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The problem

Multilinear binary optimization
Set of monomials S C 27, as #0for S€S.

min Z aSHx,-

Ses i€S
s. t. x; € {0,1}, fori=1,...,n

Example:

min  9x1xox3XaX5 — 8X1X0X3X4 — TXoXaXs + Ox1x3 — 2x1 — 4x5

s. t. x1,X2,X3,Xs4,X5 € {0,1}
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Linear and quadratic reformulations

Multilinear 0-1 optimization
miny > ses as [lics Xi

reformulate as reformulate as
Linear problem Quadratic problem
miny y, I(x,y) miny y; q(x,y)
additional y variables additional y variables
constraints without constraints (choice)
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Linear and quadratic reformulations

Multilinear 0-1 optimization
miny > ses as [lies Xi

reformulate as reformulate as
Linear problem Quadratic problem
min ., I(x,y) miny; . q(x,y)
additional y variables additional y variables
constraints without constraints (choice)




The standard linearization (SL)

Nonlinear problem Linearized problem
n
min E aSHX,-+ E CiX; min E asys + E CiX;
ses  ies i=1 Ses

Standard Linearization (Fortet, 1959; Glover & Woolsey, 1973)
Ys = HXi
i€s
When x; € {0, 1} it is equivalent to say:

ys < X; Vie§,vSeS (1)
ys > > xi— (S| - 1) VSes (2)
ieS
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SL drawback: The continuous relaxation is very weak!

(Image from A. Schrijver's Theory of linear and integer programming cover.)

4/27



Particular cases for which SL defines the convex hull?

O O (@] O O O (0]
Em e m e E .-

L)
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Characterization

Obtained independently, simultaneously: (Del Pia & Khajavirad, 2018).

Theorem 1: (Buchheim, Crama, & Rodriguez-Heck, 2019)

Given a set of monomials S, the following statements are
equivalent:

(a) The SL inequalities on S define an integer polytope.

(b) The matrix of coefficients of the SL inequalities on S is
balanced.

(c) The hypergraph S is Berge-acyclic.

P> The balancedness condition can be checked in polynomial
time!
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The 2-link inequalities

Definition (Crama & Rodriguez-Heck, 2017)

For S, T € § and ys, y7 such that ys = [[;cs xi, y7 = [lieT Xi,
the 2-link associated with (S, T) is the linear inequality

¥s S ¥1 — Xier\s Xi + [T\S|

Interpretation

ys=1=Vie S x=1

yr=0andys=1=dj € T\S,XJ'ZO

» The 2-links are only in quadratic number in |S|.
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A complete description for the case of two monomials

Theorem 2: (Crama & Rodriguez-Heck, 2017)

For the case of two nonlinear monomials the standard
linearization and the 2-links provide a complete description of the
convex hull.
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Linear and quadratic reformulations

Multilinear 0-1 optimization
miny > ses as [ies Xi

reformulate as

Linear problem
minx;,yj I(Xa y)

additional y variables

constraints

reformulate as

Quadratic problem
min;.y; q(x, y)

additional y variables

without constraints (choice)




Quadratization: definition and desirable properties

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a multilinear polynomial f(x) where x € {0,1}", a quadratization
g(x,y) is a function satisfying

> g is quadratic

» g(x,y) depends on the original variables x and on m auxiliary
variables y

» satisfies

F(x) = min{g(x,y) : y € {0,1}"} Vx € {0,1}".

Which quadratizations are “good”?
» Small number of auxiliary variables (compact).

» Small number of positive quadratic terms (x;x;, xiy; ...) (empirical
distance from submodularity).

> .
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Termwise quadratizations



Termwise quadratizations

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f(x) = —35x1x0x3xax5 + 50x1x0x3x8 — 10x1x0Xa X5 + 5x20x3X8 + 5xaxs — 20x1

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman
& Drineas, 2005)

— X;i = min — xi—(n—1
H min. y(g (n—1))

» One variable is sufficient.

» No positive quadratic terms.

Check that, for every x € {0,1}",
min,g(x,y) = — [, xi., two cases:

Q If x; =1 Vi, then min, — y,
minimum value of —1 reached for
y=1

@ If 3i such that x; = 0, then
min, — Cy, where C <0,
minimum value of 0 reached for
y=0.
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Termwise quadratizations

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f(x) = —35xix2x3xax5 + 50x1x0x3x8 — 10x1x0X8X5 + 5x0x3X8 + 5xaxs — 20x1

Positive monomial

Negative monomial
(Ishikawa, 2011)

(Kolmogorov & Zabih, 2004; Freedman

& Drineas, 2005) "

n n = min y:(C/n |X|+2’)_1)
—HX,' = [ —y(ZXi—("— 1)) :II‘_I ye{o, l}kz

! yefo1y 4

i=1 i=1 e M

2

» One variable is sufficient.

. . __ | n=1
> No positive quadratic terms. > Number of variables: k = L 2 J
> (g) positive quadratic terms.
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Upper bound for the positive monomial: [log(n)] — 1

Theorem 3 (Boros, Crama, & Rodriguez-Heck, 2018)

Assume that n = 2° and let |x| = > | x; be the Hamming weight of
x € {0,1}". Then,

£—1 £—1
1 i i
g0 y) = 5(xI =Y 2y)(Ix = Y2y~ 1)
i=1 i=1

is a quadratization of the positive monomial P,(x) = []"_,
[log(n)] — 1 auxiliary variables.

X; using
Where does [log(n)] — 1 come from?
» The quadratization depends on |x|, which takes values between 0 and n.

> Integers between 0 and n — 1 can be represented as a sum of log(n)
powers of 2.

» Use y variables to express which powers of 2 are in the sum.

> Use one factor to represent odd |x| and the other factor for even |x|.
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Lower bound for the positive monomial

Theorem 4 (Boros, Crama, & Rodriguez-Heck, 2018)

If g(x,y) is a quadratization of the positive monomial P,(x) =[]

iy Xi using m
variables, then

m > [log(n)] — 1
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Pairwise covers



Pairwise covers

Anthony, Boros, Crama and Gruber (2017)

Substituting common sets of variables

f(X) = 735X1X2X3X4X5 -+ 50X1X2X3X4 — 10X1X2X4X5 + 5X2X3X4 + 5X4X5 — 2OX1
could be replaced by
f(x) = —35y12y345 +50y12y34 — 10y12Ya5 + 5x2)34 + 5xaxs — 20x1 + P(x, y)

where P(x,y) imposes y1o = Xx1X2, Y345 = Y34X5...

» Defining Pairwise Covers with smallest number of y variables is
NP-hard.

» Three heuristics: PC1, PC2, PC3, based on the idea of substituting
subsets of variables that appear more frequently in the monomial set
S with higher priority.
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Linear and quadratic reformulations

Multilinear 0-1 optimization
miny > ses as [ies Xi

reformulate as reformulate as
Linear problem Quadratic problem
mian,)/j /(X’y) minx,',yj Q(X,}/)
additional y variables additional y variables
constraints without constraints (choice)

Comparing linear and quadratic
reformulations computationally




Methods and Scope

Methods
Linearizations Quadratizations
2-links Pairw. cov. Termwise
SL | SL-2L | PC1 | PC2 | PC3 | Ishikawa | logn-1

» We use CPLEX 12.7 as solver for reformulated linear and
quadratic problems.

» |s this the best choice? Topic for discussion...
> Next steps: test other solvers.
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Application in computer vision: image restoration

Input: blurred image Output: restored image

Image from the Corel database.
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Instances: Vision

Image restoration

10 00 0O 0 0 00 0O
00 1 1 0 O 001 10 0
011010 011110
_
01 1110 01 1110
00 1 1 0 1 001 100
0 00 0 0O 0 000 0O
1
term: 10x1x0x3Xs
» Variables: output pixel 11
> Minimi 01 : _ _
inimize energy 10 term: 40(1 — x1)xox3(1 — xa)
» Nonlinear: penalize 01
“non-natural” configurations 00 term: 20(1 — x1)x2(1 — x3)(1 — xa)
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Instances: Vision

Image restoration

1000 00 000 O00O00O
001100 001100
01 1 0 1 0 01 1 1 1 0
01 1110 01 1110
00 1 1 01 001 1 0 0
0 0 00 0O 0 000 0O
Base images: Perturbations:
> top left rect. (tl) > none (n)
> centre rect. (cr) > low (1)
> cross (cx) » high (h)

‘ Up to n = 900 variables and m = 6788 terms ‘
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Vision: all methods 15 x 15 (n = 225, m = 1598)

400 [ ~

—— SL-2L
—=—  SL
——  PC1
300 |- A |—— PC2
—+— PC3
—o— [SHIKAWA
“ —— LOGN-1
,GE) 200 - N
'_
100 |- n
0 o
X \\\’\\1‘\\;\\&& ,\\’o\q’«:’} & F d_\;j_r:;_ :’_‘_\\q'

Instances
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Vision: best methods 15 x 15 (n = 225, m = 1598)

140
—— SL-2L
120 n SL
—— PC1
—— PC2
100 1+ | |—— PC3
= 80f :
[
E
= 60 |- ]
40 |- |
20 |- 1
0 L L L L L L L
ST DNV EDIDI DNV A DY
N NN ’ AT NN 4 CF NN ¢ ’
) N Y QX‘QX‘ < & (}/ éX\ (% d_ C‘— d}\d}\

Instances
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Vision: Quadratization properties

Pairwise covers Termwise
Number of y variables less more
Number of positive less more

quadratic terms
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Instances

» Similar behavior observed for a different set of instances with
special structure.

» What happens with random polynomials?

» Generated random polynomials of degrees between 7 and 17
(as in (Buchheim & Rinaldi, 2007)).
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Random high degree: all methods

SL
——  PC1
——  PC2
—— PC3

—o— [SHIKAWA
——— LOGN-1

—.

(s) sy

23/27



Random high degree: best methods

SL
——PC1
—— PC2
—— PC3

25 |-
20 |-

15 |-
10 |-
5
0

(s) swiny
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Random high degree: Quadratization properties

Pairwise covers Termwise

Number of y variables more less
Number of positive less more
quadratic terms
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Summary of results

» Suprising behaviour for vision instances:

» Pairwise covers faster than SL default CPLEX branch & cut.
» SL with 2-links faster than pairwise covers.

> Termwise quadratizations are consistently slower than pairwise
covers...

> ...even when they use smaller number of y variables.
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Some perspectives

Theoretical:

@ Understand better which properties define a “good”
quadratization.

@ Which formulation is better: SL or SL of a quadratization?

Experimental:
© Experiments on further applications.
@ Currently working on open-sourcing reformulations code.

© Repeat experiments with other solvers (convexification,
SDP...).

. and many others!
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