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The Stable Set Problem

The Stable Set Problem
Given an undirected graph G = (V (G), E (G)), and node weights
w ∈ RV (G), the (weighted) stable set problem aims at finding a
stable set S in G that maximizes

∑
v∈S wv .

A set S is stable if G contains no edge with both endpoints in S.

I The Stable Set problem is NP-hard.
I Can be modeled as an Integer Programming problem

max
∑

v∈V (G)
wv xv

s. t. xv + xw ≤ 1 ∀{v , w} ∈ E (G)
xv ∈ {0, 1} ∀v ∈ V (G)

The edge relaxation Redge(G) is the set of feasible points of
the LP-relaxation of the model above.
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The Stable Set Problem

Common approach to solve the Stable Set problem:

I Maximize wᵀx over

Redge(G) :=
{

x ∈ [0, 1]V (G) | xv + xw ≤ 1, ∀{v , w} ∈ E (G)
}

(Can be done efficiently, it is a Linear Program.)
I Use optimal (fractional) solutions to gain insights about

optimal 0/1-solutions.
I For example, to apply an LP-based branch-and-bound type of

algorithm.
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Persistency

Definition: Persistency
A polytope P ⊆ [0, 1]n has the persistency property if for every
objective vector c ∈ Rn and every c-maximal point x ∈ P, there
exists a c-maximal integer point y ∈ P ∩ {0, 1}n such that xi = yi
for each i ∈ {1, 2, . . . , n} with xi ∈ {0, 1}.

I For every graph G , the polytope Redge(G) has the persistency
property! (Nemhauser & Trotter, 1975)

I Implications: if x? is an optimal (perhaps fractional) solution for
Redge(G), with
I V1 := {v ∈ V (G) | x?

v = 1}
I V0 := {v ∈ V (G) | x?

v = 0}
then there exists an optimal stable set S? containing every node in
V1 and not containing any node in V0.

I The variables corresponding to nodes in V0 ∪ V1 can be deleted.
I We can reduce the dimension of our problem.
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Persistency: relevance

I Practical implications only if V0, V1 large enough!
I For maximum cardinality stable set problem on random graphs

the probability of obtaining a single integer component is very
low (Pulleyblank, 1979)...

I ... but persistencies have proven very useful for structured
instances, with other objective functions:
I Stable Set persistency implies persistency of Unconstrained

Quadratic Binary Programming (Hammer, Hansen, &
Simeone, 1984).

I UQBP persistency has been used in the computer vision
community to solve very large image restoration problems (Fix,
Gruber, Boros, & Zabih, 2015; Ishikawa, 2011; Kolmogorov &
Rother, 2007).

I There exists a polynomial-time algorithm to compute the
largest possible sets V0 and V1 for UQBP (Boros, Hammer,
Sun, & Tavares, 2008).
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Formulations

Pconv(G): convex hull of characteristic vectors of stable sets of G .

Definition: Formulation
Let G be the set of finite undirected simple graphs.

We regard an LP formulation for the stable set problem as a map
that assigns to every graph G ∈ G a polytope R(G) such that
R(G) ∩ ZV (G) = Pconv(G) ∩ ZV (G).

I The edge relaxation Redge(G) provides bad LP-relaxation
bounds in general.

I Many families of inequalities have been studied in order to
strengthen the edge relaxation:
I clique inequalities,
I odd-cycle inequalities, ...
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Question:

Do there exist stronger linear programming formulations for
the stable set problem that also have the persistency property
for every graph G?

Main result:
I Negative answer, for formulations satisfying certain mild

conditions.
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Main result

Theorem (Rodŕıguez-Heck, Stickler, Walter, Weltge (2019))

Let R be a formulation satisfying some mild conditions. Then
R(G) has the persistency property for all graphs G ∈ G if and only
if R ≡ Redge or R ≡ Pconv.

I Two formulations R1 and R2 are equivalent (R1 ≡ R2) if
R1(G) = R2(G) holds for every G ∈ G.
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What are the mild conditions (more in detail)?

For every graph G ∈ G, each inequality with support U ⊆ V (G) that is
facet-defining for R(G) is

(A) facet-defining for
Pconv(G [U])

(B) valid for R(G [U]) some
white text here

(C) For every pair of graphs G1, G2 ∈ G, and v1 ∈ G1, v2 ∈ G2,

R(G1 ⊕v1
v2 G2) = R(G1)⊕v1

v2 R(G2)

Definition: 1-sum of graphs G1 ⊕v1
v2 G2

The graph obtained from the disjoint union of G1 and G2 by
identifying v1 with v2.

Definition: 1-sum of polytopes R(G1)⊕v1
v2 R(G2)

conv({(x , y) ∈ R(G1)× R(G2)} | xv1 = yv2)
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1-sum of graphs G1 ⊕v1
v2

G2

1

v1

34

5

v2
B2

C2

⊕

A3

B3

C3

⊕
A4B4

C4

⊕

A5

B5

C5

⊕ 1

2

34

5

B2

C2

B3

C3

B4

C4

B5

C5

(C) For every pair of graphs G1, G2 ∈ G, and v1 ∈ G1, v2 ∈ G2,

R(G1 ⊕v1
v2 G2) = R(G1)⊕v1

v2 R(G2)
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Some well-known formulations

Corollary
I The clique relaxation

Rclq(G) = {x ∈ Redge(G) | x(V (C)) ≤ 1 for each clique C of G }

I The odd-cycle relaxation

Roc3
edge(G) = {x ∈ Redge(G) | x(V (C)) ≤ |V (C)| − 1

2
for each chordless odd cycle C of G }

I The intersection of the clique and the odd-cycle relaxations
R(G) = Rclq(G) ∩ Roc3

edge(G)

do not have the persistency property for all graphs G ∈ G

10/ 22



Some well-known formulations

Corollary
I The clique relaxation

Rclq(G) = {x ∈ Redge(G) | x(V (C)) ≤ 1 for each clique C of G }

I The odd-cycle relaxation

Roc3
edge(G) = {x ∈ Redge(G) | x(V (C)) ≤ |V (C)| − 1

2
for each chordless odd cycle C of G }

I The intersection of the clique and the odd-cycle relaxations
R(G) = Rclq(G) ∩ Roc3

edge(G)

do not have the persistency property for all graphs G ∈ G

10/ 22



Some well-known formulations

Corollary
I The clique relaxation

Rclq(G) = {x ∈ Redge(G) | x(V (C)) ≤ 1 for each clique C of G }

I The odd-cycle relaxation

Roc3
edge(G) = {x ∈ Redge(G) | x(V (C)) ≤ |V (C)| − 1

2
for each chordless odd cycle C of G }

I The intersection of the clique and the odd-cycle relaxations
R(G) = Rclq(G) ∩ Roc3

edge(G)

do not have the persistency property for all graphs G ∈ G

10/ 22



Some well-known formulations

Corollary
I The clique relaxation

Rclq(G) = {x ∈ Redge(G) | x(V (C)) ≤ 1 for each clique C of G }

I The odd-cycle relaxation

Roc3
edge(G) = {x ∈ Redge(G) | x(V (C)) ≤ |V (C)| − 1

2
for each chordless odd cycle C of G }

I The intersection of the clique and the odd-cycle relaxations
R(G) = Rclq(G) ∩ Roc3

edge(G)

do not have the persistency property for all graphs G ∈ G

10/ 22



Proof idea

Theorem (Rodŕıguez-Heck, Stickler, Walter, Weltge (2019))

Let R be a formulation satisfying some mild conditions. Then
R(G) has the persistency property for all graphs G ∈ G
if and only if R ≡ Redge or R ≡ Pconv.

I “if” part is easy
I Redge has persistency: Nemhauser and Trotter (1975)
I Pconv has persistency: by definition

I “only if” part restated

If there exist graphs G1, G2 ∈ G with R(G1) 6= Redge(G1) and
R(G2) 6= Pconv(G2), then there exists a graph G? for which the
polytope R(G?) does not have the persistency property.
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Proof idea

If there exist graphs G1, G2 ∈ G with R(G1) 6= Redge(G1) and
R(G2) 6= Pconv(G2), then there exists a graph G? for which the
polytope R(G?) does not have the persistency property.

I We “only” have to construct a counter-example...

I More precisely, we provide: a graph G?, a node v ∈ V (G?),
an objective function c? such that

1 Every c?-maximal solution over R(G?) has xv = 0.
2 Every c?-maximal solution over Pconv(G?) has xv = 1.

I ... what is the challenge?
I R can be “anything”!
I For example, R can be defined by all facets of Pconv except one

facet, or two facets, or ...
I Fortunately, R satisfies our mild conditions.
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Constructing the counterexample G?

Lemma
There exist: a graph G , a vector c ∈ RV (G) and a node v ∈ V (G)
such that

I maximizing c over R(G) has a unique maximizer x̂ with x̂v ≥ 1
2

I maximizing c over Pconv(G) has a maximizer x̄ with x̄v = 0

Example 1: R = Roc5
edge. Create G?:

G in such that R(G in) 6= Redge(G in)
Gout copies around G in except at 1

1

2

34

5

A2
B2

C2

⊕

A3

B3

C3

⊕
A4B4

C4

⊕

A5

B5

C5

⊕

Define obj. fct. c?:
cout = (1, 1, 1)ᵀ for Gout

ε > 0 for node 1

maximize c? over R(G?)
nodes 2, 3, 4, 5 value ≥ 1

2
node 1 value 0 (Sewell)

maximize c? over Pconv(G?)
nodes 2, 3, 4, 5: value 0
node 1: value 1 to gain
little ε
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Sewell’s result

I Use the “missing facet” for G in: x1 + x2 + x3 + x4 + x5 ≤ 2
I If nodes 2, 3, 4, 5 take value = 1

2 , then 1 must take value 0

1

2

34

5

B2

C2

B3

C3

B4

C4

B5

C5

Proposition (Sewell, 1990)
Let

∑
j∈V (G) ajxj ≤ b be a facet-defining inequality for Pconv(G) that is

neither a bound nor an edge inequality. Then
a1 ≤

∑
j∈V (G)

aj − 2b ⇒ b ≤
∑

j∈V (G)\{1}

aj ·
1
2
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Contradiction of persistency for Example 1
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1
2 /0

B4

C4

1
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1
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1
2 /1

1
2 /0

I G? and LP/IP maxima.
I c? takes value ε = 1

20 for node 1, and value 1 for every other node.
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Hidden difficulties

1. Definition of c? not straightforward

I Must define ε > 0 small enough so that “it is not worth” to
have x?

1 > 0 when optimizing over R(G?).

2. Feasibility when applying 1-sum
I Optimal solution over copies of R(Gout) separately might not

be feasible for R(G?).

3. Not much information on R
I When showing that every c?-optimal point over R(G?)

satisfies x?
1 = 0 we make a proof by contradiction: assume

that x?
1 > 0, try to construct a better solution x̂ ...

I Solution x̂ has to satisfy all unknown facets of R(G?)!
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Hidden difficulties

Example 2: R = Roc3
edge. Separately: c?/LP/IP maxima.

1

23 A′2
⊕

A2 B2

C2D2

1
3 / 2

3 /0

5
3 / 1

3 /1
1/ 1

3 /0

1/ 1
3 /01/ 1

3 /0

A′3
⊕

A3

B3C3

D3

1
3 / 2

3 /0

5
3 / 1

3 /1

1/ 1
3 /01/ 1

3 /0

1/ 1
3 /0

g(z) = max
{ ∑

j∈{2,3}

f (xj ) | x1 + x2 + x3 ≤ z, x ∈ Redge(C3)
}

f (xj ) = max
{1

3
xA′j +

5
3

xAj + xBj + xC j + xDj x ∈ Roc3
edge(G j ) and xA′j = xj

}
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Hidden difficulties

Example 2: R = Roc3
edge. Function g is strictly increasing in

[0, b] = [0, 1], x1 does not contribute to maximum.

z

g(z)

0 1
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6
20
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Hidden difficulties

Example 2: R = Roc3
edge. For small ε, x1 = 0 in all maximizers.
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Other hidden difficulties...

Thank you for your attention!
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Persistency of the edge relaxation

Theorem (Nemhauser & Trotter, 1975)
The edge relaxation Redge(G) has the persistency property for every
graph G .

Proof idea
I Consider a c-maximal vertex of Redge(G).
I Vertices of Redge(G) are half-integral xv ∈ {0, 1

2 , 1} ∀v ∈ V ⇒ G can be
drawn as:

xv = 1 xv = 0 xv = 1
2
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Persistency of the edge relaxation
I If V1 = {v ∈ V | xv = 1} is c-maximal in the subgraph G[U]

(U = V1 ∪ V0) then there exists a c-maximal stable set in G
containing V1.

xv = 1 xv = 0 xv = 1
2

Assume that S is a c-maximal stable set that does not contain V1.
We can construct S ′ = (S \ U) ∪ V1, which is stable and satisfies that
c(S ′) ≥ c(S), because V1 is c-maximal.
It can be seen that V1 is c-maximal in G[U]: see (Nemhauser & Trotter,
1975).
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What are the mild conditions (more in detail)?

(A) The inequalities defining R
are derived from facets of
Pconv. something here in
white

(B) Validity of facet-defining
inequalities of R(G) is
inherited by induced
subgraphs.

(C) For every pair of graphs G1, G2 ∈ G, and v1 ∈ G1, v2 ∈ G2,

R(G1 ⊕v1
v2 G2) = R(G1)⊕v1

v2 R(G2)

Definition: 1-sum of graphs G1 ⊕v1
v2 G2

The graph obtained from the disjoint union of G1 and G2 by
identifying v1 with v2.

Definition: 1-sum of polytopes R(G1)⊕v1
v2 R(G2)

conv({(x , y) ∈ R(G1)× R(G2)} | xv1 = yv2)



What are the mild conditions (more in detail)?

(A) For each G ∈ G, each inequality
with support U ⊆ V (G) that is
facet-defining for R(G) is also
facet-defining for Pconv(G[U])

(B) For each G ∈ G, each inequality
with support U ⊆ V (G) that is
facet-defining for R(G) is valid
for R(G[U]).
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