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Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization
Given a pseudo-Boolean function f : {0,1}" — R

in_ f(x).
iy ")

ke |



Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization
Given a pseudo-Boolean function f : {0,1}" — R

in_ f(x).
iy ")

Theorem (Hammer et al., 1963)

Every pseudo-Boolean function f : {0,1}" — R admits a unique
multilinear expression.
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Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization
Given a pseudo-Boolean function f : {0,1}" — R

in  f(x).
XGTOIH}” (X)

Theorem (Hammer et al., 1963)

Every pseudo-Boolean function f : {0,1}" — R admits a unique
multilinear expression.

» Given f, finding its unique multilinear representation can be
costly! (Size of the input: O(2"))
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Multilinear 0-1 optimization

Assumption: f given as a multilinear polynomial
Set of monomials S C 2l ag £ 0 for Se€ S.

min Z aSHx,-

Ses ieS
s. t. x; € {0,1}, fori=1,...,n

Example:

f(Xl, X2, X3) = Ox1x0x3 + 8x1X0 — 6x0x3 + X1 — 2X0 + X3
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Quadratization: definition and desirable properties

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where x € {0,1}", a
quadratization g(x, y) is a function satisfying

» g is quadratic

» g(x,y) depends on the original variables x and on m auxiliary
variables y

» satisfies

f(x) = min{g(x,y) : y € {0,1}"} V¥x € {0,1}".
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Quadratization: definition and desirable properties

Definition (Anthony et al., 2017)

Given a pseudo-Boolean function f(x) where x € {0,1}", a
quadratization g(x,y) is a function satisfying

» g is quadratic

» g(x,y) depends on the original variables x and on m auxiliary
variables y

> satisfies

f(x) = min{g(x,y) : y € {0,1}"} V¥x € {0,1}".

Which quadratizations are “good”?
» Small number of auxiliary variables (compact).

» Small number of positive quadratic terms (xix;, xiy; ...) (empirical
measure of submodularity).



Application in computer vision: image restoration

Input: blurred image Output: restored image

T P Eﬂ"'ﬂ:‘.,.‘

Image from the Corel database.
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Persistencies

Weak Persistency Theorem (Hammer, Hansen, & Simeone, 1984)

Let (QP) be a quadratic optimization problem on x € {0,1}", and let (X, ) be
an optimal solution of the continuous standard linearization of (QP)

min cO+Zcm+ > v

1<i<j<n

S.t.yijZXi+Xj*1 ij=1,...,ni<}j
Vi <X ij=1,...,ni<}j
Yi < X; ihj=1...,ni<}j
0<y; <1 ihj=1,...,ni <}
0<x <1 i=1,...,n

such that X; =1 for j € O and X; = 0 for j € Z. Then, for any minimizing
vector x™ of (QP) switching x* =1 for j € O and x" = 0 for j € Z will also

yield a minimum of f.
RWTH
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Persistencies

> The Weak Persistency Theorem is not the strongest form of
persistency.
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Persistencies

> The Weak Persistency Theorem is not the strongest form of
persistency.
P There are ways to compute, in polynomial time, a maximal set

of variables to fix, based on a network flow algorithm (Boros
et al., 2008).
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Persistencies

» The Weak Persistency Theorem is not the strongest form of
persistency.

P There are ways to compute, in polynomial time, a maximal set
of variables to fix, based on a network flow algorithm (Boros
et al., 2008).

» In computer vision, image restoration and related problems of
up to millions of variables are efficiently solved, thanks to the
use of persistencies.
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Termwise quadratizations

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f(x) = —35x1x0x3xax5 + 50x1x0x3%4 — 10x1X0Xa X5 + Bx2X3Xa + Bxaxs — 20X
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Termwise quadratizations

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f(x) = —35x1x0x3xax5 + 50x1x0x3%4 — 10x1X0Xa X5 + Bx2X3Xa + Bxaxs — 20X

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman
& Drineas, 2005)

— Xi = min — xi—(n—1
H min y(; (n—1)

» One variable is sufficient.

» No positive quadratic terms.
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Termwise quadratizations

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f(x) = —35x1x0x3xax5 + 50x1x0x3%4 — 10x1X0Xa X5 + Bx2X3Xa + Bxaxs — 20X

Negative monomial
g Check that, for every x € {0,1}",

(Kolmogorov & Zabih, 2004; Freedman min,g(x,y) = — ], xi., two cases:
& Drineas, 2005)
Q If x; =1 Vi, then min, — y,
" ) 1 minimum value of —1 reached for

EXI = o y(; xi—(n—1)) y=1
@ |If 3i such that x; = 0, then

min, — Cy, where C <0,

minimum value of 0 reached for
» No positive quadratic terms. y=0.

» One variable is sufficient.
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Termwise quadratizations

Main idea
Quadratize monomial by monomial using disjoint sets of auxiliary variables.
f(x) = —35x1x0x3xax5 + 50x1x0x3%4 — 10x1X0Xa X5 + Bx2X3Xa + Bxaxs — 20X
Negative monomial Positive monomial
(Kolmogorov & Zabih, 2004; Freedman (Ishikawa, 2011)
& Drineas, 2005) .

n n Hx,- = min Zy,-(c,-,,,(—|x| +2i) — 1)
—|lx= min — xi—(n—1 i ye{0,1} <=
[Ix= min v} _x-(-1) 1
i1 = L K= 1)
2

)

» One variable is sufficient.

» Number of variables: k = L"Elj.

» No positive quadratic terms.
> (g) positive quadratic terms.

ke |



Upper bound for the positive monomial: [log(n)] — 1
Theorem 3 (simplified version)
Assume that n = 2¢ and let |x| = Y7, xi be the Hamming weight of
x € {0,1}". Then,

£—1 £—1
1 i i
g0y) = 5(xl = 30 2y)(x = S 2y~ 1)
i=1 i=1

is a quadratization of the positive monomial P,(x) =[], xi using
[log(n)] — 1 auxiliary variables.
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Proof idea: Check that, for every x € {0,1}", min,g(x,y) =[], .
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Upper bound for the positive monomial: [log(n)] — 1

Theorem 3 (simplified version)

n

Assume that n = 2° and let |x| = > | x; be the Hamming weight of

x € {0,1}". Then,

—1 -1
1 7 i
g(xy) = 2xl = 32y~ Y2y~ 1)
i=1 i=1

is a quadratization of the positive monomial P,(x) =[], xi using
[log(n)] — 1 auxiliary variables.

n

Proof idea: Check that, for every x € {0,1}", min,g(x,y) =[],
> The quadratization depends on |x|, which takes values between 0 and n.

Xi.
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» Case 1 (|x| < n—1): Integers between 0 and n — 1 can be represented as
a sum of log(n) powers of 2.
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Theorem 3 (simplified version)

Assume that n = 2° and let |x| = > | x; be the Hamming weight of
x € {0,1}". Then,

—1 -1
1 7 i
g(xy) = 2xl = 32y~ Y2y~ 1)
i=1 i=1

is a quadratization of the positive monomial P,(x) = ]/

i_q Xi using
[log(n)] — 1 auxiliary variables.

Proof idea: Check that, for every x € {0,1}", min,g(x,y) = []_, xi.
> The quadratization depends on |x|, which takes values between 0 and n.

» Case 1 (|x| < n—1): Integers between 0 and n — 1 can be represented as
a sum of log(n) powers of 2.

P Use y variables to express which powers of 2 are in the sum.

» For |x| < n—1, one factor to reach the minimum value of zero for odd

|x| and the other factor for even |x|.
RWTH
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Upper bound for the positive monomial: [log(n)] — 1

Theorem 3 (simplified version)

Assume that n = 2° and let |x| = > | x; be the Hamming weight of
x € {0,1}". Then,

-1 £—1
1 i i
glx,y) = 5(Ix| = > 2y (Ix =) 2vi—1)
i=1 i=1

is a quadratization of the positive monomial P,(x) = ]/

i_q Xi using
[log(n)] — 1 auxiliary variables.

Proof idea: Check that, for every x € {0,1}", min,g(x,y) = []_, xi.
> The quadratization depends on |x|, which takes values between 0 and n.

» Case 1 (|x| < n—1): Integers between 0 and n — 1 can be represented as
a sum of log(n) powers of 2.

P Use y variables to express which powers of 2 are in the sum.
» For |x| < n—1, one factor to reach the minimum value of zero for odd
|x| and the other factor for even |x|.

Case 2 (|x| = n): Similarly, we can show min,g(x,y) = l.s ‘ RWTH
-



Lower bound for the positive monomial

Theorem 3

If g(x, y) is a quadratization of the positive monomial P,(x) = []"_, xi using m
variables, then
m > [log(n)] —1
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Results for more general functions

Function Lower Bound Upper Bound
Zero until k Q(Z%) for some function? O(2g) !
[log(k)] — 1 for all functions
Symmetric Q(+/n) for some function? O(v/n) =2[v/n+1]
Exact k-out-of-n max([log(k)], [log(n — k)]) — 1 | max([log(k)], [log(n— k)1)
At least k-out-of-n [log(k)] —1 max([log(k)], [log(n — k)1)
Positive monomial [log(n)] — 1 [log(n)] — 1
Parity [log(n)] — 1 [log(n)] — 1

Symmetric

Zero until k

[Exact k\—;ut—of—n] [At least Z—out—of—nj

see (Anthony et al., 2017)
see (Anthony, Boros, Crama, & Gruber, 2016) s ‘ RWTH
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Ongoing computational work

Which quadratizations work better in practice?
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Pairwise covers

Anthony, Boros, Crama and Gruber (2017)

Substituting common sets of variables

f(x) = —35x1x0x3xax5 + 50x1 X0 x3%4 — 10x1 X0 X4 X5 + 5 X2 X3 X4 + 5XaX5 — 207
could be replaced by
f(x) = —35y12y345 +50y12y34 — 10y12ya5 + 5x2y34 + 5xax5 — 20x1 + P(x, y)

where P(x,y) imposes y1o = X1X2, Y345 = Y34X5...
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Heuristics for small Pairwise Covers

Three heuristics:

» PC1: Separate first two variables from the rest.
> PC2: Most “popular” intersections first.
> PC3: Most “popular” pairs of variables first.

Main idea: identifying subterms that appear as subsets of one or
more monomials in the input monomial set S.
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Computational results (first approach!)

» Quadratized problems are solved using CPLEX 12.7" quadratic
solver.
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Computational results (first approach!)

» Quadratized problems are solved using CPLEX 12.7" quadratic
solver.
» This might not be the best idea:

> we have not integrated persistencies (yet)
> we could use convexification methods, semidefinite
programming, ...

> ... but we already obtain some interesting observations.

> We compare the results with the resolution of linearized
instances (SL) using CPLEX 12.7.
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Instances: Vision

Image restoration

1.0 0 0 0O 0 00 0O 0O
00 1 1 0 O 001 1 0 0
01 1 010 01 1110
01 1110 01 1110
00 1 1 0 1 001 1 0 0
0 000 0O 0 00 0O OO
Base images: Perturbations:
> top left rect. (tl) > none (n)
> centre rect. (cr) > low (I)
> cross (cx) > high (h)

\ Up to n = 900 variables and m = 6788 terms\
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Vision: all methods 15 x 15 (n = 225, m = 1598)

Time (s)

400

300

200

100

—-— SL
—4—  PC1
—— PC2
——  PC3
—o— [SHIKAWA
——— LOGN-1

Instances




Vision: best methods 15 x 15 (n = 225, m = 1598)

140

120

100

= 80

(]

£

F 60
40

20

—=— SL
—— PC1
—— PC2
—«— PC3

\\\\’\\d
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Random polynomials: all methods

SL
——  PC1
——  PC2
—— PC3

—o— [SHIKAWA
——— LOGN-1

—.

(s) sy



—— PC1
—— PC2
—«— PC3

—s— SL

25 |-
20 -
15 |-

(s) swi

Random polynomials: best methods

10 |-
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Quadratization properties

Vision Pairwise covers Termwise
Number of y variables less more
Number of positive less more
quadratic terms

Random Pairwise covers Termwise
Number of y variables more less
Number of positive less more

quadratic terms
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Conclusions

Summary
» New compact quadratizations for the positive monomial.
» Proof of the lower bound on the number of auxiliary variables.

» First experiments: small number of auxiliary variables might
not be the best criterion to define good quadratizations.
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Conclusions

Summary
» New compact quadratizations for the positive monomial.
» Proof of the lower bound on the number of auxiliary variables.

> First experiments: small number of auxiliary variables might
not be the best criterion to define good quadratizations.

Perspectives

» Experiments will be re-tested using persistencies and other
solvers.
» Other properties:

» Small number of positive quadratic terms.
» Graph underlying quadratic terms with special structure (e. g.

sparse...).
> .
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