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The problem

Multilinear binary optimization
Set of monomials S ⊆ 2[n], aS 6= 0 for S ∈ S.

min
∑
S∈S

aS
∏
i∈S

xi

s. t. xi ∈ {0, 1}, for i = 1, . . . , n

Example:

min 9x1x2x3x4x5 − 8x1x2x3x4 − 7x2x4x5 + 9x1x3 − 2x1 − 4x5

s. t. x1, x2, x3, x4, x5 ∈ {0, 1}
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Linear and quadratic reformulations

Multilinear 0-1 optimization
minxi

∑
S∈S aS

∏
i∈S xi

Linear problem
minxi ,yj l(x , y)

additional y variables
constraints

reformulate as

Quadratic problem
minxi ,yj q(x , y)

additional y variables
without constraints (choice)

reformulate as
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The standard linearization (SL)
Nonlinear problem

min
∑
S∈S

aS
∏
i∈S

xi +
n∑

i=1
ci xi

Linearized problem

min
∑
S∈S

aSyS +
n∑

i=1
ci xi

Standard Linearization (Fortet, 1959; Glover & Woolsey, 1973)

yS =
∏
i∈S

xi

When xi ∈ {0, 1} it is equivalent to say:

yS ≤ xi ∀i ∈ S,∀S ∈ S (1)
yS ≥

∑
i∈S

xi − (|S| − 1) ∀S ∈ S (2)
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SL drawback: The continuous relaxation is very weak!
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(Image from A. Schrijver’s Theory of linear and integer programming cover.)
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Particular cases for which SL defines the convex hull?
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Characterization

Obtained independently, simultaneously: (Del Pia & Khajavirad, 2018).

Theorem 1: (Buchheim, Crama, & Rodŕıguez-Heck, 2019)
Given a set of monomials S, the following statements are
equivalent:
(a) The SL inequalities on S define an integer polytope.
(b) The matrix of coefficients of the SL inequalities on S is

balanced.
(c) The hypergraph S is Berge-acyclic.

I The balancedness condition can be checked in polynomial
time!
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The 2-link inequalities

Definition (Crama & Rodŕıguez-Heck, 2017)
For S, T ∈ S and yS , yT such that yS =

∏
i∈S xi , yT =

∏
i∈T xi ,

the 2-link associated with (S,T ) is the linear inequality

yS ≤ yT −
∑

i∈T\S xi + |T\S|

Interpretation

S T
yS = 1⇒ ∀i ∈ S, xi = 1

yT = 0 and yS = 1⇒ ∃j ∈ T\S, xj = 0

I The 2-links are only in quadratic number in |S|.
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A complete description for the case of two monomials

Theorem 2: (Crama & Rodŕıguez-Heck, 2017)
For the case of two nonlinear monomials the standard
linearization and the 2-links provide a complete description of the
convex hull.
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Linear and quadratic reformulations

Multilinear 0-1 optimization
minxi

∑
S∈S aS

∏
i∈S xi

Linear problem
minxi ,yj l(x , y)

additional y variables
constraints

reformulate as

Quadratic problem
minxi ,yj q(x , y)

additional y variables
without constraints (choice)

reformulate as



Quadratization: definition and desirable properties

Definition (Anthony, Boros, Crama, & Gruber, 2017)
Given a multilinear polynomial f (x) where x ∈ {0, 1}n, a quadratization
g(x , y) is a function satisfying
I g is quadratic
I g(x , y) depends on the original variables x and on m auxiliary

variables y
I satisfies

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Which quadratizations are “good”?
I Small number of auxiliary variables (compact).
I Small number of positive quadratic terms (xixj , xiyj . . . ) (empirical

distance from submodularity).
I ...
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Termwise quadratizations



Termwise quadratizations

Main idea
Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f (x) = −35x1x2x3x4x5 + 50x1x2x3x4 − 10x1x2x4x5 + 5x2x3x4 + 5x4x5 − 20x1

Negative monomial
(Kolmogorov & Zabih, 2004; Freedman
& Drineas, 2005)

−
n∏

i=1

xi = min
y∈{0,1}

−y(
n∑

i=1

xi − (n − 1))

I One variable is sufficient.
I No positive quadratic terms.

Check that, for every x ∈ {0, 1}n,
miny g(x , y) = −

∏n
i=1 xi ., two cases:

1 If xi = 1 ∀i , then miny − y ,
minimum value of −1 reached for
y = 1.

2 If ∃i such that xi = 0, then
miny − Cy , where C ≤ 0,
minimum value of 0 reached for
y = 0.
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i=1

xi = min
y∈{0,1}

−y(
n∑

i=1

xi − (n − 1))

I One variable is sufficient.
I No positive quadratic terms.

Positive monomial
(Ishikawa, 2011)

n∏
i=1

xi = min
y∈{0,1}k

k∑
i=1

yi (ci,n(−|x |+ 2i)− 1)

+
|x |(|x | − 1)

2
,

I Number of variables: k =
⌊

n−1
2

⌋
.

I
(n

2

)
positive quadratic terms.
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Upper bound for the positive monomial: dlog(n)e − 1

Theorem 3 (Boros, Crama, & Rodŕıguez-Heck, 2018)
Assume that n = 2` and let |x | =

∑n
i=1 xi be the Hamming weight of

x ∈ {0, 1}n. Then,

g(x , y) = 1
2 (|x | −

`−1∑
i=1

2iyi )(|x | −
`−1∑
i=1

2iyi − 1)

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using
dlog(n)e − 1 auxiliary variables.

Where does dlog(n)e − 1 come from?
I The quadratization depends on |x |, which takes values between 0 and n.
I Integers between 0 and n − 1 can be represented as a sum of log(n)

powers of 2.
I Use y variables to express which powers of 2 are in the sum.
I Use one factor to represent odd |x | and the other factor for even |x |.
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Lower bound for the positive monomial

Theorem 4 (Boros, Crama, & Rodŕıguez-Heck, 2018)
If g(x , y) is a quadratization of the positive monomial Pn(x) =

∏n
i=1 xi using m

variables, then
m ≥ dlog(n)e − 1
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Pairwise covers



Pairwise covers
Anthony, Boros, Crama and Gruber (2017)

Substituting common sets of variables

f (x) = −35x1x2x3x4x5 +50x1x2x3x4−10x1x2x4x5 +5x2x3x4 +5x4x5−20x1

could be replaced by

f (x) = −35y12y345 +50y12y34−10y12y45 +5x2y34 +5x4x5−20x1 +P(x , y)

where P(x , y) imposes y12 = x1x2, y345 = y34x5...

I Defining Pairwise Covers with smallest number of y variables is
NP-hard.

I Three heuristics: PC1, PC2, PC3, based on the idea of substituting
subsets of variables that appear more frequently in the monomial set
S with higher priority.
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Linear and quadratic reformulations

Multilinear 0-1 optimization
minxi

∑
S∈S aS

∏
i∈S xi

Linear problem
minxi ,yj l(x , y)

additional y variables
constraints

reformulate as

Quadratic problem
minxi ,yj q(x , y)

additional y variables
without constraints (choice)

reformulate as

Comparing linear and quadratic
reformulations computationally



Methods and Scope

Methods
Linearizations Quadratizations

2-links Pairw. cov. Termwise
SL SL-2L PC1 PC2 PC3 Ishikawa logn-1

I We use CPLEX 12.7 as solver for reformulated linear and
quadratic problems.

I Is this the best choice? Topic for discussion...
I Next steps: test other solvers.
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Application in computer vision: image restoration

Input: blurred image Output: restored image

Image from the Corel database.

16 / 27



Instances: Vision

0 0 0 0 0 0
0 0 1 1 0 1
0 1 1 1 1 0
0 1 1 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0

Image restoration

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0

I Variables: output pixel

I Minimize energy

I Nonlinear: penalize
“non-natural” configurations

1 1
1 1 term: 10x1x2x3x4

1 0
0 1 term: 40(1− x1)x2x3(1− x4)

0 0
0 1 term: 20(1− x1)x2(1− x3)(1− x4)
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Instances: Vision

0 0 0 0 0 0
0 0 1 1 0 1
0 1 1 1 1 0
0 1 1 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0

Image restoration

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0

Base images:
I top left rect. (tl)
I centre rect. (cr)
I cross (cx)

Perturbations:
I none (n)
I low (l)
I high (h)

Up to n = 900 variables and m = 6788 terms
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Vision: all methods 15× 15 (n = 225, m = 1598)
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Vision: best methods 15× 15 (n = 225, m = 1598)
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Vision: Quadratization properties

Pairwise covers Termwise

Number of y variables less more
Number of positive less more
quadratic terms
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Instances

I Similar behavior observed for a different set of instances with
special structure.

I What happens with random polynomials?
I Generated random polynomials of degrees between 7 and 17

(as in (Buchheim & Rinaldi, 2007)).
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Random high degree: all methods
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Random high degree: best methods
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Random high degree: Quadratization properties

Pairwise covers Termwise

Number of y variables more less
Number of positive less more
quadratic terms
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Summary of results

I Suprising behaviour for vision instances:
I Pairwise covers faster than SL default CPLEX branch & cut.
I SL with 2-links faster than pairwise covers.

I Termwise quadratizations are consistently slower than pairwise
covers...

I ...even when they use smaller number of y variables.
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Some perspectives

Theoretical:
1 Understand better which properties define a “good”

quadratization.
2 Which formulation is better: SL or SL of a quadratization?

Experimental:
1 Experiments on further applications.
2 Currently working on open-sourcing reformulations code.
3 Repeat experiments with other solvers (convexification,

SDP...).

... and many others!
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Thank you for your attention!

Elisabeth Rodŕıguez-Heck
rodriguez-heck@or.rwth-aachen.de
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Boros, E., Crama, Y., & Rodŕıguez-Heck, E. (2018). Compact
quadratizations for pseudo-Boolean functions. (Submitted)

Buchheim, C., Crama, Y., & Rodŕıguez-Heck, E. (2019).
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Crama, Y., & Rodŕıguez-Heck, E. (2017). A class of valid
inequalities for multilinear 0-1 optimization problems.
Discrete Optimization, 25, 28–47.



Bibliography II

Del Pia, A., & Khajavirad, A. (2018). The multilinear polytope for
acyclic hypergraphs. SIAM Journal on Optimization, 28(2),
1049–1076.
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