Extended Formulations for Radial Cones

Matthias Walter (RWTH Aachen)

Joint work with

Stefan Weltge (TU Munich)

IMO Oberseminar, Magdeburg, 02.11.2018

- Ground set E (finite)
- ▶ Feasible solutions $\mathcal{F} \subseteq 2^E$
- ▶ Objective vector $c \in \mathbb{Q}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

- Ground set E (finite)
- Feasible solutions F ⊆ 2^E
- ▶ Objective vector $c \in \mathbb{Q}^E$
- ▶ Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

▶ Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

- Ground set E (finite)
- ▶ Feasible solutions $\mathcal{F} \subseteq 2^E$
- ▶ Objective vector $c \in \mathbb{O}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

▶ Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

- Ground set E (finite)
- Feasible solutions F ⊆ 2^E
- ▶ Objective vector $c \in \mathbb{O}^E$
- Goal: minimize cost $c(F) := \sum_{e \in F} c_e$ over all $F \in \mathcal{F}$.

Augmentation problem:

▶ Given $F \in \mathcal{F}$, determine optimality or find $F' \in \mathcal{F}$ with c(F') < c(F).

Theorem (Schulz, Weismantel & Ziegler, 1995; Grötschel & Lovász, 1995)

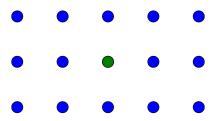
We can solve the augmentation problem (for arbitrary objective vectors) in polynomial time if and only if we can solve the optimization problem (for arbitrary objective vectors) in polynomial time.

Idea:

- ▶ Suppose $c \in \{0,1\}^E$, how many augmentation steps will you need?
- Apply bit scaling.

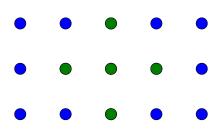
Polyhedral method:

▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.

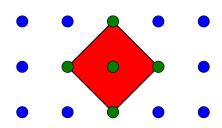


Polyhedral method:

- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- ▶ Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0,1\}^E$.
- Optimization problem is then to minimize (c, x) over $x \in X$.

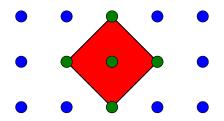


- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- ▶ Let $X := \{\chi(F) : F \in \mathcal{F}\} \subseteq \{0, 1\}^E$.
- ▶ Optimization problem is then to minimize (c,x) over $x \in \text{conv}(X)$.



Polyhedral method:

- ▶ Identify $F \in \mathcal{F}$ with $\chi(F) \in \{0,1\}^E$ s.t. $\chi(F)_e = 1 \iff e \in F$.
- ▶ Let $X := \{ \chi(F) : F \in \mathcal{F} \} \subseteq \{0, 1\}^E$.
- ▶ Optimization problem is then to minimize (c, x) over $x \in \text{conv}(X)$.
- Find an outer description of conv(X), i.e., $conv(X) = \{x \in \mathbb{R}^E : Ax \le b\}$.
- Optimization problem is now an LP and we can use black-box solvers.¹



or devise primal-dual algorithms.

- - Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$ • Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

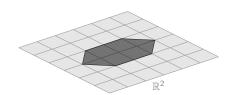
$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?

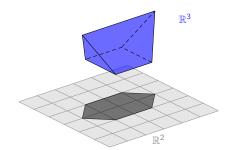


- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- ▶ Optimization is easy: first over {0,1}ⁿ, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?

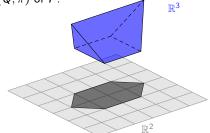


- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \ \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.



- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- ▶ Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \ \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- ▶ Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1)$.

Disjunctive programming:

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- ▶ Optimization is easy: first over $\{0,1\}^n$, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

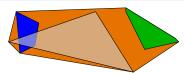
Potential cure: extended formulations

- P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let
$$P_1, \ldots, P_k \subseteq \mathbb{R}^n$$
 be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1)$.

Disjunctive programming:



- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over {0,1}ⁿ, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let
$$P_1, \ldots, P_k \subseteq \mathbb{R}^n$$
 be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \le \sum_{i=1}^k (xc(P_i) + 1)$.

$$X = \bigcup_{\substack{k \text{ even} \\ k \text{ even}}} \{x \in \{0,1\}^n : \sum_{i=1}^n = k\}$$

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over {0,1}ⁿ, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let $P_1, \ldots, P_k \subseteq \mathbb{R}^n$ be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1)$.

$$conv(X) = conv(\bigcup_{k \text{ even}} \{x \in \{0,1\}^n : \sum_{i=1}^n = k\})$$

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over {0,1}ⁿ, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let
$$P_1, \ldots, P_k \subseteq \mathbb{R}^n$$
 be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \le \sum_{i=1}^k (xc(P_i) + 1)$.

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over {0,1}ⁿ, potentially flip 1 coordinate.
- Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let
$$P_1, \ldots, P_k \subseteq \mathbb{R}^n$$
 be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \leq \sum_{i=1}^k (xc(P_i) + 1)$.

$$conv(X) = conv(\bigcup_{k \text{ even}} \{x \in [0,1]^n : \sum_{i=1}^n = k\})$$

- Consider $X := \{x \in \{0,1\}^n : \sum_{i=1}^n \text{ even}\}.$
- Optimization is easy: first over {0,1}ⁿ, potentially flip 1 coordinate.
- ▶ Inequality description (Jeroslow, 1975) requires 2^{n-1} inequalities:

$$\sum_{i \in I} (1 - x_i) + \sum_{i \notin I} x_i \ge 1 \text{ for all } I \subseteq [n] \text{ with } |I| \text{ odd}$$

Potential cure: extended formulations

- ▶ P = conv(X) has many facets, but maybe there exists an extension (Q, π) $(Q \subseteq \mathbb{R}^d, \pi : \mathbb{R}^d \to \mathbb{R}^n \text{ linear with } P = \pi(Q))$ with few facets?
- The extension complexity xc(P) of P is the minimum number of facets of an extension (Q, π) of P.
- Alternative viewpoint: model using additional variables

Theorem (Balas, 1979)

Let
$$P_1, \ldots, P_k \subseteq \mathbb{R}^n$$
 be polytopes. Then $xc(P_1 \cup \cdots \cup P_k) \le \sum_{i=1}^k (xc(P_i) + 1)$.

- $conv(X) = conv(\bigcup_{k \text{ even}} \{x \in [0,1]^n : \sum_{i=1}^n = k\})$
- Applying the theorem: $xc(conv(X)) \le \mathcal{O}(n^2)$

• Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - ▶ If F is face of P, then $xc(F) \le xc(P)$.
 - ▶ For linear maps π we have $xc(\pi(P)) \le xc(P)$.

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - ▶ If F is face of P, then $xc(F) \le xc(P)$.
 - ▶ For linear maps π we have $xc(\pi(P)) \le xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - ▶ If F is face of P, then $xc(F) \le xc(P)$.
 - ▶ For linear maps π we have $xc(\pi(P)) \le xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

- Max-Cut problem: cut polytope for K_n (complete graph with n nodes) has extension complexity $2^{\Omega(n)}$ (Fiorini, Massar, Pokutta, Tiwary & de Wolf, 2012), best bound is 1.5^n (Kaibel & Weltge, 2013).
- Lots of other hard problems inherit lower bound:
 - ▶ If F is face of P, then $xc(F) \le xc(P)$.
 - For linear maps π we have $xc(\pi(P)) \le xc(P)$.
- Based on Karp reductions, write cut polytope as projection of a face of your favorite polytope (TSP, Stable set, 3d matching, etc.).

Matching:

- A perfect matching in a graph G = (V, E) is a set $M \subseteq E$ with $|M \cap \delta(v)| = 1$.
- The weighted perfect matching problem can be solved in polynomial time (Edmonds, 1965).

Theorem (Rothvoss, 2013)

For every even n, $xc(P_{pmatch}(n)) \ge 2^{\Omega(n)}$. Here, $P_{pmatch}(n)$ denotes the perfect matching polytope for K_n .

Polyhedral version of the augmentation problem:

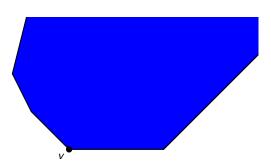
- ► Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.

Polyhedral version of the augmentation problem:

- Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
- The polyhedron for this task is the radial cone:

$$K_P(v) := \operatorname{cone}(P - v) + v$$

= $\{x \in \mathbb{R}^n : A_{i,*}x \le b_i \text{ for all } i \text{ with } A_{*,i}v = b_i\}$

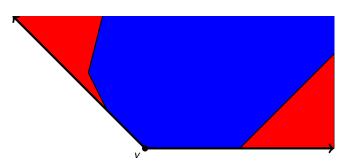


Polyhedral version of the augmentation problem:

- Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ and an objective vector $c \in \mathbb{R}^n$.
- Given a point $v \in P$, determine optimality or find improving direction $d \in \mathbb{R}^n$, i.e., $\langle c, d \rangle < 0$ and $v + d \in P$.
- The polyhedron for this task is the radial cone:

$$K_P(v) := \operatorname{cone}(P - v) + v$$

= $\{x \in \mathbb{R}^n : A_{i,*}x \le b_i \text{ for all } i \text{ with } A_{*,i}v = b_i\}$



- ▶ For $v \in P$ we have $xc(K_P(v)) \le xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Nice problems:

- ▶ For $v \in P$ we have $xc(K_P(v)) \le xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex \mathbb{O}) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.

Nice problems:

- ▶ For $v \in P$ we have $xc(K_P(v)) \le xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex \mathbb{O}) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

Nice problems:

- ▶ For $v \in P$ we have $xc(K_P(v)) \le xc(P)$.
- Consequence: nice polyhedra have nice radial cones.

Hard problems:

- Braun, Fiorini, Pokutta & Steurer showed that also the cut cone (radial cone of the cut polytope at vertex (1) has exponential extension complexity.
- Extension complexity of radial cones is inherited to projections and faces.
- Consequence: exponential lower bounds for your favorite polytopes (TSP, Stable set, 3d matching, etc.) that correspond to hard problems.

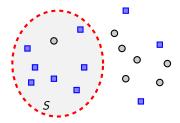
What remains?

- Matching polytopes & friends (this talk).
- Stable-set polytopes of claw-free or perfect graphs.

Definitions $(K_n = (V_n, E_n) \text{ complete graph on } n \text{ nodes}; T \subseteq V, |T| \text{ even})$:

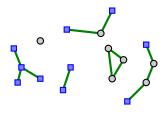
- ▶ $J \subseteq E$ is a T-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$

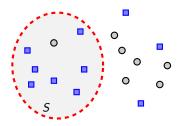
• $C = \delta(S) \subseteq E$ is a T-cut if $|S \cap T|$ is odd.



Definitions $(K_n = (V_n, E_n)$ complete graph on n nodes; $T \subseteq V$, |T| even):

▶ $J \subseteq E$ is a T-join if $|J \cap \delta(v)|$ is odd $\iff v \in T$ • $C = \delta(S) \subseteq E$ is a T-cut if $|S \cap T|$ is odd.





Facts:

- ▶ Both minimization problems can be solved in polynomial time for $c \ge \mathbb{O}$.
- ► Each *T*-join *J* intersects each *T*-cut *C* in at least one edge:

$$|J \cap C| = \langle \chi(J), \chi(C) \rangle \geq 1$$

Polyhedra (Edmonds & Johnson, 1973):

► T-join Polyhedron $P_{T\text{-ioin}}(n)^{\uparrow}$:

$$\langle \chi(C), x \rangle \ge 1$$
 for each T -cut C
 $x_e \ge 0$ for each $e \in E$

▶ *T*-cut Polyhedron $P_{T\text{-cut}}(n)^{\uparrow}$:

$$\langle \chi(J), x \rangle \ge 1$$
 for each T -join J
 $x_e \ge 0$ for each $e \in E$

OPT, AUG & Polyhedra T-Joins & T-Cuts Blocking Polarity

Polyhedra (Edmonds & Johnson, 1973):

▶ *T*-join Polyhedron
$$P_{T\text{-join}}(n)^{\uparrow}$$
:

► *T*-cut Polyhedron
$$P_{T\text{-cut}}(n)^{\uparrow}$$
:

$$\langle \chi({\color{red} {\it C}}), x \rangle \geq 1$$
 for each ${\color{red} {\it T}}\text{-cut }{\color{red} {\it C}}$ $x_e \geq 0$ for each $e \in {\color{red} {\it E}}$

$$\langle \chi(J), x \rangle \ge 1$$
 for each T -join J
 $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

A T-join $J \subseteq E$ is a perfect matching on nodes T if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.

Polyhedra (Edmonds & Johnson, 1973):

▶ T-join Polyhedron $P_{T-ioin}(n)^{\uparrow}$:

► T-cut Polyhedron $P_{T\text{-cut}}(n)^{\uparrow}$:

$$\langle \chi({\color{red} {\cal C}}), x \rangle \geq 1$$
 for each ${\color{red} {\cal T}}\text{-cut }{\color{red} {\cal C}}$ $x_e \geq 0$ for each $e \in {\color{red} {\cal E}}$

$$\langle \chi(J), x \rangle \ge 1$$
 for each T -join J
 $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- A T-join $J \subseteq E$ is a perfect matching on nodes T if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- ▶ Thus, $P_{T-\text{ioin}}(n)^{\uparrow}$ contains $P_{\text{pmatch}}(|T|)$ as a face.

Polyhedra (Edmonds & Johnson, 1973):

▶ *T*-join Polyhedron
$$P_{T\text{-join}}(n)^{\uparrow}$$
:

► *T*-cut Polyhedron
$$P_{T\text{-cut}}(n)^{\uparrow}$$
:

$$\langle \chi({\color{red} {\cal C}}), x \rangle \geq 1$$
 for each ${\color{red} {\cal T}}\text{-cut }{\color{red} {\cal C}}$ $x_e \geq 0$ for each $e \in {\color{red} {\cal E}}$

$$\langle \chi(J), x \rangle \ge 1$$
 for each T -join J
 $x_e \ge 0$ for each $e \in E$

Relation to perfect matchings:

- A T-join $J \subseteq E$ is a perfect matching on nodes T if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- ▶ Thus, $P_{T\text{-ioin}}(n)^{\uparrow}$ contains $P_{pmatch}(|T|)$ as a face.
- Consequence: $xc(P_{T\text{-ioin}}(n)^{\uparrow}) \ge 2^{\Omega(|T|)}$

▶ T-join Polyhedron $P_{T-ioin}(n)^{\uparrow}$:

► T-cut Polyhedron $P_{T\text{-cut}}(n)^{\uparrow}$:

$$\langle \chi(C), x \rangle \ge 1$$
 for each T -cut C
 $x_e > 0$ for each $e \in E$

$$\langle \chi(J), x \rangle \ge 1$$
 for each T -join J
 $x_0 > 0$ for each $e \in E$

Relation to perfect matchings:

- A T-join $J \subseteq E$ is a perfect matching on nodes T if and only if $x = \chi(J)$ satisfies the valid inequalities $x_e \ge 0$ for all $e \in E \setminus E[T]$ and $\sum_{e \in \delta(v)} x_e \ge 1$ for all $v \in T$ with equality.
- ▶ Thus, $P_{T\text{-ioin}}(n)^{\uparrow}$ contains $P_{pmatch}(|T|)$ as a face.
- Consequence: $xc(P_{T-ioin}(n)^{\uparrow}) \ge 2^{\Omega(|T|)}$

Proposition (Walter & Weltge, 2018)

For every n and every set $T \subseteq V_n$, $xc(P_{T-ioin}(n)^{\uparrow}) \leq \mathcal{O}(n^2 \cdot 2^{|T|})$.

Idea:

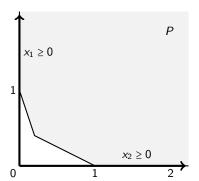
- ▶ For each $S \subseteq T$ with $|S| = \frac{1}{2}|T|$, consider the *b*-flow polyhedron for $b_v = -1$ for all $v \in S$, $b_v = 1$ for all $v \in T \setminus S$ and $b_v = 0$ otherwise.
- Apply disjunctive programming over all such polyhedra.

Matthias Walter

- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

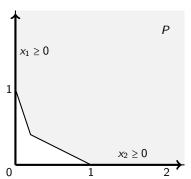
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

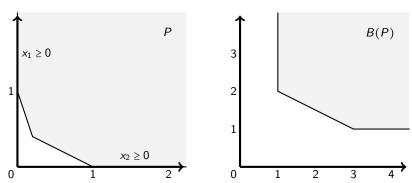
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

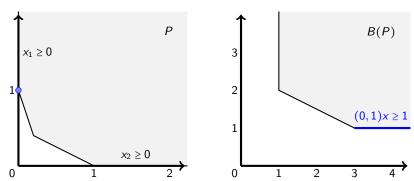
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

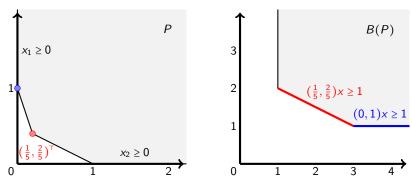
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

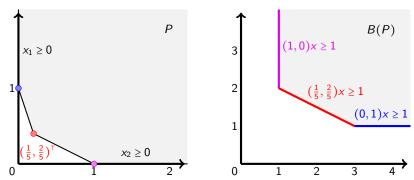
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

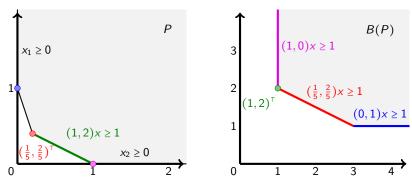
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

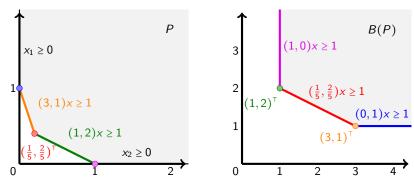
$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$



- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$

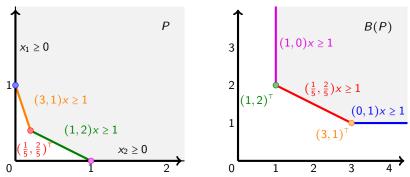


- ▶ A polyhedron $P \subseteq \mathbb{R}^d_+$ is blocking if $x' \ge x$ implies $x' \in P$ for all $x \in P$.
- Possible descriptions are:

$$P = \{x \in \mathbb{R}_{+}^{d} : \langle y^{(i)}, x \rangle \ge 1 \text{ for } i = 1, ..., m\} \qquad (y^{(1)}, ..., y^{(m)} \in \mathbb{R}_{+}^{d})$$

$$P = \text{conv}\{x^{(1)}, ..., x^{(k)}\} + \mathbb{R}_{+}^{d} \qquad (x^{(1)}, ..., x^{(k)} \in \mathbb{R}_{+}^{d})$$

- ▶ The blocker of P is defined via $B(P) := \{ y \in \mathbb{R}^d_+ : (x,y) \ge 1 \text{ for all } x \in P \}.$
- If P is blocking, then B(B(P)) = P.



Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

$$\hat{x} \in P \iff \min\{\langle \hat{x}, y \rangle : y \in Q\} \ge \gamma$$

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

$$\hat{x} \in P \iff \min \{\langle \hat{x}, y \rangle : y \in Q\} \ge \gamma$$

$$\iff \min \{\langle \hat{x}, Tz \rangle : Az \leq b\} \geq \gamma$$

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

$$\hat{x} \in P \iff \min \left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \ge \gamma$$

$$\iff \min \left\{ \langle \hat{x}, Tz \rangle : Az \le b \right\} \ge \gamma$$

$$\iff \max \left\{ \langle b, \lambda \rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \le \mathbb{O} \right\} \ge \gamma$$

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

$$\hat{x} \in P \iff \min \left\{ \langle \hat{x}, y \rangle : y \in Q \right\} \ge \gamma$$

$$\iff \min \left\{ \langle \hat{x}, Tz \rangle : Az \le b \right\} \ge \gamma$$

$$\iff \max \left\{ \langle b, \lambda \rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \le \mathbb{O} \right\} \ge \gamma$$

$$\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \langle b, \lambda \rangle \ge \gamma$$

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\hat{x} \in P \iff \min \{ \langle \hat{x}, y \rangle : y \in Q \} \ge \gamma$$

$$\iff \min \{ \langle \hat{x}, Tz \rangle : Az \le b \} \ge \gamma$$

$$\iff \max \{ \langle b, \lambda \rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \le \mathbb{O} \} \ge \gamma$$

$$\iff \exists \lambda \le \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \langle b, \lambda \rangle \ge \gamma$$

► Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m+1inequalities.

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{split} \hat{x} \in P &\iff \min \left\{ \left\langle \hat{x}, y \right\rangle : y \in Q \right\} \geq \gamma \\ &\iff \min \left\{ \left\langle \hat{x}, Tz \right\rangle : Az \leq b \right\} \geq \gamma \\ &\iff \max \left\{ \left\langle b, \lambda \right\rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \leq \mathbb{O} \right\} \geq \gamma \\ &\iff \exists \lambda \leq \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \langle b, \lambda \rangle \geq \gamma \end{split}$$

► Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m+1inequalities.

Consequences:

xc(B(P)) and xc(P) differ by at most d.

Given a non-empty polyhedron Q and $\gamma \in \mathbb{R}$, let

$$P := \{x : \langle y, x \rangle \ge \gamma \text{ for all } y \in Q\}.$$

Then
$$xc(P) \le xc(Q) + 1$$
.

Proof:

▶ Let $Q = \{Tz : Az \le b\}$, where A has m = xc(Q) rows.

$$\begin{split} \hat{x} \in P &\iff \min \left\{ \left\langle \hat{x}, y \right\rangle : y \in Q \right\} \geq \gamma \\ &\iff \min \left\{ \left\langle \hat{x}, Tz \right\rangle : Az \leq b \right\} \geq \gamma \\ &\iff \max \left\{ \left\langle b, \lambda \right\rangle : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \lambda \leq \mathbb{O} \right\} \geq \gamma \\ &\iff \exists \lambda \leq \mathbb{O} : A^{\mathsf{T}} \lambda = T^{\mathsf{T}} \hat{x}, \ \langle b, \lambda \rangle \geq \gamma \end{split}$$

► Thus, $P = \{x : \exists \lambda \leq \mathbb{O} : A^{\top}\lambda = T^{\top}x, \ \langle b, \lambda \rangle \geq \gamma \}$ is an extension with m+1 inequalities.

Consequences:

- \rightarrow xc(B(P)) and xc(P) differ by at most d.
- $2^{\Omega(|T|)} < \operatorname{xc}(P_{T-\operatorname{cut}}(n)^{\uparrow}) < \mathcal{O}(n^2 \cdot 2^{|T|}),$

Polar object of radial cone:

• Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Polar object of radial cone:

• Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let $P \subseteq \mathbb{R}^d_+$ be a blocking polyhedron and let $v \in P$.

(i)
$$F_{B(P)}(v) = \{ y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \ge 1 \ \forall x \in K_P(v) \}.$$

(ii)
$$K_P(v) = \{x \in \mathbb{R}^d : \langle y, x \rangle \ge 1 \ \forall y \in F_{B(P)}(v) \}.$$

Proof:

Elementary convex geometry

Polar object of radial cone:

▶ Any $v \in P$ defines a face $F_{B(P)}(v) := \{y \in B(P) : \langle v, y \rangle = 1\}$ of B(P).

Lemma

Let $P \subseteq \mathbb{R}^d_+$ be a blocking polyhedron and let $v \in P$.

(i)
$$F_{B(P)}(v) = \{ y \in \mathbb{R}^d : \langle v, y \rangle = 1, \langle x, y \rangle \ge 1 \ \forall x \in K_P(v) \}.$$

(ii)
$$K_P(v) = \{x \in \mathbb{R}^d : \langle y, x \rangle \ge 1 \ \forall y \in F_{B(P)}(v) \}.$$

Proof:

Elementary convex geometry

Consequence:

- $xc(K_P(v))$ and $xc(F_{B(P)}(v))$ differ by at most 1.
- ▶ To prove lower or upper bounds on $xc(K_P(v))$, it suffices to do analyze the face $F_{B(P)}(v)$ of B(P).

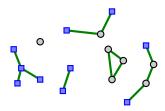
For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T-ioin}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T-ioin}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Extended Formulations for Radial Cones

12 / 14

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T-ioin}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T-ioin}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Our new proof:



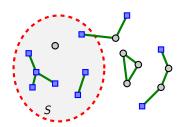
Radial Cones of T-Join Polyhedra

For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T-ioin}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T-ioin}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-cut}}(n)^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$



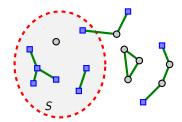
For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T-ioin}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T-ioin}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{\mathsf{T-cut}}(n)^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$

▶ For each $m \in J$, let F_m be the face of Pwith $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).



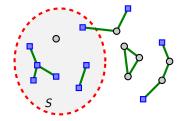
For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T-ioin}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T-ioin}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-cut}}(n)^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$

- ▶ For each $m \in J$, let F_m be the face of Pwith $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).
- ▶ But F_m is also a face of $P_{T'-cut}(n)^{\uparrow}$ for T' = m (set containing the nodes).



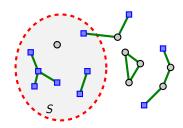
For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T\text{-}join}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T\text{-}join}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Our new proof:

▶ By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T-\mathrm{cut}}(n)^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$

- For each $m \in J$, let F_m be the face of P with $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).
- ▶ But F_m is also a face of $P_{T'\text{-cut}}(n)^{\uparrow}$ for T' = m (set containing the nodes).
- We obtain $xc(F_m) \leq \mathcal{O}(n^2 \cdot 2^{|T'|}) = \mathcal{O}(n^2)$.



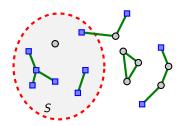
For every set $T \subseteq V_n$ with |T| even and every vertex v of $P_{T-ioin}(n)^{\uparrow}$, corresponding to a T-join $J \subseteq E_n$ in K_n , the extension complexity of the radial cone of $P_{T-ioin}(n)$ at v is most $\mathcal{O}(|J| \cdot n^2)$.

Our new proof:

By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-cut}}(n)^{\uparrow} : \sum_{e \in J} x_e = 1 \right\}.$$

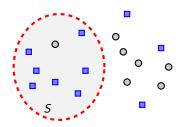
- ▶ For each $m \in J$, let F_m be the face of Pwith $x_m = 1$ (and $x_e = 0 \ \forall e \in J \setminus \{m\}$).
- ▶ But F_m is also a face of $P_{T'-cut}(n)^{\uparrow}$ for T' = m (set containing the nodes).
- We obtain $xc(F_m) \leq \mathcal{O}(n^2 \cdot 2^{|T'|}) = \mathcal{O}(n^2)$.
- P is convex hull of union of all F_m .



For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

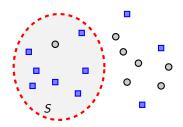
Proof:



For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

• Let $v = \chi(\delta(S))$.

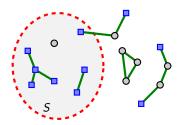


For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$



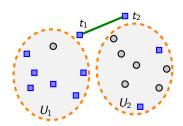
For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

▶ Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}, \ U_2 := (V_n \setminus (S \cup \{t_2\})).$



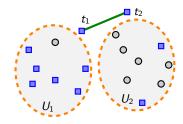
For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T \text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

- ▶ Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}, \ U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and $x_e = 0$ for all edges between U_1 , U_2 and $\{t_1, t_2\}$.



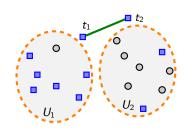
For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

- ▶ Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}, \ U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and $x_e = 0$ for all edges between U_1 , U_2 and $\{t_1, t_2\}$.
- F ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| - 2$.



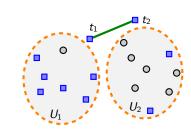
For sets $T \subseteq V_n$ with |T| even and vertices v of $P_{T-cut}(n)^{\uparrow}$, the extension complexity of the radial cone of $P_{T-cut}(n)$ at v is least $2^{\Omega(|T|)}$.

Proof:

- Let $v = \chi(\delta(S))$.
- By Lemma, theorem reduces to xc(P) for

$$P := \left\{ x \in P_{T\text{-join}}(n)^{\uparrow} : \sum_{e \in \delta(S)} x_e = 1 \right\}.$$

- ▶ Let $t_1 \in S$, $t_2 \in V_n \setminus S$ as well as $U_1 := S \setminus \{t_1\}, \ U_2 := (V_n \setminus (S \cup \{t_2\})).$
- Let F be the face of P with x_{t₁,t₂} = 1 and $x_e = 0$ for all edges between U_1 , U_2 and $\{t_1, t_2\}$.
- F ist a Cartesian product of a vector and two $(T \cap U_i)$ -join polyhedra on U_i for i = 1, 2, where $|T_1| + |T_2| = |T| - 2$.



• We obtain $xc(P) \ge xc(F) \ge 2^{\Omega(|T_i|)}$ for i = 1, 2. Matthias Walter

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight *T*-cut problem with LP techniques.

Thanks!

Conclusion:

- Extended formulations can help, but only sometimes.
- Although polynomially solvable, there is no obvious way to solve the minimum-weight T-cut problem with LP techniques.

Other candidates for investigation:

- Stable-set polytopes of claw-free graphs (current work with Gianpaolo Oriolo and Gautier Stauffer).
- Stable-set polytopes of perfect graphs (polyhedral description is known, but best extended formulation has $\mathcal{O}(n^{\log n})$ facets).

