Linear and quadratic reformulations of nonlinear optimization problems in binary variables

Elisabeth Rodríguez-Heck RWTH Aachen University, Chair of Operations Research

> Results of PhD thesis advised by Yves Crama, University of Liège

G-Scop, Grenoble, February 7, 2019

Introduction

Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization Given a pseudo-Boolean function $f : \{0,1\}^n \to \mathbb{R}$ $\min_{x \in \{0,1\}^n} f(x).$

Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization Given a pseudo-Boolean function $f : \{0,1\}^n \to \mathbb{R}$

 $\min_{x\in\{0,1\}^n}f(x).$

Theorem (Hammer, Rosenberg, & Rudeanu, 1963)

Every pseudo-Boolean function $f : \{0,1\}^n \to \mathbb{R}$ admits a unique multilinear expression.

Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization Given a pseudo-Boolean function $f : \{0,1\}^n \to \mathbb{R}$

 $\min_{x\in\{0,1\}^n}f(x).$

Theorem (Hammer, Rosenberg, & Rudeanu, 1963)

Every pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ admits a unique multilinear expression.

Given f, finding its unique multilinear representation can be costly! (Size of the input: O(2ⁿ))

Multilinear 0–1 optimization

Assumption: f given as a multilinear polynomial Set of monomials $S \subseteq 2^{[n]}$, $a_S \neq 0$ for $S \in S$.

$$\min \sum_{S \in S} a_S \prod_{i \in S} x_i$$
s. t. $x_i \in \{0, 1\}$, for $i = 1, ..., n$

Example:

$$f(x_1, x_2, x_3) = 9x_1x_2x_3 + 8x_1x_2 - 6x_2x_3 - 2x_1$$

Application in computer vision: image restoration

Image from the Corel database.

Applications

- Location problems
- Joint supply chain design and inventory management
- Statistical mechanics
- Quantum computing

Linear and quadratic reformulations

Overview

Overview

Introduction to linearizations

The standard linearization (SL)

Nonlinear problem

Linearized problem

$$\min \sum_{S \in S} a_S \prod_{i \in S} x_i + \sum_{i=1}^n c_i x_i$$

$$\min\sum_{S\in\mathcal{S}}a_Sy_S+\sum_{i=1}^nc_ix_i$$

Standard Linearization (Fortet, 1959; Glover & Woolsey, 1973)

$$y_S = \prod_{i \in S} x_i$$

The standard linearization (SL)

Nonlinear problem

Linearized problem

$$\min \sum_{S \in S} a_S \prod_{i \in S} x_i + \sum_{i=1}^n c_i x_i \qquad \min \sum_{S \in S} a_S y_S + \sum_{i=1}^n c_i x_i$$

Standard Linearization (Fortet, 1959; Glover & Woolsey, 1973)

$$y_S = \prod_{i \in S} x_i$$

When $x_i \in \{0, 1\}$ it is equivalent to say:

$$y_{S} \leq x_{i} \qquad \forall i \in S, \forall S \in S \qquad (1)$$

$$y_{S} \geq \sum_{i \in S} x_{i} - (|S| - 1) \qquad \forall S \in S \qquad (2)$$

SL drawback: The continuous relaxation given by the SL is very weak!

Image from A. Schrijver's book cover: Theory of linear and integer programming.

When do the SL inequalities provide a perfect formulation?

Hypergraph associated with a polynomial

A multilinear polynomial can be associated to a hypergraph $H = (V = \{1, \dots, n\}, S).$

$$\min \sum_{S \in S} a_S \prod_{i \in S} x_i + \sum_{i \in V} c_i x_i$$

Example:

$$f(x_1, x_2, x_3) = 9x_1x_2x_3 - 8x_1x_2 + 6x_2x_3 - 2x_1$$

Theorem 1: (Buchheim, Crama, & Rodríguez-Heck, 2019)

Given a hypergraph H, the following statements are equivalent:

- (a) The SL inequalities define an integer polytope.
- (b) The matrix of coefficients of the SL inequalities is balanced.
- (c) The hypergraph H is Berge-acyclic.

Theorem 1: (Buchheim, Crama, & Rodríguez-Heck, 2019)
Given a hypergraph *H*, the following statements are equivalent:
(a) The SL inequalities define an integer polytope.
(b) The matrix of coefficients of the SL inequalities is balanced.
(c) The hypergraph *H* is Berge-acyclic.

 Obtained independently and simultaneously by (Del Pia & Khajavirad, 2018).

Theorem 1: (Buchheim, Crama, & Rodríguez-Heck, 2019)
Given a hypergraph *H*, the following statements are equivalent:
(a) The SL inequalities define an integer polytope.
(b) The matrix of coefficients of the SL inequalities is balanced.
(c) The hypergraph *H* is Berge-acyclic.

- Obtained independently and simultaneously by (Del Pia & Khajavirad, 2018).
- Theorem 1 is a Corollary of a more general result considering the signs of the coefficients.

Theorem 1: (Buchheim, Crama, & Rodríguez-Heck, 2019)

Given a hypergraph H, the following statements are equivalent:

- (a) The SL inequalities define an integer polytope.
- (b) The matrix of coefficients of the SL inequalities is balanced.
- (c) The hypergraph H is Berge-acyclic.
 - Obtained independently and simultaneously by (Del Pia & Khajavirad, 2018).
 - Theorem 1 is a Corollary of a more general result considering the signs of the coefficients.
 - The balancedness condition can be checked in polynomial time.

A class of valid inequalities for multilinear 0–1 optimization problems

The 2-link inequalities

Definition (Crama & Rodríguez-Heck, 2017)

For $S, T \in S$ and y_S, y_T such that $y_S = \prod_{i \in S} x_i, y_T = \prod_{i \in T} x_i$, the 2-link associated with (S, T) is the linear inequality

$$\mathbf{y}_{\mathbf{S}} \leq \mathbf{y}_{\mathbf{T}} - \sum_{\mathbf{i} \in \mathbf{T} \setminus \mathbf{S}} \mathbf{x}_{\mathbf{i}} + |\mathbf{T} \setminus \mathbf{S}|$$

A complete description for the case of two monomials

Theorem 2: (Crama & Rodríguez-Heck, 2017)

For the case of two nonlinear monomials, $P_{SL}^* = P_{SL}^{2links}$, i.e., the standard linearization and the 2-links provide a complete description of P_{SL}^* .

A complete description for the case of two monomials

Theorem 2: (Crama & Rodríguez-Heck, 2017)

For the case of two nonlinear monomials, $P_{SL}^* = P_{SL}^{2links}$, i.e., the standard linearization and the 2-links provide a complete description of P_{SL}^* .

Proof idea:
$$y_{S\cap T} = \prod_{i \in S\cap T} x_i, y_S = y_{S\cap T} \prod_{i \in S\setminus T} x_i, y_T = y_{S\cap T} \prod_{i \in T\setminus S} x_i$$

Consider the extended formulation (with variables in [0, 1])

$$y_{S\cap T} \leq x_i, \qquad \forall i \in S \cap T, \qquad (3)$$

$$y_{S\cap T} \geq \sum_{i \in S\cap T} x_i - (|S \cap T| - 1), \tag{4}$$

$$y_s \leq y_{s \cap T},$$
 (5)

$$y_{S} \leq x_{i}, \qquad \forall i \in S \setminus T,$$
 (6)

$$y_{S} \geq \sum_{i \in S \setminus T} x_{i} + y_{S \cap T} - |S \setminus T|,$$
(7)

$$y_{\mathcal{T}} \leq y_{\mathcal{S} \cap \mathcal{T}},\tag{8}$$

$$y_T \leq x_i, \qquad \forall i \in T \setminus S, \qquad (9)$$

$$y_{T} \geq \sum_{i \in T \setminus S} x_{i} + y_{S \cap T} - |T \setminus S|,$$
(10)

- Notice that the two polytopes P⁰ and P¹ obtained by fixing variable y_{S∩T} to 0 and 1, resp., are integral.
- Compute $conv(P^0 \cup P^1)$ using (Balas, 1974) and see that it is P_{SL}^{2links} .

Overview

Introduction to quadratizations

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where $x \in \{0,1\}^n$, a *quadratization* g(x, y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y
- satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \quad \forall x \in \{0, 1\}^n.$$

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where $x \in \{0,1\}^n$, a *quadratization* g(x, y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y

satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \quad \forall x \in \{0, 1\}^n.$$

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where $x \in \{0,1\}^n$, a *quadratization* g(x, y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y

satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \ \forall x \in \{0, 1\}^n.$$

Which quadratizations are "good"?

Small number of auxiliary variables (*compact*).

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where $x \in \{0,1\}^n$, a *quadratization* g(x, y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y

satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \ \forall x \in \{0, 1\}^n.$$

- Small number of auxiliary variables (*compact*).
- Small number of positive quadratic terms (x_ix_j, x_iy_j...) (empirical distance from submodularity).

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where $x \in \{0,1\}^n$, a *quadratization* g(x, y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y

satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \ \forall x \in \{0, 1\}^n.$$

- Small number of auxiliary variables (*compact*).
- Small number of positive quadratic terms (x_ix_j, x_iy_j...) (empirical distance from submodularity).
- Set of quadratic terms with specific underlying graphs.

Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a pseudo-Boolean function f(x) where $x \in \{0,1\}^n$, a *quadratization* g(x, y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y

satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \ \forall x \in \{0, 1\}^n.$$

- Small number of auxiliary variables (*compact*).
- Small number of positive quadratic terms (x_ix_j, x_iy_j...) (empirical distance from submodularity).
- Set of quadratic terms with specific underlying graphs.

Persistencies

Weak Persistency Theorem (Hammer, Hansen, & Simeone, 1984)

Let (QP) be a quadratic optimization problem on $x \in \{0,1\}^n$, and let (\tilde{x}, \tilde{y}) be an optimal solution of the *continuous standard linearization of* (QP)

$$\begin{array}{ll} \min & c_0 + \sum_{j=1}^n c_j x_j + \sum_{1 \le i < j \le n} c_{ij} y_{ij} \\ \text{s. t. } y_{ij} \ge x_i + x_j - 1 & i, j = 1, \dots, n, i < j \\ y_{ij} \le x_i & i, j = 1, \dots, n, i < j \\ y_{ij} \le x_j & i, j = 1, \dots, n, i < j \\ 0 \le y_{ij} \le 1 & i, j = 1, \dots, n, i < j \\ 0 \le x_i \le 1 & i = 1, \dots, n \end{array}$$

such that $\tilde{x}_j = 1$ for $j \in O$ and $\tilde{x}_j = 0$ for $j \in Z$. Then, for any minimizing vector x^* of (QP) switching $x_j^* = 1$ for $j \in O$ and $x_j^* = 0$ for $j \in Z$ will also yield a minimum of f.

(See also survey (Boros & Hammer, 2002).)

 The Weak Persistency Theorem is not the strongest form of persistency.

- The Weak Persistency Theorem is not the strongest form of persistency.
- There are ways to compute, in polynomial time, a maximal set of variables to fix, based on a network flow algorithm (Boros, Hammer, Sun, & Tavares, 2008).

- The Weak Persistency Theorem is not the strongest form of persistency.
- There are ways to compute, in polynomial time, a maximal set of variables to fix, based on a network flow algorithm (Boros, Hammer, Sun, & Tavares, 2008).
- In computer vision, image restoration and related problems of up to *millions* of variables are efficiently solved, thanks to the use of persistencies.

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

- One variable is sufficient.
- No positive quadratic terms.

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

- One variable is sufficient.
- No positive quadratic terms.

Check that, for every $x \in \{0,1\}^n$, $min_y g(x,y) = -\prod_{i=1}^n x_i$, two cases:

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

- One variable is sufficient.
- No positive quadratic terms.

Check that, for every $x \in \{0, 1\}^n$, $min_y g(x, y) = -\prod_{i=1}^n x_i$, two cases:

If $x_i = 1 \ \forall i$, then $min_y - y$, minimum value of -1 reached for y = 1.

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

- One variable is sufficient.
- No positive quadratic terms.

Check that, for every $x \in \{0, 1\}^n$, $min_y g(x, y) = -\prod_{i=1}^n x_i$, two cases:

- If x_i = 1 ∀i, then min_y y, minimum value of -1 reached for y = 1.
- If ∃i such that x_i = 0, then min_y - Cy, where C ≤ 0, minimum value of 0 reached for y = 0.

Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$

Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

- One variable is sufficient.
- No positive quadratic terms.

Positive monomial

(Ishikawa, 2011)

$$\begin{split} \prod_{i=1}^n x_i &= \min_{y \in \{0,1\}^k} \sum_{i=1}^k y_i (c_{i,n}(-|x|+2i)-1) \\ &+ \frac{|x|(|x|-1)}{2}, \end{split}$$

- Number of variables: $k = \lfloor \frac{n-1}{2} \rfloor$.
- $\binom{n}{2}$ positive quadratic terms.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lfloor \log(n) \rfloor - 1$ auxiliary variables.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lceil \log(n) \rceil - 1$ auxiliary variables.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lceil \log(n) \rceil - 1$ auxiliary variables.

Proof idea: Check that, for every $x \in \{0,1\}^n$, $min_y g(x,y) = \prod_{i=1}^n x_i$.

• The quadratization depends on |x|, which takes values between 0 and *n*.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lceil \log(n) \rceil - 1$ auxiliary variables.

- The quadratization depends on |x|, which takes values between 0 and n.
- Case 1 (|x| ≤ n − 1): Integers between 0 and n − 1 can be represented as a sum of log(n) powers of 2.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lceil \log(n) \rceil - 1$ auxiliary variables.

- The quadratization depends on |x|, which takes values between 0 and *n*.
- Case 1 (|x| ≤ n − 1): Integers between 0 and n − 1 can be represented as a sum of log(n) powers of 2.
- Use y variables to express which powers of 2 are in the sum.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lceil \log(n) \rceil - 1$ auxiliary variables.

- The quadratization depends on |x|, which takes values between 0 and n.
- Case 1 (|x| ≤ n − 1): Integers between 0 and n − 1 can be represented as a sum of log(n) powers of 2.
- Use y variables to express which powers of 2 are in the sum.
- For |x| ≤ n − 1, one factor to reach the minimum value of zero for odd |x| and the other factor for even |x|.

Theorem 3 (simplified) (Boros, Crama, & Rodríguez-Heck, 2018)

Assume that $n = 2^{\ell}$ and let $|x| = \sum_{i=1}^{n} x_i$ be the Hamming weight of $x \in \{0,1\}^n$. Then,

$$g(x,y) = rac{1}{2}(|x| - \sum_{i=1}^{\ell-1} 2^i y_i)(|x| - \sum_{i=1}^{\ell-1} 2^i y_i - 1)$$

is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using $\lceil \log(n) \rceil - 1$ auxiliary variables.

Proof idea: Check that, for every $x \in \{0,1\}^n$, $min_y g(x,y) = \prod_{i=1}^n x_i$.

- The quadratization depends on |x|, which takes values between 0 and *n*.
- Case 1 (|x| ≤ n − 1): Integers between 0 and n − 1 can be represented as a sum of log(n) powers of 2.
- Use y variables to express which powers of 2 are in the sum.
- For $|x| \le n 1$, one factor to reach the minimum value of zero for *odd* |x| and the other factor for *even* |x|.

• Case 2 (|x| = n): Similarly, we can show $min_yg(x, y) = 1$.

Theorem 4 (Boros, Crama, & Rodríguez-Heck, 2018)

If g(x, y) is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using m variables, then

 $m \geq \lceil \log(n) \rceil - 1$

Theorem 4 (Boros, Crama, & Rodríguez-Heck, 2018)

If g(x, y) is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using m variables, then

 $m \geq \lceil \log(n) \rceil - 1$

Proof idea:

Theorem 4 (Boros, Crama, & Rodríguez-Heck, 2018)

If g(x, y) is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using m variables, then

 $m \geq \lceil \log(n) \rceil - 1$

Proof idea:

• Consider
$$r(x) = \prod_{y \in \{0,1\}^m} g(x, y)$$
.

Theorem 4 (Boros, Crama, & Rodríguez-Heck, 2018)

If g(x, y) is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using m variables, then

 $m \geq \lceil \log(n) \rceil - 1$

Proof idea:

• Consider $r(x) = \prod_{y \in \{0,1\}^m} g(x, y)$.

$$\blacktriangleright \deg(r) \leq 2 \cdot 2^m.$$

Theorem 4 (Boros, Crama, & Rodríguez-Heck, 2018)

If g(x, y) is a quadratization of the positive monomial $P_n(x) = \prod_{i=1}^n x_i$ using m variables, then

 $m \geq \lceil \log(n) \rceil - 1$

Proof idea:

- Consider $r(x) = \prod_{y \in \{0,1\}^m} g(x, y)$.
- $\blacktriangleright \deg(r) \leq 2 \cdot 2^m.$
- deg(r) ≥ n, because r(x) = αP_n(x) where α > 0 (unicity of the multilinear representation). More precisely,

Results for more general functions

Function	Lower Bound	Upper Bound	
Zero until <i>k</i>	$\Omega(2^{rac{n}{2}})$ for some function ¹ $\lceil \log(k) ceil - 1$ for all functions	$O(2^{\frac{n}{2}})^{-1}$	
Symmetric	$\Omega(\sqrt{n})$ for some function ²	$O(\sqrt{n}) = 2\lceil \sqrt{n+1} \rceil$	
Exact k-out-of-n	$\max(\lceil \log(k) \rceil, \lceil \log(n-k) \rceil) - 1$	$\max(\lceil \log(k) \rceil, \lceil \log(n-k) \rceil)$	
At least <i>k</i> -out-of- <i>n</i>	$\lceil \log(k) ceil - 1$	$\max(\lceil \log(k) \rceil, \lceil \log(n-k) \rceil)$	
Positive monomial	$\lceil \log(n) \rceil - 1$	$\lceil \log(n) \rceil - 1$	
Parity	$\lceil \log(n) ceil - 1$	$\lceil \log(n) \rceil - 1$	

¹see (Anthony et al., 2017)

²see (Anthony, Boros, Crama, & Gruber, 2016)

Pairwise covers

Anthony, Boros, Crama and Gruber (2017)

Substituting common sets of variables

 $f(x) = -35x_1x_2x_3x_4x_5 + 50x_1x_2x_3x_4 - 10x_1x_2x_4x_5 + 5x_2x_3x_4 + 5x_4x_5 - 20x_1$ could be replaced by $f(x) = -35y_{12}y_{345} + 50y_{12}y_{34} - 10y_{12}y_{45} + 5x_2y_{34} + 5x_4x_5 - 20x_1 + P(x, y)$ where P(x, y) imposes $y_{12} = x_1x_2$, $y_{345} = y_{34}x_5$...

Heuristics for small Pairwise Covers

Three heuristics:

- PC1: Separate first two variables from the rest.
- PC2: Most "popular" intersections first.
- PC3: Most "popular" pairs of variables first.

Main idea: identifying *subterms* that appear as subsets of one or more monomials in the input monomial set S.

Overview

Comparing linear and quadratic reformulations

Methods							
Line	earizations	Quadratizations					
	2-links	Pairw. cov.		Termwise			
SL	SL-2L	PC1	PC2	PC3	Ishikawa	logn-1	

Objectives and scope

Objectives

- Compare resolution times of linear and quadratic reformulations when relying on a commercial solver.
- ② Are the results consistent for different types of instances?

The objective is *not* to compete with existing literature.

Objectives and scope

Objectives

- Compare resolution times of linear and quadratic reformulations when relying on a commercial solver.
- Are the results consistent for different types of instances?

The objective is *not* to compete with existing literature.

Dependence on the underlying solver: CPLEX 12.7

Drawbacks:

- X Linear solver possibly more powerful than quadratic solver.
- ✗ "Blackbox": little control over the actual resolution.
- $\pmb{\mathsf{X}}$ Cannot exploit interesting properties like persistencies.

Advantages:

- Commercial widely used solver.
- ✓ Avoid comparing commercial against "home-made" software.

Application in computer vision: image restoration

Image from the Corel database.

Instances: Vision

Up to n = 900 variables and m = 6788 terms

Vision: all methods 15×15 (n = 225, m = 1598)

Instances

Vision: best methods 15×15 (n = 225, m = 1598)

Instances

Vision: Quadratization properties

	Pairwise covers	Termwise
Number of y variables	less	more
Number of positive	less	more
quadratic terms		
Monomial interactions	1	X

Dynamical glass transition phenomenon

Freeze for a few hours (-12 ° C)

Freeze for a few hours (-12 ° C)

Freeze for a few hours (-12 ° C)

Freeze for a few hours (-12 ° C)

More on YouTube: supercooled water, Lenape High School - science skills class. Scientific articles: (Bernasconi, 1987; Liers, Marinari, Pagacz, Ricci-Tersenghi, & Schmitz, 2010). Instances downloaded from http://polip.zib.de/autocorrelated_sequences/.

Autocorrelated sequences

ld	n	т	ld	n	m
20_5	20	207	45_5	45	507
20_10	20	833	45_11	45	2 813
25_6	25	407	45_23	45	10 776
25_13	25	1 782	45_34	45	18 348
25_19	25	3 040	45_45	45	21 993
25_25	25	3 677	50_6	50	882
30_4	30	223	50_13	50	4 457
30_8	30	926	50_25	50	14 412
30_15	30	2 944	50_38	50	25 446
30_23	30	5 376	50_50	50	30 271
30_30	30	6 412	55_6	55	977
35_4	35	263	55_14	55	5 790
35_9	35	1 381	55_28	55	19 897
35_18	35	5 002	55_41	55	33 318
35_26	35	8 347	55_55	55	40 402
40_5	40	447	60_8	60	2 036
40_10	40	2 053	60_15	60	7 294
40_20	40	7 243	60_30	60	25 230
40_30	40	12 690	60_45	60	43 689
40_40	40	15 384	60_60	60	52 575

At least one method finished in 1h for instances in **bold**: 8/40 (!).

Autocorrelated sequences: preliminary results

Instance			Resolutio	Resolution time (secs)					
ld	n	т	SL-2L	\mathbf{SL}	SL-2L-0	Only SL-1	NoCuts		
20_5	20	207	6.94	11.48	1.06	6.13			
20_10	20	833	112.27	91.75	47	65.8	9		
25_6	25	407	65.36	137.38	44.52	321.	77		
30_4	30	223	4.24	15.7	13.47	349.	84		
35_4	35	263	11.92	36.86	69.03	3104	1.45		
25_13	25	1782	1645.2	2567.17	685.74	2408	3.69		
30_8	30	926	2743.51	> 3600	> 3600	> 3	600		
40_5	40	447	1321.61	> 3600	> 3600	> 3	600		
Instance Resolution time (secs)									
ID	n	т	PC1	PC2	PC3	Ishikawa	logn-1		
20_5	20	207	10.58	5.05	4.27	37.47	35.34		
20_10	20	833	90.28	159.47	137.69	417.72	365.47		
25_6	25	407	106.67	80.17	121.03	629.66	466.92		
30_4	30	223	13.52	7.17	7.03	29.67	36.08		
35_4	35	263	24.13	13.25	11.2	49.77	54.14		
25_13	25	1782	2311.09	> 3600	> 3600	> 3600	> 3600		
30_8	30	926	> 3600	> 3600	> 3600	> 3600	> 3600		
40_5	40	447	> 3600	914.27	2053.97	> 3600 🔽	> 3600		

Autocorr. seq.: Quadratization properties

	Pairwise covers	Termwise
Number of y variables	less	more
Number of positive	less	more
quadratic terms		
Monomial interactions	1	X

What happens with random polynomials?

Generated as in (Buchheim & Rinaldi, 2007).

- Degree of each monomial chosen randomly (higher probability for lower degrees).
- The variables in monomials are randomly chosen, and the coefficients.

Random high degree: all methods

Random high degree: best methods

Random high degree: Quadratization properties

	Pairwise covers	Termwise
Number of y variables	more	less
Number of positive	less	more
quadratic terms		
Monomial interactions	✓	X

 Linearizations are in general solved faster than quadratizations, which is expected for CPLEX.

- Linearizations are in general solved faster than quadratizations, which is expected for CPLEX.
- For vision instances the behavior is different and rather surprising:

- Linearizations are in general solved faster than quadratizations, which is expected for CPLEX.
- For vision instances the behavior is different and rather surprising:
 - Pairwise covers are faster than SL with default CPLEX branch & cut.

- Linearizations are in general solved faster than quadratizations, which is expected for CPLEX.
- For vision instances the behavior is different and rather surprising:
 - Pairwise covers are faster than SL with default CPLEX branch & cut.
 - SL with 2-links is faster than pairwise covers.

- Linearizations are in general solved faster than quadratizations, which is expected for CPLEX.
- For vision instances the behavior is different and rather surprising:
 - Pairwise covers are faster than SL with default CPLEX branch & cut.
 - SL with 2-links is faster than pairwise covers.
- For all instances, termwise quadratizations are slower than pairwise covers.

- Linearizations are in general solved faster than quadratizations, which is expected for CPLEX.
- For vision instances the behavior is different and rather surprising:
 - Pairwise covers are faster than SL with default CPLEX branch & cut.
 - SL with 2-links is faster than pairwise covers.
- For all instances, termwise quadratizations are slower than pairwise covers.
- Minimizing the number of auxiliary variables is not the only criterion to consider.

Overview

Summary

▶ We considered linear and quadratic reformulations.

- ▶ We considered linear and quadratic reformulations.
- We derived several theoretical results (strong linear formulations, study of properties of quadratizations, small number of auxiliary variables...).

- ► We considered linear and quadratic reformulations.
- We derived several theoretical results (strong linear formulations, study of properties of quadratizations, small number of auxiliary variables...).
- We compared the reformulations computationally.

- ► We considered linear and quadratic reformulations.
- We derived several theoretical results (strong linear formulations, study of properties of quadratizations, small number of auxiliary variables...).
- We compared the reformulations computationally.
- Some properties to define good reformulations

- ► We considered linear and quadratic reformulations.
- We derived several theoretical results (strong linear formulations, study of properties of quadratizations, small number of auxiliary variables...).
- We compared the reformulations computationally.
- Some properties to define good reformulations
 - Exploiting structural properties (worked best for vision and physics problems).

- ► We considered linear and quadratic reformulations.
- We derived several theoretical results (strong linear formulations, study of properties of quadratizations, small number of auxiliary variables...).
- We compared the reformulations computationally.
- Some properties to define good reformulations
 - Exploiting structural properties (worked best for vision and physics problems).
 - For quadratizations, understand number of positive quadratic terms influence.

Theoretical

Theoretical

Which one is stronger: SL or SL of a quadratization?

Theoretical

- Which one is stronger: SL or SL of a quadratization?
- In general, understand better which properties define a "good" quadratization, theory and practice.

Theoretical

- Which one is stronger: SL or SL of a quadratization?
- In general, understand better which properties define a "good" quadratization, theory and practice.

Theoretical

- Which one is stronger: SL or SL of a quadratization?
- In general, understand better which properties define a "good" quadratization, theory and practice.

Experiments

Theoretical

- Which one is stronger: SL or SL of a quadratization?
- In general, understand better which properties define a "good" quadratization, theory and practice.

Experiments

Experiments are being re-tested using persistencies.

Theoretical

- Which one is stronger: SL or SL of a quadratization?
- In general, understand better which properties define a "good" quadratization, theory and practice.

Experiments

- Experiments are being re-tested using persistencies.
- Repeat experiments with other solvers (convexification, SDP...).

Theoretical

- Which one is stronger: SL or SL of a quadratization?
- In general, understand better which properties define a "good" quadratization, theory and practice.

Experiments

- Experiments are being re-tested using persistencies.
- Repeat experiments with other solvers (convexification, SDP...).

Open question: relaxing the multilinear assumption

Joint supply chain design & inventory management problem (Shen, Coullard, & Daskin, 2003; You & Grossmann, 2008)

Open question: relaxing the multilinear assumption

Joint supply chain design & inventory management problem (Shen, Coullard, & Daskin, 2003; You & Grossmann, 2008)

A pseudo-Boolean formulation (with constraints)

$$\begin{split} \min \sum_{j \in J} f_j x_j + \sum_{i \in I} \hat{d}_{ij} y_{ij} + \\ & \mathcal{K}_j \sqrt{\sum_{i \in I} \mu_i y_{ij}} + q \sqrt{\sum_{i \in I} \hat{\sigma}_i^2 y_{ij}} \\ \text{s.t.} \sum_{j \in J} y_{ij} = 1, \quad \forall i \in I \\ & y_{ij} \leq x_j, \quad \forall i \in I, \forall j \in J \\ & x_j \in \{0, 1\}, y_{ij} \in \{0, 1\} \quad \forall i \in I, \forall j \in J \end{split}$$

Thank you for your attention!

rodriguez-heck@or.rwth-aachen.de

Bibliography I

Anthony, M., Boros, E., Crama, Y., & Gruber, A. (2016). Quadratization of symmetric pseudo-Boolean functions. Discrete Applied Mathematics, 203, 1 – 12. Anthony, M., Boros, E., Crama, Y., & Gruber, A. (2017). Quadratic reformulations of nonlinear binary optimization problems. Mathematical Programming, 162(1-2), 115-144. Balas, E. (1974). Disjunctive programming: properties of the convex hull of feasible points. GSIA Management Science Research Report MSRR 348, Carnegie Mellon University (1974).. (Published as invited paper in Discrete Applied Mathematics 89 (1998) 3-44) Bernasconi, J. (1987). Low autocorrelation binary sequences: statistical mechanics and configuration space analysis. J.

Phys. France, 48(4), 559-567.

Bibliography II

Boros, E., Crama, Y., & Rodríguez-Heck, E. (2018). Compact quadratizations for pseudo-Boolean functions. (Submitted)
Boros, E., & Hammer, P. L. (2002). Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1), 155–225.
Boros, E., Hammer, P. L., Sun, X., & Tavares, G. (2008). A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Discrete Optimization, 5(2), 501–529. (In Memory of George B. Dantzig)

Buchheim, C., Crama, Y., & Rodríguez-Heck, E. (2019).
Berge-acyclic multilinear 0-1 optimization problems. *European Journal of Operational Research*, 273, 102–107.
Buchheim, C., & Rinaldi, G. (2007). Efficient reduction of polynomial zero-one optimization to the quadratic case. *SIAM Journal on Optimization*, 18(4), 1398–1413.

Bibliography III

Conforti, M., & Cornuéjols, G. (1995). Balanced 0,±1-matrices, bicoloring and total dual integrality. *Mathematical Programming*, 71(3), 249–258.

- Conforti, M., Cornuéjols, G., & Vušković, K. (2006). Balanced matrices. *Discrete Mathematics*, 306(19–20), 2411–2437.
 Crama, Y. (1993). Concave extensions for nonlinear 0–1 maximization problems. *Mathematical Programming*, 61(1), 53–60.
- Crama, Y., & Rodríguez-Heck, E. (2017). A class of valid inequalities for multilinear 0-1 optimization problems. *Discrete Optimization*, 25, 28–47.

Del Pia, A., & Khajavirad, A. (2016). On balanced matrices and polynomial solvability of multilinear programs. (Personal communication)

Bibliography IV

- Del Pia, A., & Khajavirad, A. (2018). The multilinear polytope for acyclic hypergraphs. SIAM Journal on Optimization, 28(2), 1049–1076.
- Fortet, R. (1959). L'algèbre de Boole et ses applications en recherche opérationnelle. *Cahiers du Centre d'Études de Recherche Opérationnelle, 4,* 5–36.
- Freedman, D., & Drineas, P. (2005, June). Energy minimization via graph cuts: settling what is possible. In *leee conference* on computer vision and pattern recognition (Vol. 2, pp. 939–946).
- Glover, F., & Woolsey, E. (1973). Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. *Operations Research*, 21(1), 156–161.

Bibliography V

Hammer, P. L., Hansen, P., & Simeone, B. (1984). Roof duality, complementation and persistency in quadratic 0-1optimization. Mathematical Programming, 28(2), 121–155. Hammer, P. L., Rosenberg, I., & Rudeanu, S. (1963). On the determination of the minima of pseudo-Boolean functions. Studii si Cercetari Matematice, 14, 359–364. (in Romanian) Hansen, P., & Simeone, B. (1986). Unimodular functions. Discrete Applied Mathematics, 14(3), 269 - 281. Ishikawa, H. (2011, June). Transformation of general binary MRF minimization to the first-order case. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1234 - 1249

Kolmogorov, V., & Zabih, R. (2004, Feb). What energy functions can be minimized via graph cuts? *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(2), 147–159.

Bibliography VI

Liers, F., Marinari, E., Pagacz, U., Ricci-Tersenghi, F., & Schmitz, V. (2010). A non-disordered glassy model with a tunable interaction range. *Journal of Statistical Mechanics: Theory* and Experiment(5), L05003.

- Padberg, M. (1989). The boolean quadric polytope: some characteristics, facets and relatives. *Mathematical Programming*, 45(1–3), 139–172.
- Shen, Z.-J. M., Coullard, C., & Daskin, M. S. (2003). A joint location-inventory model. *Transportation Science*, 37(1), 40-55.
- You, F., & Grossmann, I. E. (2008). Mixed-integer nonlinear programming models and algorithms for large-scale supply chain design with stochastic inventory management. *Industrial & Engineering Chemistry Research*, 47(20), 7802–7817.

