Parity Polytopes and Binarization

Dominik Ermel & Matthias Walter

International Conference on Operations Research,

Berlin 2017

Binarization

Binarization	Parity	Glueing	Results	Bad news
••	00	0	0000	000

Reformulating integer variables with binary ones:

- Consider an integer variable $z \in \{0, 1, \ldots, n-1, n\}$.
- Idea: Write z as the projection of some 0/1-polytope.
- · Goals: Cutting planes or modeling (e.g., to exclude holes in the domain)

Binarization

Binarization	Parity	Glueing	Results	Bad news
•0	00	0	0000	000

Reformulating integer variables with binary ones:

- Consider an integer variable $z \in \{0, 1, \ldots, n-1, n\}$.
- Idea: Write z as the projection of some 0/1-polytope.
- Goals: Cutting planes or modeling (e.g., to exclude holes in the domain)

Variants:

$$k := \lfloor \log_2(n) \rfloor, \quad x \in \{0, 1\}^k, \quad \rightsquigarrow z = \sum_{i=0}^k 2^i x_i$$
 (1)

Binarization

٢	Binarization	Parity	Glueing	Results	Bad news
	•0	00	0	0000	000

Reformulating integer variables with binary ones:

- Consider an integer variable $z \in \{0, 1, \ldots, n-1, n\}$.
- Idea: Write z as the projection of some 0/1-polytope.
- Goals: Cutting planes or modeling (e.g., to exclude holes in the domain)

Variants:

$$k := \lfloor \log_2(n) \rfloor, \quad x \in \{0, 1\}^k, \quad \rightsquigarrow z = \sum_{i=0}^k 2^i x_i$$
 (1)

$$1 \ge x_1 \ge x_2 \ge \ldots \ge x_{n-1} \ge x_n \ge 0, \quad x \in \{0,1\}^n, \quad \rightsquigarrow z = \sum_{k=1}^n x_k \quad (2)$$

- Variant (1) is more compact, but yields a weaker relaxation.
- Today: focus on (2): Let X_{ord}^n be the set of x with (2).

D. Ermel & M. Walter

Binarization	Parity	Glueing	Results	Bad news
00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

ĺ	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

Binarization	Parity	Glueing	Results	Bad news
00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

• Can be solved as TSP with $\mathcal{O}(|V|^2)$ variables (via metric closure).

Binarization Parity Glueing Results Bad news ○● ○○ ○ ○○○○ ○○○

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

- Can be solved as TSP with $\mathcal{O}(|V|^2)$ variables (via metric closure).
- With only $\mathcal{O}(|E| + |V|)$ variables:

min
$$z(E)$$
 (3)
s.t. $z(\delta(S)) \ge 2$ for all $\emptyset \ne S \subsetneq V$ (4)

$$z(\delta(\mathbf{S})) \ge 2 \qquad \text{for all } \emptyset \ne \mathbf{S} \ge \mathbf{V} \qquad (4)$$

$$z_e \ge 0 \quad \text{for all } e \in E \tag{5}$$
$$z(\delta(v)) = 2v_v \quad \text{for all } v \in V \tag{6}$$

$$v_v \in \mathbb{Z}$$
 for all $v \in V$ (7)

$$z_e \in \mathbb{Z}$$
 for all $e \in E$ (8)

The second secon

Parity Polytopes and Binarization

ſ	Binarization	Parity	Glueing	Results	Bad news
	00	•0	0	0000	000

Ordered binary vectors:

• X_{ord}^n : set of all binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.

Binarization meets Parity (Binarization 00	Parity ●O	Glueing O	Results 0000	Bad news

Ordered binary vectors:

- X_{ord}^n : set of all binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.
- $P_{\text{ord}}^n := \operatorname{conv}(X_{\text{ord}}^n)$ is described by $1 \ge x_1 \ge x_2 \ge \ldots \ge x_{n-1} \ge x_n \ge 0$.

1	Binarization	Parity	Glueing	Results	Bad news
1	00	•0	0	0000	000

Binarization meets Parity

Ordered binary vectors:

- X_{ord}^n : set of all binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.
- $P_{\text{ord}}^n := \text{conv}(X_{\text{ord}}^n)$ is described by $1 \ge x_1 \ge x_2 \ge \ldots \ge x_{n-1} \ge x_n \ge 0$.

With (even) parity constraint:

• Consider k "blocks" of binarization variables, i'th one having length r_i .

$$\blacktriangleright P_{\mathsf{even}}^r := \mathsf{conv}\left\{ \left(x^{(1)}, \dots, x^{(k)} \right) \in X_{\mathsf{ord}}^{r_1} \times \dots \times X_{\mathsf{ord}}^{r_k} \mid \sum_{i=1}^k \sum_{j=1}^{r_i} x_j^{(i)} \mathsf{ even} \right\}$$

1	Binarization	Parity	Glueing	Results	Bad news
	00	•0	0	0000	000

Binarization meets Parity

Ordered binary vectors:

- X_{ord}^n : set of all binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.
- $P_{\text{ord}}^n := \operatorname{conv}(X_{\text{ord}}^n)$ is described by $1 \ge x_1 \ge x_2 \ge \ldots \ge x_{n-1} \ge x_n \ge 0$.

With (even) parity constraint:

• Consider k "blocks" of binarization variables, i'th one having length r_i .

$$\bullet P_{\mathsf{even}}^r := \mathsf{conv}\left\{ \left(x^{(1)}, \dots, x^{(k)} \right) \in X_{\mathsf{ord}}^{r_1} \times \dots \times X_{\mathsf{ord}}^{r_k} \mid \sum_{i=1}^k \sum_{j=1}^{r_i} x_j^{(i)} \mathsf{ even} \right\}$$

• Note: Convexification of (z_1, \ldots, z_k) with even $\sum_{i=1}^k z_i$ does not work:

 $1\in \mathsf{conv}\left\{0,2\right\}$

D. Ermel & M. Walter

Binarization Parity Glueing Results Bad news ○○ ○● ○ ○○○○ ○○○

Jeroslow, 1975: P_{even}^{1} is described by $\mathbb{O} \leq x \leq 1$ and

 $\sum_{i\in[n]\setminus F} x_i + \sum_{i\in F} (1-x_i) \ge 1 \text{ for all } F \subseteq [n] \text{ with } |F| \text{ odd.}$

1	Binarization	Parity	Glueing	Results	Bad news
ľ	00	00	0	0000	000

Jeroslow, 1975: $P_{\text{even}}^{\mathbb{1}}$ is described by $\mathbb{O} \leq x \leq \mathbb{1}$ and

÷

$$\sum_{i \in [n] \setminus F} x_i + \sum_{i \in F} (1 - x_i) \ge 1 \text{ for all } F \subseteq [n] \text{ with } |F| \text{ odd.}$$

Observation 1: For X_{ord}^n , parity can be measured with a linear function f:

$$f(x) := x_1 - x_2 + x_3 - x_4 + \dots \mp x_{n-1} \pm x_n$$

$$(0, 0, 0, 0, \dots, 0, 0) \sim 0$$

$$(1, 0, 0, 0, \dots, 0, 0) \sim 1$$

$$(1, 1, 0, 0, \dots, 0, 0) \sim 0$$

$$(1, 1, 1, 0, \dots, 0, 0) \sim 1$$

1	Binarization	Parity	Glueing	Results	Bad news
ľ	00	00	0	0000	000

Jeroslow, 1975: P_{even}^{1} is described by $\mathbb{O} \leq x \leq 1$ and

$$\sum_{i \in [n] \setminus F} x_i + \sum_{i \in F} (1 - x_i) \ge 1 \text{ for all } F \subseteq [n] \text{ with } |F| \text{ odd.}$$

Observation 1: For X_{ord}^n , parity can be measured with a linear function f:

$$\begin{split} f(x) &:= x_1 - x_2 + x_3 - x_4 + \ldots \mp x_{n-1} \pm x_n \\ & (0, 0, 0, 0, \ldots, 0, 0) \sim 0 \\ & (1, 0, 0, 0, \ldots, 0, 0) \sim 1 \\ & (1, 1, 0, 0, \ldots, 0, 0) \sim 0 \\ & (1, 1, 1, 0, \ldots, 0, 0) \sim 1 \\ & \vdots & \vdots \end{split}$$

Observation 2: 0/1-polytopes can be glued together at a single coordinate.

Binarization Parity Glueing Results Bad news

Jeroslow, 1975: $P_{\text{even}}^{\mathbb{1}}$ is described by $\mathbb{O} \leq x \leq \mathbb{1}$ and

$$\sum_{i \in [n] \setminus F} x_i + \sum_{i \in F} (1 - x_i) \ge 1 \text{ for all } F \subseteq [n] \text{ with } |F| \text{ odd.}$$

Observation 1: For X_{ord}^n , parity can be measured with a linear function f:

$$\begin{aligned} f(x) &:= x_1 - x_2 + x_3 - x_4 + \ldots \mp x_{n-1} \pm x_n \\ & (0, 0, 0, 0, \ldots, 0, 0) \sim 0 \\ & (1, 0, 0, 0, \ldots, 0, 0) \sim 1 \\ & (1, 1, 0, 0, \ldots, 0, 0) \sim 0 \\ & (1, 1, 1, 0, \ldots, 0, 0) \sim 1 \\ & \vdots & \vdots \end{aligned}$$

.

Observation 2: 0/1-polytopes can be glued together at a single coordinate.

Main idea: Extend each binarization block with parity bit f(x) and glue all of them together at these bits.

Glueing at a single coordinate

Observation 2 more pictorically:

1	Binarization	Parity	Glueing	Results	Bad news
1	00	00	•	0000	000

Glueing at a single coordinate

Observation 2 more pictorically:

1	Binarization	Parity	Glueing	Results	Bad news
1	00	00	•	0000	000

Observation 2 more formally: Let $X_0, X_1 \subseteq \mathbb{R}^m$ and $Y_0, Y_1 \subseteq \mathbb{R}^n$ be finite sets. Then

$$\mathsf{conv}\left(\left(X_0\times\{0\}\times Y_0\right)\cup\left(X_1\times\{1\}\times Y_1\right)\right)$$

is equal to the intersection of

$$\operatorname{conv}\left(\left(X_{0}\times\{0\}\right)\cup\left(X_{1}\times\{1\}\right)\right)\times\mathbb{R}^{n}$$

and

$$\mathbb{R}^m \times \operatorname{conv} \left(\left(\{0\} \times Y_0 \right) \cup \left(\{1\} \times Y_1 \right) \right).$$

D. Ermel & M. Walter

Parity Polytopes and Binarization

Glueing at a single coordinate

Observation 2 more pictorically:

1	Binarization	Parity	Glueing	Results	Bad news
ľ	00	00	•	0000	000

Observation 2 more formally: Let $X_0, X_1 \subseteq \mathbb{R}^m$ and $Y_0, Y_1 \subseteq \mathbb{R}^n$ be finite sets. Then

$$\mathsf{conv}\left(\left(X_0\times\{0\}\times Y_0\right)\cup\left(X_1\times\{1\}\times Y_1\right)\right)$$

is equal to the intersection of

$$\operatorname{conv}\left(\left(X_0 \times \{0\}\right) \cup \left(X_1 \times \{1\}\right)\right) \times \mathbb{R}^n$$

and

$$\mathbb{R}^m \times \operatorname{conv}\left(\left(\{0\} \times Y_0\right) \cup \left(\{1\} \times Y_1\right)\right).$$

Proof: Convex multipliers in dimension 1 are unique.

D. Ermel & M. Walter

Parity Polytopes and Binarization

Result for Description

ſ	Binarization	Parity	Glueing	Results	Bad news
C	00	00	0	•000	000

Reminder:

• X_{ord}^n : binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.

•
$$f(x) := x_1 - x_2 + x_3 - x_4 \dots$$
 measures parity if $x \in X_{ord}^n$.

$$\blacktriangleright P_{\mathsf{even}}^r := \mathsf{conv}\left\{ (x^{(1)}, \dots, x^{(k)}) \in X_{\mathsf{ord}}^{r_1} \times \dots \times X_{\mathsf{ord}}^{r_k} \mid \sum_{i=1}^k \sum_{j=1}^{r_i} x_j^{(i)} \mathsf{ even} \right\}$$

Result for Description

Í	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	•000	000

Reminder:

- X_{ord}^n : binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.
- $f(x) := x_1 x_2 + x_3 x_4 \dots$ measures parity if $x \in X_{ord}^n$.

$$\blacktriangleright P_{\mathsf{even}}^r := \mathsf{conv}\left\{ (x^{(1)}, \dots, x^{(k)}) \in X_{\mathsf{ord}}^{r_1} \times \dots \times X_{\mathsf{ord}}^{r_k} \mid \sum_{i=1}^k \sum_{j=1}^{r_i} x_j^{(i)} \mathsf{ even} \right\}$$

Theorem: Let $r \in \mathbb{N}^k$. Then P_{even}^r is described by

- $1 \ge x_1^{(i)} \ge x_2^{(i)} \ge \ldots \ge x_{r_i}^{(i)} \ge 0$ for each $i \in [k]$.
- $\sum_{i \in [k] \setminus F} f(x^{(i)}) + \sum_{i \in F} (1 f(x^{(i)})) \ge 1$ for all $F \subseteq [k]$ with |F| odd.

Result for Description

1	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	•000	000

Reminder:

- X_{ord}^n : binary vectors x of length n of type $(1, \ldots, 1, 0, \ldots, 0)$.
- $f(x) := x_1 x_2 + x_3 x_4 \dots$ measures parity if $x \in X_{\text{ord}}^n$.

$$\blacktriangleright P_{\mathsf{even}}^r := \mathsf{conv}\left\{ (x^{(1)}, \dots, x^{(k)}) \in X_{\mathsf{ord}}^{r_1} \times \dots \times X_{\mathsf{ord}}^{r_k} \mid \sum_{i=1}^k \sum_{j=1}^{r_i} x_j^{(i)} \mathsf{ even} \right\}$$

Theorem: Let $r \in \mathbb{N}^k$. Then P_{even}^r is described by

- $1 \ge x_1^{(i)} \ge x_2^{(i)} \ge \ldots \ge x_{r_i}^{(i)} \ge 0$ for each $i \in [k]$.
- $\sum_{i \in [k] \setminus F} f(x^{(i)}) + \sum_{i \in F} (1 f(x^{(i)})) \ge 1$ for all $F \subseteq [k]$ with |F| odd.

Proof:

- Add parity variables for each block: $(x^{(1)}, y_1, x^{(2)}, y_2, \dots, x^{(k)}, y_k)$.
- Isomorphism via $y_i := f(x^{(i)})$ (by linearity of f).
- Enforce parity polytope constraints on *y*-variables.
- Interaction of blocks with these is limited to the single y-variable per block.
- Apply Observation 2 (glueing trick).

Separation Problem / Odd parities

ſ	Binarization	Parity	Glueing	Results	Bad news
\langle	00	00	0	0000	000

Separation problem:

► Given $(\hat{x}^{(1)}, \dots, \hat{x}^{(k)}) \in X_{\text{ord}}^{r_1} \times \dots \times X_{\text{ord}}^{r_k}$, is there an $F \subseteq [k]$ with |F| odd and $\sum_{i \in [k] \setminus F} f(\hat{x}^{(i)}) + \sum_{i \in F} (1 - f(\hat{x}^{(i)})) < 1?$

	Separation	Problem	/ Odd	parities
--	------------	---------	-------	----------

ſ	Binarization	Parity	Glueing	Results	Bad news
\langle	00	00	0	0000	000

Separation problem:

- ► Given $(\hat{x}^{(1)}, \dots, \hat{x}^{(k)}) \in X_{\text{ord}}^{r_1} \times \dots \times X_{\text{ord}}^{r_k}$, is there an $F \subseteq [k]$ with |F| odd and $\sum_{i \in [k] \setminus F} f(\hat{x}^{(i)}) + \sum_{i \in F} (1 - f(\hat{x}^{(i)})) < 1?$
- ▶ Easy: Compute $\hat{y}_i := f(\hat{x})$ for all $i \in [k]$ and call (linear-time) parity polytope separation.

	Separation	Problem	/ Odd	parities
--	------------	---------	-------	----------

1	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	0000	000

Separation problem:

- ► Given $(\hat{x}^{(1)}, \dots, \hat{x}^{(k)}) \in X_{\text{ord}}^{r_1} \times \dots \times X_{\text{ord}}^{r_k}$, is there an $F \subseteq [k]$ with |F| odd and $\sum_{i \in [k] \setminus F} f(\hat{x}^{(i)}) + \sum_{i \in F} (1 - f(\hat{x}^{(i)})) < 1?$
- ▶ Easy: Compute $\hat{y}_i := f(\hat{x})$ for all $i \in [k]$ and call (linear-time) parity polytope separation.

Odd parities:

• P_{odd}^r is projection of face of $P_{\text{even}}^{r'}$ for $r' = (r_1, \ldots, r_k, 1)$ with $x^{(k+1)} = 1$.

	Separation	Problem	/ Odd	parities
--	------------	---------	-------	----------

ſ	Binarization	Parity	Glueing	Results	Bad news
\langle	00	00	0	0000	000

Separation problem:

- ► Given $(\hat{x}^{(1)}, \dots, \hat{x}^{(k)}) \in X_{\text{ord}}^{r_1} \times \dots \times X_{\text{ord}}^{r_k}$, is there an $F \subseteq [k]$ with |F| odd and $\sum_{i \in [k] \setminus F} f(\hat{x}^{(i)}) + \sum_{i \in F} (1 - f(\hat{x}^{(i)})) < 1?$
- ▶ Easy: Compute $\hat{y}_i := f(\hat{x})$ for all $i \in [k]$ and call (linear-time) parity polytope separation.

Odd parities:

- P_{odd}^r is projection of face of $P_{\text{even}}^{r'}$ for $r' = (r_1, \ldots, r_k, 1)$ with $x^{(k+1)} = 1$.
- Similar result (|F| even), obtained by projecting (Fourier-Motzkin).

Extended Formulations

1	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

ĺ	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

· Every feasible solution intersects every cut in an even number of edges.

ĺ	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

- · Every feasible solution intersects every cut in an even number of edges.
- Generalized *T*-join inequality:

$$\sum_{e \in \delta(S) \setminus F} f(x_e) + \sum_{e \in \delta(S) \cap F} (1 - f(x_e)) \ge 1$$

for all $\emptyset \neq S \subsetneq V$ and all $F \subseteq \delta(S)$ with |S| odd.

ĺ	Binarization	Parity	Glueing	Results	Bad news
ļ	00	00	0	0000	000

- Input: Graph G = (V, E)
- Output: Minimum length closed walk visiting each node (at least once).

- · Every feasible solution intersects every cut in an even number of edges.
- Generalized *T*-join inequality:

$$\sum_{e \in \delta(S) \setminus F} f(x_e) + \sum_{e \in \delta(S) \cap F} (1 - f(x_e)) \ge 1$$

for all $\emptyset \neq S \subsetneq V$ and all $F \subseteq \delta(S)$ with |S| odd.

• Separation algorithm by LETCHFORD, REINELT & THEIS can be reused.

Bad news

Observations:

- In practice, lots of cuts are separated, but no bound improvement over subtour inequalities!
- Characteristic property: Parity constraint is the only one that depends on binary variables. Remaining inequalities can be formulated in integer variables.

Bad news

Observations:

- In practice, lots of cuts are separated, but no bound improvement over subtour inequalities!
- Characteristic property: Parity constraint is the only one that depends on binary variables. Remaining inequalities can be formulated in integer variables.

Idea:

- We fix the integer variables $z \in [0, 2]^{E}$.
- Try to modify $x \in [0, 1]^{E \times \{1, 2\}}$ such that it satisfies <u>all</u> parity constraints?

$$\sum_{e \in \delta(S) \setminus F} f(x_e) + \sum_{e \in \delta(S) \cap F} (1 - f(x_e)) \ge 1$$

▶ Try to modify such that $f(x_e)$ and $1 - f(x_e)$ are large enough, i.e., $f(x_e) \approx \frac{1}{2}$.

D. Ermel & M. Walter

ſ	Binarization	Parity	Glueing	Results	Bad news
	00	00	0	0000	000

Setup:

- Consider (integer) variable $z \in [0, r]$ and
- the binarization $z = \sum_{i=1}^r x_i$ with $1 \ge x_1 \ge x_2 \ge \ldots \ge x_r \ge 0$.

Binarization	Parity	Glueing	Results	Bad news
00	00	0	0000	000

Setup:

- Consider (integer) variable $z \in [0, r]$ and
- the binarization $z = \sum_{i=1}^{r} x_i$ with $1 \ge x_1 \ge x_2 \ge \ldots \ge x_r \ge 0$.
- We fix z but allow changes to x_1, \ldots, x_r .

Binarization Parity Glueing Results Bad news

Setup:

- Consider (integer) variable $z \in [0, r]$ and
- the binarization $z = \sum_{i=1}^r x_i$ with $1 \ge x_1 \ge x_2 \ge \ldots \ge x_r \ge 0$.
- We fix z but allow changes to x_1, \ldots, x_r .

Auxiliary problem:

$$\min |f(x) - \frac{1}{2}| \text{ subject to } x \in P_{\text{ord}}^r \text{ and } \sum_{i=1}^r x_i = z$$
 (9)

	Binarization	Parity	Glueing	Results	Bad news
<	00	00	0	0000	000

Setup:

- Consider (integer) variable $z \in [0, r]$ and
- the binarization $z = \sum_{i=1}^{r} x_i$ with $1 \ge x_1 \ge x_2 \ge \ldots \ge x_r \ge 0$.
- We fix z but allow changes to x_1, \ldots, x_r .

Auxiliary problem:

min
$$|f(x) - \frac{1}{2}|$$
 subject to $x \in P_{ord}^r$ and $\sum_{i=1}^r x_i = z$

Lemma: The optimal value of (9) is
$$\begin{cases} z & \text{if } z \leq \frac{1}{2} \\ r-z & \text{if } z \geq r-\frac{1}{2} \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

D. Ermel & M. Walter

(9)

~ ·	
Sotu	n۰
Juli	μ.

- Consider (integer) variable $z \in [0, r]$ and
- the binarization $z = \sum_{i=1}^{r} x_i$ with $1 \ge x_1 \ge x_2 \ge \ldots \ge x_r \ge 0$.
- We fix z but allow changes to x_1, \ldots, x_r .

Auxiliary problem:

$$\min |f(x) - \frac{1}{2}| \text{ subject to } x \in P_{\text{ord}}^r \text{ and } \sum_{i=1}^r x_i = z$$
 (9)

Lemma: The optimal value of (9) is
$$\begin{cases} z & \text{if } z \leq \frac{1}{2} \\ r-z & \text{if } z \geq r-\frac{1}{2} \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Consequence:

 Satisfied if only two variables participating in the parity constraint are ¹/₂ away from their respective bounds.

Binarization	Parity	Glueing	Results	Bad news
00	00	0	0000	000

Not useful at all!

Binarization	Parity	Glueing	Results	Bad news
00	00	0	0000	000

- Parity is wrong: odd number of cut edges used.
- But: All edge variables are $1 \in [0, 2]$, so lemma from previous slide applies!

Not useful at all!

Binarization	Parity	Glueing	Results	Bad news
00	00	0	0000	000

- Parity is wrong: odd number of cut edges used.
- \blacktriangleright But: All edge variables are $1\in[0,2],$ so lemma from previous slide applies!

What did we learn:

- · Complete description of binarization plus parity constraint.
- Not useful to binarize in order to add parity constraints!

Not useful at all!

Binarization Parity Glueing Results Bad news ○○ ○○ ○ ○○○ ○○●

- Parity is wrong: odd number of cut edges used.
- \blacktriangleright But: All edge variables are $1\in[0,2],$ so lemma from previous slide applies!

What did we learn:

- · Complete description of binarization plus parity constraint.
- Not useful to binarize in order to add parity constraints!

Thank you for your attention!

D. Ermel & M. Walter