Learning how to decompose

Markus Kruber · Marco Lübbecke · Axel Parmentier

June 7, 2017

Dantzig-Wolfe Reformulation

$$\begin{array}{ll} \min & cx\\ \text{s.t.} & Ax = b\\ & x \in \mathbb{R}^n_+ \times \mathbb{Z}^p_+ \end{array}$$

- DWR for Mixed Integer Programs
- Solved by column generation

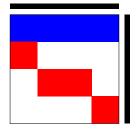


Figure: Decomposition of A



Figure: Tighter relaxation

GCG (Generic Column Generation) Solver

A decomposition: a partition of variables / constraints into blocks

$$\begin{array}{cccc} \min & c^{t}x \\ & D^{1} & & F^{1} \\ & D^{2} & & F^{2} \\ & & \ddots & & \vdots \\ & & & D^{\kappa} & F^{\kappa} \\ A^{1} & A^{2} & \cdots & A^{\kappa} & G \end{array} \right] \cdot \begin{bmatrix} x^{1} \\ x^{2} \\ \vdots \\ x^{\kappa} \\ x^{\ell} \end{bmatrix} \geq \begin{bmatrix} b^{1} \\ b^{2} \\ \vdots \\ b^{\kappa} \\ b^{\ell} \end{bmatrix}$$
(1)
$$\\ \mathbb{R}^{n}_{+} \times \mathbb{Z}^{p}_{+}.$$

Given:

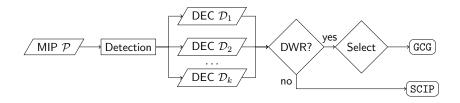
▶ a MIP \mathcal{P}

• (a decomposition \mathcal{D})

GCG solves (1) using SCIP for:

- Master Problem
- Pricing subproblem

Automatic Decomposition in GCG



A MIP can be forced in several types of decomposition:

► Border ► Staircase ► etc.

GCG performance highly depends on how well the decomposition catches the problem structure.

Our work: a supervised learning approach to *select the best decomposition* (using no decomposition is often the best answer).

- 1. Supervised Learning
- 2. Experimental Results
- 3. Outlook

Supervised Learning

Given an input X, a classifier is a model (function) f that predicts a variable of interest $Y \in S$

$$Y = f(X)$$

- f is binary classifier if $S = \{0, 1\}$.
- ► *learn* a classifier: find the f_{θ} that fits best a *training set* $((x_i, y_i), i = 1, ..., n)$ among a family $(f_{\theta}, \theta \in \Theta)$
- Standard binary classifiers / learning algorithms when $X \in \mathbb{R}^d$

Input variables X:

- MIP \mathcal{P}
- Decomposition(s) D
- Remaining time t

Variables of interest:

- Should we use SCIP or GCG?
- Which decomposition should we use?

Input for Standard Classifiers

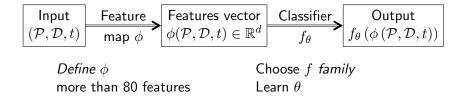
We want to use standard classifiers for f (SVM, KNN, etc.). Need an input in \mathbb{R}^d .

- Input size not fixed
- Ordering of columns / rows not fixed

Input for Standard Classifiers

We want to use standard classifiers for f (SVM, KNN, etc.). Need an input in \mathbb{R}^d .

- Input size not fixed
- Ordering of columns / rows not fixed



Features

Examples of features used:

- ► Time t
- Nb variables/constraints
- Variable types
- Constraint types
- Products of features

- Nb linking variables / constraints
- Nb blocks
- min, max, mean block size
- Detector used (indicator)
- Detection quality metrics

GCG decomposition selection tool uses empirical detection quality metrics.

Labeling

Training set

- ► MIP P
 ► SCIP run on each P
 ► Decompositions D
 ► GCG run on each (P, D)
- Given an input $(\mathcal{P}, \mathcal{D}, t)$ we learn a classifier

 $Y = f(\mathcal{P}, \mathcal{D}, t)$

where Y = 1 if GCG on $(\mathcal{P}, \mathcal{D})$ is better than SCIP on \mathcal{P} after t, i.e.

- GCG solves $\mathcal P$ and SCIP doesn't
- Both solve \mathcal{P} and GCG is faster
- Neither solve P but GCG's gap is smaller

Question: Should we use SCIP or GCG?

Classifiers based on Decomposition Quality

 $f(\mathcal{P}, \mathcal{D}, t) \in [0, 1]$: probability that GCG with \mathcal{D} beats SCIP after t.

Given the decompositions $\mathcal{D}_1,\ldots,\mathcal{D}_k$ available and the remaining time t, use GCG if

$$\max_{i} f(\mathcal{P}, \mathcal{D}_{i}, t) \ge \alpha$$

We take $0.5 < \alpha \le 1$: decomposition is not a default choice.

If we use GCG, select the decomposition

$$\arg\max_i f(\mathcal{P}, \mathcal{D}_i, t)$$

Question: Which decomposition should we use?

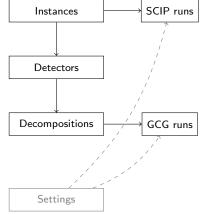
1. Supervised Learning

2. Experimental Results

3. Outlook

Technical Setup

Database Schema



Distribution of Instances

SCIP			structured									non-str		
results	all	clr	stcv	cpmp	sdlb	ctst	gap	ntlb	ltsz	bp	rap	stbl	cvrp	miplib
instances	400	25	25	25	25	25	25	25	25	25	25	25	25	100
opt. sol.	65.5%	19	3	18	10	25	23	25	25	6	12	22	6	68
feas. sol.	31.5%	6	21	7	11	-	2	-	-	19	12	3	19	26
no sol.	3.0%	-	1	-	4	-	-	-	-	-	1	-	-	6

Structured Instances

coloring (clr) set covering (stcv) capacitated *p*-median (cpmp) survivable fixed telecom network design (sdlb) cutting stock (ctst) generalized assignment (gap) network design (ntlb) resource allocation (rap) capacitated vehicle routing (cvrp) lot sizing (ltsz) bin packing (bp) stable set (stbl)

Splitting Training and Testset

Reminder: datapoints $(\mathcal{P}, \mathcal{D}, t)$

Split training and test set by mip instances, to avoid a biased estimator.

Distribution of decompositions per MIP instance:

- Average: ~ 15.3
- Standard Deviation: ~ 9.0

	Instances	Decompositions
Training	$269 ~(\sim 2/3)$	4434
Test	131 (~ 1/3)	2069

Overall Performance

- Test set of 131 MIP instances, 99 structured and 32 unstructured.
- ▶ GCG better than SCIP on 34 instances.

Nearest neighbor classifier of scikit-learn library.

Overall Performance

- Test set of 131 MIP instances, 99 structured and 32 unstructured.
- ▶ GCG better than SCIP on 34 instances.

Nearest neighbor classifier of scikit-learn library.

Instances	All			S	Structured			Non-structured				
Solver	SCIP	GCG	SL	OPT	SCIP	GCG	SL	OPT	SCIP	GCG	SL	OPT
No opt. sol.												
CPU time (h)												
Geo. mean (s)	127.1	370.4	78.6	67.8	73.4	146.9	39.2	32.2	672.9	5145.0	766.0	646.5

- SCIP: apply SCIP to all instances
- GCG: apply GCG with build-in selection tool
- SL: our supervised learning scheme
- OPT: best decomposition selected each time

Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For $(\mathcal{P}, \mathcal{D}, t)$: Is GCG on $(\mathcal{P}, \mathcal{D})$ better than SCIP on \mathcal{P} ?

		All		Structi	ured	Non	-
		instances				structured	
		SCIP	GCG	SCIP	GCG	SCIP	GCG
Classifier	Pred.	74.0%	26.0%	68.7%	31.3%	90.6%	9.4%
RBF	SCIP	ΤN	FN				
Unbal.	GCG	FP	TP				
KNN	SCIP						
distance.	GCG						
RF	SCIP						
Unbal.	GCG						
RF	SCIP						
Bal.	GCG						

Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For $(\mathcal{P}, \mathcal{D}, t)$: Is GCG on $(\mathcal{P}, \mathcal{D})$ better than SCIP on \mathcal{P} ?

		All		Structi	ured	Non	-
		instances				structured	
		SCIP	GCG	SCIP	GCG	SCIP	GCG
Classifier	Pred.	74.0%	26.0%	68.7%	31.3%	90.6%	9.4%
RBF	SCIP	73.3%	19.1%	66.7%	23.2%	90.6%	9.4%
Unbal.	GCG	3.8%	3.8%	5.1%	5.1%	0.0%	0.0%
KNN	SCIP	69.5%	9.9%	64.6%	11.1%	84.4%	6.3%
distance.	GCG	6.9%	13.7%	7.1%	17.2%	6.3%	3.1%
RF	SCIP	63.4%	11.5%	55.6%	13.1%	87.5%	6.3%
Unbal.	GCG	10.7%	14.5%	13.1%	18.2%	3.1%	3.1%
RF	SCIP	60.3%	10.7%	50.5%	11.1%	90.6%	9.4%
Bal.	GCG	13.7%	15.3%	18.2%	20.2%	0.0%	0.0%

Best Decomposition Selection Accuracy

Classifier	All	GCG selected	GCG the
	instances	by class.	best
RBF	42.7%	80.0%	76.7%
KNN	58.8%	88.9%	77.4%
RF unbalanced	51.1%	72.7%	76.5%
RF balanced	64.9%	71.1%	79.4%

Best Decomposition Selection Accuracy

Classifier	All	GCG selected	GCG the
	instances	by class.	best
RBF	42.7%	80.0%	76.7%
KNN	58.8%	88.9%	77.4%
RF unbalanced	51.1%	72.7%	76.5%
RF balanced	64.9%	71.1%	79.4%

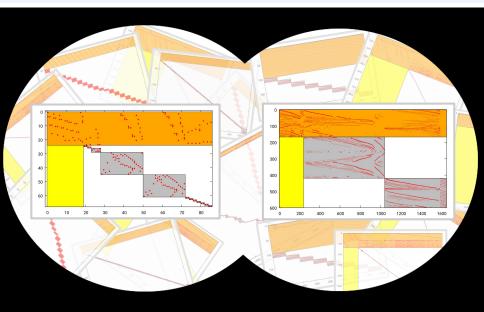
How to improve the performance?

1. Supervised Learning

2. Experimental Results

3. Outlook

Outlook: a Bunch of Decompositions



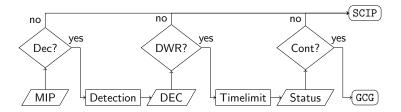
Outlook: a Bunch of Decompositions

- Beat SCIP on more instances
- Harder Machine Learning task

Estimation

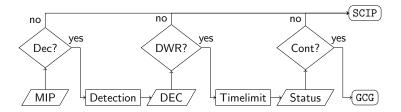
 $> 1.000~{\rm MIPs} \cdot 500~{\rm DECs}/{\rm MIP} \cdot 2{\rm h}$ timelimit $\approx 114~{\rm years}~/~{\rm \#PCs}$

Additional Decisions in GCG



- 1. Prediction before detection
- 2. DWR? and selection
- 3. Enrich feature quality by exploiting run time features

Additional Decisions in GCG



- 1. Prediction before detection
- 2. DWR? and selection
- 3. Enrich feature quality by exploiting run time features

Thank you for your attention!

• geom. mean:
$$\bar{x}_{geom} = \sqrt[n]{\prod_{i=1}^n x_i}$$

un/balanced: weights associated with classes.

