
Modular Detection of Model Structure in Integer
Programming

Michael Bastubbe & Marco Lübbecke

SCIP Workshop 2018
March 8th, 2018

Brief overview: Dantzig-Wolfe Reformulation

I Partition constraints of a MILP:
I Master problem Ax ≥ b
I Pricing problems Dixi ≥ di

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

I Reformulate master problem: combination of extreme points
and rays (“convexification”) of pricing problems

I Solve master problem with Branch-Price-and-Cut

I Allow linking variables (each is
copied for every linked block)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

p.2

Brief overview: Dantzig-Wolfe Reformulation

I Partition constraints of a MILP:
I Master problem Ax ≥ b
I Pricing problems Dixi ≥ di

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

I Reformulate master problem: combination of extreme points
and rays (“convexification”) of pricing problems

I Solve master problem with Branch-Price-and-Cut

I Allow linking variables (each is
copied for every linked block)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

p.2

Brief overview: Dantzig-Wolfe Reformulation

I Partition constraints of a MILP:
I Master problem Ax ≥ b
I Pricing problems Dixi ≥ di

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

I Reformulate master problem: combination of extreme points
and rays (“convexification”) of pricing problems

I Solve master problem with Branch-Price-and-Cut

I Allow linking variables (each is
copied for every linked block)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

p.2

Outline: What is new?

I modular detection scheme

I constraint and variable classification

I consider information from original problem

I guess meaningful number of blocks

I pluggable score to evaluate decompositions

I user interaction

p.3

What are we looking for?

find:

linking
variables

linking constraints
 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

blocks

p.4

Modular scheme

find:
 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

past:

I each detector is called once; returns set of decompositions

I no interaction between detectors

I “connected” detector implemented a mix of two ideas

recent development:

I each detector persues one atomic idea

I mixtures are handled in a general scheme

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise

p.5

Modular scheme

find:
 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

past:

I each detector is called once; returns set of decompositions

I no interaction between detectors

I “connected” detector implemented a mix of two ideas

recent development:

I each detector persues one atomic idea

I mixtures are handled in a general scheme

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise

p.5

Modular scheme

find:
 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

past:

I each detector is called once; returns set of decompositions

I no interaction between detectors

I “connected” detector implemented a mix of two ideas

recent development:

I each detector persues one atomic idea

I mixtures are handled in a general scheme

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise

p.5

Example for partially refinement

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 0

 2000

 4000

 6000

 8000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

connected

consclass constypes:setpartitioning-linear-logicor-knapsack

id 122; nB 16; maxW 0.38

id 25; nB 0; maxW≥ 0.34

id 2; nB 0; maxW≥ 0.00

1

p.6

Overview: What is new?

recent dev:

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise

I detectors can implement three different callbacks:

callback input output revoke decisions?
propagate partial mix of complete/partials no
finish partial set of complete no
postprocess complete set of complete yes

p.7

Overview: What is new?

recent dev:

I new concept: partially decided decomposition [aka partials]

I partials are refined round wise

I detectors can implement three different callbacks:

callback input output revoke decisions?
propagate partial mix of complete/partials no
finish partial set of complete no
postprocess complete set of complete yes

p.7

Detection overview: detection loop

initial partials

current

partials

propagating

detectors

next-round

partials

termi-

nate?

finishing

detectors

finishing

detectors

complete

decomps

postprocessing

detectors

postprocessed

decomps

no

yes

p.8

Modular Detection: Example b2c1s1

I resulting decompositions can have common ancestors

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

connected

hr 15

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

connected

hrc 4

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

connected

hrc 15

varclass vartypes:bin

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

connected

consclass consnames-origp:FLO-C

id 913; nB 19; maxW 0.25

id 175; nB 0; maxW≥ 0.18

id 2; nB 0; maxW≥ 0.00

id 1223; nB 16; maxW 0.18

id 935; nB 0; maxW≥ 0.13

id 189; nB 0; maxW≥ 0.11

id 1219; nB 29; maxW 0.18

id 931; nB 0; maxW≥ 0.14 id 607; nB 63; maxW 0.39

id 92; nB 0; maxW≥ 0.21

1

p.9

Example Propagating Detector: hrcgpartition

I Row-column-net hypergraph used in
Bergner et al. (2015)

I Every nonzero entry aij is a vertex

I Every row and column is a hyperedge

I Solve balan. min-k way cut problem

I Hyperedges between partitions in
border

I Note:
I returns complete and partial (only master and linking is

assigned)
I k is not known
I problem is NP-hard

p.10

Example Propagating Detector: hrcgpartition

I Row-column-net hypergraph used in
Bergner et al. (2015)

I Every nonzero entry aij is a vertex

I Every row and column is a hyperedge

I Solve balan. min-k way cut problem

I Hyperedges between partitions in
border

I Note:
I returns complete and partial (only master and linking is

assigned)
I k is not known
I problem is NP-hard

p.10

Example Propagating Detector: hrcgpartition

I Row-column-net hypergraph used in
Bergner et al. (2015)

I Every nonzero entry aij is a vertex

I Every row and column is a hyperedge

I Solve balan. min-k way cut problem

I Hyperedges between partitions in
border

I Note:
I returns complete and partial (only master and linking is

assigned)
I k is not known
I problem is NP-hard

p.10

Example Propagating Detector: hrcgpartition

I Row-column-net hypergraph used in
Bergner et al. (2015)

I Every nonzero entry aij is a vertex

I Every row and column is a hyperedge

I Solve balan. min-k way cut problem

I Hyperedges between partitions in
border

I Note:
I returns complete and partial (only master and linking is

assigned)
I k is not known
I problem is NP-hard

p.10

Example Propagating Detector: hrcgpartition

I Row-column-net hypergraph used in
Bergner et al. (2015)

I Every nonzero entry aij is a vertex

I Every row and column is a hyperedge

I Solve balan. min-k way cut problem

I Hyperedges between partitions in
border

I Note:
I returns complete and partial (only master and linking is

assigned)
I k is not known
I problem is NP-hard

p.10

Example finishing detector: Connected

I connected component in row-adjacency graph yields a block



1 2 3 4 5 6 7

a 1 1
b 1 1 1
c 1 1 1
d 1 1
e 1 1


a

b c

d

e



1 3 7 2 4 5 6

a 1 1
d 1 1
e 1 1
b 1 1 1
c 1 1 1



p.11

Example postprocessing detector

I simple idea: check for each master constraint if it can be
assigned to exactly one block

p.12

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint Classification: Binpacking example

min y1 + y2 + y3

s.t. − 100y1 + 54x11 + 33x21 + 34x31 + 72x41 ≤ 0

− 100y2 + 54x12 + 33x22 + 34x32 + 72x42 ≤ 0

− 100y3 + 54x13 + 33x23 + 34x33 + 72x43 ≤ 0

x11 + x12 + x13 ≥ 1

x21 + x22 + x23 ≥ 1

x31 + x32 + x33 ≥ 1

x41 + x42 + x43 ≥ 1

...

knapsack

setcover

5 nonzeros

3 nonzeros

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

p.13

Constraint classification

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

I several constraint classifiers:
I same number of nonzero entries
I type found by SCIP
I type according to MIPLIB2010
I names differ only by digits
I . . .

p.14

Constraint classification

I before detection loop: classify constraints

I several classifications (aka classifier) possible

I during detection loop: a propagating detector assigns
combinations of classes to the master for each classifier

I several constraint classifiers:
I same number of nonzero entries
I type found by SCIP
I type according to MIPLIB2010
I names differ only by digits
I . . .

p.14

Variable classification

I Several variable classifiers:
I type according to SCIP
I objective function coefficient
I sign of objective function coefficient
I . . .

I Set every combination of classes as linking vars and
master-only variables

p.15

Variable classification

I Several variable classifiers:
I type according to SCIP
I objective function coefficient
I sign of objective function coefficient
I . . .

I Set every combination of classes as linking vars and
master-only variables

p.15

Information from original problem can be preserved

start
cons/var

classification

detection

(default:

disabled)

presolving
cons/var

classification

detection

select decomp

and solve

use
translation

use translated

original problem transformed problem

p.16

Information from original problem can be preserved

start
cons/var

classification

detection

(default:

disabled)

presolving
cons/var

classification

detection

select decomp

and solve

use
translation

use translated

original problem transformed problem

p.16

Information from original problem can be preserved

start
cons/var

classification

detection

(default:

disabled)

presolving
cons/var

classification

detection

select decomp

and solve

use
translation

use translated

original problem transformed problem

p.16

Information from original problem can be preserved

start
cons/var

classification

detection

(default:

disabled)

presolving
cons/var

classification

detection

select decomp

and solve

use
translation

use translated

original problem transformed problem

p.16

Guess meaningful number of blocks

I motivation: detectors relying on graph partitioning need
number of block as input

I past: try 2, . . . , 20

I idea: use classification information to make educated guess

I originally: CPAIOR13 talk related to Wang and Ralphs (2013)
proposed a frequency table/histogram (this is under the
assumption that blocks are identical): count how many rows
have 1, 2, 3, . . . many non-zeros, e.g., for atm20-100:

of Nonzeros 2 11 12 13 24 40 100
of Rows 2220 20 20 2 1998 100 20

I we calculate greatest common divisors of constraint/variable
classes for all classifiers

I thus get a voting for the number of blocks

p.17

Guess meaningful number of blocks

I motivation: detectors relying on graph partitioning need
number of block as input

I past: try 2, . . . , 20

I idea: use classification information to make educated guess

I originally: CPAIOR13 talk related to Wang and Ralphs (2013)
proposed a frequency table/histogram (this is under the
assumption that blocks are identical): count how many rows
have 1, 2, 3, . . . many non-zeros, e.g., for atm20-100:

of Nonzeros 2 11 12 13 24 40 100
of Rows 2220 20 20 2 1998 100 20

I we calculate greatest common divisors of constraint/variable
classes for all classifiers

I thus get a voting for the number of blocks

p.17

Guess meaningful number of blocks

I motivation: detectors relying on graph partitioning need
number of block as input

I past: try 2, . . . , 20

I idea: use classification information to make educated guess

I originally: CPAIOR13 talk related to Wang and Ralphs (2013)
proposed a frequency table/histogram (this is under the
assumption that blocks are identical): count how many rows
have 1, 2, 3, . . . many non-zeros, e.g., for atm20-100:

of Nonzeros 2 11 12 13 24 40 100
of Rows 2220 20 20 2 1998 100 20

I we calculate greatest common divisors of constraint/variable
classes for all classifiers

I thus get a voting for the number of blocks

p.17

Guess meaningful number of blocks

I motivation: detectors relying on graph partitioning need
number of block as input

I past: try 2, . . . , 20

I idea: use classification information to make educated guess

I originally: CPAIOR13 talk related to Wang and Ralphs (2013)
proposed a frequency table/histogram (this is under the
assumption that blocks are identical): count how many rows
have 1, 2, 3, . . . many non-zeros, e.g., for atm20-100:

of Nonzeros 2 11 12 13 24 40 100
of Rows 2220 20 20 2 1998 100 20

I we calculate greatest common divisors of constraint/variable
classes for all classifiers

I thus get a voting for the number of blocks

p.17

Pluggable scores

score:

I maximize fraction of non-colored area:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

score of 0.611

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

score of 0.77

I currently: 7 different scores, combinations of:
I consider copied linking vars
I consider if master consists only of several constraint types
I consider aggregation information

I wip: “strong detection” score (expensive: on demand)

p.18

Pluggable scores

score:

I maximize fraction of non-colored area:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

score of 0.611

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

score of 0.77
I currently: 7 different scores, combinations of:

I consider copied linking vars
I consider if master consists only of several constraint types
I consider aggregation information

I wip: “strong detection” score (expensive: on demand)

p.18

Pluggable scores

score:

I maximize fraction of non-colored area:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

score of 0.611

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

score of 0.77
I currently: 7 different scores, combinations of:

I consider copied linking vars
I consider if master consists only of several constraint types
I consider aggregation information

I wip: “strong detection” score (expensive: on demand)

p.18

User interface

I partial decompositions can be given by user

I toolbox (in development) to call single detectors or assign
specific conss or vars by name (regex)

I user can give candidates number of blocks

I browse found decompositions inside gcg and select interesting
(for visualization, solving, writing)

p.19

Preliminary computational results

I testset: benchmark subset of miplib2010

I three settings: default, default+hrcgpartition, legacy

detection time number of found decompositions

p.20

Preliminary computational results

I testset: benchmark subset of miplib2010

I three settings: default, default+hrcgpartition, legacy

max white score nblocks of whitest

p.21

Outlook

I tests with termination conditions

I massive tests on resulting reformulations

I test strong decomposition score

I finish toolbox

p.22

References

Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M., Malaguti, E., and
Traversi, E. (2015). Automatic Dantzig-Wolfe reformulation of mixed integer
programs. Math. Prog., 149(1–2):391–424.

Wang, J. and Ralphs, T. (2013). Computational experience with hypergraph-based
methods for automatic decomposition in discrete optimization. In Gomes, C. and
Sellmann, M., editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pages 394–402. Springer,
Berlin, Heidelberg.

p.23

	Brief Introduction of Dantzig-Wolfe Reformulation

