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The problem

We are interested in solving the following problem:

min f (x) (P)
s. t. x ∈ {0, 1}n

where f is a polynomial on n binary variables, and there are no
additional constraints.

(P) is NP-hard, and the difficulties come from
I non-convexity of f
I integer variables
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Reformulation / relaxation based resolution methods

Several resolution methods for (P) are based on the idea of
working in two phases:
I Phase 1: Define an equivalent linear or quadratic problem

using auxiliary variables.
I Phase 2: Solve the (lower degree) reformulated problem.

Motivation: To draw benefit from literature, algorithms and
software available for the reformulated problems.
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Reformulation / relaxation based resolution methods

Several resolution methods for (P) are based on the idea of
working in two phases:
I Phase 1: Define an equivalent linear or quadratic problem

using auxiliary variables.
I Phase 2: Solve the (lower degree) reformulated problem using

convexification techniques.

Motivation: To draw benefit from literature, algorithms and
software available for the reformulated problems.
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Two complementary approaches

Quadratic reformulations of
nonlinear binary optimization

problems

Phase 1: Quadratization
Carefully chosen

Phase 2: Convexification:
Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017)
(Boros, Crama, & Rodŕıguez-Heck, 2018)
(Rodŕıguez-Heck, 2018)

PQCR: Polynomial binary
optimization through Quadratic

Convex Reformulation

Phase 1: Quadratization
Simple algorithm

Phase 2: Convexification:
Carefully chosen, tailored

(Elloumi, Lambert, & Lazare, 2019)
(Lazare, 2019)

3/ 31



Two complementary approaches

Quadratic reformulations of
nonlinear binary optimization

problems

Phase 1: Quadratization
Carefully chosen

Phase 2: Convexification:
Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017)
(Boros, Crama, & Rodŕıguez-Heck, 2018)
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Quadratizations without constraints



Quadratization: definition and desirable properties

Definition (Anthony, Boros, Crama, & Gruber, 2017)
Given a polynomial f (x) on x ∈ {0, 1}n, a quadratization g(x , y) is a
function satisfying
I g is quadratic
I g(x , y) depends on the original variables x and on m auxiliary

variables y
I satisfies

f (x) = min{g(x , y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.

I Which quadratizations are “good”?
I Small number of auxiliary variables
I Lead to relaxations with tight bound?

I Two main classes of approaches: termwise and non-termwise.
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Termwise quadratizations

Example 1: Main idea
Quadratize monomial by monomial using disjoint sets of auxiliary variables.

f (x) = 2x1 + 3x2x3 − 2x2x3x4 + 3x1x2x3x4

Negative monomial
(Kolmogorov & Zabih, 2004; Freedman
& Drineas, 2005)

−
n∏

i=1

xi = min
y∈{0,1}

−y(
n∑

i=1

xi − (n − 1))

I One variable is sufficient!

Positive monomial
(Boros, Crama, & Rodŕıguez-Heck,
2018): For ` = dlog(n)e

n∏
i=1

xi = min
y∈{0,1}`−1

1
2

(
n∑

i=1

xi −
`−1∑
i=1

2i yi )·

(
n∑

i=1

xi −
`−1∑
i=1

2i yi − 1)

I Number of auxiliaries: dlog(n)e − 1.
I Proved to be smallest possible.
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Non-Termwise: Rosenberg’s quadratization

First quadratization method (Rosenberg, 1975)
1 Take a product xi xj from a highest-degree monomial of f and

substitute it by a new variable yij .
2 Add penalty P(xi xj − 2xi yij − 2xjyij + 3yij) (P large enough) to

objective function to force yij = xi xj at all optimal solutions.
3 Iterate until obtaining a quadratic function.

Example 1
f (x) = 2x1 + 3x2x3 − 2x2x3x4 + 3x1x2x3x4

Apply Rosenberg with y1 = x2x3 and y2 = x1x4. We obtain

g(x , y) =2x1 + 3x2x3 − 2y1x4 + 3y1y2 + P(x2x3 − 2x2y1 − 2x3y1 + 3y1)
P(x1x4 − 2x1y2 − 2x4y2 + 3y2)

I Different substitution choices = different quadratizations (!)
I A substitution choice corresponds to a pairwise cover
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Non-termwise quadratizations

(Anthony, Boros, Crama, & Gruber, 2017)

Definition: Pairwise cover or 2× 2 quadratization schemes
I Let M be the set of monomials of polynomial f .
I A pairwise cover of M is a set of monomials H such that for

each monomial M ∈M of degree > 2, there exist two
monomials A(M),B(M) ∈ H such that |A(M)| < |M|,
|B(M)| < |M| and A(M) ∪ B(M) = M.

Example 1

f (x) = 2x1 + 3x2x3 − 2x2x3x4 + 3x1x2x3x4

Two different pairwise covers:
I H1 = {{2, 4}, {3}, {1, 2}, {3, 4}}
I H2 = {{2, 3}, {1, 2, 3}, {4}}

7/ 31



Non-Termwise: ABCG quadratization

Theorem (Anthony, Boros, Crama, & Gruber, 2017)
Given f with set of monomials M, and a pairwise cover H of M
such that H ⊂M, one can define a quadratization for f as follows

f (x) = min
y∈{0,1}|H|

∑
M∈M

aMyA(M)yB(M)+
∑
H∈H

bH

(
yH

(
|H| −

1
2
−
∑
j∈H

xj

)
+

1
2

∏
j∈H

xj

)

where bH = 0 for H ∈M\H and
1
2 bH =

∑
M∈M

H∈{A(M),B(M)}

(
|aM |+

1
2 bM

)

I Different pairwise covers lead to different ABCG
quadratizations.

I Similar to Rosenberg but with a different penalty (smaller
coefficients).
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Heuristics for small Pairwise Covers

Small pairwise covers
I Finding pairwise cover of smallest size (i.e., introducing

smallest number of auxiliary variables) is NP-hard.

I Three heuristics developed (Rodŕıguez-Heck, 2018)
I PC1: Separate first two variables from the rest.
I PC2: Most “popular” intersections first.
I PC3: Most “popular” pairs of variables first.

I Fourth heuristic developed (Lazare, 2019)
I PC0: Sort monomials in lexicographical order + “greedy”

heuristic.
I Main idea: identifying subterms that appear as subsets of one

or more monomials more often in the input monomial set M.
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Computational results: LABS

I Instances from http://polip.zib.de/autocorrelated sequences/

I Quadratization solved with CPLEX 12.7, time limit: 1h

Instance Quadratization + CPLEX
Non-Termwise Termwise

Name n m N PC1 PC2 PC3 N logn-1
b.20.5 20 207 90 10.58 5.05 4.27 137 35.34
b.20.10 20 833 155 90.28 159.47 137.69 698 365.47
b.25.6 25 407 135 106.67 80.17 121.03 297 466.92
b.25.13 25 1782 247 2311.09 > 3600 > 3600 1560 > 3600
b.30.4 30 223 114 13.52 7.17 7.03 139 36.08
b.35.4 35 263 134 24.13 13.25 11.2 164 54.14

I Non-Termwise always better.
I These instances have a very particular structure (and are all of degree 4).

10/ 31
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Quadratizations with constraints



Non-Termwise: Rosenberg with constraints

First quadratization method (Rosenberg, 1975)
1 Take a product xi xj from a highest-degree monomial of f and

substitute it by a new variable yij .
2 Add penalty P(xi xj − 2xi yij − 2xjyij + 3yij) to objective

function to force yij = xi xj at all optimal solutions.
3 Iterate until obtaining a quadratic function.

Example 1
f (x) = 2x1 + 3x2x3 − 2x2x3x4 + 3x1x2x3x4

Apply Rosenberg with y1 = x2x3 and y2 = x1x4. We obtain

g(x , y) =2x1 + 3x2x3 − 2y1x4 + 3y1y2 + P(x2x3 − 2x2y1 − 2x3y1 + 3y1)
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Example 1
f (x) = 2x1 + 3x2x3 − 2x2x3x4 + 3x1x2x3x4

Apply Rosenberg with y1 = x2x3
and y2 = x1x4

min g(x , y) = 2x1 + 3x2x3 − 2y1x4 + 3y1y2

s. t. y1 = x2x3

y2 = x1x4

x1, x2, x3, x4, y1, y2 ∈ {0, 1}

Instead of yij = xixj , use:

yij ≤ xi

yij ≤ xj

yij ≥ xi + xj − 1
yij ≥ 0
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Non-Termwise: ABCG quadratization with constraints

(With constraints) ABCG = Rosenberg
I Given an appropriate pairwise cover H of M, the only

difference between Rosenberg’s and ABCG quadratization is
the penalty term.

I Hence, when using constraints instead of penalties, both
methods lead to the same quadratization.
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Termwise with constraints?

Not easy to derive a quadratization with constraints
I Quadratization for the positive monomial (` = dlog(n)e):

n∏
i=1

xi = min
y∈{0,1}`−1

1
2(

n∑
i=1

xi −
`−1∑
i=1

2i yi )(
n∑

i=1
xi −

`−1∑
i=1

2i yi − 1)

I To one monomial we associate auxiliary variables
y1, y2, . . . , y`, but we lose the link of each single variable with
the original variables.

I Which constraints should we add?
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Summary of quadratization methods

Unconstrained
Non-termwise Termwise

Rosenberg ABCG dlog(n)e − 1

Constrained
Non-termwise Termwise

Rosenberg = ABCG dlog(n)e − 1
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Two complementary approaches

Quadratic reformulations of
nonlinear binary optimization

problems
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Phase 2: Convexification:
Simple, Linearization
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PQCR: Phase 1 - Quadratization
Input: a polynomial f (x) with monomial set M

1 A pairwise cover H of M is defined heuristically (PC0).
2 Relation between artificial and original variables is enforced

using (linearized) constraints.

(Linearly Constrained) Quadratic Program

min g(x) = x tQx + ctx (QP)
s. t. x ∈ FE

Where FE are Fortet’s constraints for all appropriate indices of
artificial and original binary variables coming from PC0:

xi ≤ xi1
xi ≤ xi2
xi ≥ xi1 + xi2 − 1
xi ≥ 0
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PQCR: Phase 2 - Convexification

Input: (Linearly Constrained) Quadratic Program

min g(x) = x tQx + ctx (QP)
s. t. x ∈ FE

I Objective: define a function the value of which is equal to
g(x) with a positive semi-definite Hessian matrix Q.

I Can be achieved by adding to g(x) null-functions over the
domain FE .
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Convexification: Option 1

Smallest eigenvalue convexification: (Hammer & Rubin, 1970)

min gλ(x) = g(x) + λ
N∑

i=1
(x2

i − xi ) (QPλ)

s. t. x ∈ FE

I Modify diagonal entries of the hessian matrix of g by adding
null functions to it.

I (QPλ) is a quadratic program parametrized by λ such that:
I gλ(x) = g(x),∀x ∈ FE
I Setting λ = −λmin

2 leads to convex gλ(x) and provides tightest
continuous relaxation
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Convexification: Option 1

Smallest eigenvalue convexification
g(x) = 2x1 + 2x2x3 − 2x6x2 − 3x5x6

(where x6 = x3x4 and x5 = x1x2)
Hessian matrix:

Q =


0 0 0 0 0 0
0 0 1.5 0 0 −1
0 1.5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1.5
0 −1 0 0 −1.5 0
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Convexification: Option 2

Non-uniform diagonal convexification: QCR (Billionnet &
Elloumi, 2007)

min gα(x) = g(x) +
N∑

i=1
αi (x2

i − xi ) (QPα)

s. t. x ∈ FE

How to compute α such that
I gα is convex, and
I continuous relaxation bound value of (QPα) is maximized?

→ can be done by solving an SDP relaxation of (QPα).
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Convexification: Option 3 (PQCR)
General convexification framework: PQCR (Elloumi, Lambert, &
Lazare, 2019)
I Use the quadratization constraints to add further null

functions
x2

i − xi = 0, for original variables i (1)
xi − xixj = 0, for variables j in pairwise cover of i (2)
xi − xjxk = 0, for variables j and k in pairwise cover of i (3)
xixj − xkx` = 0, for two different decompositions of a monomial (4)

I Resulting in the following parametrized function:
gα,β,δ,λ(x) =g(x) +

∑
i∈I∪J

αi (x2
i − xi ) +

∑
(i,j)∈J×(I∪J)
Ej⊂Ei

βij (xi − xixj )

∑
(i,j,k)∈J×(I∪J)2

Ei =Ej∪Ek

δijk (xi − xjxk ) +
∑

(i,j,k,`)∈(I∪J)4

Ei∪Ej =Ek∪E`

λi,j,k,`(xixj − xkx`)

20/ 31



Convexification: Option 3 (PQCR)
General convexification framework: PQCR (Elloumi, Lambert, &
Lazare, 2019)
I Use the quadratization constraints to add further null

functions
x2

i − xi = 0, for original variables i (1)
xi − xixj = 0, for variables j in pairwise cover of i (2)
xi − xjxk = 0, for variables j and k in pairwise cover of i (3)
xixj − xkx` = 0, for two different decompositions of a monomial (4)

I Resulting in the following parametrized function:
gα,β,δ,λ(x) =g(x) +

∑
i∈I∪J

αi (x2
i − xi ) +

∑
(i,j)∈J×(I∪J)
Ej⊂Ei

βij (xi − xixj )

∑
(i,j,k)∈J×(I∪J)2

Ei =Ej∪Ek

δijk (xi − xjxk ) +
∑

(i,j,k,`)∈(I∪J)4

Ei∪Ej =Ek∪E`

λi,j,k,`(xixj − xkx`)
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Convexification: Option 3 (PQCR)

General convexification framework: PQCR

min 2x1 + 3x2x3 − 2x2x6 − 3x5x6 + 1(x2
1 − x1) + 1(x2

2 − x2) (QPα,β,δ,γ)
+ 0.7(x2

3 − x3) + 0.09(x2
4 − x4) + 2.2(x2

5 − x5) + 1.3(x2
6 − x6)

− 3.96(x1x5 − x5)− 1.96(x1x5 − x5)− 3.18(x3x6 − x6)− 0.36(x4x6 − x6)
− 0.04(x1x2 − x5) + 0.18(x3x4 − x6)

s. t. x ∈ FE

I Inequalities from the quadratization x5 = x1x2 and x6 = x3x4

I Derived valid inequalities:
I x1x5 − x5 and x2x5 − x5
I x3x6 − x6 and x4x6 − x6

Method Continuous relaxation bound
Smallest eigenvalue -1.7

QCR -1.6
PQCR -0.6
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Convexification: Option 3 (PQCR)

Theorem (Elloumi, Lambert, & Lazare, 2019)
The optimal values (α∗, β∗, δ∗, λ∗) are given by the optimal values
of the dual variables associated with the constraints (5)–(8) of the
following (SDP)

min 〈Q,X〉+ cT x (SDP)
s. t. Xii − xi = 0 i ∈ I ∪ J (5)

− Xij + xi = 0 (i , j) ∈ J × (I ∪ J) : Ei ⊂ Ej (6)
− Xjk + xi = 0 (i , j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (7)
Xij − Xkl = 0 (i , j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (8)(

1 xT

x X

)
� 0

x ∈ RN ,X ∈ SN
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Computational results: LABS

I Instances from http://polip.zib.de/autocorrelated sequences/

I Time limit: 5h (3h SDP, 2h CPLEX)
Instance PQCR Baron 17.4.1

Name n m N Gap (%) tSdp Tt Nodes Gap (%) Tt Nodes
b.20.03 20 38 20 0 1 2 0 100 1 1
b.20.05 20 207 65 23 22 23 5886 1838 2 1
b.20.10 20 833 124 8 837 846 24183 2918 125 7
b.20.15 20 1494 164 5 1228 1242 9130 3202 728 9
b.25.03 25 48 25 0 1 2 0 100 0 1
b.25.06 25 407 105 17 461 469 163903 2307 65 27
b.25.13 25 1782 206 4 1552 1603 76828 3109 3750 75
b.25.19 25 3040 265 4 - 13433 224550 3356 14399 129
b.25.25 25 3677 289 5 - 13395 167423 3405 (12 %) 100
b.30.04 30 223 82 23 58 78 134635 1347 7 7
b.30.08 30 926 174 10 1940 2040 752765 2696 2778 237
b.30.15 30 2944 296 5 - 13525 438278 3221 (21 %) 103
b.30.23 30 5376 390 11 5953 6865 9337391 3450 (135 %) 8
b.30.30 30 6412 422 4 8500 15352 452460 3470 (161 %) 5
b.35.04 35 263 97 19 135 167 156085 1350 32 13
b.35.09 35 1381 234 10 2245 4630 8163651 2826 (29 %) 354

Results:
I Q+Cplex and Q+QCR did not solve any instance.
I PQCR very tight gaps, solves several previously unsolved instances.
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Two complementary approaches

Quadratic reformulations of
nonlinear binary optimization

problems

Phase 1: Quadratization
Carefully chosen

Phase 2: Convexification:
Simple, Linearization

(Anthony, Boros, Crama, & Gruber, 2017)
(Boros, Crama, & Rodŕıguez-Heck, 2018)
(Rodŕıguez-Heck, 2018)

PQCR: Polynomial binary
optimization through Quadratic

Convex Reformulation

Phase 1: Quadratization
Simple algorithm

Phase 2: Convexification:
Carefully chosen, tailored

(Elloumi, Lambert, & Lazare, 2019)
(Lazare, 2019)
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This project

Combine both methods into a single one:

Phase 1: Quadratization
Carefully chosen

Phase 2: Convexification:
Carefully chosen, tailored
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Quadratizations without constraints

I Instances from http://polip.zib.de/autocorrelated sequences/

I Time limit: 1h

Instance ROS+QCR T+QCR
Name Opt N Gap (%) Nodes Tt N Gap (%) Nodes Tt
b.20.5 -416 65 804612 73437542 - 137 239 32889233 -
b.20.10 -2936 124 31206 38511235 - 698 361 24897180 -
b.25.6 -960 105 1843723 36766956 - 297 328 30810993 -
b.25.13 -8144 206 59614 20336389 - 1560 403 19983753 -
b.30.4 -324 82 829465 38587389 - 139 191 19931268 -
b.35.4 -384 97 1038548 39040424 - 164 196 20091757 -

I Both methods give very bad bounds.
I T+QCR has better bounds than ROS+QCR.
I ROS+QCR is not a viable method.

We lose the advantage of PQCR over QCR, because we lose link between
original and artificial variables!
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Quadratizations with constraints: PC heuristics

Instance PQCR with PC1 PQCR with PC2
Name Opt N LB Tt N LB Tt

b.20.5 -416 64 -435 70 56 -439 63
b.20.10 -2936 123 -3052 112 135 -3115 132
b.40.10 -8248 303 -8590 4385 315 -8659 4562

Instance PQCR with PC3 PQCR with PC0
Name Opt N LB Tt N LB Tt

b.20.5 -416 40 -436 59 65 -435 64
b.20.10 -2936 93 -3068 112 124 -3051 130
b.40.10 -8248 262 -8745 2162 304 -8589 3723

Best quadratization in terms of:
I LB: PQCR with PC0 / PQCR with PC1
I N: PQCR with PC3
I Tt : PQCR with PC3 (difference only significant for b.40.10)
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Full quadratization

Definition: Full quadratization (Lazare, 2019)
The full quadratization of f (x), x ∈ {0, 1}n is defined on a
pairwise cover that introduces an auxiliary variable for every
product

∏
j xj of variables of degree at least two and at most dd

2 e.

Example 2

f (x) = 2x1x5 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

The full quadratization for f introduces a variable for every product in
red:

xxT =


x2

1 x1x2 x1x3 x1x4 x1x5
x2x1 x2

2 x2x3 x2x4 x2x5
x3x1 x3x2 x2

3 x3x4 x3x5
x4x1 x4x2 x4x3 x2

4 x4x5
x5x1 x5x2 x5x3 x5x4 x2

5
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Partial quadratization

Definition: Partial quadratization (Lazare, 2019)
The partial quadratization of f (x), x ∈ {0, 1}n is defined on a
pairwise cover that introduces an auxiliary variable for every
product

∏
j xj of variables of degree at least two and at most dd

2 e
appearing in at least one monomial of f .

Example 2

f (x) = 2x1x5 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

The partial quadratization for f introduces a variable for every product in
blue:

xxT =


x2

1 x1x2 x1x3 x1x4 x1x5
x2x1 x2

2 x2x3 x2x4 x2x5
x3x1 x3x2 x2

3 x3x4 x3x5
x4x1 x4x2 x4x3 x2

4 x4x5
x5x1 x5x2 x5x3 x5x4 x2

5
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Quadatizations with constraints: Full and Partial

Instance PQCR with Full PQCR with Partial
Name n Opt N Const SDP N Const SDP

b.20.5 20 -416 210 22156 83 1308
b.20.10 20 -2936 210 22156 138 6275
b.20.15 20 -5960 210 22156 176 13757

Instance PQCR with Full PQCR with Partial
Name n Opt LB Tt LB Tt

b.20.5 20 -416 -417 9700 -422 3
b.20.10 20 -2936 -3016 7439 -3040 180
b.20.15 20 -5960 -6025 10831 -6059 2060

Best quadratization in terms of:
I LB: PQCR with Full
I Tt : PQCR with Partial

PQCR with Partial gives a good compromise!
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Perspectives

Next steps
I Compare and understand link between quadratizations and

linearizations.
I Which quadratizations are best for which convexification

method?
I Add valid inequalities to the resolution of the SDPs.
I Test on other instances than LABS, which have a very special

structure, and are especially difficult to solve.

Practical challenges
I Interaction between codes.
I Many different variants of Phase 1 and of Phase 2, many

experiments to be carried out to choose a good combination.
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