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Introduction of the Unit Commitment Problem

Part of lagrangian relaxation approach:

Input:
» discretization of the time horizon (96 steps)
» operation cost of the plants depending on power level
> electricity prices for each time step
technical constraints
Output:
» production plan

v

» such that: technical constraints are respected

» which: maximizes profit - operating cost




Model & Scope

Assume we can generate all technically feasible production plans
P; for each plant i € V.

minimize ) ¢cpzp
pEP
subjectto Y x, = 1 VieV
PEP;
z, € {0,1} VpeP
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Model & Scope

Assume we can generate all technically feasible production plans
P; for each plant i € V.

minimize ) ¢,z

peEP
subjectto Y x, = 1 VieV
pEP;
z, € {0,1} VpeP
Scope of this talk Problem faced in reality
» assume problems are > linked by shared gas
independent stock
> solve each subproblem » column generation
separately approach

» pricing is still RCSPP
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Shortest Path in an Ordered Monoid

For each arc a a resource g, € R
» Associative binary operator &: path resources
> Neutral element 0: empty path
q1 42 q3 agp=q1 D Dg3

O -0 -0 -0

(R, @) is a monoid.

< -
» An order < compatible with &@ : qj(fj:>{ r®&q=rdq

qo&r2qor
(R,®, =) is an ordered monoid.

» Non-decreasing cost ¢ and
constraint p functions.



Shortest Path with Resources in an Ordered Monoid

Given an ordered monoid (R, ®, <)

Input: Output:
» Digraph D = (V, A) » An o-d path P such that
» Two vertices 0,d € V P (Boepda) =0
> Resources g, € R which minimizes
» Two non-decreasing ¢ (Buep ta)
oraclesc: R - R
p: R —{0,1}

Cost and constraint(s):

» non-linear(s)




Example 1: Usual Resource Constrained Shortest Path

Input: Output:
» Digraph D = (V, A) » An o-d path P such that
» Origin o, Destination d > wi <W' Vi€ [n]
» Costs ¢, € R a€P
» Weights w’ € R for i € [n] which minimizes Z Ca
» Thresholds W% € R for ach
i € [n]



Example 1: Usual Resource Constrained Shortest Path

[nput:
» Digraph D = (V, A)
> Origin o, Destination d
» Costs ¢, € R
» Weights w’ € R for i € [n]
» Thresholds W € R for
i € [n]
Model:
> R — R > c:
’CIa:(Ca,wiv'“vwg) m P

Output:

» An o-d path P such that
wal < W' Vi€ [n]
a€eP
which minimizes Z Ca

acP
q") — ¢°
,q")) — T isyyi
) jemax g
RWTH




Example 2: Restricting Startups

Input: Output:

» Digraph D = (V, A) » An o-d path P of
minimum cost such that
the number of startups
per plant is not greater
than Ty/start,

» Origin o, destination d

. w — 1, if startup arc,
“7 1 0, otherwise.

» Max startups Ty/start
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Example 2: Restricting Startups

Input: Output:

» Digraph D = (V, A) » An o-d path P of
minimum cost such that
the number of startups
per plant is not greater
than Ty/start,

» Origin o, destination d

. w — 1, if startup arc,
“7 1 0, otherwise.

» Max startups Ty/start

Model:
> R = R? > c:((¢%qY) = ¢°
> Qo = (mea) > p: ((q()’ql) = ]lq1>W5ta”
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Example 3: Minimum Duration in Online State
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Example 3: Minimum Duration in Online State
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Example 3: Minimum Duration in Online State

©o o o o o o o o o
t O O O state 1
oo o o
\\\ _WOn
©o o ™ o
O O O O state 0
©o o o o

Stay in online state for at least WW°".

00 Jf wk <0Awl, <0,
(caswd) ® (cor,wl) =< wl, Jfwl>0Aw!, <0,
wl + wé, , otherwise
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Usual A* algorithm

»gpeR

UB :
» CV7 > min qp
od = PeP, q q

> bv SQPv VPE,Pvd

A path P € P,, satisfying qp + b, > CgiB is not the subpath of an
optimal path.

A* algorithm: a Branch & Bound
» Generate all the paths satisfying

@O A4
qp + by, < CLP —
> Update C([)JdB
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Generalized A* algorithm

» gpER

» CUB > min e
od _P\p(P):O (QP)

> by < qp, VP € Pug

A path P € P,, satisfying c(qp @ b,) > CUP or p(qp ® b,) =1 is
not the subpath of an optimal path.

Generalized A* Algorithm: a Branch & Bound
» Generate all the paths satisfying

clgp ®by) < Co’ and  plgp ®by) =0 (Low)

» Update CUP
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Generic enumeration algorithm

Preprocessing.

L + empty path in o L: cand. paths list.
B« oo, cgﬁ: Upper bound on
optimal path cost.

While L is not empty:
v: destination of P.

» Extract from L a path P of

minimum key. Add. structures

» If v =d and p(P) =0, b,: lower bound on v-d
cgdB — min(cgdB, c(P)). paths ¢p
» Test if P must be extended. If yes: M, list of non
» for each a € 67 (v), add P +a to L. dominated o-v paths

Algorithm Test Key
Generalized A* (Low) c(gp @ by)
Label dominance (Dom) c(qp)
Label correcting  (Dom), (Low) ¢(gp & by)
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Some Numbers

> Plants
» 8 gas plants (3,3,2)
» 97 non-gas plants

» Size of graph (depends on the model)

» ~ 2.000 nodes
» ~ 10.000 arcs
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Solving Non-Gas Subproblem

100

ot
@)

solving time (ms)

selection
key

Fiter

##dis dom
#dis bound
#od paths
speedup

117.1
56.3 52.1
3.6
\ \ == \
EDF V1 V2 V3
node node path path
early date early date qp ® by dp
2.100 1.914 3.596 230.763
190k 137k 9k 201k
0 79k 9k 1.029k
327 14 1 899
1.00x 0.93x 0.06x 2.08x
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Arcs touched by previous algorithm
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Arcs touched by our algorithm
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Summary

» Redesign of the graph

» Modeling unit commitment problem as RCSPP in lattice
ordered monoid

» (Conditional) bound computation

» Using a Generalized A* algorithm

» Solving of nongas / gas pricing problems

» Column generation - Multi Unit Commitment Problem

» Pareto Frontier
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