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Optimization: Polyhedral Approach Loooo 00000 0000 0000 00

Polyhedral method:

» Consider feasible solutions F ¢ 25 over some ground set £ and an
objective vector ¢ € RE with the goal of minimizing c(F) := ¥ .cf Ce.

» Identify F e F with x(F) € {0,1}F sit. x(F)e=1 < ecF.
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» Consider feasible solutions F ¢ 25 over some ground set £ and an
objective vector ¢ € RE with the goal of minimizing c(F) := ¥ .cf Ce.

» Identify F e F with x(F) € {0,1}F sit. x(F)e=1 < ecF.
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» Optimization problem is then to minimize (c, x) over x € X.
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Polyhedral method:

» Consider feasible solutions F ¢ 25 over some ground set £ and an
objective vector ¢ € RE with the goal of minimizing c(F) := ¥ .cf Ce.

» Identify F e F with x(F) € {0,1}F sit. x(F)e=1 < ecF.

» Let X := {x(F): FeF}c{0,1}F.

» Optimization problem is then to minimize (c, x) over x € conv(X).

» Find an outer description of conv(X), i.e., conv(X) = {x eRF: Ax < b}.

» Optimization problem is now an LP and we can use black-box solvers.*

1. or devise primal-dual algorithms.
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Extended Formulations

One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
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One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:

S (1-x;)+ Y. x> 1 forall I ¢ [n] with |/| odd
il i¢l
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One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:

S (1-x)+ > x> 1 for all I < [n] with |/| odd
il i¢l

Potential cure: extended formulations

» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY 7:RY = R" linear with P = 7(Q)) with few facets?
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Potential cure: extended formulations

» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY, 7:RY - R" linear with P = 7(Q)) with few facets?
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Extended Formulations

One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2! inequalities:

S (1-x)+ > x> 1 for all I < [n] with |/| odd
iel igl

Potential cure: extended formulations

» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY, 7:RY - R" linear with P = 7(Q)) with few facets?

» The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q, ) of P.
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Extended Formulations

One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:
S (1-x;)+ Y. x> 1 forall I ¢ [n] with |/| odd
il i¢l
Potential cure: extended formulations
» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY 7:RY = R" linear with P = 7(Q)) with few facets?
» The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q,7) of P.
Alternative viewpoint: model using additional variables

v
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One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:
S (1-x;)+ Y. x> 1 forall I ¢ [n] with |/| odd
il i¢l
Potential cure: extended formulations
» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY 7:RY = R" linear with P = 7(Q)) with few facets?
» The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q,7) of P.
Alternative viewpoint: model using additional variables

v

Theorem (Balas, 1979)

Let Py,...,Px € R" be polyhedra. Then
xc(cl(conv(Pr U - U Py))) < S, (xe(Py) +1).

Disjunctive programming:
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One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:

S (1-x;)+ Y. x> 1 forall I ¢ [n] with |/| odd
il i¢l

Potential cure: extended formulations

» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY 7:RY = R" linear with P = 7(Q)) with few facets?

» The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q,7) of P.

» Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let Py,...,Px € R" be polyhedra. Then
xc(cl(conv(Py U U Py))) < K (xe(P;) +1).
For parity polytope:

. X = U (xe{0,1)" : 3 x = k)
i=1

k even
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» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:
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Potential cure: extended formulations

» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY 7:RY = R" linear with P = 7(Q)) with few facets?

» The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q,7) of P.

» Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)
Let Py,...,Px € R" be polyhedra. Then
xc(cl(conv(Py U U Py))) < 5, (xc(Pr) +1).
For parity polytope:
+ conv(X) = conv( U (x€{0,1}" : .ilx,- -k} )

even
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Extended Formulations

One drawback of the polyhedral method:
» Consider X := {x € {0,1}": 3", x; even}.
» Inequality description (Jeroslow, 1975) requires 2"1 inequalities:

S (1-x;)+ Y. x> 1 forall I ¢ [n] with |/| odd
il i¢l

Potential cure: extended formulations

» P =conv(X) has many facets, but maybe there exists an extension (Q, )
(QcRY 7:RY = R" linear with P = 7(Q)) with few facets?

» The extension complexity xc(P) of P is the minimum number of facets of
an extension (Q,7) of P.

» Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)
Let Py,...,Px € R" be polyhedra. Then
xc(cl(conv(Py U U Py))) < 5, (xc(Pr) +1).
For parity polytope:
» conv(X) = conv( U [x €[0,1]" :ix, -k} )

k even

» Applying the theorem: xc(conv(X)) < O(n?)
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Limitations

Hard problems:
» Max-Cut problem: cut polytope for K, (complete graph with n nodes) has

extension complexity P (Fiorini, Massar, Pokutta, Tiwary & de Wolf,
2012), best bound is 1.5” (Kaibel & Weltge, 2013).
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extension complexity P (Fiorini, Massar, Pokutta, Tiwary & de Wolf,
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> Lots of other hard problems inherit lower bound:

> If F is face of P, then xc(F) < xc(P).
> For linear maps m we have xc(7(P)) < xc(P).
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» Max-Cut problem: cut polytope for K, (complete graph with n nodes) has

extension complexity P (Fiorini, Massar, Pokutta, Tiwary & de Wolf,
2012), best bound is 1.5” (Kaibel & Weltge, 2013).

> Lots of other hard problems inherit lower bound:

> If F is face of P, then xc(F) < xc(P).
> For linear maps m we have xc(7(P)) < xc(P).

> Based on Karp reductions, write cut polytope as projection of a face of your
favorite polytope (TSP, Stable set, 3d matching, etc.).
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» Max-Cut problem: cut polytope for K, (complete graph with n nodes) has
extension complexity P (Fiorini, Massar, Pokutta, Tiwary & de Wolf,
2012), best bound is 1.5” (Kaibel & Weltge, 2013).

> Lots of other hard problems inherit lower bound:

> If F is face of P, then xc(F) < xc(P).
> For linear maps m we have xc(7(P)) < xc(P).

> Based on Karp reductions, write cut polytope as projection of a face of your
favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:
» A perfect matching in a graph G = (V,E) is a set M ¢ E with
IMné(v)|=1.

» The weighted perfect matching problem can be solved in polynomial time
(Edmonds, 1965).

Matthias Walter Extended Formulations for Radial Cones Bonn 2018 4 /20




Ext. Form. Radial Cones T-Joins & T-Cuts Blocking Polarity Results

Limitations Loooo 00000 0000 0000 00

Hard problems:

» Max-Cut problem: cut polytope for K, (complete graph with n nodes) has
extension complexity P (Fiorini, Massar, Pokutta, Tiwary & de Wolf,
2012), best bound is 1.5" (Kaibel & Weltge, 2013).

> Lots of other hard problems inherit lower bound:

> If F is face of P, then xc(F) < xc(P).
> For linear maps m we have xc(7(P)) < xc(P).

> Based on Karp reductions, write cut polytope as projection of a face of your
favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:
» A perfect matching in a graph G = (V,E) is a set M ¢ E with
IMné(v)|=1.

» The weighted perfect matching problem can be solved in polynomial time
(Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even n, xc(Ppmateh(n)) = 2™ . Here, Ppmatcn(n) denotes the perfect
matching polytope for K.
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Optimization & Augmentation

Optimization problem:
» Objective vector ¢ € QF

» Goal: minimize cost c(F) := Y .r ce over all F e F.
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Optimization problem:
» Objective vector ¢ € QF
» Goal: minimize cost c(F) := Y .r ce over all F e F.
Augmentation problem:
» Given F € F, determine optimality or find F' € F with c(F’) < c(F).

Matthias Walter Extended Formulations for Radial Cones Bonn 2018 6 /20



Ext. Form. Radial Cones T-Joins & T-Cuts Blocking Polarity Results
0000 [e] le]e]e} 0000 0000 (e]e]

Optimization & Augmentation

Optimization problem:
» Objective vector ¢ € QF
» Goal: minimize cost c(F) := Y .r ce over all F e F.
Augmentation problem:
» Given F € F, determine optimality or find F' € F with c(F’) < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grétschel & Lovész, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in
polynomial time if and only if we can solve the optimization problem (for
arbitrary objective vectors) in polynomial time.
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Optimization & Augmentation

Optimization problem:
» Objective vector ¢ € QF
» Goal: minimize cost c(F) := Y .r ce over all F e F.
Augmentation problem:
» Given F € F, determine optimality or find F' € F with c(F’) < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grétschel & Lovész, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in
polynomial time if and only if we can solve the optimization problem (for
arbitrary objective vectors) in polynomial time.
Idea:

» Suppose c € {0, l}E, how many augmentation steps will you need?

> Apply bit scaling.
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Polyhedral version of the augmentation problem:

» Consider a polyhedron P = {x e R": Ax < b} and an objective vector
ceR".

» Given a point v € P, determine optimality or find improving direction
deR" ie., (c,d)<0and v+deP.
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» Consider a polyhedron P = {x e R": Ax < b} and an objective vector
ceR".

» Given a point v € P, determine optimality or find improving direction
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> The polyhedron for this task is the radial cone:
Kp(v) :=cone(P-v)+v
={xeR": A .x < b; for all i with A, ;v = b;}
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Inverse Optimization Problem

Inverse problem:
» Input: FeF and &eRE
» Goal: minimize ||c — &|| over ¢ € RE such that F maximizes c.
» Application: find objective for observed behavior F that is assumed to be
optimal.
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Inverse Optimization Problem

Inverse problem:
» Input: FeF and &eRE
» Goal: minimize ||c — &|| over ¢ € RE such that F maximizes c.
» Application: find objective for observed behavior F that is assumed to be
optimal.

Feasible solutions of inverse optimization problem:

» Set of feasible c-vectors is the polar cone of cone(P - v).
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Radial Cones: Basic Results

Nice problems:
» For v € P we have xc(Kp(v)) < xc(P).

» Consequence: nice polyhedra have nice radial cones.
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Radial Cones: Basic Results

Nice problems:
» For v € P we have xc(Kp(v)) < xc(P).

» Consequence: nice polyhedra have nice radial cones.

Hard problems:

» Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial
cone of the cut polytope at vertex Q) has exponential extension
complexity.

> Extension complexity of radial cones is inherited to projections and faces.
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Radial Cones: Basic Results

Nice problems:
» For v € P we have xc(Kp(v)) < xc(P).

» Consequence: nice polyhedra have nice radial cones.

Hard problems:

» Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial
cone of the cut polytope at vertex Q) has exponential extension
complexity.

> Extension complexity of radial cones is inherited to projections and faces.

» Consequence: exponential lower bounds for your favorite polytopes (TSP,
Stable set, 3d matching, etc.) that correspond to hard problems.

Which polyhedra remain?
» Matching polytopes & friends (this talk)
» Stable-set polytopes of claw-free or perfect graphs

» Beat known bounds for nice polyhedra
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T-Joins & T-Cuts

» C=06(S)cEisa T-cutif

» Jc Eisa T-join if
[Jnd(v)|isodd < veT |Sn T|is odd.
=]

Definitions (K, = (V,, E») complete graph on n nodes; T ¢ V, |T| even):
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T-Joins & T-Cuts

Definitions (K, = (V,, E») complete graph on n nodes; T ¢ V, |T| even):

» Jc Eisa T-join if » C=6(S)cEisa T-cutif

[Jnd(v)|isodd < veT |Sn T|is odd.
—".~ ]
o ( N MY
¢ B o
o " o o ‘\ o) ]
1 [l
}\- pj = .
f “ m B " o (o]
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Facts:
» Both minimization problems can be solved in polynomial time for ¢ > O.

> Each T-join J intersects each T-cut C in at least one edge:

[N Cl=(x(J),x(C)) 21

Matthias Walter Extended Formulations for Radial Cones Bonn 2018 11 /20




Ext. Form. Radial Cones T-Joins & T-Cuts Blocking Polarity Results
0000 00000 ooeo 0000 (e]e]

T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

» T-join Polyhedron PT,join(n)T: » T-cut Polyhedron PT,Cut(n)T:
(x(C),x)>1 foreach T-cut C (x(J),x)>1 for each T-join J
Xe >0 foreachecE Xe >0 foreachecE
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T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

» T-join Polyhedron Py jein(n)': » T-cut Polyhedron Pr.(n)':
(x(C),x)>1 foreach T-cut C (x(J),x)>1 for each T-join J
Xe >0 for each ec E Xe >0 foreach ecE

Relation to perfect matchings:

» A T-join J ¢ E is a perfect matching on nodes T if and only if x = x(J)
satisfies the valid inequalities xe > 0 for all e€ £~ E[T] and Yoes(,) Xe 2 1
for all v e T with equality.
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T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

» T-join Polyhedron Py jein(n)': » T-cut Polyhedron Pr.(n)':
(x(C),x)>1 foreach T-cut C (x(J),x)>1 for each T-join J
Xe >0 for each ec E Xe >0 foreach ecE

Relation to perfect matchings:

» A T-join J ¢ E is a perfect matching on nodes T if and only if x = x(J)
satisfies the valid inequalities xe > 0 for all e€ £~ E[T] and Yoes(,) Xe 2 1
for all v e T with equality.

» Thus, Prjoin(n)" contains Ppmaten (| T]) as a face.
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T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

» T-join Polyhedron Py jein(n)': » T-cut Polyhedron Pr.(n)':
(x(C),x)>1 foreach T-cut C (x(J),x)>1 for each T-join J
Xe >0 for each ec E Xe >0 foreach ecE

Relation to perfect matchings:

» A T-join J ¢ E is a perfect matching on nodes T if and only if x = x(J)
satisfies the valid inequalities xe > 0 for all e€ £~ E[T] and Yoes(,) Xe 2 1
for all v e T with equality.

» Thus, Prjoin(n)" contains Ppmaten (| T]) as a face.
» Consequence: xc(Prjoin(n)") = 227D
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Polyhedra (Edmonds & Johnson, 1973):

» T-join Polyhedron Py jein(n)': » T-cut Polyhedron Pr.(n)':
(x(C),x)>1 foreach T-cut C (x(J),x)>1 for each T-join J
Xe >0 for each ec E Xe >0 foreach ecE

Relation to perfect matchings:

» A T-join J ¢ E is a perfect matching on nodes T if and only if x = x(J)
satisfies the valid inequalities xe > 0 for all e€ £~ E[T] and Yoes(,) Xe 2 1
for all v e T with equality.

» Thus, Prjoin(n)" contains Ppmaten (| T]) as a face.
» Consequence: xc(Prjoin(n)") = 227D

Proposition (Walter & Weltge, 2018)
For every n and every set T € V,, xc(Prjoin(n)') < O(n? - 271,

Idea:

» For each S ¢ T with |S| = 1| T|, consider the b-flow polyhedron for b, = -1
forall veS, by=1forall ve T\ S and b, = 0 otherwise.

> Apply disjunctive programming over all such polyhedra.
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Result Preview
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Theorem (Ventura & Eisenbrand, 2003)

For every set T c V,, with | T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Pr_join(n) at v is most O(|J] - n?).

Their proof: ad-hoc construction using sets of flow variables.
Our new proof: via blocking polarity
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Result Preview

Theorem (Ventura & Eisenbrand, 2003)

For every set T c V,, with | T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Pr_join(n) at v is most O(|J] - n?).

Their proof: ad-hoc construction using sets of flow variables.
Our new proof: via blocking polarity

Theorem (Walter & Weltge, 2018)

For sets T € V,, with | T| even and vertices v of Pr_.:(n)', the extension
complexity of the radial cone of Pr_c,:(n) at v is least 27D

Our proof: via blocking polarity
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.

» Possible descriptions are:

P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)

P = conv{x(l),...,x(k)} +RY (x(l)7 ... ,x(k) € ]Ri)
N
P
x1 20
1
x220
1 27
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.
» Possible descriptions are:

P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)
P = conv{x(l),...,x(k)} +RY (x(l)7 ... ,X(k) € ]Rf)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.
» Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)
P = conv{x(l), ... ,x(k)} +RY (x(l), ... ,x(k) € ]Ri)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.

AN N
P B(P)
x1 >0 3
1 2
1
x2 >0
1 2 0 1 2 3 4"
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.
» Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)
P = conv{x(l), ... ,x(k)} +RY (x(l)7 ... ,x(k) € ]Ri)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.
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P B(P)

x1 >0 3

16 2
(0,1)x>1
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.

» Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)

P:conv{x(l),...,x(k)}HRi (x(l),...,x(k) E]Ri)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.

» Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)

P:conv{x(l),...,x(k)}HRi (x(l),...,x(k) E]Ri)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.
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P B(P)
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2
1
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.

» Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)

P:conv{x(l),...,x(k)}HRi (x(l),...,x(k) E]Ri)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.

» Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)
P = conv{x(l), ... ,x(k)} +RY (x(l)7 ... ,X(k) € ]Rf)

» The blocker of P is defined via B(P) := {y e RY : (x,y) > 1 for all x € P}.
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P B(P)
x1 > 0 3 (1.0)X > 1
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(1,2)"
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Blocking Polarity: Basics

Definitions:
» A polyhedron P ¢ R? is blocking if x’ > x implies x” € P for all x € P.

v

Possible descriptions are:
P={xeR%:(y? x)>1fori=1,...,m} (y(l),...,y(m) eRY)
P = conv{x(l), ... ,x(k)} +RY (x(l)7 ... ,X(k) € ]Rf)

v

The blocker of P is defined via B(P) := {y e R?: (x,y) > 1 for all x € P}.
» If P is blocking, then B(B(P)) = P.

N N
P B(P)

X1>0 3 (1.0)X21

19 2 1
(1,2)"
(0,1)x>1
(1,2)x > 1 1
(EN x2 20
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Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let
P:={x:(y,x)>~ forally e Q}.

Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.
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Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let
P:={x:(y,x)>~ forally e Q}.

Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.

ReP < min{{(R,y):yeQ} >y
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Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let
P:={x:(y,x)>~ forally e Q}.

Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.

ReP < min{{(R,y):yeQ} >y
<~ min{(X, Tz): Az< b} >~
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Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let
P:={x:(y,x)>~ forally e Q}.

Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.

ReP < min{{(R,y):yeQ} >y
Tz):Az< b} >~
A):ATA=T'%, A<0} 2y

< min{(X

< max{(b,

Matthias Walter Extended Formulations for Radial Cones Bonn 2018 16 / 20



Ext. Form. Radial Cones T-Joins & T-Cuts Blocking Polarity Results
0000 00000 0000 0oeo (e]e]

Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let

P:={x:(y,x)>~ forally e Q}.
Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.

XeP < min{(X,y):yeQ} 2y
<= min{(X, Tz): Az< b} >~
<« max{(b,A): ATA=T'%, A<0} >~
= IAN<O:AN=T'], (b,\) 27
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Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let

P:={x:(y,x)>~ forally e Q}.
Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.
ReP <— min{(R,y):yeQ} >~
<= min{(X, Tz): Az< b} >~
<« max{(b,A): ATA=T'%, A<0} >~
= IN<O0:AN=T'], (bA) 2~

» Thus, P={x:3X<0:A"A=T"x, (b,A) >~} is an extension with m+1
inequalities.
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Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let
P:={x:(y,x)>~ forally e Q}.
Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.

ReP < min{{(R,y):yeQ} >y
<= min{(X, Tz): Az< b} >~
<« max{(b,A): ATA=T'%, A<0} >~
= IN<O0:AN=T'], (bA) 2~
» Thus, P={x:3X<0:A"A=T"x, (b,A) >~} is an extension with m+1
inequalities.

Consequences:

» P and B(P) have (essentially) the same extension complexity.
» 227D < e (Prce(n)') < O(n? - 2!,
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Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and ~y € R, let
P:={x:(y,x)>~ forally e Q}.
Then xc(P) <xc(Q) + 1.

Proof:
» Let @ = {Tz: Az < b}, where A has m =xc(Q) rows.

ReP < min{{(R,y):yeQ} >y
<= min{(X, Tz): Az< b} >~
<« max{(b,A): ATA=T'%, A<0} >~
= IN<O0:AN=T'], (bA) 2~
» Thus, P={x:3X<0:A"A=T"x, (b,A) >~} is an extension with m+1
inequalities.

Consequences:
» P and B(P) have (essentially) the same extension complexity.
» 227D < e (Prce(n)') < O(n? - 2!,
» Radial cone and its dual have (essentially) the same extension complexity.
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Blocking Polarity: Radial Cones
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Polar object of radial cone:
» Any v € P defines a face Fgpy(v) := {y € B(P) : (v,y) =1} of B(P).
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Blocking Polarity: Radial Cones

Polar object of radial cone:
» Any v ¢ P defines a face Fg(py(v) := {y € B(P) : {v,y) = 1} of B(P).
Lemma
Let P < RY be a blocking polyhedron and let v € P.
(i) Fapy(v) ={yeR¥:(v,y) =1, (x,y)>1 Vx e Kp(v)}.
(i) Ke(v) ={xeR?:(y,x)>1 Yy e Fgpy(v)}.

e e
P
x120 3
1 2
(1,2)

1,2)x>1 1
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Blocking Polarity: Radial Cones

Polar object of radial cone:
» Any v € P defines a face Fgpy(v) := {y € B(P) : (v,y) =1} of B(P).

Lemma

Let P < RY be a blocking polyhedron and let v € P.
(i) Fapy(v) ={yeR¥:(v,y) =1, (x,y)>1 Vx e Kp(v)}.
(i) Ke(v) = {x eRY: (y,x)>1 Vye FB(p)(V)}.

ES

P B(P)
x120 3
1 2 ,e)x 21
1,2)
(0,1)x>1
(1,2)x>1 1 -
(;%A x2>0 R .
0 1 27 0 1 2 3 4
Consequence:

» xc(Kp(v)) and xc(Fg(py(v)) differ by at most 1.
» To prove lower or upper bounds on xc(Kp(v)), analyze Fg(py(v)!
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Radial Cones of T-Join Polyhedra
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Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.
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Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:
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Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

» By Lemma, theorem reduces to xc(P) for

P::{xePT,cut(n)T:erzl}. ,"--.“.

ezy\,‘::v)

‘u
'---’
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Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

» By Lemma, theorem reduces to xc(P) for

P := {xePT,cut(n)T:erzl}. ',"--.“.‘ )
ee) *
'

1 (o]
» For each me J, let F,, be the face of P i R
with xm =1 (and xe =0 Ve e J\ {m}). y H
I‘ I "
,
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Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

» By Lemma, theorem reduces to xc(P) for

P := {xePT,cut(n)T:erzl}. ',"--.“.‘ )
ee) *
'

1 (o]
» For each me J, let F,, be the face of P i R
with xm =1 (and xe =0 Ve e J\ {m}). y H
» But F,, is also a face of PT/,CL.t(n)T for k. I "'
T’ = m (set containing the nodes). ‘\ c K
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Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:
» By Lemma, theorem reduces to xc(P) for

. 1. _ PR BN
P := {xePT,cut(n) .e;xe—l}. , . )
l' o '
» For each me J, let F,, be the face of P i R
with xm =1 (and xe =0 Ve e J\ {m}). y H
» But F,, is also a face of PT/,CL.t(n)T for k. I ,

T' = m (set containing the nodes). N R

» We obtain xc(Fn) < O(n? -2|T") =0(n?).
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Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set T € V,, with |T| even and every vertex v of Proin(n)',
corresponding to a T-join J € E, in K, the extension complexity of the radial
cone of Prjoin(n) at v is most O(|J|- n?).

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:
» By Lemma, theorem reduces to xc(P) for

. 1. _ PR BN
P := {xePT,Cut(n) .eze;xe—].}. ", s‘ )
'

» For each me J, let F,, be the face of P i R
with xm =1 (and xe =0 Ve e J\ {m}). y H
» But F,, is also a face of PT/,CL.t(n)T for k. f ,

T' = m (set containing the nodes). N R
» We obtain xc(Fn) < O(n? -2|T") =0(n?).

» P is convex hull of union of all F,,.
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Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D
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Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
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. DN
. B o
I} o [y -
I} '
; . O o
1 ]
' om E o
C, ]
. O = ] o (@)
. 3 .
. L4 ]
s~5 44
L d
~--—

Matthias Walter Extended Formulations for Radial Cones Bonn 2018 19 / 20



Ext. Form. Radial Cones T-Joins & T-Cuts Blocking Polarity Results
0000 00000 0000 0000 oe

Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)
For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension

complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
» Let v =x(d(5)).
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Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
» Let v =x(d(5)).

» By Lemma, theorem reduces to xc(P) for

P := XEPT,jOin(H)TZ Z Xe=1p. ’4'-.'~~
ecd(S) < ‘
' \
] [
1 1
' [
‘ '
~~
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Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
» Let v =x(d(5)).

» By Lemma, theorem reduces to xc(P) for

P:={xe¢ PT,join(n)T : Z Xe=1¢. .t/.— _t2_~
ees(S) R "~~ '6 N
4

' o %/ m’
»lett1e€S, the V,\ S as well as , o +) 0 ‘,
U =S~ {t1}, Ur:= (Vo N (SU{tz})). . m -‘u: = O;
l\ m B '. “ o l.
. R4 . .
' Us /' ‘“q2 m_ .’
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Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
» Let v =x(d(5)).
» By Lemma, theorem reduces to xc(P) for

P = {x € Prjon(n)': >, Xe= 1}' ty - -tQu

ees(S) . S "O‘ .
P o . ’ .
»letti €S, theV,\ S as well as A= Yoo .‘,
Ulifs\{fl},Uzl—(\/”\(SU{tz})). : = .‘.: o O:
» Let F be the face of P with x(;, ) =1 I\‘ m O g ". v 0 O':'
and x. = 0 for all edges between U;, U U RN V) m_ .’
and {l’l,tz}. ~~.1_" S
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Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
» Let v =x(d(5)).

» By Lemma, theorem reduces to xc(P) for

P:= {X € PT,join(n)T : Z Xe = 1} . -t/ t2
ees(S) o

(@)
»letti €S, the V,\S as well as o o B
© o
: . =} =
» Let F be the face of P with x(;, ,,) = 1 m 8 °© o
and x. = 0 for all edges between Ui, U U Uz g
and {l’17t2}. !

» F ist a Cartesian product of a vector and
two (T n U;)-join polyhedra on U; for
i=1,2, where |T1|+|T2| = |T|-2.
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Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets T < V, with |T| even and vertices v of Pt..:(n)!, the extension
complexity of the radial cone of Pr.c,e(n) at v is least 2D

Proof:
» Let v =x(d(5)).

» By Lemma, theorem reduces to xc(P) for

P:= {X € PT,join(n)T : Z Xe = 1} . -t/ t2
ees(S) o

(@)
»letti €S, the V,\S as well as o o B
© o
: . =} =
» Let F be the face of P with x(;, ,,) = 1 m 8 °© o
and x. = 0 for all edges between Ui, U U Uz g
and {l’17t2}. !

» F ist a Cartesian product of a vector and

two (T n U;)-join polyhedra on U; for

i=1,2, where |T1|+|T2| = |T|-2.

We obtain xc(P) > xc(F) > 227D for i =1,2.
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Thanks!

Conclusion:
» Extended formulations can help, but only sometimes.

» Although polynomially solvable, there is no obvious way to solve the
minimum-weight T-cut problem with LP techniques.
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Thanks!

Conclusion:
» Extended formulations can help, but only sometimes.

» Although polynomially solvable, there is no obvious way to solve the
minimum-weight T-cut problem with LP techniques.

Other candidates for investigation:

» Stable-set polytopes of claw-free graphs (current work with Gianpaolo
Oriolo and Gautier Stauffer).

» Stable-set polytopes of perfect graphs (polyhedral description is known,
but best (known) extended formulation has O(n'*¢") facets).
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