Extended Formulations for Radial Cones

Matthias Walter (RWTH Aachen)

Joint work with

Stefan Weltge (TU Munich)

Oberseminar Diskrete Optimierung, Bonn, December 3, 2018

Overview

 Ext. Form.
 Radial Cones
 T-Joins & *T*-Cuts
 Blocking Polarity
 Results

 •••••
 •••••
 •••••
 •••••
 •••••
 ••••

Matthias Walter

Optimization: Polyhedral Approach

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Polyhedral method:

- Consider feasible solutions *F* ⊆ 2^E over some ground set *E* and an objective vector *c* ∈ ℝ^E with the goal of minimizing *c*(*F*) := ∑_{*e*∈*F*} *c_e*.
- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.

Matthias Walter

Polyhedral method:

- Consider feasible solutions *F* ⊆ 2^E over some ground set *E* and an objective vector *c* ∈ ℝ^E with the goal of minimizing *c*(*F*) := ∑_{*e*∈*F*} *c_e*.
- Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- Let $X \coloneqq \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0, 1\}^{E}$.
- Optimization problem is then to minimize (c, x) over $x \in X$.

Polyhedral method:

- Consider feasible solutions *F* ⊆ 2^E over some ground set *E* and an objective vector *c* ∈ ℝ^E with the goal of minimizing *c*(*F*) := ∑_{*e*∈*F*} *c_e*.
- Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- Let $X \coloneqq \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0, 1\}^{E}$.
- Optimization problem is then to minimize (c, x) over $x \in conv(X)$.

Polyhedral method:

- Consider feasible solutions *F* ⊆ 2^E over some ground set *E* and an objective vector *c* ∈ ℝ^E with the goal of minimizing *c*(*F*) := ∑_{*e*∈*F*} *c_e*.
- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- Let $X \coloneqq \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0, 1\}^{E}$.
- Optimization problem is then to minimize (c, x) over $x \in conv(X)$.
- Find an outer description of conv(X), i.e., $conv(X) = \{x \in \mathbb{R}^{E} : Ax \le b\}$.
- Optimization problem is now an LP and we can use black-box solvers.¹

¹... or devise primal-dual algorithms.

 \bigtriangledown

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

One drawback of the polyhedral method:

• Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*−1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

• $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*−1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

• $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

Disjunctive programming:

Matthias Walter

Extended Formulations for Radial Cones

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

•
$$X = \bigcup_{k \text{ even}} \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i = k\}$$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

 $\succ \operatorname{conv}(X) = \operatorname{conv}(\bigcup_{k \text{ even}} \{x \in \{0,1\}^n : \sum_{i=1}^n x_i = k\})$

Matthias Walter

Extended Formulations for Radial Cones

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

 $\succ \operatorname{conv}(X) = \operatorname{conv}(\bigcup_{k \text{ even}} \operatorname{conv}(\{x \in \{0,1\}^n : \sum_{i=1}^n x_i = k\}))$

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

► conv(X) = conv($\bigcup_{k \text{ even}} \{x \in [0,1]^n : \sum_{i=1}^n x_i = k\}$)

Matthias Walter

Extended Formulations for Radial Cones

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}.$
- ▶ Inequality description (Jeroslow, 1975) requires 2^{*n*-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \operatorname{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polyhedra. Then $\operatorname{xc}(\operatorname{cl}(\operatorname{conv}(P_1 \cup \cdots \cup P_k))) \leq \sum_{i=1}^k (\operatorname{xc}(P_i) + 1).$

For parity polytope:

 Conv(X) = conv(k even
 {x ∈ [0,1]ⁿ : $\sum_{i=1}^{n} x_i = k$)
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Matthias Walter
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Extended Formulations for Radial Cones
 Applying the theorem: xc(conv(X)) ≤ O(n²)
 Conv(X)
 Applying the theorem: xc(conv(X))
 Applying the th

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Hard problems:

 Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \le xc(P)$.

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $\operatorname{xc}(\pi(P)) \leq \operatorname{xc}(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \le xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity 2^{Ω(n)} (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5ⁿ (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \le xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even $n, xc(P_{pmatch}(n)) \ge 2^{\Omega(n)}$. Here, $P_{pmatch}(n)$ denotes the perfect matching polytope for K_n .

Overview

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Matthias Walter

Optimization problem:

- Objective vector $c \in \mathbb{Q}^{E}$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	0000	0000	0000	00

Optimization problem:

- Objective vector $c \in \mathbb{Q}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

• Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	0000	0000	0000	00

Optimization problem:

- Objective vector $c \in \mathbb{Q}^{E}$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

• Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	0000	0000	0000	00

Optimization problem:

- Objective vector $c \in \mathbb{Q}^{E}$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

• Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Idea:

- Suppose $c \in \{0,1\}^{E}$, how many augmentation steps will you need?
- Apply bit scaling.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Polyhedral version of the augmentation problem:

- ▶ Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.

k

Polyhedral version of the augmentation problem:

- ▶ Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
- The polyhedron for this task is the radial cone:

$$\begin{aligned} &\zeta_{P}(\mathbf{v}) \coloneqq \operatorname{cone}(P - \mathbf{v}) + \mathbf{v} \\ &= \{ x \in \mathbb{R}^{n} : A_{i,*} x \le b_{i} \text{ for all } i \text{ with } A_{*,i} \mathbf{v} = b_{i} \} \end{aligned}$$

Polyhedral version of the augmentation problem:

- ▶ Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
- The polyhedron for this task is the radial cone:

Inverse Optimization Problem

Inverse problem:

- Input: $\hat{F} \in \mathcal{F}$ and $\hat{c} \in \mathbb{R}^{E}$
- Goal: minimize $||c \hat{c}||$ over $c \in \mathbb{R}^{E}$ such that \hat{F} maximizes c.
- Application: find objective for observed behavior \hat{F} that is assumed to be optimal.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Inverse Optimization Problem

Inverse problem:

- Input: $\hat{F} \in \mathcal{F}$ and $\hat{c} \in \mathbb{R}^{E}$
- Goal: minimize $||c \hat{c}||$ over $c \in \mathbb{R}^{E}$ such that \hat{F} maximizes c.
- Application: find objective for observed behavior \hat{F} that is assumed to be optimal.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Inverse Optimization Problem

Inverse problem:

- Input: $\hat{F} \in \mathcal{F}$ and $\hat{c} \in \mathbb{R}^{E}$
- Goal: minimize $||c \hat{c}||$ over $c \in \mathbb{R}^{E}$ such that \hat{F} maximizes c.
- Application: find objective for observed behavior \hat{F} that is assumed to be optimal.

Feasible solutions of inverse optimization problem:

• Set of feasible *c*-vectors is the polar cone of cone(P - v).

|--|

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Radial Cones: Basic Results

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Radial Cones: Basic Results

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- · Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Extension complexity of radial cones is inherited to projections and faces.

Radial Cones: Basic Results

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- · Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

Radial Cones: Basic Results

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- · Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

Which polyhedra remain?

- Matching polytopes & friends (this talk)
- Stable-set polytopes of claw-free or perfect graphs
- Beat known bounds for nice polyhedra

Overview

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Matthias Walter

T-Joins & T-Cuts

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Definitions $(K_n = (V_n, E_n)$ complete graph on *n* nodes; $T \subseteq V$, |T| even):

► $J \subseteq E$ is a *T*-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$

T-Joins & T-Cuts

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Definitions $(K_n = (V_n, E_n)$ complete graph on *n* nodes; $T \subseteq V$, |T| even):

► $J \subseteq E$ is a *T*-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$ ► $C = \delta(S) \subseteq E$ is a *T*-cut if $|S \cap T|$ is odd.

Facts:

- Both minimization problems can be solved in polynomial time for $c \ge \mathbb{O}$.
- Each T-join J intersects each T-cut C in at least one edge:

$$|J \cap \mathbf{C}| = \langle \chi(J), \chi(\mathbf{C}) \rangle \ge 1$$

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each *T*-cut *C*
 - $x_e \ge 0$ for each $e \in E$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J*
 - $x_e \ge 0$ for each $e \in E$

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**
 - $x_e \ge 0$ for each $e \in E$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

• A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**
 - $x_e \ge 0$ for each $e \in E$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e > 0$ for each $e \in E$

Relation to perfect matchings:

- A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- Thus, $P_{T\text{-join}}(n)^{\uparrow}$ contains $P_{\text{pmatch}}(|T|)$ as a face.

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**
 - $x_e \ge 0$ for each $e \in E$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e > 0$ for each $e \in E$

Relation to perfect matchings:

- A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- Thus, $P_{T\text{-join}}(n)^{\uparrow}$ contains $P_{\text{pmatch}}(|T|)$ as a face.
- Consequence: $\operatorname{xc}(P_{T-\operatorname{join}}(n)^{\uparrow}) \geq 2^{\Omega(|T|)}$

Polyhedra (Edmonds & Johnson, 1973):

- *T*-join Polyhedron $P_{T-join}(n)^{\uparrow}$:
- $\langle \chi(\mathbf{C}), x \rangle \ge 1$ for each **T**-cut **C**
 - $x_e \ge 0$ for each $e \in E$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

- *T*-cut Polyhedron $P_{T-cut}(n)^{\uparrow}$:
- $\langle \chi(J), x \rangle \ge 1$ for each *T*-join *J* $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- A *T*-join $J \subseteq E$ is a perfect matching on nodes *T* if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- Thus, $P_{T\text{-join}}(n)^{\uparrow}$ contains $P_{\text{pmatch}}(|T|)$ as a face.
- Consequence: $\operatorname{xc}(P_{T-\operatorname{join}}(n)^{\uparrow}) \geq 2^{\Omega(|T|)}$

Proposition (Walter & Weltge, 2018)

For every n and every set $T \subseteq V_n$, $\operatorname{xc}(P_{T\text{-}join}(n)^{\uparrow}) \leq \mathcal{O}(n^2 \cdot 2^{|T|})$.

Idea:

- ▶ For each $S \subseteq T$ with $|S| = \frac{1}{2}|T|$, consider the *b*-flow polyhedron for $b_v = -1$ for all $v \in S$, $b_v = 1$ for all $v \in T \setminus S$ and $b_v = 0$ otherwise.
- Apply disjunctive programming over all such polyhedra.

	RWTH	CHE
A Research	UNIVE	nən

Result Preview

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-}join}(n)^{\uparrow}$, corresponding to a $T\text{-}join \ J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-}join}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof: via blocking polarity

Result Preview

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-}join}(n)^{\uparrow}$, corresponding to a $T\text{-}join \ J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-}join}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables. Our new proof: via blocking polarity

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

Our proof: via blocking polarity

Matthias Walter

Overview

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Matthias Walter

Definitions:

• A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.

Possible descriptions are:

$$P = \{x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^d_+)$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^d_+ \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^d_+)$$

L	Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
l	0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Result
0000	00000	0000	0000	00

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}^{d}_{+} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, \dots, m\} \qquad (y^{(1)}, \dots, y^{(m)} \in \mathbb{R}^{d}_{+})$$
$$P = \operatorname{conv}\{x^{(1)}, \dots, x^{(k)}\} + \mathbb{R}^{d}_{+} \qquad (x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^{d}_{+})$$

- The blocker of P is defined via $B(P) := \{y \in \mathbb{R}^d_+ : \langle x, y \rangle \ge 1 \text{ for all } x \in P\}.$
- If P is blocking, then B(B(P)) = P.

xt. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Resul
0000	00000	0000	0000	00

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let
$$Q = \{Tz : Az \le b\}$$
, where A has $m = xc(Q)$ rows.

 $\hat{x} \in P \iff \min\{\langle \hat{x}, y \rangle : y \in Q\} \ge \gamma$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let
$$Q = \{Tz : Az \le b\}$$
, where A has $m = xc(Q)$ rows.

$$\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \ge \gamma$$

$$\iff \min \{ \langle \hat{x}, Tz \rangle : Az \le b \} \ge \gamma$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{aligned} \hat{x} \in P \iff \min\left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \ge \gamma \\ \iff \min\left\{ \langle \hat{x}, Tz \rangle : Az \le b \right\} \ge \gamma \\ \iff \max\left\{ \langle b, \lambda \rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \le \mathbb{O} \right\} \ge \gamma \end{aligned}$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{aligned} \hat{x} \in P \iff \min \left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \ge \gamma \\ \iff \min \left\{ \langle \hat{x}, Tz \rangle : Az \le b \right\} \ge \gamma \\ \iff \max \left\{ \langle b, \lambda \rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \le \mathbb{O} \right\} \ge \gamma \\ \iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \langle b, \lambda \rangle \ge \gamma \end{aligned}$$

Matthias Walter

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\hat{x} \in P \iff \min\{\langle \hat{x}, y \rangle : y \in Q\} \ge \gamma$$
$$\iff \min\{\langle \hat{x}, Tz \rangle : Az \le b\} \ge \gamma$$
$$\iff \max\{\langle b, \lambda \rangle : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \lambda \le \mathbb{O}\} \ge \gamma$$
$$\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \langle b, \lambda \rangle \ge \gamma$$

• Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m + 1 inequalities.

Matthias Walter

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \ge \gamma$$
$$\iff \min \{ \langle \hat{x}, Tz \rangle : Az \le b \} \ge \gamma$$
$$\iff \max \{ \langle b, \lambda \rangle : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \lambda \le \mathbb{O} \} \ge \gamma$$
$$\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}}\lambda = T^{\mathsf{T}}\hat{x}, \ \langle b, \lambda \rangle \ge \gamma$$

▶ Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m + 1 inequalities.

Consequences:

- P and B(P) have (essentially) the same extension complexity.
- $2^{\Omega(|T|)} \leq \operatorname{xc}(P_{T-\operatorname{cut}}(n)^{\dagger}) \leq \mathcal{O}(n^2 \cdot 2^{|T|}).$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let $P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$ Then $xc(P) \le xc(Q) + 1.$

Proof:

• Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \ge \gamma$$
$$\iff \min \{ \langle \hat{x}, Tz \rangle : Az \le b \} \ge \gamma$$
$$\iff \max \{ \langle b, \lambda \rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \le \mathbb{O} \} \ge \gamma$$
$$\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \langle b, \lambda \rangle \ge \gamma$$

▶ Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m + 1 inequalities.

Consequences:

- P and B(P) have (essentially) the same extension complexity.
- $2^{\Omega(|T|)} \leq \operatorname{xc}(P_{T-\operatorname{cut}}(n)^{\uparrow}) \leq \mathcal{O}(n^2 \cdot 2^{|T|}).$
- Radial cone and its dual have (essentially) the same extension complexity.

Blocking Polarity: Radial Cones

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Polar object of radial cone:

Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Blocking Polarity: Radial Cones

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Polar object of radial cone:

Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let
$$P \subseteq \mathbb{R}^d_+$$
 be a blocking polyhedron and let $v \in P$.
(i) $F_{B(P)}(v) = \{y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \ge 1 \ \forall x \in K_P(v) \}.$
(ii) $K_P(v) = \{x \in \mathbb{R}^d : \langle y, x \rangle \ge 1 \ \forall y \in F_{B(P)}(v) \}.$

Matthias Walter

Blocking Polarity: Radial Cones

	Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
\langle	0000	00000	0000	0000	00

Polar object of radial cone:

Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let
$$P \subseteq \mathbb{R}^d_+$$
 be a blocking polyhedron and let $v \in P$.
(i) $F_{B(P)}(v) = \{y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \ge 1 \ \forall x \in K_P(v) \}.$
(ii) $K_P(v) = \{x \in \mathbb{R}^d : \langle y, x \rangle \ge 1 \ \forall y \in F_{B(P)}(v) \}.$

Consequence:

- $xc(K_P(v))$ and $xc(F_{B(P)}(v))$ differ by at most 1.
- To prove lower or upper bounds on $xc(K_P(v))$, analyze $F_{B(P)}(v)$!

Matthias Walter

Extended Formulations for Radial Cones

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join} J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\uparrow}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{T-\mathrm{cut}}(n)^{\dagger} : \sum_{e \in J} x_e = 1 \right\}$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{\mathsf{T-cut}}(n)^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$

For each m ∈ J, let F_m be the face of P with x_m = 1 (and x_e = 0 ∀ e ∈ J \ {m}).

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{T-\mathrm{cut}}(\mathbf{n})^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$

- ▶ For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \forall e \in J \setminus \{m\}$).
- But F_m is also a face of $P_{T'-\text{cut}}(n)^{\uparrow}$ for T' = m (set containing the nodes).

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{T-\mathrm{cut}}(\mathbf{n})^{\dagger} : \sum_{e \in J} x_e = 1 \right\}.$$

- ▶ For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \forall e \in J \setminus \{m\}$).
- But F_m is also a face of $P_{T'-cut}(n)^{\uparrow}$ for T' = m (set containing the nodes).
- We obtain $xc(F_m) \leq \mathcal{O}(n^2 \cdot 2^{|T'|}) = \mathcal{O}(n^2)$.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	•0

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-join}}(n)^{\dagger}$, corresponding to a $T\text{-join } J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Their proof: ad-hoc construction using sets of flow variables.

Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in \mathbf{P}_{T-\mathrm{cut}}(\mathbf{n})^{\dagger} : \sum_{e \in J} x_e = 1 \right\}.$$

- ▶ For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \forall e \in J \setminus \{m\}$).
- But F_m is also a face of $P_{T'-cut}(n)^{\uparrow}$ for T' = m (set containing the nodes).
- We obtain $xc(F_m) \leq \mathcal{O}(n^2 \cdot 2^{|T'|}) = \mathcal{O}(n^2)$.
- P is convex hull of union of all F_m .

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

Proof:

• Let $v = \chi(\delta(S))$.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices \mathbf{v} of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at \mathbf{v} is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P \coloneqq \left\{ x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

• Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 \coloneqq S \setminus \{t_1\}, U_2 \coloneqq (V_n \setminus (S \cup \{t_2\})).$

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.
- ▶ *F* ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| 2$.

Ext. Form.	Radial Cones	T-Joins & T-Cuts	Blocking Polarity	Results
0000	00000	0000	0000	00

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\dagger}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

- Let $v = \chi(\delta(S))$.
- ▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\dagger} : \sum_{e \in \delta(S)} x_e = 1 \right\}$$

- Let $t_1 \in S$, $t_2 \in V_n \times S$ as well as $U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and x_e = 0 for all edges between U₁, U₂ and {t₁, t₂}.
- ▶ *F* ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| 2$.
- We obtain $xc(P) \ge xc(F) \ge 2^{\Omega(|T_i|)}$ for i = 1, 2.

 Ext. Form.
 Radial Cones
 T-Joins & *T*-Cuts
 Blocking Polarity
 Results

 0000
 00000
 00000
 00000
 00000
 00000

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

 Ext. Form.
 Radial Cones
 T-Joins & *T*-Cuts
 Blocking Polarity
 Results

 0000
 00000
 00000
 00000
 00000
 00000

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

Other candidates for investigation:

- Stable-set polytopes of claw-free graphs (current work with Gianpaolo Oriolo and Gautier Stauffer).
- Stable-set polytopes of perfect graphs (polyhedral description is known, but best (known) extended formulation has $\mathcal{O}(n^{\log n})$ facets).

