# The Impact of Quadratization in Convexification-Based Resolution of Polynomial Binary Optimization

Sourour Elloumi<sup>1,2</sup>, Amélie Lambert<sup>2</sup>, Arnaud Lazare<sup>1,2</sup>, Elisabeth Rodríguez-Heck<sup>3</sup>

<sup>1</sup>UMA Ensta Paris-Tech, <sup>2</sup>Cedric-CNAM, <sup>3</sup>RWTH Aachen University

December 4, PGMO Days 2019 EDF'Lab Palaiseau, France









# The problem

We are interested in solving the following problem:

min 
$$f(x)$$
 (P)  
s. t.  $x \in \{0,1\}^n$ 

where f is a polynomial on n binary variables, and there are no additional constraints.



# The problem

We are interested in solving the following problem:

min 
$$f(x)$$
 (P)  
s. t.  $x \in \{0,1\}^n$ 

where f is a polynomial on n binary variables, and there are no additional constraints.

(P) is NP-hard, and the difficulties come from

- non-convexity of f
- integer variables



Several resolution methods for (P) are based on the idea of working in two phases:

- Phase 1: Define an equivalent linear or quadratic problem using auxiliary variables.
- ▶ Phase 2: Solve the (lower degree) reformulated problem.



Several resolution methods for (P) are based on the idea of working in two phases:

- Phase 1: Define an equivalent linear or quadratic problem using auxiliary variables.
- ▶ Phase 2: Solve the (lower degree) reformulated problem.

Motivation: To draw benefit from literature, algorithms and software available for the reformulated problems.



Several resolution methods for (P) are based on the idea of working in two phases:

- Phase 1: Define an equivalent linear or quadratic problem using auxiliary variables.
- Phase 2: Solve the (lower degree) reformulated problem using convexification techniques.

Motivation: To draw benefit from literature, algorithms and software available for the reformulated problems.



# Two complementary approaches

Quadratic reformulations of nonlinear binary optimization problems

Phase 1: Quadratization Carefully chosen

Phase 2: Convexification: Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017) (Boros, Crama, & Rodríguez-Heck, 2018) (Rodríguez-Heck, 2018) PQCR: Polynomial binary optimization through Quadratic Convex Reformulation

Phase 1: Quadratization Simple algorithm

Phase 2: Convexification: Carefully chosen, tailored

(Elloumi, Lambert, & Lazare, 2019) (Lazare, 2019)



# Two complementary approaches

Quadratic reformulations of nonlinear binary optimization problems

Phase 1: Quadratization Carefully chosen

Phase 2: Convexification: Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017) (Boros, Crama, & Rodríguez-Heck, 2018) (Rodríguez-Heck, 2018) PQCR: Polynomial binary optimization through Quadratic Convex Reformulation

> Phase 1: Quadratization Simple algorithm

Phase 2: Convexification: Carefully chosen, tailored

(Elloumi, Lambert, & Lazare, 2019) (Lazare, 2019)



# **Quadratizations without constraints**



# Quadratization: definition and desirable properties

### Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a polynomial f(x) on  $x \in \{0,1\}^n$ , a quadratization g(x,y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y
- satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \quad \forall x \in \{0, 1\}^n.$$



# Quadratization: definition and desirable properties

## Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a polynomial f(x) on  $x \in \{0,1\}^n$ , a quadratization g(x,y) is a function satisfying

- ▶ g is quadratic
- ▶ g(x, y) depends on the original variables x and on m auxiliary variables y
- satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \ \forall x \in \{0, 1\}^n.$$

#### Which quadratizations are "good"?

- Small number of auxiliary variables
- Lead to relaxations with tight bound?



# Quadratization: definition and desirable properties

### Definition (Anthony, Boros, Crama, & Gruber, 2017)

Given a polynomial f(x) on  $x \in \{0,1\}^n$ , a quadratization g(x,y) is a function satisfying

- g is quadratic
- g(x, y) depends on the original variables x and on m auxiliary variables y
- satisfies

$$f(x) = \min\{g(x, y) : y \in \{0, 1\}^m\} \quad \forall x \in \{0, 1\}^n.$$

#### Which quadratizations are "good"?

- Small number of auxiliary variables
- Lead to relaxations with tight bound?

Two main classes of approaches: termwise and non-termwise.



## Termwise quadratizations

### Example 1: Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$



## Termwise quadratizations

### Example 1: Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

### Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

One variable is sufficient!



## Termwise quadratizations

### Example 1: Main idea

Quadratize monomial by monomial using disjoint sets of auxiliary variables.

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

#### Negative monomial

(Kolmogorov & Zabih, 2004; Freedman & Drineas, 2005)

$$-\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}} -y(\sum_{i=1}^{n} x_{i} - (n-1))$$

One variable is sufficient!

#### Positive monomial

(Boros, Crama, & Rodríguez-Heck, 2018): For  $\ell = \lceil \log(n) \rceil$ 

$$\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}^{\ell-1}} \frac{1}{2} \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} \right).$$
$$\left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} - 1 \right)$$

Number of auxiliaries:  $\lceil \log(n) \rceil - 1$ .

Proved to be smallest possible.

# Non-Termwise: Rosenberg's quadratization

### First quadratization method (Rosenberg, 1975)

- Take a product x<sub>i</sub>x<sub>j</sub> from a highest-degree monomial of f and substitute it by a new variable y<sub>ij</sub>.
- Add penalty  $P(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$  (*P* large enough) to objective function to force  $y_{ij} = x_ix_j$  at all optimal solutions.
- Iterate until obtaining a quadratic function.

#### Example 1

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

Apply Rosenberg with  $y_1 = x_2 x_3$  and  $y_2 = x_1 x_4$ . We obtain

$$g(x, y) = 2x_1 + 3x_2x_3 - 2y_1x_4 + 3y_1y_2 + P(x_2x_3 - 2x_2y_1 - 2x_3y_1 + 3y_1)$$
  
$$P(x_1x_4 - 2x_1y_2 - 2x_4y_2 + 3y_2)$$

- Different substitution choices = different quadratizations (!)
- A substitution choice corresponds to a pairwise cover

## Non-termwise quadratizations

(Anthony, Boros, Crama, & Gruber, 2017)

Definition: Pairwise cover or  $2 \times 2$  quadratization schemes

- Let  $\mathcal{M}$  be the set of monomials of polynomial f.
- A pairwise cover of *M* is a set of monomials *H* such that for each monomial *M* ∈ *M* of degree > 2, there exist two monomials *A*(*M*), *B*(*M*) ∈ *H* such that |*A*(*M*)| < |*M*|, |*B*(*M*)| < |*M*| and *A*(*M*) ∪ *B*(*M*) = *M*.

### Example 1

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

Two different pairwise covers:

• 
$$\mathcal{H}_1 = \{\{2,4\},\{3\},\{1,2\},\{3,4\}\}$$

• 
$$\mathcal{H}_2 = \{\{2,3\},\{1,2,3\},\{4\}\}$$



# Non-Termwise: ABCG quadratization

### Theorem (Anthony, Boros, Crama, & Gruber, 2017)

Given f with set of monomials  $\mathcal{M}$ , and a pairwise cover  $\mathcal{H}$  of  $\mathcal{M}$  such that  $\mathcal{H} \subset \mathcal{M}$ , one can define a quadratization for f as follows

$$f(x) = \min_{y \in \{0,1\}^{|\mathcal{H}|}} \sum_{M \in \mathcal{M}} a_M y_{A(M)} y_{B(M)} + \sum_{H \in \mathcal{H}} b_H \left( y_H \left( |H| - \frac{1}{2} - \sum_{j \in H} x_j \right) + \frac{1}{2} \prod_{j \in H} x_j \right)$$
  
where  $b_H = 0$  for  $H \in \mathcal{M} \setminus \mathcal{H}$  and

$$\frac{1}{2}b_{H} = \sum_{\substack{M \in \mathcal{M} \\ H \in \{A(M), B(M)\}}} \left( |\mathbf{a}_{M}| + \frac{1}{2}b_{M} \right)$$

- Different pairwise covers lead to different ABCG quadratizations.
- Similar to Rosenberg but with a different penalty (smaller coefficients).

#### Small pairwise covers

Finding pairwise cover of smallest size (i.e., introducing smallest number of auxiliary variables) is NP-hard.



#### Small pairwise covers

- Finding pairwise cover of smallest size (i.e., introducing smallest number of auxiliary variables) is NP-hard.
- Three heuristics developed (Rodríguez-Heck, 2018)
  - PC1: Separate first two variables from the rest.
  - PC2: Most "popular" intersections first.
  - PC3: Most "popular" pairs of variables first.



#### Small pairwise covers

- Finding pairwise cover of smallest size (i.e., introducing smallest number of auxiliary variables) is NP-hard.
- Three heuristics developed (Rodríguez-Heck, 2018)
  - PC1: Separate first two variables from the rest.
  - PC2: Most "popular" intersections first.
  - PC3: Most "popular" pairs of variables first.
- Fourth heuristic developed (Lazare, 2019)
  - PC0: Sort monomials in lexicographical order + "greedy" heuristic.



### Small pairwise covers

- Finding pairwise cover of smallest size (i.e., introducing smallest number of auxiliary variables) is NP-hard.
- Three heuristics developed (Rodríguez-Heck, 2018)
  - PC1: Separate first two variables from the rest.
  - PC2: Most "popular" intersections first.
  - PC3: Most "popular" pairs of variables first.
- Fourth heuristic developed (Lazare, 2019)
  - PC0: Sort monomials in lexicographical order + "greedy" heuristic.
- Main idea: identifying subterms that appear as subsets of one or more monomials more often in the input monomial set M.



# Computational results: LABS

- Instances from http://polip.zib.de/autocorrelated\_sequences/
- Quadratization solved with CPLEX 12.7, time limit: 1h

| Instance |    |      | Quadratization + CPLEX |          |        |        |       |        |
|----------|----|------|------------------------|----------|--------|--------|-------|--------|
|          |    |      | Non-                   | Termwise |        |        | Termw | /ise   |
| Name     | n  | т    | N                      | PC1      | PC2    | PC3    | N     | logn-1 |
| b.20.5   | 20 | 207  | 90                     | 10.58    | 5.05   | 4.27   | 137   | 35.34  |
| b.20.10  | 20 | 833  | 155                    | 90.28    | 159.47 | 137.69 | 698   | 365.47 |
| b.25.6   | 25 | 407  | 135                    | 106.67   | 80.17  | 121.03 | 297   | 466.92 |
| b.25.13  | 25 | 1782 | 247                    | 2311.09  | > 3600 | > 3600 | 1560  | > 3600 |
| b.30.4   | 30 | 223  | 114                    | 13.52    | 7.17   | 7.03   | 139   | 36.08  |
| b.35.4   | 35 | 263  | 134                    | 24.13    | 13.25  | 11.2   | 164   | 54.14  |

Non-Termwise always better.

These instances have a very particular structure (and are all of degree 4).



# **Quadratizations with constraints**



### First quadratization method (Rosenberg, 1975)

- Take a product x<sub>i</sub>x<sub>j</sub> from a highest-degree monomial of f and substitute it by a new variable y<sub>ij</sub>.
- Add penalty P(x<sub>i</sub>x<sub>j</sub> 2x<sub>i</sub>y<sub>ij</sub> 2x<sub>j</sub>y<sub>ij</sub> + 3y<sub>ij</sub>) to objective function to force y<sub>ij</sub> = x<sub>i</sub>x<sub>j</sub> at all optimal solutions.
- Iterate until obtaining a quadratic function.

#### Example 1

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

Apply Rosenberg with  $y_1 = x_2 x_3$  and  $y_2 = x_1 x_4$ . We obtain

$$g(x, y) = 2x_1 + 3x_2x_3 - 2y_1x_4 + 3y_1y_2 + P(x_2x_3 - 2x_2y_1 - 2x_3y_1 + 3y_1)$$
  
$$P(x_1x_4 - 2x_1y_2 - 2x_4y_2 + 3y_2)$$

- Different substitution choices = different quadratizations (!)
- A substitution choice corresponds to a pairwise cover



### First quadratization method (Rosenberg, 1975)

- Take a product x<sub>i</sub>x<sub>j</sub> from a highest-degree monomial of f and substitute it by a new variable y<sub>ij</sub>.
- **2** Add constraints to force  $y_{ij} = x_i x_j$  at all optimal solutions.

Iterate until obtaining a quadratic function.

#### Example 1

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

Apply Rosenberg with  $y_1 = x_2 x_3$  and  $y_2 = x_1 x_4$ . We obtain

$$g(x, y) = 2x_1 + 3x_2x_3 - 2y_1x_4 + 3y_1y_2 + P(x_2x_3 - 2x_2y_1 - 2x_3y_1 + 3y_1)$$
  
$$P(x_1x_4 - 2x_1y_2 - 2x_4y_2 + 3y_2)$$

Different substitution choices = different quadratizations (!) A substitution choice corresponds to a pairwise cover



### First quadratization method (Rosenberg, 1975)

- Take a product x<sub>i</sub>x<sub>j</sub> from a highest-degree monomial of f and substitute it by a new variable y<sub>ij</sub>.
- **2** Add constraints to force  $y_{ij} = x_i x_j$  at all optimal solutions.

Iterate until obtaining a quadratic function.

#### Example 1

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

Apply Rosenberg with  $y_1 = x_2x_3$ and  $y_2 = x_1x_4$ 

min  $g(x, y) = 2x_1 + 3x_2x_3 - 2y_1x_4 + 3y_1y_2$ s. t.  $y_1 = x_2x_3$  $y_2 = x_1x_4$  $x_1, x_2, x_3, x_4, y_1, y_2 \in \{0, 1\}$ 

### First quadratization method (Rosenberg, 1975)

- Take a product x<sub>i</sub>x<sub>j</sub> from a highest-degree monomial of f and substitute it by a new variable y<sub>ij</sub>.
- 2 Add constraints to force  $y_{ij} = x_i x_j$  at all optimal solutions.

Iterate until obtaining a quadratic function.

#### Example 1

$$f(x) = 2x_1 + 3x_2x_3 - 2x_2x_3x_4 + 3x_1x_2x_3x_4$$

 

 Apply Rosenberg with  $y_1 = x_2 x_3$ and  $y_2 = x_1 x_4$  Instead of  $y_{ij} = x_i x_j$ , use:

 min  $g(x, y) = 2x_1 + 3x_2 x_3 - 2y_1 x_4 + 3y_1 y_2$   $y_{ij} \le x_i$  

 s. t.  $y_1 = x_2 x_3$  $y_2 = x_1 x_4$  $x_1, x_2, x_3, x_4, y_1, y_2 \in \{0, 1\}$   $y_{ij} \ge x_i + x_j - 1$  $y_{ij} \ge 0$ 

# Non-Termwise: ABCG quadratization with constraints

### (With constraints) ABCG = Rosenberg

Given an appropriate pairwise cover H of M, the only difference between Rosenberg's and ABCG quadratization is the penalty term.



### (With constraints) ABCG = Rosenberg

- Given an appropriate pairwise cover H of M, the only difference between Rosenberg's and ABCG quadratization is the penalty term.
- Hence, when using constraints instead of penalties, both methods lead to the same quadratization.



## Termwise with constraints?

Not easy to derive a quadratization with constraints

• Quadratization for the positive monomial  $(\ell = \lceil \log(n) \rceil)$ :

$$\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}^{\ell-1}} \frac{1}{2} \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} \right) \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} - 1 \right)$$



## Termwise with constraints?

Not easy to derive a quadratization with constraints

• Quadratization for the positive monomial  $(\ell = \lceil \log(n) \rceil)$ :

$$\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}^{\ell-1}} \frac{1}{2} \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} \right) \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} - 1 \right)$$

► To one monomial we associate auxiliary variables y<sub>1</sub>, y<sub>2</sub>,..., y<sub>ℓ</sub>, but we lose the link of each single variable with the original variables.



## Termwise with constraints?

Not easy to derive a quadratization with constraints

• Quadratization for the positive monomial  $(\ell = \lceil \log(n) \rceil)$ :

$$\prod_{i=1}^{n} x_{i} = \min_{y \in \{0,1\}^{\ell-1}} \frac{1}{2} \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} \right) \left( \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{\ell-1} 2^{i} y_{i} - 1 \right)$$

- ► To one monomial we associate auxiliary variables y<sub>1</sub>, y<sub>2</sub>,..., y<sub>ℓ</sub>, but we lose the link of each single variable with the original variables.
- Which constraints should we add?



# Summary of quadratization methods

| Unconstrained         |                             |  |  |  |  |
|-----------------------|-----------------------------|--|--|--|--|
| Non-termwise Termwise |                             |  |  |  |  |
| Rosenberg             | $\lceil \log(n) \rceil - 1$ |  |  |  |  |

| Constrained           |            |  |  |  |  |
|-----------------------|------------|--|--|--|--|
| Non-termwise Termwise |            |  |  |  |  |
| Rosenberg = ABCG      | [log(n)]<1 |  |  |  |  |



# Two complementary approaches

Quadratic reformulations of nonlinear binary optimization problems

Phase 1: Quadratization Carefully chosen

Phase 2: Convexification: Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017) (Boros, Crama, & Rodríguez-Heck, 2018) (Rodríguez-Heck, 2018) PQCR: Polynomial binary optimization through Quadratic Convex Reformulation

Phase 1: Quadratization Simple algorithm

Phase 2: Convexification: Carefully chosen, tailored

(Elloumi, Lambert, & Lazare, 2019) (Lazare, 2019)



# PQCR: Phase 1 - Quadratization

Input: a polynomial f(x) with monomial set  $\mathcal{M}$ 

- **(**) A pairwise cover  $\mathcal{H}$  of  $\mathcal{M}$  is defined heuristically (PC0).
- Relation between artificial and original variables is enforced using (linearized) constraints.

(Linearly Constrained) Quadratic Program

min 
$$g(x) = x^t Q x + c^t x$$
 (QP)  
s. t.  $x \in \mathcal{F}_{\mathcal{E}}$ 

Where  $\mathcal{F}_{\mathcal{E}}$  are Fortet's constraints for all appropriate indices of artificial and original binary variables coming from PC0:

$$\begin{aligned} x_i &\leq x_{i_1} \\ x_i &\leq x_{i_2} \\ x_i &\geq x_{i_1} + x_{i_2} - 1 \\ x_i &\geq 0 \end{aligned}$$



## PQCR: Phase 2 - Convexification

Input: (Linearly Constrained) Quadratic Program

min 
$$g(x) = x^t Q x + c^t x$$
 (QP)  
s. t.  $x \in \mathcal{F}_{\mathcal{E}}$ 

- Objective: define a function the value of which is equal to g(x) with a positive semi-definite Hessian matrix Q.
- Can be achieved by adding to g(x) null-functions over the domain *F*<sub>E</sub>.



Smallest eigenvalue convexification: (Hammer & Rubin, 1970)

$$\begin{array}{l} \min \ g_{\lambda}(x) = g(x) + \lambda \sum_{i=1}^{N} (x_i^2 - x_i) \\ \text{s. t. } x \in \mathcal{F}_{\mathcal{E}} \end{array} \tag{QP}_{\lambda}$$

- Modify diagonal entries of the hessian matrix of g by adding null functions to it.
- $(QP_{\lambda})$  is a quadratic program parametrized by  $\lambda$  such that:

$$\blacktriangleright g_{\lambda}(x) = g(x), \forall x \in \mathcal{F}_{\mathcal{E}}$$

Setting  $\lambda = -\frac{\lambda_{\min}}{2}$  leads to convex  $g_{\lambda}(x)$  and provides tightest continuous relaxation



### Smallest eigenvalue convexification

$$g(x) = 2x_1 + 2x_2x_3 - 2x_6x_2 - 3x_5x_6$$
  
(where  $x_6 = x_3x_4$  and  $x_5 = x_1x_2$ )  
Hessian matrix:



### Smallest eigenvalue convexification

$$g(x) = 2x_1 + 2x_2x_3 - 2x_6x_2 - 3x_5x_6$$

(where  $x_6 = x_3x_4$  and  $x_5 = x_1x_2$ ) Hessian matrix:

$$Q_{\lambda}=egin{pmatrix} 2.08&0&0&0&0&0\ 0&2.08&1.5&0&0&-1\ 0&1.5&2.08&0&0&0\ 0&0&0&2.08&0&0\ 0&0&0&0&2.08&-1.5\ 0&-1&0&0&-1.5&2.08 \end{pmatrix}$$

where  $\lambda_{min} = -2.08$ ,



### Smallest eigenvalue convexification

$$g(x) = 2x_1 + 2x_2x_3 - 2x_6x_2 - 3x_5x_6$$

(where  $x_6 = x_3x_4$  and  $x_5 = x_1x_2$ ) Hessian matrix:

$$Q_{\lambda}=egin{pmatrix} 2.08&0&0&0&0&0\ 0&2.08&1.5&0&0&-1\ 0&1.5&2.08&0&0&0\ 0&0&0&2.08&0&0\ 0&0&0&0&2.08&-1.5\ 0&-1&0&0&-1.5&2.08 \end{pmatrix}$$

where  $\lambda_{min} = -2.08$ , hence

min 
$$2x_1 + 2x_2x_3 - 2x_6x_2 - 3x_5x_6 + 1.04 \sum_{i=1}^{N} (x_i^2 - x_i)$$
 (QP <sub>$\lambda$</sub> )

s. t.  $x \in \mathcal{F}_{\mathcal{E}}$ 



**Non-uniform diagonal convexification:** QCR (Billionnet & Elloumi, 2007)

$$\begin{array}{l} \min \ g_{\alpha}(x) = g(x) + \sum_{i=1}^{N} \alpha_{i}(x_{i}^{2} - x_{i}) \\ \text{s. t. } x \in \mathcal{F}_{\mathcal{E}} \end{array}$$

How to compute  $\alpha$  such that

- $\triangleright$   $g_{\alpha}$  is convex, and
- continuous relaxation bound value of  $(QP_{\alpha})$  is maximized?



**Non-uniform diagonal convexification:** QCR (Billionnet & Elloumi, 2007)

$$\begin{array}{l} \min \ g_{\alpha}(x) = g(x) + \sum_{i=1}^{N} \alpha_{i}(x_{i}^{2} - x_{i}) & (QP_{\alpha}) \\ \text{s. t. } x \in \mathcal{F}_{\mathcal{E}} \end{array}$$

How to compute  $\alpha$  such that

- $g_{\alpha}$  is convex, and
- continuous relaxation bound value of  $(QP_{\alpha})$  is maximized?
- $\rightarrow$  can be done by solving an SDP relaxation of (*QP*<sub> $\alpha$ </sub>).



**General convexification framework:** PQCR (Elloumi, Lambert, & Lazare, 2019)

- Use the quadratization *constraints* to add further null functions
  - $x_i^2 x_i = 0,$  for original variables *i* (1)
  - $x_i x_i x_j = 0$ , for variables *j* in pairwise cover of *i* (2)
  - $x_i x_j x_k = 0$ , for variables j and k in pairwise cover of i (3)
  - $x_i x_j x_k x_\ell = 0$ , for two different decompositions of a monomial (4)



**General convexification framework:** PQCR (Elloumi, Lambert, & Lazare, 2019)

- Use the quadratization *constraints* to add further null functions
  - $x_i^2 x_i = 0,$  for original variables *i* (1)
  - $x_i x_i x_j = 0$ , for variables *j* in pairwise cover of *i* (2)
  - $x_i x_j x_k = 0$ , for variables j and k in pairwise cover of i (3)
  - $x_i x_j x_k x_\ell = 0$ , for two different decompositions of a monomial (4)
- Resulting in the following parametrized function:

$$g_{\alpha,\beta,\delta,\lambda}(x) = g(x) + \sum_{i \in I \cup J} \alpha_i (x_i^2 - x_i) + \sum_{\substack{(i,j) \in J \times (I \cup J) \\ \mathcal{E}_j \subset \mathcal{E}_i}} \beta_{ij}(x_i - x_i x_j)$$
$$\sum_{\substack{(i,j,k) \in J \times (I \cup J)^2 \\ \mathcal{E}_i = \mathcal{E}_j \cup \mathcal{E}_k}} \delta_{ijk}(x_i - x_j x_k) + \sum_{\substack{(i,j,k,\ell) \in (I \cup J)^4 \\ \mathcal{E}_i \cup \mathcal{E}_j = \mathcal{E}_k \cup \mathcal{E}_\ell}} \lambda_{i,j,k,\ell}(x_i x_j - x_k x_\ell)$$

### General convexification framework: PQCR

min 
$$2x_1 + 3x_2x_3 - 2x_2x_6 - 3x_5x_6 + 1(x_1^2 - x_1) + 1(x_2^2 - x_2)$$
  $(QP_{\alpha,\beta,\delta,\gamma})$   
+  $0.7(x_3^2 - x_3) + 0.09(x_4^2 - x_4) + 2.2(x_5^2 - x_5) + 1.3(x_6^2 - x_6)$   
-  $3.96(x_1x_5 - x_5) - 1.96(x_1x_5 - x_5) - 3.18(x_3x_6 - x_6) - 0.36(x_4x_6 - x_6)$   
-  $0.04(x_1x_2 - x_5) + 0.18(x_3x_4 - x_6)$   
s. t.  $x \in F_5$ 

- Inequalities from the quadratization  $x_5 = x_1x_2$  and  $x_6 = x_3x_4$
- Derived valid inequalities:

• 
$$x_1x_5 - x_5$$
 and  $x_2x_5 - x_5$ 

•  $x_3x_6 - x_6$  and  $x_4x_6 - x_6$ 



### General convexification framework: PQCR

min 
$$2x_1 + 3x_2x_3 - 2x_2x_6 - 3x_5x_6 + 1(x_1^2 - x_1) + 1(x_2^2 - x_2)$$
  $(QP_{\alpha,\beta,\delta,\gamma})$   
+  $0.7(x_3^2 - x_3) + 0.09(x_4^2 - x_4) + 2.2(x_5^2 - x_5) + 1.3(x_6^2 - x_6)$   
-  $3.96(x_1x_5 - x_5) - 1.96(x_1x_5 - x_5) - 3.18(x_3x_6 - x_6) - 0.36(x_4x_6 - x_6)$   
-  $0.04(x_1x_2 - x_5) + 0.18(x_3x_4 - x_6)$ 

- Inequalities from the quadratization  $x_5 = x_1x_2$  and  $x_6 = x_3x_4$
- Derived valid inequalities:

• 
$$x_3x_6 - x_6$$
 and  $x_4x_6 - x_6$ 

| Method              | Continuous relaxation bound |
|---------------------|-----------------------------|
| Smallest eigenvalue | -1.7                        |
| QCR                 | -1.6                        |
| PQCR                | -0.6                        |



### Theorem (Elloumi, Lambert, & Lazare, 2019)

The optimal values  $(\alpha^*, \beta^*, \delta^*, \lambda^*)$  are given by the optimal values of the dual variables associated with the constraints (5)–(8) of the following (SDP)

| min   | $\langle Q, X \rangle + c^T x$                               | (                                                                                        | (SDP) |
|-------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|-------|
| s. t. | $X_{ii}-x_i=0$                                               | $i \in I \cup J$                                                                         | (5)   |
|       | $-X_{ij}+x_i=0$                                              | $(i,j)\in J	imes (I\cup J):\mathcal{E}_i\subset \mathcal{E}_j$                           | (6)   |
|       | $-X_{jk}+x_i=0$                                              | $(i,j,k)\in J	imes \left(I\cup J ight)^2:\mathcal{E}_i=\mathcal{E}_j\cup\mathcal{E}_k$   | (7)   |
|       | $X_{ij}-X_{kl}=0$                                            | $(i,j,k,l)\in (l\cup J)^4:\mathcal{E}_i\cup\mathcal{E}_j=\mathcal{E}_k\cup\mathcal{E}_l$ | (8)   |
|       | $\begin{pmatrix} 1 & x^{T} \\ x & X \end{pmatrix} \succeq 0$ |                                                                                          |       |
|       | $x \in \mathbb{R}^N, X \in S^N$                              |                                                                                          |       |



# Computational results: LABS

Instances from http://polip.zib.de/autocorrelated\_sequences/

| In      | stance |      |     |         | PQCR |       |         | Ba      | aron 17.4.1 |       |
|---------|--------|------|-----|---------|------|-------|---------|---------|-------------|-------|
| Name    | n      | m    | N   | Gap (%) | tSdp | Tt    | Nodes   | Gap (%) | Tt          | Nodes |
| b.20.03 | 20     | 38   | 20  | 0       | 1    | 2     | 0       | 100     | 1           | 1     |
| b.20.05 | 20     | 207  | 65  | 23      | 22   | 23    | 5886    | 1838    | 2           | 1     |
| b.20.10 | 20     | 833  | 124 | 8       | 837  | 846   | 24183   | 2918    | 125         | 7     |
| b.20.15 | 20     | 1494 | 164 | 5       | 1228 | 1242  | 9130    | 3202    | 728         | 9     |
| b.25.03 | 25     | 48   | 25  | 0       | 1    | 2     | 0       | 100     | 0           | 1     |
| b.25.06 | 25     | 407  | 105 | 17      | 461  | 469   | 163903  | 2307    | 65          | 27    |
| b.25.13 | 25     | 1782 | 206 | 4       | 1552 | 1603  | 76828   | 3109    | 3750        | 75    |
| b.25.19 | 25     | 3040 | 265 | 4       | -    | 13433 | 224550  | 3356    | 14399       | 129   |
| b.25.25 | 25     | 3677 | 289 | 5       | -    | 13395 | 167423  | 3405    | (12 %)      | 100   |
| b.30.04 | 30     | 223  | 82  | 23      | 58   | 78    | 134635  | 1347    | 7           | 7     |
| b.30.08 | 30     | 926  | 174 | 10      | 1940 | 2040  | 752765  | 2696    | 2778        | 237   |
| b.30.15 | 30     | 2944 | 296 | 5       | -    | 13525 | 438278  | 3221    | (21 %)      | 103   |
| b.30.23 | 30     | 5376 | 390 | 11      | 5953 | 6865  | 9337391 | 3450    | (135 %)     | 8     |
| b.30.30 | 30     | 6412 | 422 | 4       | 8500 | 15352 | 452460  | 3470    | (161 %)     | 5     |
| b.35.04 | 35     | 263  | 97  | 19      | 135  | 167   | 156085  | 1350    | 32          | 13    |
| b.35.09 | 35     | 1381 | 234 | 10      | 2245 | 4630  | 8163651 | 2826    | (29 %)      | 354   |

Time limit: 5h (3h SDP, 2h CPLEX)

Results:

- Q+Cplex and Q+QCR did not solve any instance.
- PQCR very tight gaps, solves several previously unsolved instances.

# Two complementary approaches

Quadratic reformulations of nonlinear binary optimization problems

Phase 1: Quadratization Carefully chosen

Phase 2: Convexification: Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017) (Boros, Crama, & Rodríguez-Heck, 2018) (Rodríguez-Heck, 2018) PQCR: Polynomial binary optimization through Quadratic Convex Reformulation

Phase 1: Quadratization Simple algorithm

Phase 2: Convexification: Carefully chosen, tailored

(Elloumi, Lambert, & Lazare, 2019) (Lazare, 2019)



#### Combine both methods into a single one:





## Quadratizations without constraints

- Instances from http://polip.zib.de/autocorrelated\_sequences/
- Time limit: 1h

| Instar  | nce   |     | ROS-    | +QCR     |                | T+QCR |         |          |                |
|---------|-------|-----|---------|----------|----------------|-------|---------|----------|----------------|
| Name    | Opt   | N   | Gap (%) | Nodes    | T <sub>t</sub> | N     | Gap (%) | Nodes    | T <sub>t</sub> |
| b.20.5  | -416  | 65  | 804612  | 73437542 | -              | 137   | 239     | 32889233 | -              |
| b.20.10 | -2936 | 124 | 31206   | 38511235 | -              | 698   | 361     | 24897180 | -              |
| b.25.6  | -960  | 105 | 1843723 | 36766956 | -              | 297   | 328     | 30810993 | -              |
| b.25.13 | -8144 | 206 | 59614   | 20336389 | -              | 1560  | 403     | 19983753 | -              |
| b.30.4  | -324  | 82  | 829465  | 38587389 | -              | 139   | 191     | 19931268 | -              |
| b.35.4  | -384  | 97  | 1038548 | 39040424 | -              | 164   | 196     | 20091757 | -              |

- Both methods give very bad bounds.
- T+QCR has better bounds than ROS+QCR.
- ROS+QCR is not a viable method.



# Quadratizations without constraints

Instances from http://polip.zib.de/autocorrelated\_sequences/

| Time | limit: | 1h |
|------|--------|----|
|------|--------|----|

| Instai  | nce   |     | ROS     | +QCR     |                | T+QCR |         |          |       |
|---------|-------|-----|---------|----------|----------------|-------|---------|----------|-------|
| Name    | Opt   | N   | Gap (%) | Nodes    | T <sub>t</sub> | N     | Gap (%) | Nodes    | $T_t$ |
| b.20.5  | -416  | 65  | 804612  | 73437542 | -              | 137   | 239     | 32889233 | -     |
| b.20.10 | -2936 | 124 | 31206   | 38511235 | -              | 698   | 361     | 24897180 | -     |
| b.25.6  | -960  | 105 | 1843723 | 36766956 | -              | 297   | 328     | 30810993 | -     |
| b.25.13 | -8144 | 206 | 59614   | 20336389 | -              | 1560  | 403     | 19983753 | -     |
| b.30.4  | -324  | 82  | 829465  | 38587389 | -              | 139   | 191     | 19931268 | -     |
| b.35.4  | -384  | 97  | 1038548 | 39040424 | -              | 164   | 196     | 20091757 | -     |

- Both methods give **very** bad bounds.
- T+QCR has better bounds than ROS+QCR.
- ROS+QCR is not a viable method.

We lose the advantage of PQCR over QCR, because we lose link between original and artificial variables!



# Quadratizations with constraints: PC heuristics

| Instar  | PQ    | CR with | PC1   | PQCR with PC2 |     |       |                |
|---------|-------|---------|-------|---------------|-----|-------|----------------|
| Name    | Opt   | N       | LB    | Tt            | N   | LB    | T <sub>t</sub> |
| b.20.5  | -416  | 64      | -435  | 70            | 56  | -439  | 63             |
| b.20.10 | -2936 | 123     | -3052 | 112           | 135 | -3115 | 132            |
| b.40.10 | -8248 | 303     | -8590 | 4385          | 315 | -8659 | 4562           |

| Instar  | nce   | PQCR with PC3 |       |      | PQCR with PC0 |       |                |
|---------|-------|---------------|-------|------|---------------|-------|----------------|
| Name    | Opt   | N             | LB    | Tt   | N             | LB    | T <sub>t</sub> |
| b.20.5  | -416  | 40            | -436  | 59   | 65            | -435  | 64             |
| b.20.10 | -2936 | 93            | -3068 | 112  | 124           | -3051 | 130            |
| b.40.10 | -8248 | 262           | -8745 | 2162 | 304           | -8589 | 3723           |

Best quadratization in terms of:

- ▶ LB: PQCR with PC0 / PQCR with PC1
- ► N: PQCR with PC3
- ▶  $T_t$ : PQCR with PC3 (difference only significant for b.40.10)

# Full quadratization

### Definition: Full quadratization (Lazare, 2019)

The *full quadratization* of f(x),  $x \in \{0,1\}^n$  is defined on a pairwise cover that introduces an auxiliary variable for **every** product  $\prod_i x_j$  of variables of degree at least two and at most  $\lceil \frac{d}{2} \rceil$ .

#### Example 2

$$f(x) = 2x_1x_5 + 3x_2x_3 - 2x_2x_3x_4 - 3x_1x_2x_3x_4$$

The full quadratization for f introduces a variable for every product in red:

$$xx^{T} = \begin{pmatrix} x_{1}^{2} & x_{1}x_{2} & x_{1}x_{3} & x_{1}x_{4} & x_{1}x_{5} \\ x_{2}x_{1} & x_{2}^{2} & x_{2}x_{3} & x_{2}x_{4} & x_{2}x_{5} \\ x_{3}x_{1} & x_{3}x_{2} & x_{3}^{2} & x_{3}x_{4} & x_{3}x_{5} \\ x_{4}x_{1} & x_{4}x_{2} & x_{4}x_{3} & x_{4}^{2} & x_{4}x_{5} \\ x_{5}x_{1} & x_{5}x_{2} & x_{5}x_{3} & x_{5}x_{4} & x_{5}^{2} \end{pmatrix}$$



# Partial quadratization

### Definition: Partial quadratization (Lazare, 2019)

The partial quadratization of f(x),  $x \in \{0,1\}^n$  is defined on a pairwise cover that introduces an auxiliary variable for every product  $\prod_j x_j$  of variables of degree at least two and at most  $\lceil \frac{d}{2} \rceil$  appearing in at least one monomial of f.

#### Example 2

$$f(x) = 2x_1x_5 + 3x_2x_3 - 2x_2x_3x_4 - 3x_1x_2x_3x_4$$

The partial quadratization for f introduces a variable for every product in blue:

$$xx^{T} = \begin{pmatrix} x_{1}^{2} & x_{1}x_{2} & x_{1}x_{3} & x_{1}x_{4} & x_{1}x_{5} \\ x_{2}x_{1} & x_{2}^{2} & x_{2}x_{3} & x_{2}x_{4} & x_{2}x_{5} \\ x_{3}x_{1} & x_{3}x_{2} & x_{3}^{2} & x_{3}x_{4} & x_{3}x_{5} \\ x_{4}x_{1} & x_{4}x_{2} & x_{4}x_{3} & x_{4}^{2} & x_{4}x_{5} \\ x_{5}x_{1} & x_{5}x_{2} & x_{5}x_{3} & x_{5}x_{4} & x_{5}^{2} \end{pmatrix}$$



# Quadatizations with constraints: Full and Partial

| Instance |    |       | PQC | R with Full | PQCR with Partial |           |  |
|----------|----|-------|-----|-------------|-------------------|-----------|--|
| Name     | n  | Opt   | N   | Const SDP   | N                 | Const SDP |  |
| b.20.5   | 20 | -416  | 210 | 22156       | 83                | 1308      |  |
| b.20.10  | 20 | -2936 | 210 | 22156       | 138               | 6275      |  |
| b.20.15  | 20 | -5960 | 210 | 22156       | 176               | 13757     |  |

| Instance |    |       | PQCR with Full |       | PQCR with Partial |      |
|----------|----|-------|----------------|-------|-------------------|------|
| Name     | n  | Opt   | LB             | Tt    | LB                | Tt   |
| b.20.5   | 20 | -416  | -417           | 9700  | -422              | 3    |
| b.20.10  | 20 | -2936 | -3016          | 7439  | -3040             | 180  |
| b.20.15  | 20 | -5960 | -6025          | 10831 | -6059             | 2060 |

Best quadratization in terms of:

- ► LB: PQCR with Full
- $\blacktriangleright$   $T_t$ : PQCR with Partial



# Quadatizations with constraints: Full and Partial

| Instance |    |       | PQCR with Full |           | PQCR with Partial |           |
|----------|----|-------|----------------|-----------|-------------------|-----------|
| Name     | n  | Opt   | N              | Const SDP | N                 | Const SDP |
| b.20.5   | 20 | -416  | 210            | 22156     | 83                | 1308      |
| b.20.10  | 20 | -2936 | 210            | 22156     | 138               | 6275      |
| b.20.15  | 20 | -5960 | 210            | 22156     | 176               | 13757     |

| Instance |    |       | PQCR with Full |       | PQCR with Partial |      |
|----------|----|-------|----------------|-------|-------------------|------|
| Name     | n  | Opt   | LB             | Tt    | LB                | Tt   |
| b.20.5   | 20 | -416  | -417           | 9700  | -422              | 3    |
| b.20.10  | 20 | -2936 | -3016          | 7439  | -3040             | 180  |
| b.20.15  | 20 | -5960 | -6025          | 10831 | -6059             | 2060 |

Best quadratization in terms of:

- ▶ LB: PQCR with Full
- $\blacktriangleright$   $T_t$ : PQCR with Partial

PQCR with Partial gives a good compromise!



## Perspectives

### Next steps

- Compare and understand link between quadratizations and linearizations.
- Which quadratizations are best for which convexification method?
- Add valid inequalities to the resolution of the SDPs.
- Test on other instances than LABS, which have a very special structure, and are especially difficult to solve.



## Perspectives

### Next steps

- Compare and understand link between quadratizations and linearizations.
- Which quadratizations are best for which convexification method?
- Add valid inequalities to the resolution of the SDPs.
- Test on other instances than LABS, which have a very special structure, and are especially difficult to solve.

### Practical challenges

- Interaction between codes.
- Many different variants of Phase 1 and of Phase 2, many experiments to be carried out to choose a good combination.



# Bibliography I

Anthony, M., Boros, E., Crama, Y., & Gruber, A. (2017). Quadratic reformulations of nonlinear binary optimization problems. *Mathematical Programming*, *162*(1-2), 115–144.
Billionnet, A., & Elloumi, S. (2007). Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. *Mathematical Programming*, *109*(1), 55–68.

Boros, E., Crama, Y., & Rodríguez-Heck, E. (2018). Compact quadratizations for pseudo-Boolean functions. (Submitted)
Buchheim, C., & Rinaldi, G. (2007). Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM Journal on Optimization, 18(4), 1398–1413.

Elloumi, S., Lambert, A., & Lazare, A. (2019). Solving unconstrained 0–1 polynomial programs through quadratic convex reformulation.



# Bibliography II

- Freedman, D., & Drineas, P. (2005, June). Energy minimization via graph cuts: settling what is possible. In *leee conference* on computer vision and pattern recognition (Vol. 2, pp. 939–946).
- Hammer, P. L., & Rubin, A. A. (1970). Some remarks on quadratic programming with 0-1 variables. *Revue Française* d'Informatique et de Recherche Opérationnelle, 4, 67-79.
  Kolmogorov, V., & Zabih, R. (2004, Feb). What energy functions can be minimized via graph cuts? *IEEE Transactions on Pattern Analysis and Machine Intelligence, 26*(2), 147-159.
  Lazare, A. (2019). Global optimization of polynomial programs with mixed-integer variables (Unpublished doctoral dissertation). (PhD thesis, Université Paris-Saclay)



Rodríguez-Heck, E. (2018). Linear and quadratic reformulations of nonlinear optimization problems in binary variables (Unpublished doctoral dissertation). (PhD thesis, Université de Liège)
Rosenberg, I. G. (1975). Reduction of bivalent maximization to

the quadratic case. *Cahiers du Centre d'Études de Recherche Opérationnelle*, 17, 71–74.

