Optimal Rescheduling in Automotive Industry

Markus Kruber Marco Lübbecke Jonas Witt

RWTH Aachen University

#or2015vienna · Vienna · 09/02/2015

Just-In-Time Manufacturing

Just-In-Time Manufacturing

No Warehousing

Just-In-Time Manufacturing

No Warehousing

Long Delivery Routes

Just-In-Time Manufacturing

No Warehousing

Long Delivery Routes

Forecast / Scheduling

Just-In-Time Manufacturing

No Warehousing

Long Delivery Routes

Forecast / Scheduling

Mass Customization

Just-In-Time Manufacturing

No Warehousing

Long Delivery Routes

Forecast / Scheduling

Mass Customization

Imperfect Forecast

Rebuild BTS-Vehicles only

- Rebuild BTS-Vehicles only
- No warehousing⇒ consider specific day

- Rebuild BTS-Vehicles only
- No warehousing ⇒ consider specific day
- Satisfy customer request

- Rebuild BTS-Vehicles only
- No warehousing ⇒ consider specific day
- Satisfy customer request
- Minimize overall modification

- Rebuild BTS-Vehicles only
- No warehousing ⇒ consider specific day
- Satisfy customer request
- Minimize overall modification
- Modified vehicle
 - Valid
 - Similar
 - Saleable

Specification

0

${\sf Specification}$

$$\mathsf{Entity} \, \left\{ \begin{array}{c} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ \vdots \\ \end{array} \right.$$

 V_{BTS}

 \bigcirc

 \subset

C

Set of nodes $V_{\rm BTS}$

Each node represents a BTS-Car, which is planned to be build at that day.

$V_{\mathtt{BTS}}$	V	
	\bigcirc	Set of nodes V_{BTS}
		Each node represents a BTS-Car,
\bigcirc	\bigcirc	which is planned to be build at that
	\bigcirc	day.
\circ	\bigcirc	
	\bigcirc	Set of nodes V
	\cup	The set V contains a node for every
\bigcirc	\bigcirc	valid specification.
	\bigcirc	

$V_{\mathtt{BTS}}$	V	k = #Attribute
	\bigcirc	
\circ	\bigcirc	Function spec for nodes Function
	O	$spec: V_{BTS} \stackrel{.}{\cup} V \rightarrow \{0,1\}^k$
\bigcirc	\bigcirc	$Spec: V_{BTS} \cup V \to \{0,1\}$
	\bigcirc	returns for each node the
		corresponding specification vector.
\bigcirc	\bigcirc	

Function spec for edges

The function

$$\operatorname{spec}: E \to \{-1, 0, 1\}^k$$

is defined as:

$$\operatorname{spec}(e) = \operatorname{spec}(v_2) - \operatorname{spec}(v_1),$$

for all
$$(v_1, v_2) = e \in E$$
.

Similarity constraint

For given weights $w=(w_1,\ldots,w_k)\in\mathbb{R}^k_{\geq\ 0}$ and a upper bound maxDiff $\in\mathbb{R}_{\geq\ 0}$, the set of edges is defined as:

$$E = \{(v_1, v_2) = e \in V_{\mathsf{BTS}} \times V \mid \\ \sum_{i=1}^k w_i \cdot |\mathsf{spec}(e)_i| \le \mathsf{maxDiff}\}.$$

Similarity constraint

For given weights $w=(w_1,\ldots,w_k)\in\mathbb{R}^k_{\geq\ 0}$ and a upper bound maxDiff $\in\mathbb{R}_{\geq\ 0}$, the set of edges is defined as:

$$E = \{(v_1, v_2) = e \in V_{\mathsf{BTS}} \times V \mid \\ \sum_{i=1}^k w_i \cdot |\mathsf{spec}(e)_i| \le \mathsf{maxDiff}\}.$$

Definition

Let node $v^* \in V$ represent the node corresponding to **customers** request.

Valid Exchange

- Rebuild BTS-Vehicles only
- No warehousing⇒ consider specific day ✓
- ▶ Satisfy customer request ✓
- Minimize overall modification X
- Modified vehicle
 - ▶ Valid ✓
 - ▶ Similar ✓
 - ► Saleable X

- Rebuild BTS-Vehicles only
- No warehousing⇒ consider specific day ✓
- Satisfy customer request
- Minimize overall modification X
- Modified vehicle
 - ▶ Valid ✓
 - ▶ Similar ✓
 - ► Saleable X

Integer Programming

s.t.
$$\sum_{(v_1,v_2)=e\in E} x_e = 1$$

$$\sum_{e\in E} \operatorname{spec}(e)_i \cdot x_e = 0$$

$$\sum_{(v_1, v^*) = e \in E} x_e \ge 1$$

$$x_e \in \{0, 1\}$$

$\forall v_1 \in V_{\mathsf{BTS}}$

$$\forall i \in \{1, \dots, k\}$$

$$\forall e \in E$$

Integer Programming

$$\min \quad \sum_{\substack{e \in E: \\ \operatorname{spec}(e) \neq 0}} x_e$$

s.t.
$$\sum_{(v_1, v_2) = e \in E} x_e = 1$$

$$\sum_{e \in E} \operatorname{spec}(e)_i \cdot x_e = 0$$

$$\sum_{(v_1, v^*) = e \in E} x_e \ge 1$$

$$x_e \in \{0, 1\}$$

$$\forall v_1 \in V_{\mathsf{BTS}}$$

$$\forall i \in \{1, \dots, k\}$$

$$\forall e \in E$$

Integer Programming

$$\min \quad \sum_{\substack{e \in E: \\ \operatorname{spec}(e) \neq 0}} x_e \; + \; \sum_{e \in E} \| \operatorname{spec}(e) \|_1 \cdot x_e$$

s.t.
$$\sum_{(v_1, v_2) = e \in E} x_e = 1$$

$$\forall v_1 \in V_{\mathsf{BTS}}$$

$$\sum_{e \in E} \operatorname{spec}(e)_i \cdot x_e = 0$$

$$\forall i \in \{1, \dots, k\}$$

$$\sum_{(v_1, v^*) = e \in E} x_e \ge 1$$

$$x_e \in \{0, 1\}$$

$$\forall e \in E$$

- ▶ Rebuild BTS-Vehicles only ✓
- No warehousing⇒ consider specific day ✓
- Satisfy customer request
- ▶ Minimize overall modification ✓
- Modified vehicle
 - ▶ Valid ✓
 - ► Similar ✓
 - ► Saleable X

- ▶ Rebuild BTS-Vehicles only ✓
- No warehousing⇒ consider specific day ✓
- Satisfy customer request
- ▶ Minimize overall modification ✓
- Modified vehicle
 - ▶ Valid ✓
 - ▶ Similar ✓
 - ► Saleable X

Association Rule Learning

 Invented to find relationships between products in supermarkets,

e.g. {Onions, Potatos} \Rightarrow {Burger}

Association Rule Learning

- Invented to find relationships between products in supermarkets,
 - e.g. $\{\text{Onions, Potatos}\} \Rightarrow \{\text{Burger}\}$
- Find rules in historical data of the orderbank,
 e.g. {Navigation System} ⇒ {Voice Control}

Association Rule Learning

- Invented to find relationships between products in supermarkets,
 - e.g. $\{Onions, Potatos\} \Rightarrow \{Burger\}$
- Find rules in historical data of the orderbank,
 e.g. {Navigation System} ⇒ {Voice Control}
- ► Adjust the graph

$$\begin{pmatrix} 1 \\ 1 \\ \vdots \end{pmatrix} \qquad \qquad \qquad \qquad \qquad \begin{pmatrix} 1 \\ 0 \\ \vdots \end{pmatrix}$$

- Rebuild BTS-Vehicles only
- No warehousing⇒ consider specific day ✓
- ▶ Satisfy customer request ✓
- ▶ Minimize overall modification ✓
- Modified vehicle
 - ▶ Valid ✓
 - ► Similar ✓
 - ▶ Saleable ✓

I) Graph construction

- I) Graph construction
- II) Association analysis, \dots

- I) Graph construction
- II) Association analysis, ...
- 1) for day in searching period solve IP $\sim V_{BTS}, \, v^*$

- I) Graph construction
- II) Association analysis, ...
- 1) for day in searching period solve IP $\sim V_{BTS}, \, v^*$
- 2) Choose earliest / best rebuild

- I) Graph construction
- II) Association analysis, ...
- 1) for day in searching period solve IP $\sim V_{BTS}, \, v^*$
- 2) Choose earliest / best rebuild
- 3) Reschedule

- I) Graph construction
- II) Association analysis, ...
- 1) for day in searching period solve IP $\sim V_{BTS}, \ v^*$
- 2) Choose earliest / best rebuild
- 3) Reschedule
- 4) Adjust graph

Test Environment

- I) Graph construction
- II) Association analysis, ...

- 1) for day in searching period solve IP $\sim V_{BTS}, \, v^*$
- 2) Choose earliest / best rebuild
- 3) Reschedule
- 4) Adjust graph

Test Environment

- I) Graph construction
- II) Association analysis, ...
- 0) for each valid specification $=: v^*$
- 1) for day in searching period solve IP $\sim V_{BTS}$, v^*
- 2) Choose earliest / best rebuild
- 3) Reschedule
- 4) Adjust graph

Not in orderbank	In orderbank
87%	13%

No rebuild

Earlier rebuild

- No rebuild
- Only rebuild (Improvement!)
- Earlier rebuild
- No improvement

Thank you for your attention!

Earlier rebuild

No improvement

