Resource constrained shortest path algorithm for EDF short-term thermal production planning problem

Pascal Benchimol¹ Markus Kruber² Axel Parmentier³

 1 EDF

²Chair of Operations Research, RWTH Aachen University

³CERMICS, École des Ponts Paristech

November 14, 2017

[...] EDF short-term thermal production planning problem

Generation units

- ~ 60 nuclear
- $ightharpoonup \sim 100$ thermal
- $ightharpoonup \sim 500$ hydraulic

Technically feasible production schedules

Min operating cost

Horizon: 24h + 24h

Time limit: 15min

[...] EDF short-term thermal production planning problem

Generation units

- ~ 60 nuclear
- $ightharpoonup \sim 100$ thermal
- $ightharpoonup \sim 500$ hydraulic

Technically feasible production schedules

Min operating cost

Horizon: 24h + 24h

Time limit: 15min

[...] EDF short-term thermal production planning problem

Generation units

- $ightharpoonup \sim 60$ nuclear
- ~ 100 thermal
- $ightharpoonup \sim 500$ hydraulic

Technically feasible production schedules

Min operating cost

Horizon: 24h + 24h

Time limit: 15min

startup · #startups

startup · #startups · min_duration_production_level

startup min_duration_power_state · #modulations

- #startups · min_duration_production_level

startup · #startups · min_duration_production_level min_duration_power_state · #modulations · shutdown

startup · #startups · min_duration_production_level min_duration_power_state · #modulations · shutdown min/max_power_state · min/max_increase/decrease #deep_decreases

Table of Content

- 1. The Unit Commitment Problem
- 2. Resource Constraint Shortest Path Problem
- 3. Enumeration Algorithms
- 4. Computational Results

Introduction of the Unit Commitment Problem

Part of lagrangian relaxation approach:

Input:

- discretization of the time horizon (96 steps)
- operation cost of the plants depending on power level
- electricity prices for each time step
- technical constraints

Output:

- production plan
- such that: technical constraints are respected
- which: maximizes profit operating cost

Model & Scope

Assume we can generate all technically feasible production plans \mathcal{P}_i for each plant $i \in V$.

$$\begin{array}{llll} \text{minimize} & \sum\limits_{p\in\mathcal{P}}c_px_p\\ \text{subject to} & \sum\limits_{p\in\mathcal{P}_i}x_p &=& 1 & \forall i\in V\\ & & x_p &\in& \{0,1\} & \forall p\in\mathcal{P} \end{array}$$

Model & Scope

Assume we can generate all technically feasible production plans \mathcal{P}_i for each plant $i \in V$.

$$\begin{array}{llll} \text{minimize} & \sum\limits_{p\in\mathcal{P}}c_px_p\\ \text{subject to} & \sum\limits_{p\in\mathcal{P}_i}x_p &=& 1 & \forall i\in V\\ & & x_p &\in& \{0,1\} & \forall p\in\mathcal{P} \end{array}$$

Scope of this talk

- assume problems are independent
- solve each subproblem separately

Model & Scope

Assume we can generate all technically feasible production plans \mathcal{P}_i for each plant $i \in V$.

minimize
$$\sum_{p\in\mathcal{P}}c_px_p$$
 subject to
$$\sum_{p\in\mathcal{P}_i}x_p = 1 \qquad \forall i\in V$$

$$x_p \in \{0,1\} \quad \forall p\in\mathcal{P}$$

Scope of this talk

- assume problems are independent
- solve each subproblem separately

Problem faced in reality

- linked by shared gas stock
- column generation approach
- ▶ pricing is still RCSPP

Table of Content

- 1. The Unit Commitment Problem
- 2. Resource Constraint Shortest Path Problem
- 3. Enumeration Algorithms
- 4. Computational Results

Shortest Path in an Ordered Monoid

For each arc a a resource $q_a \in \mathcal{R}$

- ► Associative binary operator ⊕: path resources
- ▶ Neutral element 0: empty path

$$\bigcirc \qquad q_1 \qquad q_2 \qquad q_3 \qquad q_P = q_1 \oplus q_2 \oplus q_3$$

 (\mathcal{R},\oplus) is a monoid.

▶ An order
$$\leq$$
 compatible with \oplus : $q \leq \tilde{q} \Rightarrow \left\{ \begin{array}{l} r \oplus q \leq r \oplus \tilde{q} \\ q \oplus r \leq \tilde{q} \oplus r \end{array} \right.$

$$(\mathcal{R},\oplus,\preceq)$$
 is an ordered monoid.

Non-decreasing cost c and constraint ρ functions.

Shortest Path with Resources in an Ordered Monoid

Given an ordered monoid $(\mathcal{R}, \oplus, \preceq)$ Input:

- ▶ Digraph D = (V, A)
- ▶ Two vertices $o, d \in V$
- ▶ Resources $q_a \in \mathcal{R}$
- ► Two non-decreasing oracles $c: \mathcal{R} \to \mathbb{R}$ $\rho: \mathcal{R} \to \{0, 1\}$

Output:

► An o-d path P such that

$$\rho\left(\bigoplus_{a\in P} q_a\right) = 0$$

which minimizes

$$c\left(\bigoplus_{a\in P}q_a\right)$$

Cost and constraint(s):

non-linear(s)

Example 1: Usual Resource Constrained Shortest Path

Input:

- ightharpoonup Digraph D = (V, A)
- ▶ Origin o, Destination d
- ▶ Costs $c_a \in \mathbb{R}$
- $lackbox{Weights } w_a^i \in \mathbb{R} \mbox{ for } i \in [n]$
- ▶ Thresholds $W^i \in \mathbb{R}$ for $i \in [n]$

Output:

► An *o*-*d* path *P* such that

$$\sum_{a \in P} w_a^i \le W^i \quad \forall i \in [n]$$

which minimizes $\sum_{a \in P} c_a$

Example 1: Usual Resource Constrained Shortest Path

Input:

- ▶ Digraph D = (V, A)
- ▶ Origin o, Destination d
- ightharpoonup Costs $c_a \in \mathbb{R}$
- $lackbox{Weights } w_a^i \in \mathbb{R} \text{ for } i \in [n]$
- ▶ Thresholds $W^i \in \mathbb{R}$ for $i \in [n]$

Output:

► An *o-d* path *P* such that

$$\sum_{a} w_a^i \le W^i \quad \forall i \in [n]$$

which minimizes $\sum_{a \in P} c_a$

Model:

$$ightharpoonup \mathcal{R} = \mathbb{R}^{n+1}$$

$$q_a = (c_a, w_a^1, \dots, w_a^n)$$

$$c: ((q^0, \dots, q^n)) \mapsto q^0$$

$$ightharpoonup
ho : ((q^0, \dots, q^n)) \mapsto \max_{i \in \{1, \dots, n\}} \mathbb{1}_{q^i > W^i}$$

Example 2: Restricting Startups

Input:

- ▶ Digraph D = (V, A)
- Origin o, destination d
- $w_a = \left\{ \begin{array}{l} 1, \text{ if startup arc,} \\ 0, \text{ otherwise.} \end{array} \right.$
- ▶ Max startups W^{start}

Output:

An o-d path P of minimum cost such that the number of startups per plant is not greater than W^{start}.

Example 2: Restricting Startups

Input:

- ightharpoonup Digraph D = (V, A)
- Origin o, destination d
- ▶ Max startups W^{start}

Output:

An o-d path P of minimum cost such that the number of startups per plant is not greater than W^{start}.

Model:

- $\mathcal{R} = \mathbb{R}^2$
- $ightharpoonup q_a = (c_a, w_a)$

- $c:((q^0,q^1))\mapsto q^0$
- $ho: ((q^0, q^1) \mapsto \mathbb{1}_{q^1 > W^{\mathsf{start}}}$

Example 3: Minimum Duration in Online State

Stay in online state for at least W^{on} .

Example 3: Minimum Duration in Online State

Stay in online state for at least W^{on} .

Example 3: Minimum Duration in Online State

Stay in online state for at least W^{on} .

$$(c_a,w_a^1)\oplus(c_{a'},w_{a'}^1)=\left\{\begin{array}{ll} \infty & \text{, if } w_a^1<0 \wedge w_{a'}^1<0,\\ w_{a'}^1 & \text{, if } w_a^1\geq 0 \wedge w_{a'}^1<0,\\ w_a^1+w_{a'}^1 & \text{, otherwise} \end{array}\right.$$

Table of Content

- 1. The Unit Commitment Problem
- 2. Resource Constraint Shortest Path Problem
- 3. Enumeration Algorithms
- 4. Computational Results

Usual A* algorithm

- $prime q_P \in \mathbb{R}$
- $ightharpoonup C_{od}^{UB} \ge \min_{P \in \mathcal{P}_{o,d}} q_P$
- $b_v \le q_P, \ \forall P \in \mathcal{P}_{vd}$

A path $P \in \mathcal{P}_{ov}$ satisfying $q_P + b_v > C_{od}^{UB}$ is not the subpath of an optimal path.

- A* algorithm: a Branch & Bound
 - Generate all the paths satisfying

$$q_P + b_v \le C_{od}^{UB}$$

▶ Update C_{od}^{UB}

Generalized A* algorithm

- $ightharpoonup q_P \in \mathcal{R}$
- $C_{od}^{UB} \ge \min_{P \mid \rho(P) = 0} c(q_P)$
- $b_v \preceq q_{\tilde{P}}, \, \forall \tilde{P} \in \mathcal{P}_{vd}$

A path $P \in \mathcal{P}_{ov}$ satisfying $c(q_P \oplus b_v) > C_{od}^{UB}$ or $\rho(q_P \oplus b_v) = 1$ is not the subpath of an optimal path.

Generalized A* Algorithm: a Branch & Bound

► Generate all the paths satisfying

$$c(q_P \oplus b_v) \le C_{od}^{UB}$$
 and $\rho(q_P \oplus b_v) = 0$ (Low)

▶ Update C_{od}^{UB}

Generic enumeration algorithm

Preprocessing.

 $L \leftarrow \text{empty path in } o$ $c_{od}^{UB} \leftarrow +\infty.$

While L is not empty:

- ► Extract from *L* a path *P* of minimum key.
- If v = d and $\rho(P) = 0$, $c_{od}^{UB} \leftarrow \min(c_{od}^{UB}, c(P))$.
- ▶ Test if *P* must be extended. If yes:
 - for each $a \in \delta^+(v)$, add P + a to L.

L: cand. paths list. c_{od}^{UB} : Upper bound on optimal path cost. v: destination of P.

Add. structures

 b_v : lower bound on v-d paths q_P

 M_v : list of non dominated o-v paths

Algorithm	Test	Key
Generalized A*	(Low)	$c(q_P \oplus b_v)$
Label dominance	(Dom)	$c(q_P)$
Label correcting	(Dom), (Low)	$c(q_P \oplus b_v)$

Table of Content

- 1. The Unit Commitment Problem
- 2. Resource Constraint Shortest Path Problem
- 3. Enumeration Algorithms
- 4. Computational Results

Some Numbers

- Plants
 - \triangleright 8 gas plants (3, 3, 2)
 - ▶ 97 non-gas plants
- Size of graph (depends on the model)
 - $ightharpoonup \sim 2.000 \; {
 m nodes}$
 - $ightharpoonup \sim 10.000~{
 m arcs}$

Solving Non-Gas Subproblem

Arcs touched by previous algorithm

Arcs touched by our algorithm

Summary

- Redesign of the graph
- Modeling unit commitment problem as RCSPP in lattice ordered monoid
- (Conditional) bound computation
- Using a Generalized A* algorithm
- ► Solving of nongas / gas pricing problems
- ► Column generation Multi Unit Commitment Problem
- Pareto Frontier