Extended Formulations for Radial Cones

Matthias Walter (RWTH Aachen)

Joint work with

Stefan Weltge (TU Munich)

IMO Oberseminar, Magdeburg, 02.11.2018
Combinatorial optimization problem:

- Ground set E (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^E$
- Objective vector $c \in \mathbb{Q}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.
Combinatorial optimization problem:

- Ground set E (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^E$
- Objective vector $c \in \mathbb{Q}^E$

Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

- Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with $c(F') < c(F)$.

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Idea:

Suppose $c \in \{0, 1\}^E$, how many augmentation steps will you need?

Apply bit scaling.
Optimization & Augmentation

Combinatorial optimization problem:
- Ground set E (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^E$
- Objective vector $c \in \mathbb{Q}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:
- Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with $c(F') < c(F)$.

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.
Combinatorial optimization problem:
- Ground set E (finite)
- Feasible solutions $\mathcal{F} \subseteq 2^E$
- Objective vector $c \in \mathbb{Q}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:
- Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with $c(F') < c(F)$.

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Idea:
- Suppose $c \in \{0, 1\}^E$, how many augmentation steps will you need?
- Apply bit scaling.
Polyhedral Approach: Optimization

Polyhedral method:
- Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0, 1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.

\[
X = \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0, 1\}^E.
\]

Optimization problem is then to minimize $c^T x$ over $x \in X$.

Find an outer description of $\text{conv}(X)$, i.e., $\text{conv}(X) = \{x \in \mathbb{R}^E : Ax \leq b\}$.

Optimization problem is now an LP and we can use black-box solvers.

1 or devise primal-dual algorithms.
Polyhedral method:

- Identify \(F \in \mathcal{F} \) with \(\chi(F) \in \{0,1\}^E \) s.t. \(\chi(F)_e = 1 \iff e \in F \).
- Let \(X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0,1\}^E \).
- Optimization problem is then to minimize \(\langle c, x \rangle \) over \(x \in X \).
Polyhedral Approach: Optimization

Polyhedral method:
- Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0, 1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0, 1\}^E$.
- Optimization problem is then to minimize $\langle c, x \rangle$ over $x \in \text{conv}(X)$.
Polyhedral Approach: Optimization

Polyhedral method:

- Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0,1\}^E$.
- Optimization problem is then to minimize $\langle c, x \rangle$ over $x \in \text{conv}(X)$.
- Find an outer description of $\text{conv}(X)$, i.e., $\text{conv}(X) = \{x \in \mathbb{R}^E : Ax \leq b\}$.
- Optimization problem is now an LP and we can use black-box solvers.\(^1\)

\(^1\) or devise primal-dual algorithms.
One drawback of the polyhedral method:

- Consider $X := \{ x \in \{0, 1\}^n : \sum_{i=1}^n \text{even} \}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$
One drawback of the polyhedral method:

- Consider $X := \{ x \in \{0, 1\}^n : \sum_{i=1}^n \text{even} \}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:
 \[
 \sum_{i \in I} (1-x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}
 \]

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
One drawback of the polyhedral method:

- Consider \(X := \{ x \in \{0, 1\}^n : \sum_{i=1}^n \text{even} \} \).
- Optimization is easy: first over \(\{0, 1\}^n \), potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires \(2^{n-1} \) inequalities:
 \[
 \sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}
 \]

Potential cure: extended formulations

- \(P = \text{conv}(X) \) has many facets, but maybe there exists an extension \((Q, \pi)\) (\(Q \subseteq \mathbb{R}^d \), \(\pi : \mathbb{R}^d \to \mathbb{R}^n \) linear with \(P = \pi(Q) \)) with few facets?
Extended Formulations

One drawback of the polyhedral method:

- Consider $X := \{ x \in \{0, 1\}^n : \sum_{i=1}^{n} \text{even} \}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \not\in I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
- The extension complexity $xc(P)$ of P is the minimum number of facets of an extension (Q, π) of P.

$$\sum_{i \in I} (1 - x_i) + \sum_{i \not\in I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$
Extended Formulations

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:
 \[\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd} \]

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
- The extension complexity $\text{xc}(P)$ of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables
Extended Formulations

One drawback of the polyhedral method:
- Consider \(X := \{ x \in \{0, 1\}^n : \sum_{i=1}^n \text{even} \} \).
- Optimization is easy: first over \(\{0, 1\}^n \), potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires \(2^{n-1} \) inequalities:
 \[
 \sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \quad \text{for all } I \subseteq [n] \text{ with } |I| \text{ odd}
 \]

Potential cure: extended formulations
- \(P = \text{conv}(X) \) has many facets, but maybe there exists an extension \((Q, \pi)\)
 \((Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \) linear with \(P = \pi(Q) \)) with few facets?
- The extension complexity \(xc(P) \) of \(P \) is the minimum number of facets of
 an extension \((Q, \pi)\) of \(P \).
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let \(P_1, \ldots, P_k \subseteq \mathbb{R}^n \) be polytopes. Then \(xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1) \).

Disjunctive programming:
Extended Formulations

One drawback of the polyhedral method:

▶ Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n \text{even}\}$.
▶ Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1-x_i) + \sum_{i \not\in I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

▶ $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \rightarrow \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
▶ The extension complexity $\text{xc}(P)$ of P is the minimum number of facets of an extension (Q, π) of P.
▶ Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\text{xc}\left(P_1 \cup \cdots \cup P_k\right) \leq \sum_{i=1}^k (\text{xc}(P_i) + 1)$.

Disjunctive programming:
Extended Formulations

One drawback of the polyhedral method:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^{n} x_i \text{ even}\}$.
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:
 \[
 \sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}
 \]

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \rightarrow \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
- The extension complexity $xc(P)$ of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then

$xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^{k} (xc(P_i) + 1)$.

For parity polytope:

\[X = \bigcup_{k \text{ even}} \{x \in \{0,1\}^n : \sum_{i=1}^{n} x_i = k\}\]
Extended Formulations

One drawback of the polyhedral method:
- Consider \(X := \{ x \in \{0, 1\}^n : \sum_{i=1}^n \text{even} \} \).
- Optimization is easy: first over \(\{0, 1\}^n \), potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires \(2^{n-1} \) inequalities:
 \[
 \sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}
 \]

Potential cure: extended formulations
- \(P = \text{conv}(X) \) has many facets, but maybe there exists an extension \((Q, \pi)\) (\(Q \subseteq \mathbb{R}^d \), \(\pi : \mathbb{R}^d \to \mathbb{R}^n \) linear with \(P = \pi(Q) \)) with few facets?
- The extension complexity \(\text{xc}(P) \) of \(P \) is the minimum number of facets of an extension \((Q, \pi)\) of \(P \).
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let \(P_1, \ldots, P_k \subseteq \mathbb{R}^n \) be polytopes. Then \(\text{xc}(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (\text{xc}(P_i) + 1) \).

For parity polytope:
- \(\text{conv}(X) = \text{conv} \left(\bigcup_{k \text{ even}} \{ x \in \{0, 1\}^n : \sum_{i=1}^n = k \} \right) \)
One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:
 \[\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd} \]

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \rightarrow \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
- The extension complexity $xc(P)$ of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1)$.

For parity polytope:

- $\text{conv}(X) = \text{conv}(\bigcup_{k \text{ even}} \text{conv}(\{x \in \{0, 1\}^n : \sum_{i=1}^n = k\}))$
One drawback of the polyhedral method:

- Consider $X := \{x \in \{0, 1\}^n : \sum_{i=1}^n x_i \text{ even}\}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:
 $$\sum_{i \in I}(1 - x_i) + \sum_{i \not\in I} x_i \geq 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \to \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
- The extension complexity $\text{xc}(P)$ of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $\text{xc}(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (\text{xc}(P_i) + 1)$.

For parity polytope:

- $\text{conv}(X) = \text{conv}(\bigcup_{k \text{ even}} \{x \in [0, 1]^n : \sum_{i=1}^n x_i = k\})$
Extended Formulations

One drawback of the polyhedral method:

- Consider $X := \{ x \in \{0, 1\}^n : \sum_{i=1}^n \text{even} \}$.
- Optimization is easy: first over $\{0, 1\}^n$, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:
 \[\sum_{i \in l} (1 - x_i) + \sum_{i \notin l} x_i \geq 1 \text{ for all } l \subseteq [n] \text{ with } |l| \text{ odd} \]

Potential cure: extended formulations

- $P = \text{conv}(X)$ has many facets, but maybe there exists an extension (Q, π) ($Q \subseteq \mathbb{R}^d$, $\pi : \mathbb{R}^d \rightarrow \mathbb{R}^n$ linear with $P = \pi(Q)$) with few facets?
- The extension complexity $xc(P)$ of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1)$.

For parity polytope:

- $\text{conv}(X) = \text{conv}(\bigcup_{k \text{ even}} \{ x \in [0, 1]^n : \sum_{i=1}^n = k \})$.
- Applying the theorem: $xc(\text{conv}(X)) \leq \mathcal{O}(n^2)$.
Limitations

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
Limitations

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).

- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \leq xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \leq xc(P)$.
Limitations

Hard problems:

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).

- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \leq xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \leq xc(P)$.

- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).
Limitations

Hard problems:
- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^\Omega(n)$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \leq xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \leq xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:
- A perfect matching in a graph $G = (V, E)$ is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).
Limitations

Hard problems:
- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - If F is face of P, then $xc(F) \leq xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \leq xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:
- A perfect matching in a graph $G = (V, E)$ is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even n, $xc(P_{p_{\text{match}}}(n)) \geq 2^{\Omega(n)}$. Here, $P_{p_{\text{match}}}(n)$ denotes the perfect matching polytope for K_n.
Polyhedral version of the augmentation problem:

- Consider a polyhedron $P = \{ x \in \mathbb{R}^n : Ax \leq b \}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
Polyhedral Approach: Augmentation

Polyhedral version of the augmentation problem:

- Consider a polyhedron \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) and an objective vector \(c \in \mathbb{R}^n \).
- Given a point \(v \in P \), determine optimality or find improving direction \(d \in \mathbb{R}^n \), i.e., \(\langle c, d \rangle < 0 \) and \(v + d \in P \).
- The polyhedron for this task is the radial cone:

\[
K_P(v) := \text{cone}(P - v) + v \\
= \{ x \in \mathbb{R}^n : A_i,\star x \leq b_i \text{ for all } i \text{ with } A_{\star,i}v = b_i \}
\]
Polyhedral version of the augmentation problem:

- Consider a polyhedron \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) and an objective vector \(c \in \mathbb{R}^n \).
- Given a point \(v \in P \), determine optimality or find improving direction \(d \in \mathbb{R}^n \), i.e., \(\langle c, d \rangle < 0 \) and \(v + d \in P \).
- The polyhedron for this task is the radial cone:

\[
K_P(v) := \text{cone}(P - v) + v
= \{ x \in \mathbb{R}^n : A_{i} x \leq b_i \text{ for all } i \text{ with } A_{i,v} = b_i \}
\]
Radial Cones: Basic results

Nice problems:

- For $v \in P$ we have $xc(K_P(v)) \leq xc(P)$.
- Consequence: nice polyhedra have nice radial cones.
Radial Cones: Basic results

Nice problems:
- For \(v \in P \) we have \(xc(K_P(v)) \leq xc(P) \).
- Consequence: nice polyhedra have nice radial cones.

Hard problems:
- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex \(\emptyset \)) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
Radial Cones: Basic results

Nice problems:
- For \(v \in P \) we have \(\text{xc}(K_P(v)) \leq \text{xc}(P) \).
- Consequence: nice polyhedra have nice radial cones.

Hard problems:
- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex \(\emptyset \)) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.
Nice problems:
- For $v \in P$ we have $\chi c(K_P(v)) \leq \chi c(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:
- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex \emptyset) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

What remains?
- Matching polytopes & friends (this talk).
- Stable-set polytopes of claw-free or perfect graphs.
T-Joins & T-Cuts

Definitions \((K_n = (V_n, E_n))\) complete graph on \(n\) nodes; \(T \subseteq V\), \(|T|\) even:

- \(J \subseteq E\) is a \(T\)-join if
 \[|J \cap \delta(v)|\text{ is odd} \iff v \in T\]

- \(C = \delta(S) \subseteq E\) is a \(T\)-cut if
 \[|S \cap T|\text{ is odd.}\]
Definitions \((K_n = (V_n, E_n))\) complete graph on \(n\) nodes; \(T \subseteq V, |T|\) even):

- \(J \subseteq E\) is a \(T\)-join if \(|J \cap \delta(v)|\) is odd \(\iff v \in T\)
- \(C = \delta(S) \subseteq E\) is a \(T\)-cut if \(|S \cap T|\) is odd.

Facts:

- Both minimization problems can be solved in polynomial time for \(c \geq \emptyset\).
- Each \(T\)-join \(J\) intersects each \(T\)-cut \(C\) in at least one edge:
 \[
 |J \cap C| = \langle \chi(J), \chi(C) \rangle \geq 1
 \]
T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

- **T-join Polyhedron** $P_{T\text{-join}}(n)^\uparrow$:

 \[
 \langle \chi(C), x \rangle \geq 1 \quad \text{for each } T\text{-cut } C \\
 x_e \geq 0 \quad \text{for each } e \in E
 \]

- **T-cut Polyhedron** $P_{T\text{-cut}}(n)^\uparrow$:

 \[
 \langle \chi(J), x \rangle \geq 1 \quad \text{for each } T\text{-join } J \\
 x_e \geq 0 \quad \text{for each } e \in E
 \]

\section*{\textbf{T-Join- and T-Cut-Polyhedra}}

\textbf{Polyhedra} (Edmonds & Johnson, 1973):

- \textit{T-join Polyhedron} $P_{T\text{-join}}(n)^\uparrow$:
 \begin{align*}
 \langle \chi(C), x \rangle &\geq 1 \quad \text{for each } T\text{-cut } C \\
 x_e &\geq 0 \quad \text{for each } e \in E
 \end{align*}

- \textit{T-cut Polyhedron} $P_{T\text{-cut}}(n)^\uparrow$:
 \begin{align*}
 \langle \chi(J), x \rangle &\geq 1 \quad \text{for each } T\text{-join } J \\
 x_e &\geq 0 \quad \text{for each } e \in E
 \end{align*}

\textbf{Relation to perfect matchings:}

- A \textit{T-join} $J \subseteq E$ is a perfect matching on nodes T if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \geq 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \geq 1$ for all $v \in T$ with equality.
T-Join- and T-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

- **T-join Polyhedron $P_{T\text{-join}}(n)$**: \[
\langle \chi(C), x \rangle \geq 1 \quad \text{for each } T\text{-cut } C \\
x_e \geq 0 \quad \text{for each } e \in E
\]

- **T-cut Polyhedron $P_{T\text{-cut}}(n)$**: \[
\langle \chi(J), x \rangle \geq 1 \quad \text{for each } T\text{-join } J \\
x_e \geq 0 \quad \text{for each } e \in E
\]

Relation to perfect matchings:

- A T-join $J \subseteq E$ is a perfect matching on nodes T if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \geq 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \geq 1$ for all $v \in T$ with equality.

- Thus, $P_{T\text{-join}}(n)$ contains $P_{\text{pmatch}}(|T|)$ as a face.
\(T\)-Join- and \(T\)-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

- \(T\)-join Polyhedron \(P_{T\text{-join}}(n)^\uparrow\):

\[
\langle \chi(C), x \rangle \geq 1 \quad \text{for each } T\text{-cut } C
\]
\[
x_e \geq 0 \quad \text{for each } e \in E
\]

- \(T\)-cut Polyhedron \(P_{T\text{-cut}}(n)^\uparrow\):

\[
\langle \chi(J), x \rangle \geq 1 \quad \text{for each } T\text{-join } J
\]
\[
x_e \geq 0 \quad \text{for each } e \in E
\]

Relation to perfect matchings:

- A \(T\)-join \(J \subseteq E\) is a perfect matching on nodes \(T\) if and only if \(x = \chi(J)\) satisfies the valid inequalities \(x_e \geq 0\) for all \(e \in E \setminus E[T]\) and \(\sum_{e \in \delta(v)} x_e \geq 1\) for all \(v \in T\) with equality.

- Thus, \(P_{T\text{-join}}(n)^\uparrow\) contains \(P_{\text{pmatch}}(|T|)\) as a face.

- Consequence: \(x_c(P_{T\text{-join}}(n)^\uparrow) \geq 2^{\Omega(|T|)}\)
\(T\)-Join- and \(T\)-Cut-Polyhedra

Polyhedra (Edmonds & Johnson, 1973):

- \(T\)-join Polyhedron \(P_{T\text{-join}}(n)^\uparrow\):

\[
\langle \chi(C), x \rangle \geq 1 \quad \text{for each } T\text{-cut } C
\]
\[
x_e \geq 0 \quad \text{for each } e \in E
\]

- \(T\)-cut Polyhedron \(P_{T\text{-cut}}(n)^\uparrow\):

\[
\langle \chi(J), x \rangle \geq 1 \quad \text{for each } T\text{-join } J
\]
\[
x_e \geq 0 \quad \text{for each } e \in E
\]

Relation to perfect matchings:

- A \(T\)-join \(J \subseteq E\) is a perfect matching on nodes \(T\) if and only if \(x = \chi(J)\) satisfies the valid inequalities \(x_e \geq 0\) for all \(e \in E \setminus E[T]\) and \(\sum_{e \in \delta(v)} x_e \geq 1\) for all \(v \in T\) with equality.
- Thus, \(P_{T\text{-join}}(n)^\uparrow\) contains \(P_{\text{pmatch}}(|T|)\) as a face.
- Consequence: \(xc(P_{T\text{-join}}(n)^\uparrow) \geq 2^{\Omega(|T|)}\)

Proposition (Walter & Weltge, 2018)

For every \(n\) and every set \(T \subseteq V_n\), \(xc(P_{T\text{-join}}(n)^\uparrow) \leq O(n^2 \cdot 2^{|T|})\).

Idea:

- For each \(S \subseteq T\) with \(|S| = \frac{1}{2}|T|\), consider the \(b\)-flow polyhedron for \(b_v = -1\) for all \(v \in S\), \(b_v = 1\) for all \(v \in T \setminus S\) and \(b_v = 0\) otherwise.
- Apply disjunctive programming over all such polyhedra.
Blocking Polarity: Basics

Definitions:

- A polyhedron \(P \subseteq \mathbb{R}_+^d \) is **blocking** if \(x' \geq x \) implies \(x' \in P \) for all \(x \in P \).
- Possible descriptions are:

 \[
 P = \{ x \in \mathbb{R}_+^d : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}_+^d)
 \]

 \[
 P = \operatorname{conv}\{ x^{(1)}, \ldots, x^{(k)} \} + \mathbb{R}_+^d \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}_+^d)
 \]
Blocking Polarity: Basics

Definitions:

- A polyhedron $P \subseteq \mathbb{R}_+^d$ is blocking if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

 $$P = \{ x \in \mathbb{R}_+^d : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}_+^d)$$

 $$P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}_+^d \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}_+^d)$$

- The blocker of P is defined via $B(P) := \{ y \in \mathbb{R}_+^d : \langle x, y \rangle \geq 1 \text{ for all } x \in P\}$.
Blocking Polarity: Basics

Definitions:
- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:
 \[
P = \{ x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}^d_+)
 \]
 \[
P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}^d_+ \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^d_+)
 \]
- The blocker of P is defined via $B(P) := \{ y \in \mathbb{R}^d_+ : \langle x, y \rangle \geq 1 \text{ for all } x \in P \}$.
Blocking Polarity: Basics

Definitions:

- A polyhedron \(P \subseteq \mathbb{R}_+^d \) is blocking if \(x' \geq x \) implies \(x' \in P \) for all \(x \in P \).
- Possible descriptions are:
 \[
P = \{ x \in \mathbb{R}_+^d : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}_+^d)
 \]
 \[
P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}_+^d \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}_+^d)
 \]
- The blocker of \(P \) is defined via \(B(P) := \{ y \in \mathbb{R}_+^d : \langle x, y \rangle \geq 1 \text{ for all } x \in P \} \).
Blocking Polarity: Basics

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is **blocking** if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

 \[
P = \{ x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}^d_+)
 \]

 \[
P = \text{conv}\{ x^{(1)}, \ldots, x^{(k)} \} + \mathbb{R}^d_+ \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^d_+)
 \]

- The **blocker** of P is defined via $B(P) := \{ y \in \mathbb{R}^d_+ : \langle x, y \rangle \geq 1 \text{ for all } x \in P \}$.

\[
\begin{align*}
\text{P:} & \quad x_1 \geq 0 \\
& \quad x_2 \geq 0 \\
& \quad \left(\frac{1}{5}, \frac{2}{5}\right) \rangle x \geq 1 \\
\text{B(P):} & \quad (\frac{1}{5}, \frac{2}{5}) \rangle x \geq 1 \\
& \quad (0, 1) \rangle x \geq 1
\end{align*}
\]
Blocking Polarity: Basics

Definitions:

- A polyhedron $P \subseteq \mathbb{R}_+^d$ is **blocking** if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

 $P = \{ x \in \mathbb{R}_+^d : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \}$ \hspace{1cm} ($y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}_+^d$)

 $P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}_+^d$ \hspace{1cm} ($x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}_+^d$)

- The **blocker** of P is defined via $B(P) := \{ y \in \mathbb{R}_+^d : \langle x, y \rangle \geq 1 \text{ for all } x \in P \}$.
Blocking Polarity: Basics

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:
 \[
P = \{ x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}^d_+) \]
 \[
P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}^d_+ \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^d_+) \]
- The blocker of P is defined via $B(P) := \{ y \in \mathbb{R}^d_+ : \langle x, y \rangle \geq 1 \text{ for all } x \in P \}$.

![Diagram of blocking polyhedron and its blocker](image)
Blocking Polarity: Basics

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is **blocking** if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

 $$P = \{ x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}^d_+)$$

 $$P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}^d_+ \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^d_+)$$

- The **blocker** of P is defined via $B(P) := \{ y \in \mathbb{R}^d_+ : \langle x, y \rangle \geq 1 \text{ for all } x \in P \}$.

Diagram:

- **P:**

 - $x_1 \geq 0$

 - $(3, 1)x \geq 1$

 - $(1, 2)x \geq 1$

 - $(\frac{1}{5}, \frac{2}{5})^T x \geq 0$

 - $x_2 \geq 0$

- **$B(P)$:**

 - $(1, 0)x \geq 1$

 - $(\frac{1}{5}, \frac{2}{5})x \geq 1$

 - $(1, 2)^T$

 - $(0, 1)x \geq 1$

 - $(3, 1)^T$
Blocking Polarity: Basics

Definitions:

- A polyhedron $P \subseteq \mathbb{R}^d_+$ is **blocking** if $x' \geq x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

\[
P = \{ x \in \mathbb{R}^d_+ : \langle y^{(i)}, x \rangle \geq 1 \text{ for } i = 1, \ldots, m \} \quad (y^{(1)}, \ldots, y^{(m)} \in \mathbb{R}^d_+)
\]

\[
P = \text{conv}\{x^{(1)}, \ldots, x^{(k)}\} + \mathbb{R}^d_+ \quad (x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^d_+)
\]

- The **blocker** of P is defined via $B(P) := \{ y \in \mathbb{R}^d_+ : \langle x, y \rangle \geq 1 \text{ for all } x \in P \}$.
- If P is blocking, then $B(B(P)) = P$.

![Diagram of Blocking Polarity](image_url)
Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \}.$$

Then $xc(P) \leq xc(Q) + 1$.

Proof:

- Let $Q = \{ Tz : Az \leq b \}$, where A has $m = xc(Q)$ rows.
Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$ P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \} . $$

Then $xc(P) \leq xc(Q) + 1$.

Proof:

- Let $Q = \{ Tz : Az \leq b \}$, where A has $m = xc(Q)$ rows.

$$ \hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \geq \gamma $$
Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \}.$$

Then $xc(P) \leq xc(Q) + 1$.

Proof:

- Let $Q = \{ Tz : Az \leq b \}$, where A has $m = xc(Q)$ rows.

$$\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \geq \gamma$$

$$\iff \min \{ \langle \hat{x}, Tz \rangle : Az \leq b \} \geq \gamma$$
Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron \(Q \) and \(\gamma \in \mathbb{R} \), let
\[
P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \}.
\]
Then \(xc(P) \leq xc(Q) + 1 \).

Proof:
- Let \(Q = \{ Tz : Az \leq b \} \), where \(A \) has \(m = xc(Q) \) rows.

\[
\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \geq \gamma
\]
\[
\iff \min \{ \langle \hat{x}, Tz \rangle : Az \leq b \} \geq \gamma
\]
\[
\iff \max \{ \langle b, \lambda \rangle : A^T \lambda = T^T \hat{x}, \ \lambda \leq \emptyset \} \geq \gamma
\]
Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$ P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \}. $$

Then $xc(P) \leq xc(Q) + 1$.

Proof:

- Let $Q = \{ Tz : Az \leq b \}$, where A has $m = xc(Q)$ rows.

$$ \hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \geq \gamma $$

$$ \iff \min \{ \langle \hat{x}, Tz \rangle : Az \leq b \} \geq \gamma $$

$$ \iff \max \{ \langle b, \lambda \rangle : A^T \lambda = T^T \hat{x}, \lambda \leq \emptyset \} \geq \gamma $$

$$ \iff \exists \lambda \leq \emptyset : A^T \lambda = T^T \hat{x}, \langle b, \lambda \rangle \geq \gamma $$
Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \}.$$

Then $xc(P) \leq xc(Q) + 1$.

Proof:

- Let $Q = \{ Tz : Az \leq b \}$, where A has $m = xc(Q)$ rows.

 $$\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \geq \gamma$$
 $$\iff \min \{ \langle \hat{x}, Tz \rangle : Az \leq b \} \geq \gamma$$
 $$\iff \max \{ \langle b, \lambda \rangle : A^T \lambda = T^T \hat{x}, \lambda \leq \emptyset \} \geq \gamma$$
 $$\iff \exists \lambda \leq \emptyset : A^T \lambda = T^T \hat{x}, \langle b, \lambda \rangle \geq \gamma$$

- Thus, $P = \{ x : \exists \lambda \leq \emptyset : A^T \lambda = T^T x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with $m + 1$ inequalities.
Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron \(Q \) and \(\gamma \in \mathbb{R} \), let
\[
P := \left\{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \right\}.
\]
Then \(xc(P) \leq xc(Q) + 1 \).

Proof:
- Let \(Q = \{ Tz : Az \leq b \} \), where \(A \) has \(m = xc(Q) \) rows.

\[
\hat{x} \in P \iff \min \left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \geq \gamma
\]
\[
\iff \min \left\{ \langle \hat{x}, Tz \rangle : Az \leq b \right\} \geq \gamma
\]
\[
\iff \max \left\{ \langle b, \lambda \rangle : A^T \lambda = T^T \hat{x}, \lambda \leq \varnothing \right\} \geq \gamma
\]
\[
\iff \exists \lambda \leq \varnothing : A^T \lambda = T^T \hat{x}, \langle b, \lambda \rangle \geq \gamma
\]

- Thus, \(P = \left\{ x : \exists \lambda \leq \varnothing : A^T \lambda = T^T x, \langle b, \lambda \rangle \geq \gamma \right\} \) is an extension with \(m + 1 \) inequalities.

Consequences:
- \(xc(B(P)) \) and \(xc(P) \) differ by at most \(d \).
Blocking Polarity: Extensions

Proposition (Martin, 1991; Conforti, Kaibel, Walter & Weltge, 2015)

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$ P := \{ x : \langle y, x \rangle \geq \gamma \text{ for all } y \in Q \} . $$

Then $xc(P) \leq xc(Q) + 1$.

Proof:

- Let $Q = \{ Tz : Az \leq b \}$, where A has $m = xc(Q)$ rows.

 $$ \hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \geq \gamma $$
 $$ \iff \min \{ \langle \hat{x}, Tz \rangle : Az \leq b \} \geq \gamma $$
 $$ \iff \max \{ \langle b, \lambda \rangle : A^T \lambda = T^T \hat{x}, \lambda \leq 0 \} \geq \gamma $$
 $$ \iff \exists \lambda \leq 0 : A^T \lambda = T^T \hat{x}, \langle b, \lambda \rangle \geq \gamma $$

- Thus, $P = \{ x : \exists \lambda \leq 0 : A^T \lambda = T^T x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with $m + 1$ inequalities.

Consequences:

- $xc(B(P))$ and $xc(P)$ differ by at most d.
- $2^{\Omega(|T|)} \leq xc(P_{T-cut}(n)) \leq O(n^2 \cdot 2^{|T|})$.
Polar object of radial cone:

- Any $v \in P$ defines a face $F_{B(P)}(v) := \{ y \in B(P) : \langle v, y \rangle = 1 \}$ of $B(P)$.
Polar object of radial cone:

- Any \(v \in P \) defines a face \(F_{B(P)}(v) := \{ y \in B(P) : \langle v, y \rangle = 1 \} \) of \(B(P) \).

Lemma

Let \(P \subseteq \mathbb{R}^d_+ \) be a blocking polyhedron and let \(v \in P \).

(i) \(F_{B(P)}(v) = \{ y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \geq 1 \ \forall x \in K_P(v) \} \).

(ii) \(K_P(v) = \{ x \in \mathbb{R}^d : \langle y, x \rangle \geq 1 \ \forall y \in F_{B(P)}(v) \} \).

Proof:

- Elementary convex geometry
Polar object of radial cone:
- Any $v \in P$ defines a face $F_{B(P)}(v) := \{ y \in B(P) : \langle v, y \rangle = 1 \}$ of $B(P)$.

Lemma

Let $P \subseteq \mathbb{R}^d_+$ be a blocking polyhedron and let $v \in P$.

(i) $F_{B(P)}(v) = \{ y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \geq 1 \ \forall x \in K_P(v) \}$.

(ii) $K_P(v) = \{ x \in \mathbb{R}^d : \langle y, x \rangle \geq 1 \ \forall y \in F_{B(P)}(v) \}$.

Proof:
- Elementary convex geometry

Consequence:
- $xc(K_P(v))$ and $xc(F_{B(P)}(v))$ differ by at most 1.
- To prove lower or upper bounds on $xc(K_P(v))$, it suffices to do analyze the face $F_{B(P)}(v)$ of $B(P)$.
Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.
Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.

Our new proof:
Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.

Our new proof:
- By Lemma, theorem reduces to $xc(P)$ for $P := \left\{ x \in P_{T\text{-cut}}(n)^\uparrow : \sum_{e \in J} x_e = 1 \right\}$.
Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.

Our new proof:

- By Lemma, theorem reduces to $xc(P)$ for

 $$P := \left\{ x \in P_{T\text{-cut}}(n)^\uparrow : \sum_{e \in J} x_e = 1 \right\}.$$

- For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).
Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.

Our new proof:

- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-cut}}(n)^\uparrow : \sum_{e \in J} x_e = 1 \right\}.$$

- For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).
- But F_m is also a face of $P_{T'\text{-cut}}(n)^\uparrow$ for $T' = m$ (set containing the nodes).
Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.

Our new proof:

- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-cut}}(n)^\uparrow : \sum_{e \in J} x_e = 1 \right\}. $$

- For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \ \forall \ e \in J \setminus \{m\}$).
- But F_m is also a face of $P_{T'\text{-cut}}(n)^\uparrow$ for $T' = m$ (set containing the nodes).
- We obtain $xc(F_m) \leq O(n^2 \cdot 2^{|T'|}) = O(n^2)$.

Marcel D"{o}scher
Extended Formulations for Radial Cones

Radial Cones of T-Join Polyhedra

Theorem (Ventura & Eisenbrand, 2003)

For every set $T \subseteq V_n$ with $|T|$ even and every vertex v of $P_{T\text{-join}}(n)^\uparrow$, corresponding to a T-join $J \subseteq E_n$ in K_n, the extension complexity of the radial cone of $P_{T\text{-join}}(n)$ at v is most $O(|J| \cdot n^2)$.

Our new proof:

- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-cut}}(n)^\uparrow : \sum_{e \in J} x_e = 1 \right\}.$$

- For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).
- But F_m is also a face of $P_{T'\text{-cut}}(n)^\uparrow$ for $T' = m$ (set containing the nodes).
- We obtain $xc(F_m) \leq O(n^2 \cdot 2^{|T'|}) = O(n^2)$.
- P is convex hull of union of all F_m.

Matthias Walter

Extended Formulations for Radial Cones

Magdeburg 2018
Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of $P_{T\text{-cut}}(n)^\dagger$, the extension complexity of the radial cone of $P_{T\text{-cut}}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

Let $v = \chi(\delta(S))$.

Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 = S \setminus \{t_1\}$, $U_2 = (V_n \setminus (S \cup \{t_2\}))$.

Let F be the face of P with $x_{\{t_1, t_2\}} = 1$ and $x_e = 0$ for all edges between U_1, U_2 and $\{t_1, t_2\}$.

F is a Cartesian product of a vector and two $(T \cap U_i)$-join polyhedra on U_i for $i = 1, 2$, where $|T_1| + |T_2| = |T| - 2$.

We obtain $\text{xc}(P) \geq \text{xc}(F) \geq 2^{\Omega(|T|)}$ for $i = 1, 2$.

Matthias Walter
Extended Formulations for Radial Cones
Magdeburg 2018 13 / 14
Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of P_T-cut$(n)^\dagger$, the extension complexity of the radial cone of P_T-cut(n) at v is least $2^{\Omega(|T|)}$.

Proof:
Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of $P_{T\text{-cut}}(n)^\dagger$, the extension complexity of the radial cone of $P_{T\text{-cut}}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.

Radial Cones of T-Cut Polyhedra
Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of $P_{T\text{-cut}}(n)^\uparrow$, the extension complexity of the radial cone of $P_{T\text{-cut}}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-join}}(n)^\uparrow : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$
Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of $P_{T\text{-cut}}(n)^\dagger$, the extension complexity of the radial cone of $P_{T\text{-cut}}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-join}}(n)^\dagger : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

- Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}$, $U_2 := (V_n \setminus (S \cup \{t_2\}))$.
Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of $P_{T\text{-cut}}(n)^\dagger$, the extension complexity of the radial cone of $P_{T\text{-cut}}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-join}}(n)^\dagger : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

- Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}$, $U_2 := (V_n \setminus (S \cup \{t_2\}))$.
- Let F be the face of P with $\chi_{\{t_1,t_2\}} = 1$ and $x_e = 0$ for all edges between U_1, U_2 and $\{t_1, t_2\}$.
Radial Cones of T-Cut Polyhedra

Theorem (Walter & Weltge, 2018)

For sets $T \subseteq V_n$ with $|T|$ even and vertices v of $P_{T\text{-cut}}(n)^\uparrow$, the extension complexity of the radial cone of $P_{T\text{-cut}}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to $xc(P)$ for

$$P := \left\{ x \in P_{T\text{-join}}(n)^\uparrow : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

- Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}$, $U_2 := (V_n \setminus (S \cup \{t_2\}))$.
- Let F be the face of P with $x_{\{t_1,t_2\}} = 1$ and $x_e = 0$ for all edges between U_1, U_2 and $\{t_1,t_2\}$.
- F ist a Cartesian product of a vector and two $(T \cap U_i)$-join polyhedra on U_i for $i = 1, 2$, where $|T_1| + |T_2| = |T| - 2$.
Theorem (Walter & Weltge, 2018)

For sets \(T \subseteq V_n \) with \(|T| \) even and vertices \(v \) of \(P_{T\text{-cut}}(n)^\uparrow \), the extension complexity of the radial cone of \(P_{T\text{-cut}}(n) \) at \(v \) is least \(2^{\Omega(|T|)} \).

Proof:

- Let \(v = \chi(\delta(S)) \).
- By Lemma, theorem reduces to \(xc(P) \) for

\[
P := \left\{ x \in P_{T\text{-join}}(n)^\uparrow : \sum_{e \in \delta(S)} x_e = 1 \right\}.
\]

- Let \(t_1 \in S, t_2 \in V_n \setminus S \) as well as \(U_1 := S \setminus \{t_1\}, U_2 := (V_n \setminus (S \cup \{t_2\})) \).
- Let \(F \) be the face of \(P \) with \(x\{t_1,t_2\} = 1 \) and \(x_e = 0 \) for all edges between \(U_1, U_2 \) and \(\{t_1, t_2\} \).
- \(F \) ist a Cartesian product of a vector and two \((T \cap U_i)\)-join polyhedra on \(U_i \) for \(i = 1, 2 \), where \(|T_1| + |T_2| = |T| - 2 \).
- We obtain \(xc(P) \geq xc(F) \geq 2^{\Omega(|T_i|)} \) for \(i = 1, 2 \).
Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight T-cut problem with LP techniques.
Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight T-cut problem with LP techniques.

Other candidates for investigation:

- Stable-set polytopes of claw-free graphs (current work with Gianpaolo Oriolo and Gautier Stauffer).
- Stable-set polytopes of perfect graphs (polyhedral description is known, but best extended formulation has $O(n \log n)$ facets).