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RWTH Aachen University, Chair of Operations Research

Results of PhD thesis
advised by Yves Crama, University of Liège
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Introduction



Pseudo-Boolean optimization

General problem: pseudo-Boolean optimization
Given a pseudo-Boolean function f : {0, 1}n → R

min
x∈{0,1}n

f (x).

Theorem (Hammer, Rosenberg, & Rudeanu, 1963)
Every pseudo-Boolean function f : {0, 1}n → R admits a unique
multilinear expression.

I Given f , finding its unique multilinear representation can be
costly! (Size of the input: O(2n))
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Multilinear 0–1 optimization

Assumption: f given as a multilinear polynomial
Set of monomials S ⊆ 2[n], aS 6= 0 for S ∈ S.

min
∑
S∈S

aS
∏
i∈S

xi

s. t. xi ∈ {0, 1}, for i = 1, . . . , n

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 − 2x1
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Application in computer vision: image restoration

Input: blurred image Output: restored image

Image from the Corel database.
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Applications

I Location problems
I Joint supply chain design and inventory management
I Statistical mechanics
I Quantum computing
I ...

p.5



Linear and quadratic reformulations

Multilinear 0-1 optimization
minxi

∑
S∈S aS

∏
i∈S xi

Linear problem
minxi ,yj l(x , y)

additional y variables
constraints

Quadratic problem
minxi ,yj q(x , y)

additional y variables
without constraints (choice)

reformulate as reformulate as

p.6
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Introduction to linearizations



The standard linearization (SL)
Nonlinear problem

min
∑
S∈S

aS
∏
i∈S

xi +
n∑

i=1
ci xi

Linearized problem

min
∑
S∈S

aSyS +
n∑

i=1
ci xi

Standard Linearization (Fortet, 1959; Glover & Woolsey, 1973)

yS =
∏
i∈S

xi

When xi ∈ {0, 1} it is equivalent to say:

yS ≤ xi ∀i ∈ S,∀S ∈ S (1)
yS ≥

∑
i∈S

xi − (|S| − 1) ∀S ∈ S (2)
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SL drawback: The continuous relaxation given by the
SL is very weak!
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Image from A. Schrijver’s book cover:
Theory of linear and integer programming.p.8



When do the SL inequalities provide a perfect
formulation?
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Hypergraph associated with a polynomial
A multilinear polynomial can be associated to a hypergraph
H = (V = {1, . . . , n},S).

min
∑
S∈S

aS
∏
i∈S

xi +
∑
i∈V

ci xi

Example:

f (x1, x2, x3) = 9x1x2x3 − 8x1x2 + 6x2x3 − 2x1

• •

•

x1 x2

x3
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Characterization for the unsigned case

Theorem 1: (Buchheim, Crama, & Rodŕıguez-Heck, 2019)
Given a hypergraph H, the following statements are equivalent:
(a) The SL inequalities define an integer polytope.
(b) The matrix of coefficients of the SL inequalities is balanced.
(c) The hypergraph H is Berge-acyclic.

I Obtained independently and simultaneously by (Del Pia &
Khajavirad, 2018).

I Theorem 1 is a Corollary of a more general result considering
the signs of the coefficients.

I The balancedness condition can be checked in polynomial
time.
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A class of valid inequalities for multilinear 0–1
optimization problems
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The 2-link inequalities

Definition (Crama & Rodŕıguez-Heck, 2017)
For S,T ∈ S and yS , yT such that yS =

∏
i∈S xi , yT =

∏
i∈T xi ,

the 2-link associated with (S,T ) is the linear inequality

yS ≤ yT −
∑

i∈T\S xi + |T\S|

Interpretation

S T
yS = 1⇒ ∀i ∈ S, xi = 1

yT = 0 and yS = 1⇒ ∃j ∈ T\S, xj = 0

p.13



A complete description for the case of two monomials

Theorem 2: (Crama & Rodŕıguez-Heck, 2017)
For the case of two nonlinear monomials, P∗SL = P2links

SL , i.e., the
standard linearization and the 2-links provide a complete
description of P∗SL.
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Proof idea: yS∩T =
∏

i∈S∩T xi , yS = yS∩T
∏

i∈S\T xi , yT = yS∩T
∏

i∈T\S xi

I Consider the extended formulation (with variables in [0, 1])

yS∩T ≤ xi , ∀i ∈ S ∩ T , (3)

yS∩T ≥
∑

i∈S∩T

xi − (|S ∩ T | − 1), (4)

yS ≤ yS∩T , (5)
yS ≤ xi , ∀i ∈ S\T , (6)

yS ≥
∑

i∈S\T

xi + yS∩T − |S\T |, (7)

yT ≤ yS∩T , (8)
yT ≤ xi , ∀i ∈ T\S, (9)

yT ≥
∑

i∈T\S

xi + yS∩T − |T\S|, (10)

I Notice that the two polytopes P0 and P1 obtained by fixing variable
yS∩T to 0 and 1, resp., are integral.

I Compute conv(P0 ∪ P1) using (Balas, 1974) and see that it is
P2links

SL .
p.15
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Introduction to quadratizations



Quadratization: definition and desirable properties

Definition (Anthony, Boros, Crama, & Gruber, 2017)
Given a pseudo-Boolean function f (x) where x ∈ {0, 1}n, a
quadratization g(x , y) is a function satisfying
I g is quadratic
I g(x , y) depends on the original variables x and on m auxiliary

variables y
I satisfies

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

Which quadratizations are “good”?
I Small number of auxiliary variables (compact).
I Small number of positive quadratic terms (xixj , xiyj . . . ) (empirical

distance from submodularity).
I Set of quadratic terms with specific underlying graphs.
I ...
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Persistencies

Weak Persistency Theorem (Hammer, Hansen, & Simeone, 1984)
Let (QP) be a quadratic optimization problem on x ∈ {0, 1}n, and let (x̃ , ỹ) be
an optimal solution of the continuous standard linearization of (QP)

min c0 +
n∑

j=1

cjxj +
∑

1≤i<j≤n

cijyij

s. t. yij ≥ xi + xj − 1 i , j = 1, . . . , n, i < j
yij ≤ xi i , j = 1, . . . , n, i < j
yij ≤ xj i , j = 1, . . . , n, i < j
0 ≤ yij ≤ 1 i , j = 1, . . . , n, i < j
0 ≤ xi ≤ 1 i = 1, . . . , n

such that x̃j = 1 for j ∈ O and x̃j = 0 for j ∈ Z . Then, for any minimizing
vector x∗ of (QP) switching x∗j = 1 for j ∈ O and x∗j = 0 for j ∈ Z will also
yield a minimum of f .

(See also survey (Boros & Hammer, 2002).)
p.17



Persistencies

I The Weak Persistency Theorem is not the strongest form of
persistency.

I There are ways to compute, in polynomial time, a maximal set
of variables to fix, based on a network flow algorithm (Boros,
Hammer, Sun, & Tavares, 2008).

I In computer vision, image restoration and related problems of
up to millions of variables are efficiently solved, thanks to the
use of persistencies.

p.18
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Termwise quadratizations



Termwise quadratizations

Main idea
Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f (x) = −35x1x2x3x4x5 + 50x1x2x3x4 − 10x1x2x4x5 + 5x2x3x4 + 5x4x5 − 20x1

Negative monomial
(Kolmogorov & Zabih, 2004; Freedman
& Drineas, 2005)

−
n∏

i=1

xi = min
y∈{0,1}

−y(
n∑

i=1

xi − (n − 1))

I One variable is sufficient.
I No positive quadratic terms.

Check that, for every x ∈ {0, 1}n,
miny g(x , y) = −

∏n
i=1 xi ., two cases:

1 If xi = 1 ∀i , then miny − y ,
minimum value of −1 reached for
y = 1.

2 If ∃i such that xi = 0, then
miny − Cy , where C ≤ 0,
minimum value of 0 reached for
y = 0.

p.19
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Positive monomial
(Ishikawa, 2011)

n∏
i=1

xi = min
y∈{0,1}k

k∑
i=1

yi (ci,n(−|x |+ 2i)− 1)

+
|x |(|x | − 1)

2
,

I Number of variables: k = b n−1
2 c.

I
(n

2

)
positive quadratic terms.
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Upper bound for the positive monomial: dlog(n)e − 1

Theorem 3 (simplified) (Boros, Crama, & Rodŕıguez-Heck,
2018)
Assume that n = 2` and let |x | =

∑n
i=1 xi be the Hamming weight of

x ∈ {0, 1}n. Then,

g(x , y) = 1
2 (|x | −

`−1∑
i=1

2iyi )(|x | −
`−1∑
i=1

2iyi − 1)

is a quadratization of the positive monomial Pn(x) =
∏n

i=1 xi using
dlog(n)e − 1 auxiliary variables.

Proof idea: Check that, for every x ∈ {0, 1}n, miny g(x , y) =
∏n

i=1 xi .
I The quadratization depends on |x |, which takes values between 0 and n.
I Case 1 (|x | ≤ n− 1): Integers between 0 and n− 1 can be represented as

a sum of log(n) powers of 2.
I Use y variables to express which powers of 2 are in the sum.
I For |x | ≤ n − 1, one factor to reach the minimum value of zero for odd
|x | and the other factor for even |x |.

I Case 2 (|x | = n): Similarly, we can show miny g(x , y) = 1.

p.20
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Upper bound for the positive monomial: dlog(n)e − 1

Theorem 3 (simplified) (Boros, Crama, & Rodŕıguez-Heck,
2018)
Assume that n = 2` and let |x | =
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i=1 xi be the Hamming weight of

x ∈ {0, 1}n. Then,
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Lower bound for the positive monomial

Theorem 4 (Boros, Crama, & Rodŕıguez-Heck, 2018)
If g(x , y) is a quadratization of the positive monomial Pn(x) =

∏n
i=1 xi using m

variables, then
m ≥ dlog(n)e − 1

Proof idea:
I Consider r(x) =

∏
y∈{0,1}m g(x , y).

I deg(r) ≤ 2 · 2m.
I deg(r) ≥ n, because r(x) = αPn(x) where α > 0 (unicity of the

multilinear representation). More precisely,
I If |x | < n, there exists y ∈ {0, 1}m such that g(x , y) = 0.
I If |x | = n, g(x , y) ≥ 1 for all y ∈ {0, 1}m.
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Results for more general functions
Function Lower Bound Upper Bound

Zero until k Ω(2
n
2 ) for some function1 O(2

n
2 ) 1

dlog(k)e − 1 for all functions

Symmetric Ω(
√

n) for some function2 O(
√

n) = 2d
√

n + 1e

Exact k-out-of-n max(dlog(k)e, dlog(n − k)e)− 1 max(dlog(k)e, dlog(n − k)e)

At least k-out-of-n dlog(k)e − 1 max(dlog(k)e, dlog(n − k)e)

Positive monomial dlog(n)e − 1 dlog(n)e − 1

Parity dlog(n)e − 1 dlog(n)e − 1

Zero until k Symmetric

Exact k-out-of-n At least k-out-of-n Parity

Positive monomial

1see (Anthony et al., 2017)
2see (Anthony, Boros, Crama, & Gruber, 2016)
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Pairwise covers



Pairwise covers

Anthony, Boros, Crama and Gruber (2017)

Substituting common sets of variables

f (x) = −35x1x2x3x4x5 +50x1x2x3x4−10x1x2x4x5 +5x2x3x4 +5x4x5−20x1

could be replaced by

f (x) = −35y12y345 +50y12y34−10y12y45 +5x2y34 +5x4x5−20x1 +P(x , y)

where P(x , y) imposes y12 = x1x2, y345 = y34x5...

p.23



Heuristics for small Pairwise Covers

Three heuristics:
I PC1: Separate first two variables from the rest.
I PC2: Most “popular” intersections first.
I PC3: Most “popular” pairs of variables first.

Main idea: identifying subterms that appear as subsets of one or
more monomials in the input monomial set S.
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Comparing linear and quadratic
reformulations



Methods

Methods
Linearizations Quadratizations

2-links Pairw. cov. Termwise
SL SL-2L PC1 PC2 PC3 Ishikawa logn-1
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Objectives and scope

Objectives
1 Compare resolution times of linear and quadratic

reformulations when relying on a commercial solver.
2 Are the results consistent for different types of instances?

The objective is not to compete with existing literature.

Dependence on the underlying solver: CPLEX 12.7
Drawbacks:

7 Linear solver possibly more powerful than quadratic solver.
7 “Blackbox”: little control over the actual resolution.
7 Cannot exploit interesting properties like persistencies.

Advantages:
3 Commercial widely used solver.
3 Avoid comparing commercial against “home-made” software.
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Application in computer vision: image restoration

Input: blurred image Output: restored image

Image from the Corel database.

p.27



Instances: Vision

0 0 0 0 0 0
0 0 1 1 0 1
0 1 1 1 1 0
0 1 1 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0

Image restoration

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0

Base images:
I top left rect. (tl)
I centre rect. (cr)
I cross (cx)

Perturbations:
I none (n)
I low (l)
I high (h)

Up to n = 900 variables and m = 6788 terms
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Vision: all methods 15× 15 (n = 225, m = 1598)
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Vision: best methods 15× 15 (n = 225, m = 1598)
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Vision: Quadratization properties

Pairwise covers Termwise

Number of y variables less more
Number of positive less more
quadratic terms
Monomial interactions 3 7

p.31



Dynamical glass transition phenomenon

More on YouTube: supercooled water, Lenape High School - science skills class.
Scientific articles: (Bernasconi, 1987; Liers, Marinari, Pagacz, Ricci-Tersenghi,

& Schmitz, 2010).
Instances downloaded from

http://polip.zib.de/autocorrelated sequences/.

p.32
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Autocorrelated sequences

At least one method finished in 1h for instances in bold: 8/40 (!).
Id n m Id n m
20 5 20 207 45 5 45 507
20 10 20 833 45 11 45 2 813
25 6 25 407 45 23 45 10 776
25 13 25 1 782 45 34 45 18 348
25 19 25 3 040 45 45 45 21 993
25 25 25 3 677 50 6 50 882
30 4 30 223 50 13 50 4 457
30 8 30 926 50 25 50 14 412
30 15 30 2 944 50 38 50 25 446
30 23 30 5 376 50 50 50 30 271
30 30 30 6 412 55 6 55 977
35 4 35 263 55 14 55 5 790
35 9 35 1 381 55 28 55 19 897
35 18 35 5 002 55 41 55 33 318
35 26 35 8 347 55 55 55 40 402
40 5 40 447 60 8 60 2 036
40 10 40 2 053 60 15 60 7 294
40 20 40 7 243 60 30 60 25 230
40 30 40 12 690 60 45 60 43 689
40 40 40 15 384 60 60 60 52 575
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Autocorrelated sequences: preliminary results

Instance Resolution time (secs)

Id n m SL-2L SL SL-2L-Only SL-NoCuts

20 5 20 207 6.94 11.48 1.06 6.13
20 10 20 833 112.27 91.75 47 65.89
25 6 25 407 65.36 137.38 44.52 321.77
30 4 30 223 4.24 15.7 13.47 349.84
35 4 35 263 11.92 36.86 69.03 3104.45
25 13 25 1782 1645.2 2567.17 685.74 2408.69
30 8 30 926 2743.51 > 3600 > 3600 > 3600
40 5 40 447 1321.61 > 3600 > 3600 > 3600

Instance Resolution time (secs)

ID n m PC1 PC2 PC3 Ishikawa logn-1

20 5 20 207 10.58 5.05 4.27 37.47 35.34
20 10 20 833 90.28 159.47 137.69 417.72 365.47
25 6 25 407 106.67 80.17 121.03 629.66 466.92
30 4 30 223 13.52 7.17 7.03 29.67 36.08
35 4 35 263 24.13 13.25 11.2 49.77 54.14
25 13 25 1782 2311.09 > 3600 > 3600 > 3600 > 3600
30 8 30 926 > 3600 > 3600 > 3600 > 3600 > 3600
40 5 40 447 > 3600 914.27 2053.97 > 3600 > 3600
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Autocorr. seq.: Quadratization properties

Pairwise covers Termwise

Number of y variables less more
Number of positive less more
quadratic terms
Monomial interactions 3 7
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Instances: Random high degree

What happens with random polynomials?

Generated as in (Buchheim & Rinaldi, 2007).
I Degree of each monomial chosen randomly (higher probability

for lower degrees).
I The variables in monomials are randomly chosen, and the

coefficients.
I Degrees vary between 7 and 17.
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Random high degree: all methods
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Random high degree: best methods
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Random high degree: Quadratization properties

Pairwise covers Termwise

Number of y variables more less
Number of positive less more
quadratic terms
Monomial interactions 3 7
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Summary of results

I Linearizations are in general solved faster than
quadratizations, which is expected for CPLEX.

I For vision instances the behavior is different and rather
surprising:
I Pairwise covers are faster than SL with default CPLEX branch

& cut.
I SL with 2-links is faster than pairwise covers.

I For all instances, termwise quadratizations are slower than
pairwise covers.

I Minimizing the number of auxiliary variables is not the only
criterion to consider.
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Conclusions

Summary

I We considered linear and quadratic reformulations.
I We derived several theoretical results (strong linear

formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.
I Some properties to define good reformulations

I Exploiting structural properties (worked best for vision and
physics problems).

I For quadratizations, understand number of positive quadratic
terms influence.

p.41



Conclusions

Summary
I We considered linear and quadratic reformulations.

I We derived several theoretical results (strong linear
formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.
I Some properties to define good reformulations

I Exploiting structural properties (worked best for vision and
physics problems).

I For quadratizations, understand number of positive quadratic
terms influence.

p.41



Conclusions

Summary
I We considered linear and quadratic reformulations.
I We derived several theoretical results (strong linear

formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.
I Some properties to define good reformulations

I Exploiting structural properties (worked best for vision and
physics problems).

I For quadratizations, understand number of positive quadratic
terms influence.

p.41



Conclusions

Summary
I We considered linear and quadratic reformulations.
I We derived several theoretical results (strong linear

formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.

I Some properties to define good reformulations
I Exploiting structural properties (worked best for vision and

physics problems).
I For quadratizations, understand number of positive quadratic

terms influence.

p.41



Conclusions

Summary
I We considered linear and quadratic reformulations.
I We derived several theoretical results (strong linear

formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.
I Some properties to define good reformulations

I Exploiting structural properties (worked best for vision and
physics problems).

I For quadratizations, understand number of positive quadratic
terms influence.

p.41



Conclusions

Summary
I We considered linear and quadratic reformulations.
I We derived several theoretical results (strong linear

formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.
I Some properties to define good reformulations

I Exploiting structural properties (worked best for vision and
physics problems).

I For quadratizations, understand number of positive quadratic
terms influence.

p.41



Conclusions

Summary
I We considered linear and quadratic reformulations.
I We derived several theoretical results (strong linear

formulations, study of properties of quadratizations, small
number of auxiliary variables...).

I We compared the reformulations computationally.
I Some properties to define good reformulations

I Exploiting structural properties (worked best for vision and
physics problems).

I For quadratizations, understand number of positive quadratic
terms influence.

p.41



Open questions

Theoretical

I Which one is stronger: SL or SL of a quadratization?
I In general, understand better which properties define a

“good” quadratization, theory and practice.
I ...

Experiments
I Experiments are being re-tested using persistencies.
I Repeat experiments with other solvers (convexification,

SDP...).
I ...
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Open question: relaxing the multilinear assumption

Joint supply chain design &
inventory management problem
(Shen, Coullard, & Daskin, 2003;
You & Grossmann, 2008)

A pseudo-Boolean formulation
(with constraints)

min
∑
j∈J

fjxj +
∑
i∈I

d̂ijyij+

Kj

√∑
i∈I

µi yij + q
√∑

i∈I
σ̂2

i yij

s.t.
∑
j∈J

yij = 1, ∀i ∈ I

yij ≤ xj , ∀i ∈ I,∀j ∈ J
xj ∈ {0, 1}, yij ∈ {0, 1} ∀i ∈ I,∀j ∈ J
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Thank you for your attention!
rodriguez-heck@or.rwth-aachen.de
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