Extended Formulations for Radial Cones of Odd-Cut Polyhedra

Matthias Walter (RWTH Aachen)

Joint work with

Stefan Weltge (TU Munich)

Aussois Combinatorial Optimization Workshop 2019

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
•0	000	000	00

Extended formulations:

• Consider a polyhedron *P* of interest.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
••	000	000	00

Extended formulations:

- Consider a polyhedron *P* of interest.
- An extension is another polyhedron Q together with a linear projection map π with π(Q) = P.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
•0	000	000	00

Extended formulations:

- Consider a polyhedron *P* of interest.
- An extension is another polyhedron Q together with a linear projection map π with π(Q) = P.
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
● ○	000	000	00

Extended formulations:

- Consider a polyhedron *P* of interest.
- An extension is another polyhedron Q together with a linear projection map π with π(Q) = P.
- ► The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.

Matchings:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even n, the extension complexity of the perfect-matching polytope for K_n is at least $2^{\Omega(n)}$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Augmentation problem:

 Improve a given feasible solution of a combinatorial optimization problem or determine optimality.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
○●	000	000	00

Augmentation problem:

 Improve a given feasible solution of a combinatorial optimization problem or determine optimality.

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
○●	000	000	00

Augmentation problem:

 Improve a given feasible solution of a combinatorial optimization problem or determine optimality.

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Polyhedral version:

- Consider P = {x ∈ ℝⁿ : Ax ≤ b}, objective vector c ∈ ℝⁿ, and point v ∈ P.
- Determine optimality or find improving direction $d \in \mathbb{R}^n$ with $v + d \in P$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
○●	000	000	00

Augmentation problem:

 Improve a given feasible solution of a combinatorial optimization problem or determine optimality.

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Polyhedral version:

- Consider P = {x ∈ ℝⁿ : Ax ≤ b}, objective vector c ∈ ℝⁿ, and point v ∈ P.
- Determine optimality or find improving direction $d \in \mathbb{R}^n$ with $v + d \in P$.
- Polyhedron for this task is radial cone:

T-Joins & T-Cuts

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	●00	000	00

Definitions $(K_n = (V_n, E_n)$ complete graph on *n* nodes; $T \subseteq V$, |T| even):

• $C = \delta(S) \subseteq E$ is a *T*-cut if • $J \subseteq E$ is a *T*-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$ $|S \cap T|$ is odd. 0 \cap 0

0

0

T-Joins & T-Cuts

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	● 00	000	00

Definitions ($K_n = (V_n, E_n)$ complete graph on *n* nodes; $T \subseteq V$, |T| even):

Facts:

- Both minimization problems can be solved in polynomial time for $c \ge \mathbb{O}$.
- Each T-join J intersects each T-cut C in at least one edge:

 $|J \cap \mathbf{C}| = \langle \chi(J), \chi(\mathbf{C}) \rangle \ge 1$

Polyhedra (Edmonds & Johnson, 1973):

• *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:

 $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**

 $x_e \ge 0$ for each $e \in E$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Polyhedra (Edmonds & Johnson, 1973):

• *T*-join Polyhedron $P_{T\text{-join}}(n)^{\uparrow}$:

 $\langle \chi(C), x \rangle \ge 1$ for each *T*-cut *C* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- Focus on the case T = V.
- $P_{V-\text{cut}}(n)^{\uparrow}$ is called the odd-cut polyhedron.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e > 0$ for each $e \in E$

Polyhedra (Edmonds & Johnson, 1973):

• *T*-join Polyhedron $P_{T\text{-join}}(n)^{\uparrow}$:

 $\langle \chi(C), x \rangle \ge 1$ for each *T*-cut *C* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- Focus on the case T = V.
- $P_{V-\text{cut}}(n)^{\uparrow}$ is called the odd-cut polyhedron.
- $P_{V\text{-join}}(n)^{\uparrow}$ contains $P_{\text{perf.match}}(n)$ as a face, and thus

 $\operatorname{xc}(P_{V\text{-join}}(n)^{\uparrow}) \geq 2^{\Omega(n)}.$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Polyhedra (Edmonds & Johnson, 1973):

• *T*-join Polyhedron $P_{T\text{-join}}(n)^{\uparrow}$:

 $\langle \chi(C), x \rangle \ge 1$ for each *T*-cut *C* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- Focus on the case T = V.
- $P_{V-\text{cut}}(n)^{\uparrow}$ is called the odd-cut polyhedron.
- $P_{V\text{-join}}(n)^{\uparrow}$ contains $P_{\text{perf.match}}(n)$ as a face, and thus

 $\operatorname{xc}(P_{V\text{-join}}(n)^{\uparrow}) \geq 2^{\Omega(n)}.$

Theorem (Ventura & Eisenbrand, 2003)

For even n and every vertex v of $P_{V\text{-}join}(n)^{\dagger}$, corresponding to a V-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{V\text{-}join}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

From their paper:

4.3. Open problems

This compact formulation for the active cone of a given perfect matching could be given, since the parity condition of the tight cuts can be ensured by considering each crossing edge individually. A direction of future research could be to find out, whether this primal view can be helpful to find compact linear formulations of active cones of polyhedra for other classes of combinatorial problems. Interesting candidates might be the stable-set polyhedron of a claw-free graph or the odd-cut polyhedron, which is the blocker of the *T*-join polyhedron.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

From their paper:

4.3. Open problems

This compact formulation for the active cone of a given perfect matching could be given, since the parity condition of the tight cuts can be ensured by considering each crossing edge individually. A direction of future research could be to find out, whether this primal view can be helpful to find compact linear formulations of active cones of polyhedra for other classes of combinatorial problems. Interesting candidates might be the stable-set polyhedron of a claw-free graph or the odd-cut polyhedron, which is the blocker of the *T*-join polyhedron.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

From their paper:

4.3. Open problems

This compact formulation for the active cone of a given perfect matching could be given, since the parity condition of the tight cuts can be ensured by considering each crossing edge individually. A direction of future research could be to find out, whether this primal view can be helpful to find compact linear formulations of active cones of polyhedra for other classes of combinatorial problems. Interesting candidates might be the stable-set polyhedron of a claw-free graph or the odd-cut polyhedron, which is the blocker of the *T*-join polyhedron.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Hard work by the night:

From their paper:

4.3. Open problems

This compact formulation for the active cone of a given perfect matching could be given, since the parity condition of the tight cuts can be ensured by considering each crossing edge individually. A direction of future research could be to find out, whether this primal view can be helpful to find compact linear formulations of active cones of polyhedra for other classes of combinatorial problems. Interesting candidates might be the stable-set polyhedron of a claw-free graph or the odd-cut polyhedron, which is the blocker of the *T*-join polyhedra.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Stefan having deep thoughts:

From their paper:

4.3. Open problems

This compact formulation for the active cone of a given perfect matching could be given, since the parity condition of the tight cuts can be ensured by considering each crossing edge individually. A direction of future research could be to find out, whether this primal view can be helpful to find compact linear formulations of active cones of polyhedra for other classes of combinatorial problems. Interesting candidates might be the stable-set polyhedron of a claw-free graph or the odd-cut polyhedron, which is the blocker of the *T*-join polyhedron.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Stefan having deep thoughts:

Theorem (Walter & Weltge, 2018)

For even n and vertices v of $P_{V-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{V-cut}(n)$ at v is at least $2^{\Omega(n)}$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^d_+)$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^d_+ \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^d_+)$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 \bigtriangledown

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 $\overline{\mathcal{O}}$

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 \bigtriangledown

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 $\overline{\mathcal{O}}$

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 $\overline{\mathcal{O}}$

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 \bigtriangledown

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	●00	00

Definitions:

 \bigtriangledown

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}^{d}_{+})$$

• The blocker of P is defined via $B(P) := \{y \in \mathbb{R}^d_+ : (x, y) \ge 1 \text{ for all } x \in P\}.$

• If P is blocking, then B(B(P)) = P.

|--|

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1$.

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

|--|

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

 $\hat{x} \in P \iff \min\{\langle \hat{x}, y \rangle : y \in Q\} \ge \gamma$

ſ	Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
1	00	000	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1$.

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\hat{x} \in P \iff \min \left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \ge \gamma$$

$$\iff \min \left\{ \langle \hat{x}, Tz \rangle : Az \le b \right\} \ge \gamma$$

ſ	Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
1	00	000	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1$.

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{split} \hat{x} \in P &\iff \min\left\{\langle \hat{x}, y \rangle : y \in Q\right\} \ge \gamma \\ &\iff \min\left\{\langle \hat{x}, Tz \rangle : Az \le b\right\} \ge \gamma \\ &\iff \max\left\{\langle b, \lambda \rangle : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \lambda \le \mathbb{O}\right\} \ge \gamma \end{split}$$

ſ	Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
1	00	000	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{aligned} \hat{x} \in P &\iff \min\left\{\langle \hat{x}, y \rangle : y \in Q\right\} \ge \gamma \\ &\iff \min\left\{\langle \hat{x}, Tz \rangle : Az \le b\right\} \ge \gamma \\ &\iff \max\left\{\langle b, \lambda \rangle : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \lambda \le \mathbb{O}\right\} \ge \gamma \\ &\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \langle b, \lambda \rangle \ge \gamma \end{aligned}$$

Matthias Walter

ſ	Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
1	00	000	000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{split} \hat{x} \in P &\iff \min\left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \ge \gamma \\ &\iff \min\left\{ \langle \hat{x}, Tz \rangle : Az \le b \right\} \ge \gamma \\ &\iff \max\left\{ \langle b, \lambda \rangle : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \lambda \le \mathbb{O} \right\} \ge \gamma \\ &\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \langle b, \lambda \rangle \ge \gamma \end{split}$$

• Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m + 1 inequalities.

Concepts T-Joins & T-	ts Blocking Polarity Results
00 000	O●O 00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{split} \hat{x} \in P &\iff \min\left\{\langle \hat{x}, y \rangle : y \in Q\right\} \ge \gamma \\ &\iff \min\left\{\langle \hat{x}, Tz \rangle : Az \le b\right\} \ge \gamma \\ &\iff \max\left\{\langle b, \lambda \rangle : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \lambda \le \mathbb{O}\right\} \ge \gamma \\ &\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \langle b, \lambda \rangle \ge \gamma \end{split}$$

▶ Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m + 1 inequalities.

Consequences:

• P and B(P) have (essentially) the same extension complexity.

•
$$2^{\Omega(|\mathcal{T}|)} \leq \operatorname{xc}(P_{\mathcal{T}\operatorname{-cut}}(n)^{\uparrow}).$$

Blocking Polarity: Radial Cones

Concepts T-Joins & T-Cuts Blocking Polarity Result ○○ </th <th>lts</th>	lts
---	-----

Polar object of radial cone:

• Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Blocking Polarity: Radial Cones

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	○○○	00●	

Polar object of radial cone:

• Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let $P \subseteq \mathbb{R}^d_+$ be a blocking polyhedron and let $v \in P$. Then $xc(K_P(v))$ and $xc(F_{B(P)}(v))$ differ by at most 1.

Blocking Polarity: Radial Cones

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	○○○	00●	00
<u> </u>			

Polar object of radial cone:

• Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let $P \subseteq \mathbb{R}^d_+$ be a blocking polyhedron and let $v \in P$. Then $xc(K_P(v))$ and $xc(F_{B(P)}(v))$ differ by at most 1.

Consequence:

• To prove lower or upper bounds on $xc(K_P(v))$, analyze $F_{B(P)}(v)!$

Extended Formulations for Radial Cones of Odd-Cut Polyhedra

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

C	oncepts	T-Joins & T	-Cuts	Blocking Polarity	Results
0	0	000		000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

• By Lemma, theorem reduces to xc(P) for

$$P := \{x \in \mathcal{P}_{T-\operatorname{cut}}(n)^{\dagger} : \sum_{e \in J} x_e = 1\}.$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \{ x \in \boldsymbol{P}_{T-\mathrm{cut}}(\boldsymbol{n})^{\uparrow} : \sum_{e \in J} x_e = 1 \}.$$

For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀ e ∈ J \ {m}).

C	oncepts	T-Joins & T	-Cuts	Blocking Polarity	Results
0	0	000		000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \{ x \in \boldsymbol{P}_{T-\mathrm{cut}}(\boldsymbol{n})^{\uparrow} : \sum_{e \in J} x_e = 1 \}.$$

- For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀ e ∈ J \ {m}).
- ▶ But F_m is also a face of the s-t-cut polyhedron for m = {s, t}.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \{ x \in \boldsymbol{P}_{T-\mathrm{cut}}(\boldsymbol{n})^{\uparrow} : \sum_{e \in J} x_e = 1 \}.$$

- For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀ e ∈ J \ {m}).
- But F_m is also a face of the s-t-cut polyhedron for m = {s, t}.
- We obtain $xc(F_m) \leq O(n^2)$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is at most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

• By Lemma, theorem reduces to xc(P) for

$$P := \{ x \in \boldsymbol{P}_{T-\mathrm{cut}}(\boldsymbol{n})^{\uparrow} : \sum_{e \in J} x_e = 1 \}.$$

- For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀e ∈ J \ {m}).
- ▶ But F_m is also a face of the s-t-cut polyhedron for m = {s, t}.
- We obtain $xc(F_m) \leq \mathcal{O}(n^2)$.
- P is convex hull of union of all F_m and disjunctive programming yields the result.

	Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
5	00	000	000	0.

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is at least $2^{\Omega(|T|)}$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is at least $2^{\Omega(|T|)}$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is at least $2^{\Omega(|T|)}$.

Proof:

• Let $v = \chi(\delta(S))$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is at least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \{x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1\}.$$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is at least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \{x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1\}.$$

• Let
$$t_1 \in S$$
, $t_2 \in V_n \setminus S$ as well as
 $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is at least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \{x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1\}.$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is at least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \{x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1\}.$$

- Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.
- ▶ *F* ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| 2$.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is at least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \{x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1\}.$$

- Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.
- ▶ *F* ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| 2$.
- We obtain $xc(P) \ge xc(F) \ge 2^{\Omega(|T_i|)}$ for i = 1, 2.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

Concepts	T-Joins & T-Cuts	Blocking Polarity	Results
00	000	000	00

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

Other candidates for investigation:

- Stable-set polytopes of claw-free graphs (maybe next year ...)
- Stable-set polytopes of perfect graphs (polyhedral description is known, but best (known) extended formulation has $\mathcal{O}(n^{\log n})$ facets).