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Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization
Given a pseudo-Boolean function f : {0, 1}n → R

min
x∈{0,1}n

f (x).

Theorem (Hammer, Rosenberg, & Rudeanu, 1963)
Every pseudo-Boolean function f : {0, 1}n → R admits a unique
multilinear expression.

I Given f , finding its unique multilinear representation can be
costly! (Size of the input: O(2n))
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Multilinear 0–1 optimization

Assumption: f given as a multilinear polynomial
Set of monomials S ⊆ 2[n], aS 6= 0 for S ∈ S.

min
∑
S∈S

aS
∏
i∈S

xi

s. t. xi ∈ {0, 1}, for i = 1, . . . , n

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1 − 2x2 + x3
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Quadratization: definition and desirable properties

Definition (Anthony, Boros, Crama, & Gruber, 2017)
Given a pseudo-Boolean function f (x) where x ∈ {0, 1}n, a
quadratization g(x , y) is a function satisfying
I g is quadratic
I g(x , y) depends on the original variables x and on m auxiliary

variables y
I satisfies

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Which quadratizations are “good”?
I Small number of auxiliary variables (compact).
I Small number of positive quadratic terms (xixj , xiyj . . . ) (empirical

measure of submodularity).
I ...
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Application in computer vision: image restoration

Input: blurred image Output: restored image

Image from the Corel database.
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Persistencies

Weak Persistency Theorem (Hammer, Hansen, & Simeone, 1984)
Let (QP) be a quadratic optimization problem on x ∈ {0, 1}n, and let (x̃ , ỹ) be
an optimal solution of the continuous standard linearization of (QP)

min c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijyij

s. t. yij ≥ xi + xj − 1 i , j = 1, . . . , n, i < j
yij ≤ xi i , j = 1, . . . , n, i < j
yij ≤ xj i , j = 1, . . . , n, i < j
0 ≤ yij ≤ 1 i , j = 1, . . . , n, i < j
0 ≤ xi ≤ 1 i = 1, . . . , n

such that x̃j = 1 for j ∈ O and x̃j = 0 for j ∈ Z . Then, for any minimizing
vector x∗ of (QP) switching x∗j = 1 for j ∈ O and x∗j = 0 for j ∈ Z will also
yield a minimum of f .
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Persistencies

I The Weak Persistency Theorem is not the strongest form of
persistency.

I There are ways to compute, in polynomial time, a maximal set
of variables to fix, based on a network flow algorithm (Boros,
Hammer, Sun, & Tavares, 2008).

I In computer vision, image restoration and related problems of
up to millions of variables are efficiently solved, thanks to the
use of persistencies.
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Termwise quadratizations

Main idea
Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f (x) = −35x1x2x3x4x5 + 50x1x2x3x4 − 10x1x2x4x5 + 5x2x3x4 + 5x4x5 − 20x1

Negative monomial
(Kolmogorov & Zabih, 2004; Freedman
& Drineas, 2005)

−
n∏

i=1

xi = min
y∈{0,1}

−y(
n∑

i=1

xi − (n − 1))

I One variable is sufficient.
I No positive quadratic terms.

Check that, for every x ∈ {0, 1}n,
miny g(x , y) = −

∏n
i=1 xi ., two cases:

1 If xi = 1 ∀i , then miny − y ,
minimum value of −1 reached for
y = 1.

2 If ∃i such that xi = 0, then
miny − Cy , where C ≤ 0,
minimum value of 0 reached for
y = 0.
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Positive monomial
(Ishikawa, 2011)

n∏
i=1

xi = min
y∈{0,1}k

k∑
i=1

yi (ci,n(−|x |+ 2i)− 1)

+
|x |(|x | − 1)

2
,

I Number of variables: k = b n−1
2 c.

I
(n

2

)
positive quadratic terms.
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Upper bound for the positive monomial: dlog(n)e − 1

Theorem 3 (simplified version)
Assume that n = 2` and let |x | =

∑n
i=1 xi be the Hamming weight of

x ∈ {0, 1}n. Then,

g(x , y) = 1
2 (|x | −

`−1∑
i=1

2iyi )(|x | −
`−1∑
i=1

2iyi − 1)

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using
dlog(n)e − 1 auxiliary variables.

Proof idea: Check that, for every x ∈ {0, 1}n, miny g(x , y) =
∏n

i=1 xi .
I The quadratization depends on |x |, which takes values between 0 and n.
I Case 1 (|x | ≤ n− 1): Integers between 0 and n− 1 can be represented as

a sum of log(n) powers of 2.
I Use y variables to express which powers of 2 are in the sum.
I For |x | ≤ n − 1, one factor to reach the minimum value of zero for odd
|x | and the other factor for even |x |.

I Case 2 (|x | = n): Similarly, we can show miny g(x , y) = 1.
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Lower bound for the positive monomial

Theorem 3
If g(x , y) is a quadratization of the positive monomial Pn(x) =

∏n
i=1 xi using m

variables, then
m ≥ dlog(n)e − 1

p.9



Results for more general functions
Function Lower Bound Upper Bound

Zero until k Ω(2
n
2 ) for some function1 O(2

n
2 ) 1

dlog(k)e − 1 for all functions

Symmetric Ω(
√

n) for some function2 O(
√

n) = 2d
√

n + 1e

Exact k-out-of-n max(dlog(k)e, dlog(n − k)e)− 1 max(dlog(k)e, dlog(n − k)e)

At least k-out-of-n dlog(k)e − 1 max(dlog(k)e, dlog(n − k)e)

Positive monomial dlog(n)e − 1 dlog(n)e − 1

Parity dlog(n)e − 1 dlog(n)e − 1

Zero until k Symmetric

Exact k-out-of-n At least k-out-of-n Parity

Positive monomial

1see (Anthony et al., 2017)
2see (Anthony, Boros, Crama, & Gruber, 2016)
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Ongoing computational work

Which quadratizations work better in practice?
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Pairwise covers

Anthony, Boros, Crama and Gruber (2017)

Substituting common sets of variables

f (x) = −35x1x2x3x4x5 +50x1x2x3x4−10x1x2x4x5 +5x2x3x4 +5x4x5−20x1

could be replaced by

f (x) = −35y12y345 +50y12y34−10y12y45 +5x2y34 +5x4x5−20x1 +P(x , y)

where P(x , y) imposes y12 = x1x2, y345 = y34x5...
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Heuristics for small Pairwise Covers

Three heuristics:
I PC1: Separate first two variables from the rest.
I PC2: Most “popular” intersections first.
I PC3: Most “popular” pairs of variables first.

Main idea: identifying subterms that appear as subsets of one or
more monomials in the input monomial set S.
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Computational results (first approach!)

I Quadratized problems are solved using CPLEX 12.7’ quadratic
solver.

I This might not be the best idea:
I we have not integrated persistencies (yet)
I we could use convexification methods, semidefinite

programming, ...
I ... but we already obtain some interesting observations.
I We compare the results with the resolution of linearized

instances (SL) using CPLEX 12.7.
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Instances: Vision

0 0 0 0 0 0
0 0 1 1 0 1
0 1 1 1 1 0
0 1 1 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0

Image restoration

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0

Base images:
I top left rect. (tl)
I centre rect. (cr)
I cross (cx)

Perturbations:
I none (n)
I low (l)
I high (h)

Up to n = 900 variables and m = 6788 terms
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Vision: all methods 15× 15 (n = 225, m = 1598)
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Vision: best methods 15× 15 (n = 225, m = 1598)
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Random polynomials: all methods
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Random polynomials: best methods
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Quadratization properties

Vision Pairwise covers Termwise

Number of y variables less more
Number of positive less more
quadratic terms

Random Pairwise covers Termwise

Number of y variables more less
Number of positive less more
quadratic terms

p.20



Conclusions

Summary
I New compact quadratizations for the positive monomial.
I Proof of the lower bound on the number of auxiliary variables.
I First experiments: small number of auxiliary variables might

not be the best criterion to define good quadratizations.

Perspectives
I Experiments will be re-tested using persistencies and other

solvers.
I Other properties:

I Small number of positive quadratic terms.
I Graph underlying quadratic terms with special structure (e. g.

sparse...).
I ...
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