Solving Bulk-Robust Assignment Problems to Optimality

Matthias Walter (RWTH Aachen)

Joint work with

David Adjiashvili (ETH Zürich), Viktor Bindewald & Dennis Michaels (TU Dortmund)

Language choice: English / Deutsch / Schwyzerdütsch

ETH Zürich, Optimization Seminar, 18. August 2017

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Assignment Problem:

- ▶ Input: Bipartite graph G = (V, E) with $V = A \cup B$, edge costs $c \in \mathbb{R}^{E}$
- ▶ Feasible sets: Perfect matchings $M \subseteq E$ (assuming |A| = |B|)
- Goal: Minimize cost $c(M) \coloneqq \sum_{e \in M} c_e$

Robust Assignments	Models	CG Cuts
● 000	000000	0000000

Assignment Problem:

- ▶ Input: Bipartite graph G = (V, E) with $V = A \cup B$, edge costs $c \in \mathbb{R}^{E}$
- ▶ Feasible sets: Perfect matchings $M \subseteq E$ (assuming |A| = |B|)
- Goal: Minimize cost $c(M) \coloneqq \sum_{e \in M} c_e$

Bulk-Robustness:

- Possible (or likely) failure scenarios are given (explicitly or implicitly).
- Goal: Buy edges such that for every scenario, there still exists a perfect matching using the (bought) edges that survived.

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Assignment Problem:

- ▶ Input: Bipartite graph G = (V, E) with $V = A \cup B$, edge costs $c \in \mathbb{R}^{E}$
- ▶ Feasible sets: Perfect matchings $M \subseteq E$ (assuming |A| = |B|)
- Goal: Minimize cost $c(M) \coloneqq \sum_{e \in M} c_e$

Bulk-Robustness:

- Possible (or likely) failure scenarios are given (explicitly or implicitly).
- Goal: Buy edges such that for every scenario, there still exists a perfect matching using the (bought) edges that survived.

Literature:

- Concept formally introduced by Adjiashvili, Stiller & Zenklusen (MPA 2015)
- Classical related problems: k-edge connected spanning subgraph problem robustifies spanning-tree problem against failure of any (k - 1)-edge set.

Bulk-Robust Assignments with Edge Failures

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Bulk-Robust Assignments with Edge Failures

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Bulk-Robust Assignments with Edge Failures

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016):

• Approximation factor: $\mathcal{O}(\log |V|)$

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{f_1\}, \ldots, \{f_\ell\}\}$ with $f_i \in E$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- ▶ for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a perfect matching.

Algorithm by Adjiashvili, Bindewald & Michaels (ICALP 2016):

- Approximation factor: $\mathcal{O}\left(\log|V|\right)$
- Outline:
 - 1 Solve LP relaxation of IP formulation.
 - ② Decompose LP optimum of some failure-specific part into convex combination of perfect matchings.
 - **(3)** Randomly select one such matching \overline{M} according to decomposition distribution.
 - 4 Augment current solution by certain edges of the matching

Bulk-Robust Assignments with Node Failures

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{b_1\}, \ldots, \{b_\ell\}\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Bulk-Robust Assignments with Node Failures

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{b_1\}, \ldots, \{b_\ell\}\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all F ∈ F, the subgraph (V, X \ F) contains an A-perfect matching (a matching that covers A).

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{\{b_1\}, \ldots, \{b_\ell\}\}$ with $b_i \in B$.
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- For all *F* ∈ *F*, the subgraph (*V*, *X* \ *F*) contains an *A*-perfect matching (a matching that covers *A*).

Note:

- ▶ Related version where nodes from *B* are bought (in contrast to edges) has approximation algorithm by Adjiashvili, Bindewald & Michaels (2017).
- Similar polyhedral approach exist: matchable set polytope

Generalization

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{F_1, \dots, F_\ell\}$ with $F_i \subseteq E$ with cardinalities k(F) for all $F \in \mathcal{F}$
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- ▶ for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a matching of size k(F).
- Possible additional restrictions on X.

Generalization

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Input:

- Bipartite graph G = (V, E) with $V = A \cup B$
- Failure scenarios $\mathcal{F} = \{F_1, \dots, F_\ell\}$ with $F_i \subseteq E$ with cardinalities k(F) for all $F \in \mathcal{F}$
- Edge costs $c \in \mathbb{R}^{E}$

Goal:

- Find $X \subseteq E$ with minimum c(X) such that
- for all $F \in \mathcal{F}$, the subgraph $(V, X \setminus F)$ contains a matching of size k(F).
- Possible additional restrictions on X.

Special cases:

- Edge failures: Set $k(F_i) := |A| = |B|$ and $F_i := \{f_i\}$ for all $i \in [\ell]$.
- Node failures: Set $k(F_i) := |A|$ and $F_i := \delta(b_i)$ for all $i \in [\ell]$.

Robust Assignments	Models	CG Cuts
0000	00000	0000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\mathsf{T}}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{e} \in \mathbb{Z}_{+}$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Robust Assignments	Models	CG Cuts
0000	00000	0000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\mathsf{T}}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{e} \in \mathbb{Z}_{+}$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

What does this mean for x?

$$\exists y: x \ge y, y \in P_{k(F)-match}(G')$$

Robust Assignments	Models	CG Cuts
0000	00000	0000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\mathsf{T}}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_{e} \in \mathbb{Z}_{+}$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Polyhedral combinatorics helps:

What does this mean for x?

$$\exists y: x \ge y, y \in P_{k(F)-match}(G')$$

 Projection onto x is the dominant of the k(F)-matching polytope.

Robust Assignments	Models	CG Cuts
0000	00000	0000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\mathsf{T}}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1)
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2)
 $x_e \in \mathbb{Z}_+$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

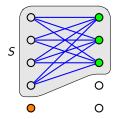
Polyhedral combinatorics helps:

What does this mean for x?

 $\exists y: x \ge y, y \in P_{k(F)-match}(G')$

- Projection onto x is the dominant of the k(F)-matching polytope.
- Inequalities known (Fulkerson '70):

$$\sum_{e \in E[S]} x_e \ge |S| - |V| + k(F) \quad \text{for all } S \subseteq V$$



Robust Assignments	Models	CG Cuts
0000	00000	0000000

Straight-forward model (see Adjiashvili et al., ICALP 2016):

min
$$c^{\mathsf{T}}x$$

s.t. $x \ge y^{(F)}$ for all $F \in \mathcal{F}$ (1
 $y^{(F)} \in P_{k(F)\text{-match}}(G - F)$ for all $F \in \mathcal{F}$ (2
 $x_e \in \mathbb{Z}_+$ for all $e \in E$ (3)

• Has $\mathcal{O}(|\mathcal{F}| \cdot |E|)$ variables and constraints.

Equivalent (derived from dominant):

$$\min_{e \in E[S] \setminus F} c^{\mathsf{T}} x$$
s.t.
$$\sum_{e \in E[S] \setminus F} x_{e} \ge |S| - |V| + k(F) \quad \text{for all } S \subseteq V \text{ for all } F \in \mathcal{F}$$

$$x_{e} \in \mathbb{Z}_{+} \qquad \text{for all } e \in E$$

$$(5)$$

- Has $\mathcal{O}(|E|)$ variables and $\mathcal{O}(|\mathcal{F}| \cdot 2^{|V|})$ constraints.
- ▶ For every $F \in F$, separation problem reduces to a minimum *s*-*t*-cut problem.

Models in Practice: LP Relaxation

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s

	600								
[s]								● Co ● Dor	
Running time [s]	400								
Rur	200		ļ						
	0	0	10	20	30	40	50	60	70
					<i>n</i> =	A = B			

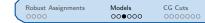
Running times for LP relaxation

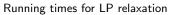
Matthias Walter

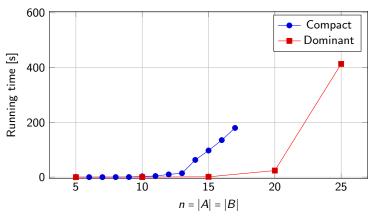
Robust Assignments	Models	CG Cuts
0000	000000	0000000

Models in Practice: LP Relaxation

- Erdős-Rényi graphs with |A| = |B| = n, p = 0.4
- Uniform failures $\mathcal{F} = \{ \{ e \} \mid e \in E \}$
- Unit costs c = 1
- Time limit 600 s







Models in Practice: IP Bounds

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s

n	Root bound	Root time [s]	Final bound	Time [s]	Optimum
5	6.25	0.1	10.00	5.8	10
6	7.20	1.0	9.73	600	12
7	8.17	3.7	9.20	600	14
8	9.29	7.4	9.86	600	16
9	10.13	20.1	10.29	600	18
10	11.11	67.2	11.25	600	20
11	12.10	184.74	12.10	600	22

Results for compact model (IP)

Models in Practice: IP Bounds

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s

n	Root bound	Root time [s]	Final bound	Time [s]	Optimum
5	6.25	0.0	10.00	0.2	10
6	7.20	0.0	12.00	4.6	12
7	8.17	0.0	14.00	179.5	14
8	9.29	0.0	13.00	600	16
9	10.13	0.0	13.45	600	18
10	11.11	0.0	13.92	600	20
11	12.10	0.0	14.40	600	22

Results for dominant model (IP)

<u> </u>	1 A	10 A 4 A 4	C 11	
50	lving	with	Gurobi	

Robust Assignments Models CG Cuts 0000 000000 0000000

Setup:

- Combination of complete graph, singleton failures and unit costs has lots of symmetry.
- · Gurobi detects this and can prove lower bound earlier.
- For n = 9, we observe this:

Results for compact model with Gurobi (IP)

Node	s	1	Cı	irrent	Nod	le	T	Objecti	ive Bounds	1	W	ork
Expl Ur	nexpl	Ì	Obj	Depth	I	ntInf	Ì	Incumbent		Gap	It/No	de Time
0	0		9.14	1286	0	3648		64.00000	9.14286	85.7%	-	4s
0	0		9.14	286	0	3648		64.00000	9.14286	85.7%	-	6 s
0	2		9.14	286	0	3648		64.00000	9.14286	85.7%	-	13s
2	2	1	10.00	0000	1	3521		64.00000	10.00000	84.4%	5738	15 s
525	355		13.00	0000	16	1267		16.00000	11.73810	26.6%	1526	205 s
542	349	int	feasi	ble	16			16.00000	13.42857	16.1%	1509	210s
548	352	1	13.80	0000	19	2011		16.00000	13.80000	13.7%	1519	215s
559	345	1	15.00	0000	19	1923		16.00000	14.00000	12.5%	1525	220 s
Explored	1 568	noo	les ((899200	s	implex	: :	iterations)	in 223.95	seconds	5	
Thread o	count	was	s 1 ((of 4 a	va	ilable	. 1	processors)				
Optimal	solut	ior	ı fou	ind (to	lei	rance	1	.00e-04)				
Best obj	jectiv	re :	1.600	000000	000)e+01,	1	best bound :	1.60000000	0000e+01	, gap	0.0%

<u> </u>	1 A	10 A 4 A 4	C 1	
20	lving	with	Gurob	

Robust Assignments Models CG Cuts 0000 000000 0000000

Setup:

- Combination of complete graph, singleton failures and unit costs has lots of symmetry.
- · Gurobi detects this and can prove lower bound earlier.
- For n = 9, we observe this:

Results for compact model with Gurobi (IP)

No	des	1	Cu	rrent	Noc	le		Objecti	ive Bounds	1	Wo	ork
Expl	Unexpl	1	Obj	Depth	II	ntInf	Т	Incumbent	BestBd	Gap	It/Nod	le Time
0	0		9.14	286	0	3648		64.00000	9.14286	85.7%	-	4 s
0	0		9.14	286	0	3648		64.00000	9.14286	85.7%	-	6 s
0	2		9.14	286	0	3648		64.00000	9.14286	85.7%	-	13s
2	2		10.00	000	1	3521		64.00000	10.00000	84.4%	5738	15 s
525	355		13.00	000	16	1267		16.00000	11.73810	26.6%	1526	205s
542	349	in	feasi	ble	16			16.00000	13.42857	16.1%	1509	210s
548	352		13.80	000	19	2011		16.00000	13.80000	13.7%	1519	215s
559	345		15.00	000	19	1923		16.00000	14.00000	12.5%	1525	220s
Explor	ed 568	noo	des (899200	s	implex		iterations)	in 223.95	seconds		
Thread	count	was	s 1 (of 4 a	vai	ilable	1	processors)				
Optima	l solut	cion	n fou	nd (to	leı	rance	1.	.00e-04)				
								best bound 1	1.60000000	000e+01	, gap	0.0%
	5											

Note: This effect vanishes as soon as the graph is not symmetric anymore.

ſ	Robust Assignments	Models	CG Cuts
1	0000	000000	●000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

|--|

í	Robust Assignments	Models	CG Cuts
ļ	0000	000000	•000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \notin F_i \right\} \left| x_e \ge \ell(|S| - |V| + k) \right. \right.$$

|--|

ſ	Robust Assignments	Models	CG Cuts
	0000	000000	•000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \notin F_i \right\} | x_e \ge \ell(|S| - |V| + k) \right.$$

Scale it by 1/(ℓ − 1).

ſ	Robust Assignments	Models	CG Cuts
	0000	000000	•000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \notin F_i \right\} | x_e \ge \ell(|S| - |V| + k) \right.$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{\left| \left\{ i \in [\ell] \mid e \notin F_i \right\} \right|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

í	Robust Assignments	Models	CG Cuts
ļ	0000	000000	•000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \notin F_i \right\} \left| x_e \ge \ell(|S| - |V| + k) \right. \right.$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{\left| \{i \in [\ell] \mid e \notin F_i\} \right|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

• x is integer and nonnegative, so round up coefficients and right-hand side.

Robust Assignments	Models	CG Cuts
0000	000000	•000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \notin F_i \right\} \left| x_e \ge \ell(|S| - |V| + k) \right. \right.$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{|\{i \in [\ell] \mid e \notin F_i\}|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

• x is integer and nonnegative, so round up coefficients and right-hand side.

$$\sum_{e \in E[S]} \left\{ \begin{array}{ll} 2 & \text{if } e \text{ in } no \ F_i \\ 0 & \text{if } e \text{ in } all \ F_i \\ 1 & \text{otherwise} \end{array} \right\} x_e \ge |S| - |V| + k + 1$$

Í	Robust Assignments	Models	CG Cuts
ļ	0000	000000	●000000

Chvátal-Gomory cuts:

- Consider F_1, \ldots, F_ℓ with constant $k(F_i) = k$ for all $i \in [\ell]$ $(\ell \ge 2)$.
- Sum up all inequalities for fixed S with $|S| |V| + k \ge 1$.

$$\sum_{e \in E[S]} \left| \left\{ i \in [\ell] \mid e \notin F_i \right\} \left| x_e \ge \ell(|S| - |V| + k) \right. \right.$$

Scale it by 1/(ℓ − 1).

$$\sum_{e \in E[S]} \frac{|\{i \in [\ell] \mid e \notin F_i\}|}{\ell - 1} x_e \ge \frac{\ell}{\ell - 1} (|S| - |V| + k)$$

• x is integer and nonnegative, so round up coefficients and right-hand side.

$$\sum_{e \in E[S]} \left\{ \begin{array}{ll} 2 & \text{if } e \text{ in } no \ F_i \\ 0 & \text{if } e \text{ in } all \ F_i \\ 1 & \text{otherwise} \end{array} \right\} x_e \ge |S| - |V| + k + 1$$

- Weakened for coefficients with e in no F_i .
- Strengthened for coefficients with e in all F_i .
- Stronger right-hand side.

Separation Problem

Robust Assignments	Models	CG Cuts
0000	000000	000000

Input:

- Bipartite graph G = (V, E) with bipartition $V = A \cup B$.
- Edge weights $w \in \mathbb{R}^{E}_{+}$
- Parameter k.

Goal:

Find $S \subseteq V$ with $|S| \ge |V| - k + 1$ minimizing w(E[S]) - |S| + |V| - k

Separation Problem

Robust Assi	gnments	Models	CG Cuts
0000		000000	000000

Input:

- Bipartite graph G = (V, E) with bipartition $V = A \cup B$.
- Edge weights $w \in \mathbb{R}^{E}_{+}$
- Parameter k.

Goal:

Find $S \subseteq V$ with $|S| \ge |V| - k + 1$ minimizing w(E[S]) - |S| + |V| - k

IP Model:

- Variables y and z with
- $y_v = 1 \iff v \in S$
- $z_e = 1 \iff e \in E[S]$

$$\begin{array}{ll} \min & -\sum_{v \in V} y_v + \sum_{e \in E} w_e z_e \\ \text{s.t.} & -y_a - y_b + & z_{a,b} \ge -1 & \text{for all } \{a, b\} \in E \\ & y(A) + y(B) & \ge |V| - k + 1 \\ & y, & z \text{ binary} \end{array}$$

Observe: TU system plus a single inequality.

Matthias Walter

Solving Bulk-Robust Assignment Problems to Optimality

ſ	Robust Assignments	Models	CG Cuts
	0000	000000	000000

Relation to the dominant separation problem:

- Find $S \subseteq V$ with $|S| \ge |V| k$ minimizing w(E[S]) |S| + |V| k
- For $k = \frac{1}{2}|V|$ (perfect matchings), $|S| \ge \frac{1}{2}|V|$ can be ignored via

$$S := A$$
 and $E[S] = \emptyset$

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s

Models in Practice: IP Bounds with CG Cuts

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{ \{ e \} \mid e \in E \}$
- Unit costs c = 1
- Time limit 600 s

Results for dominant / CG model (IP)

n	Dominant		+	CG	Optimum	CG
5	10.00	0.2 s	10.00	0.4 s	10	0.4 s
6	12.00	4.6 s	12.00	0.9 s	12	0.9 s
7	14.00	179.5 s	14.00	2.7 s	14	2.7 s
8	13.00	600.0 s	16.00	11.3 s	16	11.3 s
9	13.45	600.0 s	18.00	26.5 s	18	26.5 s
10	13.92	600.0 s	20.00	92.8 s	20	92.8 s
11	14.40	600.0 s	22.00	332.1 s	22	332.1 s

Models in Practice: IP Bounds with CG Cuts

Robust Assignments Models CG Cuts 0000 0000000 0000000

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s
- ▶ Special case of CG cuts are strengthened degree inequalities $x(\delta(v)) \ge 2$.
- > These already prove a dual bound of 2n. Let's add those in the beginning!

Results for dominant / CG model (IP)

n	Dominant		+	CG	+Initial	Degree	Optimum
5	10.00	0.2 s	10.00	0.4 s	10.00	0.0 s	10
6	12.00	4.6 s	12.00	0.9 s	12.00	0.0 s	12
7	14.00	179.5 s	14.00	2.7 s	14.00	0.0 s	14
8	13.00	600.0 s	16.00	11.3 s	16.00	0.0 s	16
9	13.45	600.0 s	18.00	26.5 s	18.00	0.0 s	18
10	13.92	600.0 s	20.00	92.8 s	20.00	0.0 s	20
11	14.40	600.0 s	22.00	332.1 s	22.00	0.1 s	22

Robust Assignments Models CG Cuts 0000 0000000 0000000

Setup:

- Erdős-Rényi graphs with |A| = |B| = n, p = 0.4
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s

Results for dominant / CG model (IP)

n	+CG		+Initial	Degree	Optimum
5	10.00	0.4 s	10.00	0.0 s	10
6	12.00	1.0 s	12.00	0.0 s	12
7	14.00	2.9 s	14.00	0.0 s	14
8	16.00	11.8 s	16.00	0.0 s	16
9	18.00	27.2 s	18.00	0.0 s	18
10	20.00	3.3 s	20.00	0.0 s	20
11	22.00	8.9 s	22.00	0.0 s	22
12	22.00	22.6 s	22.00	23.6 s	22

Robust Assignments Models CG Cuts 0000 0000000 0000000

Setup:

- Erdős-Rényi graphs with |A| = |B| = n, p = 0.4
- Uniform failures $\mathcal{F} = \{\{e\} \mid e \in E\}$
- Unit costs c = 1
- Time limit 600 s

Results for dominant / CG model (IP)

n	+CG		+Initial	Degree	Optimum
5	10.00	0.4 s	10.00	0.0 s	10
6	12.00	1.0 s	12.00	0.0 s	12
7	14.00	2.9 s	14.00	0.0 s	14
8	16.00	11.8 s	16.00	0.0 s	16
9	18.00	27.2 s	18.00	0.0 s	18
10	20.00	3.3 s	20.00	0.0 s	20
11	22.00	8.9 s	22.00	0.0 s	22
12	22.00	22.6 s	22.00	23.6 s	22

Observations:

- Have to average over many instances to get authoritative statistics.
- No strengthened degree constraints if less than two scenarios *F* with $k(F) = \frac{1}{2}|V|$.

Setup:

- Complete bipartite graphs with |A| = |B| = n
- Uniform failures $\mathcal{F} = \{ \{ e \} \mid e \in E \}$
- ▶ Random costs $c_e \in \{1, 2, 3\}$ for all $e \in E$ independently.
- Time limit 600 s

Results for dominant / CG model (IP)

n	Domin	nant+CG +Initial Degree		Optimum	
5	12.00	0.2 s	12.00	0.0 s	12
6	15.00	0.7 s	15.00	0.0 s	15
7	17.00	1.4 s	17.00	0.0 s	17
8	20.00	3.9 s	20.00	0.0 s	20
9	20.00	8.9 s	20.00	0.0 s	20
10	21.00	15.0 s	21.00	0.0 s	21
11	22.00	44.6 s	22.00	0.0 s	22
12	29.00	128.1 s	29.00	0.0 s	29
13	27.00	303.3 s	27.00	0.0 s	27

Observations:

Random costs make reduce solution times.

Setup:

- Complete bipartite graphs with |A| = n and $|B| = \lfloor 1.5n \rfloor$
- Node failures $\mathcal{F} = \{\delta(b) \mid b \in B\}$
- Unit costs c = 1
- Time limit 600 s

	Results for dominant / CG model (IP)						
n	Domina	nt+CG	+Initia	Degree	Optimum		
5	10.00	1.0 s	10.00	0.1 s	10		
6	12.00	2.6 s	12.00	0.1 s	12		
7	14.00	6.8 s	14.00	0.4 s	14		
8	16.00	60.5 s	16.00	7.0 s	16		
9	18.00	297.3 s	18.00	5.1 s	18		
10	≥ 11.00	600.0 s	20.00	0.5 s	20		
11	≥ 12.00	600.0 s	22.00	21.0 s	22		
13	≥ 13.00	600.0 s	24.00	34.0 s	24		
14	≥ 14.00	600.0 s	26.00	41.4 s	26		
15	≥ 15.00	600.0 s	28.00	25.7 s	28		
15	≥ 16.00	600.0 s	30.00	46.4 s	30		

Observations:

- Initial degree constraints are again very strong.
- Time mostly used for primal bound!

Robust Assignments	Models	CG Cuts
0000	000000	0000000

Thanks!

Things you've seen:

- Speed-up of dominant formulation vs. compact one.
- Derivation of Chvátal-Gomory (CG) cuts.
- Strength of CG cuts, in particular strengthened degree.

Things you might see in the future:

- Even faster code to exploit different strengths of CG cuts.
- More (structured) instances
- More experiments (averaging over random instance)

