ∈ Z+ for all e ∈ E (5)

▸ Has O(∣E ∣) variables and O(∣F∣ ⋅ 2∣V ∣
) constraints.

▸ For every F ∈ F , separation problem reduces to a minimum-cut problem.
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Robust Assignments Models CG Cuts

Models in Practice: LP Relaxation

Setup:
▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n
▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs c = 1
▸ Time limit 600 s
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Models in Practice: LP Relaxation

Setup:
▸ Erdős-Rényi graphs with ∣A∣ = ∣B ∣ = n, p = 0.4
▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs c = 1
▸ Time limit 600 s
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Robust Assignments Models CG Cuts

Models in Practice: IP Bounds

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs c = 1

▸ Time limit 600 s

Results for compact model

n Root bound Root time [s] Final bound Time [s] Optimum
5 6.25 0.1 10.00 5.8 10
6 7.20 1.0 9.73 600 12
7 8.17 3.7 9.20 600 14
8 9.29 7.4 9.86 600 16
9 10.13 20.1 10.29 600 18

10 11.11 67.2 11.25 600 20
11 12.10 184.74 12.10 600 22
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Models in Practice: IP Bounds

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs c = 1

▸ Time limit 600 s

Results for dominant model

n Root bound Root time [s] Final bound Time [s] Optimum
5 6.25 0.0 10.00 0.2 10
6 7.20 0.0 12.00 4.6 12
7 8.17 0.0 14.00 179.5 14
8 9.29 0.0 13.00 600 16
9 10.13 0.0 13.45 600 18

10 11.11 0.0 13.92 600 20
11 12.10 0.0 14.40 600 22
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Robust Assignments Models CG Cuts

Solving with Gurobi

Setup:
▸ Combination of complete graph, singleton failures and unit costs has lots

of symmetry.
▸ Gurobi detects this and can prove lower bound earlier.
▸ For n = 9, we observe this:

Results for compact model with Gurobi

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 9.14286 0 3648 64.00000 9.14286 85.7% - 4s

0 0 9.14286 0 3648 64.00000 9.14286 85.7% - 6s

0 2 9.14286 0 3648 64.00000 9.14286 85.7% - 13s

2 2 10.00000 1 3521 64.00000 10.00000 84.4% 5738 15s

...

525 355 13.00000 16 1267 16.00000 11.73810 26.6% 1526 205s

542 349 infeasible 16 16.00000 13.42857 16.1% 1509 210s

548 352 13.80000 19 2011 16.00000 13.80000 13.7% 1519 215s

559 345 15.00000 19 1923 16.00000 14.00000 12.5% 1525 220s

Explored 568 nodes (899200 simplex iterations) in 223.95 seconds

Thread count was 1 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0%

Note: This effect vanishes as soon as the graph is not symmetric anymore.
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Robust Assignments Models CG Cuts

Strengthening the Model

Chvátal-Gomory cuts:

▸ Consider F1, . . . ,F` with constant k(Fi) = k for all i ∈ [`] (` ≥ 2).

▸ Sum up all inequalities for fixed S with ∣S ∣ − ∣V ∣ + k ≥ 1.

∑
e∈E[S]

∣ {i ∈ [`] ∣ e ∉ Fi} ∣xe ≥ `(∣S ∣ − ∣V ∣ + k)

▸ Scale it by 1/(` − 1).

∑
e∈E[S]

∣ {i ∈ [`] ∣ e ∉ Fi} ∣

` − 1
xe ≥

`

` − 1
(∣S ∣ − ∣V ∣ + k)

▸ x is integer and nonnegative, so round up coefficients and right-hand side.

∑
e∈E[S]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 if e in no Fi

0 if e in all Fi

1 otherwise

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

xe ≥ ∣S ∣ − ∣V ∣ + k +1

▸ Weakened for coefficients with e in no Fi .

▸ Strengthened for coefficients with e in all Fi .

▸ Stronger right-hand side.
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▸ x is integer and nonnegative, so round up coefficients and right-hand side.

∑
e∈E[S]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 if e in no Fi

0 if e in all Fi

1 otherwise

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

xe ≥ ∣S ∣ − ∣V ∣ + k +1

▸ Weakened for coefficients with e in no Fi .

▸ Strengthened for coefficients with e in all Fi .

▸ Stronger right-hand side.
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Robust Assignments Models CG Cuts

Separation Problem

Input:

▸ Bipartite graph G = (V ,E) with bipartition V = A ⊍B.

▸ Edge weights w ∈ RE
+

▸ Parameter k.

Goal:

▸ Find S ⊆ V with ∣S ∣ ≥ ∣V ∣ − k + 1 minimizing w(E[S]) − ∣S ∣ + ∣V ∣ − k

IP Model:

▸ Variables y and z with

▸ yv = 1 ⇐⇒ v ∈ S

▸ ze = 1 ⇐⇒ e ∈ E[S]

min − ∑
v∈V

yv +∑
e∈E

weze

s.t. −ya − yb + za,b ≥ −1 for all {a,b} ∈ E

y(A) + y(B) ≥ ∣V ∣ − k + 1

y , z binary

Observe: TU system plus a single inequality.
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Robust Assignments Models CG Cuts

Separation Problem

Relation to the dominant separation problem:

▸ Find S ⊆ V with ∣S ∣ ≥ ∣V ∣ − k minimizing w(E[S]) − ∣S ∣ + ∣V ∣ − k

▸ For k = 1
2
∣V ∣ (perfect matchings), ∣S ∣ ≥ 1

2
∣V ∣ can be ignored via

S ∶= A and E[S] = ∅
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Robust Assignments Models CG Cuts

Models in Practice: IP Bounds with CG Cuts

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs c = 1

▸ Time limit 600 s

▸ Special case of CG cuts are strengthened degree inequalities x(δ(v)) ≥ 2.

▸ These already prove a dual bound of 2n. Let’s add those in the beginning!

Results for dominant / CG model

n Dominant +CG

+Initial Degree

Optimum
5 10.00 0.2 s 10.00 0.4 s

10.00 0.0 s

10
6 12.00 4.6 s 12.00 0.9 s

12.00 0.0 s

12
7 14.00 179.5 s 14.00 2.7 s

14.00 0.0 s

14
8 13.00 600.0 s 16.00 11.3 s

16.00 0.0 s

16
9 13.45 600.0 s 18.00 26.5 s

18.00 0.0 s

18
10 13.92 600.0 s 20.00 92.8 s

20.00 0.0 s

20
11 14.40 600.0 s 22.00 332.1 s

22.00 0.1 s

22
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Robust Assignments Models CG Cuts

Models in Practice: IP Bounds with CG Cuts

Setup:
▸ Erdős-Rényi graphs with ∣A∣ = ∣B ∣ = n, p = 0.4
▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs c = 1
▸ Time limit 600 s

Results for dominant / CG model

n +CG +Initial Degree Optimum
5 10.00 0.4 s 10.00 0.0 s 10
6 12.00 1.0 s 12.00 0.0 s 12
7 14.00 2.9 s 14.00 0.0 s 14
8 16.00 11.8 s 16.00 0.0 s 16
9 18.00 27.2 s 18.00 0.0 s 18

10 20.00 3.3 s 20.00 0.0 s 20
11 22.00 8.9 s 22.00 0.0 s 22
12 22.00 22.6 s 22.00 23.6 s 22

Observations:
▸ Have to average over many instances to get authoritative statistics.
▸ No strengthened degree constraints if less than two scenarios F with
k(F) = 1

2
∣V ∣.
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Models in Practice: IP Bounds with CG Cuts

Setup:

▸ Complete bipartite graphs with ∣A∣ = ∣B ∣ = n

▸ Uniform failures F = {{e} ∣ e ∈ E}

▸ Unit costs, random ce ∈ {1,2,3} for all e ∈ E independently.

▸ Time limit 600 s

Results for dominant / CG model

n Dominant+CG +Initial Degree Optimum
5 12.00 0.2 s 12.00 0.0 s 12
6 15.00 0.7 s 15.00 0.0 s 15
7 17.00 1.4 s 17.00 0.0 s 17
8 20.00 3.9 s 20.00 0.0 s 20
9 20.00 8.9 s 20.00 0.0 s 20

10 21.00 15.0 s 21.00 0.0 s 21
11 22.00 44.6 s 22.00 0.0 s 22
12 29.00 128.1 s 29.00 0.0 s 29
13 27.00 303.3 s 27.00 0.0 s 27

Observations:

▸ Random costs make reduce solution times.
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Models in Practice: IP Bounds with CG Cuts

Setup:
▸ Complete bipartite graphs with ∣A∣ = n and ∣B ∣ = ⌊1.5n⌋
▸ Node failures F = {δ(b) ∣ b ∈ B}

▸ Unit costs c = 1
▸ Time limit 600 s

Results for dominant / CG model

n Dominant+CG +Initial Degree Optimum
5 10.00 1.0 s 10.00 0.1 s 10
6 12.00 2.6 s 12.00 0.1 s 12
7 14.00 6.8 s 14.00 0.4 s 14
8 16.00 60.5 s 16.00 7.0 s 16
9 18.00 297.3 s 18.00 5.1 s 18

10 ≥ 11.00 600.0 s 20.00 0.5 s 20
11 ≥ 12.00 600.0 s 22.00 21.0 s 22
13 ≥ 13.00 600.0 s 24.00 34.0 s 24
14 ≥ 14.00 600.0 s 26.00 41.4 s 26
15 ≥ 15.00 600.0 s 28.00 25.7 s 28
15 ≥ 16.00 600.0 s 30.00 46.4 s 30

Observations:
▸ Initial degree constraints are again very strong.
▸ Time mostly used for primal bound!
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Thanks!

Things you’ve seen:

▸ Speed-up of dominant formulation vs. compact one.

▸ Derivation of Chvátal-Gomory (CG) cuts.

▸ Strength of CG cuts, in particular strengthened degree.

Things you might see in the future:

▸ Even faster code to exploit different strengths of CG cuts.

▸ More (structured) instances

▸ More experiments (averaging over random instance)
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