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Brief overview: Dantzig-Wolfe Reformulation

I Partition constraints of a MILP:
I Master problem Ax ≥ b
I Pricing problems Dixi ≥ di
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I Reformulate master problem: combination of extreme points
and rays (“convexification”) of pricing problems

I Solve master problem with Branch-Price-and-Cut

I Allow linking variables (each is
copied for every linked block)
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Outline: What is new?

I modular detection scheme

I constraint and variable classification

I consider information from original problem

I guess meaningful number of blocks

I pluggable score to evaluate decompositions

I user interaction
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What are we looking for?

find:

linking
variables

linking constraints
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Modular scheme

find:
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past:

I each detector is called once; returns set of decompositions

I no interaction between detectors

I “connected” detector implemented a mix of two ideas

recent development:

I each detector persues one atomic idea

I mixtures are handled in a general scheme

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise
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Example for partially refinement
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connected

consclass constypes:setpartitioning-linear-logicor-knapsack

id 122; nB 16; maxW 0.38

id 25; nB 0; maxW≥ 0.34

id 2; nB 0; maxW≥ 0.00

1
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Overview: What is new?

recent dev:

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise

I detectors can implement three different callbacks:

callback input output revoke decisions?
propagate partial mix of complete/partials no
finish partial set of complete no
postprocess complete set of complete yes
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Detection overview: detection loop

initial partials

current

partials

propagating

detectors

next-round

partials

termi-

nate?

finishing

detectors

finishing

detectors

complete

decomps

postprocessing

detectors

postprocessed

decomps

no

yes
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Modular Detection: Example b2c1s1

I resulting decompositions can have common ancestors
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consclass consnames-origp:FLO-C

id 913; nB 19; maxW 0.25

id 175; nB 0; maxW≥ 0.18

id 2; nB 0; maxW≥ 0.00

id 1223; nB 16; maxW 0.18

id 935; nB 0; maxW≥ 0.13

id 189; nB 0; maxW≥ 0.11

id 1219; nB 29; maxW 0.18

id 931; nB 0; maxW≥ 0.14 id 607; nB 63; maxW 0.39

id 92; nB 0; maxW≥ 0.21

1
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Example Propagating Detector: hrcgpartition

I Row-column-net hypergraph used in
Bergner et al. (2015)

I Every nonzero entry aij is a vertex

I Every row and column is a hyperedge

I Solve balan. min-k way cut problem

I Hyperedges between partitions in
border

I Note:
I returns complete and partial (only master and linking is

assigned)
I k is not known
I problem is NP-hard
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Example finishing detector: Connected

I connected component in row-adjacency graph yields a block



1 2 3 4 5 6 7

a 1 1
b 1 1 1
c 1 1 1
d 1 1
e 1 1


a

b c

d

e



1 3 7 2 4 5 6

a 1 1
d 1 1
e 1 1
b 1 1 1
c 1 1 1


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Example postprocessing detector

I simple idea: check for each master constraint if it can be
assigned to exactly one block
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Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier
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Constraint classification

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

I several constraint classifiers:
I same number of nonzero entries
I type found by SCIP
I type according to MIPLIB2010
I names differ only by digits
I . . .
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Variable classification

I Several variable classifiers:
I type according to SCIP
I objective function coefficient
I sign of objective function coefficient
I . . .

I Set every combination of classes as linking vars and
master-only variables
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Information from original problem can be preserved

start
cons/var

classification

detection

(default:

disabled)

presolving
cons/var

classification

detection

select decomp

and solve

use
translation

use translated

original problem transformed problem
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Guess meaningful number of blocks

I motivation: detectors relying on graph partitioning need
number of block as input

I past: try 2, . . . , 20

I idea: use classification information to make educated guess

I originally: CPAIOR13 talk related to Wang and Ralphs (2013)
proposed a frequency table/histogram (this is under the
assumption that blocks are identical): count how many rows
have 1, 2, 3, . . . many non-zeros, e.g., for atm20-100:

# of Nonzeros 2 11 12 13 24 40 100
# of Rows 2220 20 20 2 1998 100 20

I we calculate greatest common divisors of constraint/variable
classes for all classifiers

I thus get a voting for the number of blocks
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Pluggable scores

score:

I maximize fraction of non-colored area:
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score of 0.77

I currently: 7 different scores, combinations of:
I consider copied linking vars
I consider if master consists only of several constraint types
I consider aggregation information

I wip: “strong detection” score (expensive: on demand)
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User interface

I partial decompositions can be given by user

I toolbox (in development) to call single detectors or assign
specific conss or vars by name (regex)

I user can give candidates number of blocks

I browse found decompositions inside gcg and select interesting
(for visualization, solving, writing)
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Preliminary computational results

I testset: benchmark subset of miplib2010

I three settings: default, default+hrcgpartition, legacy

detection time number of found decompositions
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Preliminary computational results

I testset: benchmark subset of miplib2010

I three settings: default, default+hrcgpartition, legacy

max white score nblocks of whitest
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Outlook

I tests with termination conditions

I massive tests on resulting reformulations

I test strong decomposition score

I finish toolbox

p.22
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