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Abstract

Partitioning a permutation into a minimum number of monotone subsequences is NP-hard. We extend this complexity result
to minimum partitioning into k-modal subsequences; here unimodal is the special case k = 1. Based on a network flow interpre-
tation we formulate both, the monotone and the k-modal version, as mixed integer programs. This is the first proposal to obtain
provably optimal partitions of permutations. LP rounding gives a 2-approximation for minimum monotone partitions and a (k +1)-
approximation for minimum (upper) k-modal partitions. For the online problem, in which the permutation becomes known to an
algorithm sequentially, we derive a logarithmic lower bound on the competitive ratio for minimum monotone partitions, and we
analyze two (bin packing) online algorithms. These immediately apply to online cocoloring of permutation graphs.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Given a sequence S of distinct integers, we seek a partition into a minimum number of subsequences with particular
monotonicity properties. Research in this direction dates back to the famous Erdős/Szekeres theorem of 1935 stating
that every sequence of n distinct reals contains a monotone subsequence of length �√n �, see the review [16]. Itera-
tively extracting longest monotone subsequences yields a partition of size 2�√n� in O(n1.5) [1]. However, finding a
minimum size partition into monotone subsequences, or shortly a minimum monotone partition, is NP-hard [18]. For
fixed � and m, a partition into exactly � increasing and m decreasing subsequences can be computed in O(n�+m), if
one exists [4]. A minimum monotone partition can be approximated within a factor of 1.71 in O(n2.5) [10].

✩ An extended abstract appeared in [G. Di Stefano, S. Krause, M.E. Lübbecke, U.T. Zimmermann, On minimum k-modal partitions of
permutations, in: J.R. Correa, A. Hevia, M. Kiwi (Eds.), Latin American Theoretical Informatics (LATIN 2006), Lecture Notes in Computer
Science, vol. 3887, Springer, Berlin, 2006, pp. 374–385].

* Corresponding author.
E-mail addresses: gabriele@ing.univaq.it (G. Di Stefano), stefan.krause@tu-bs.de (S. Krause), m.luebbecke@math.tu-berlin.de

(M.E. Lübbecke), u.zimmermann@tu-bs.de (U.T. Zimmermann).
1570-8667/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2008.01.002

http://www.elsevier.com/locate/jda
mailto:gabriele@ing.univaq.it
mailto:stefan.krause@tu-bs.de
mailto:m.luebbecke@math.tu-berlin.de
mailto:u.zimmermann@tu-bs.de
http://dx.doi.org/10.1016/j.jda.2008.01.002


382 G. Di Stefano et al. / Journal of Discrete Algorithms 6 (2008) 381–392
A natural generalization asks for partitions into k-modal subsequences which have at most k internal local ex-
trema (k = 0 is the above mentioned monotone case). In particular for 1-modal, or unimodal, subsequences Chung [5]
proves that any permutation of length n contains such a subsequence of length �√3(n − 1/4) − 1/2�, and this is
best possible. She also mentions the guaranteed length of �√2n + 1/4 − 1/2� for contained upper unimodal subse-
quences, i.e., subsequences with no internal minimum. One cannot guarantee contained k-modal subsequences longer
than

√
(2k + 1)n [5]. Steele [15] proves that the average length of k-modal subsequences of a permutation of size n

asymptotically grows as 2
√

(k + 1)n. Based on these bounds, one can derive results on the size of the partitions gen-
erated by recursively extracting a respective longest subsequence. In particular, this greedy approach yields an upper
unimodal partition of size O(

√
n) in O(n2.5) time [8]. An algorithm for computing longest k-modal subsequences

was recently presented in [6].
Our contribution. We show that partitioning a permutation into a minimum number of k-modal (in particular

unimodal) subsequences is NP-hard for any fixed k � 1. On the positive side, we propose a linear programming (LP)
rounding algorithm which is the first approximation algorithm for this problem: Its approximation factor is k + 1 for
upper k-modal partitions. An easy observation allows us to derive a combinatorial 1.71(k + 1)-approximation first.
In contrast to prior more structural investigations, we are also interested in actually computing optimum partitions.
To this end we introduce mixed integer programming (MIP) formulations. We further give the first negative and
(weakly) positive results concerning online algorithms for minimum monotone partitions. These immediately apply
to cocoloring of permutation graphs, for which no online algorithms were known either.

Motivation. In railroad shunting yards incoming freight trains are split up and re-arranged according to their des-
tinations. In stations and depots passenger trains and trams are parked overnight or during low traffic hours. In either
case we are given an ordering of arriving units, and we have to decide for each unit on which track it will be stored [2,
8,19]. Our choice is limited by the fixed number of available tracks and by the way tracks may be accessed: Entrance
and exit may be on one or on both ends. The parked units have to leave each track one by one without additional
reordering. The goal is to use as few tracks as possible.

Units on each track represent a subsequence of the incoming sequence of units. The different entry/exit combi-
nations lead to increasing, monotone, unimodal, and what we call unimodecsubsequences. Recently, an interesting
connection to a robotics model in automated storage system was introduced [6]. Sorting with stacks (queues, deques)
is well-studied in computer science [3], e.g., one characterizes which permutations are (not) stack-sortable. Knuth [12]
already speaks of re-arranging railroad cars. Our work has been originally motivated by the more algorithmic question
for the smallest number of stacks needed for sorting.

2. Preliminaries

Let S = [s1, s2, . . . , sn] be a permutation of {1, . . . , n}. A subsequence σ of S is a sequence σ = [si1 , si2, . . . , sim ]
with 1 � ij < ih � n for all j < h. A sequence is called increasing if si < sj for i < j . It is called decreasing if
si > sj for i < j . These two cases are also subsumed under monotone. An internal extremum of S is an index i with
2 � i � n − 1 and si−1 < si , si+1 < si or si−1 > si , si+1 > si . A sequence S is k-modal if it has at most k internal
extrema; the first can be of either type. If the first extremum is a maximum, i.e., the first part of the sequence is
increasing, S is called upper k-modal, otherwise lower k-modal. These notions stem from the 1-modal case, well-
known as unimodal. Some authors specify upper or lower unimodal.

We use an intuitive set notation and language to work with sequences; e.g., when referring to the sequence con-
sisting of all the elements contained in two sequences we speak of their union. A unimodec sequence is the union
of a decreasing and an upper unimodal sequence, the two of which have identical first element. Fig. 1 sketches the
sequences we introduced. A partition of S of size m is a collection P of m disjoint subsequences of S, the union of
which is precisely S. For a given S we are interested in finding a partition P of minimum size. We name the resulting
minimization problem after the type of subsequence into which we partition, that is, we have problems MONOTONE,
UNIMODAL, k-MODAL, etc. Obviously, any statement for an UPPER problem analogously holds for its LOWER coun-
terpart. A cover of S is a collection of not necessarily disjoint subsequences, the union of which is S. Eliminating
multiply covered elements from all but one subsequence, one can turn a cover into a partition without increasing the
number of subsequences. This is why our problems are also known as covering a permutation [18].

Relations to coloring problems. Increasing and monotone partitions are well studied in graph coloring. The permu-
tation graph G = (S,E) associated with a permutation S has an edge (si , sj ) ∈ E if and only if si > sj and i < j . An



G. Di Stefano et al. / Journal of Discrete Algorithms 6 (2008) 381–392 383
Fig. 1. We identify elements si , i = 1, . . . , n with points (i, si ) in the plane; that is, we use points and elements interchangeably. Feasible subse-
quences are represented as polygonal lines connecting the contained points: Depicted are decreasing and increasing, lower unimodal and upper
unimodal, unimodec, and (upper and lower) 6-modal subsequences.

increasing subsequence in S corresponds to an independent set in G, and a decreasing subsequence in S corresponds
to a clique. The complement Ḡ of G is again a permutation graph; it is associated with the reverse permutation of
S = [s1, . . . , sn], that is, the permutation [sn, . . . , s1].

A partition of the vertices of a graph into independent sets is called a coloring. A minimum partition of a permuta-
tion graph into either independent sets or cliques, that is, a solution to problem DECREASING or INCREASING, can be
given in O(n logn), see e.g., [14]. Cocoloring a graph asks for partitioning its vertex set into a minimum number of
parts in which each part is either an independent set or a clique (so the partition may contain a mixture of both). Thus,
in MONOTONE we compute an optimal cocoloring of a permutation graph, which is NP-hard [18]. In general, any
statement about partitioning permutations corresponds to a graph theoretical statement about partitioning the vertex
set of permutation graphs.

Di Stefano and Koči [8] formulate UPPER UNIMODAL and UNIMODEC as coloring problems for particular 3- and
4-uniform hypergraphs. In their approach, hyperedges correspond to forbidden subsequences. For example, [si , sj , sk]
is a forbidden subsequence within an upper unimodal sequence if i < j < k, si > sj and sj < sk . If we interpret these
forbidden triples as hyperedges of a hypergraph with vertex set S, then a hypergraph coloring corresponds to an upper
unimodal partition. In general, uniform hypergraph coloring problems are known to be NP-hard. Our complexity
results imply that even these restricted problems are NP-hard.

3. Complexity results

Theorem 1. Problems k-MODAL, UPPER k-MODAL, and UNIMODEC are NP-hard for any fixed k, in particular for
k = 1.

Proof. We use a reduction from the NP-hard problem MONOTONE [18]. Finding a partition of S into at most p

monotone subsequences can be reduced to finding a partition of S into at most � increasing and at most m = p − �

decreasing subsequences, where m and � are part of the input. This requires solving a series of p + 1 restricted
problems. We reduce from this restricted version.

We identify elements and points (and subsequences and lines) as in Fig. 1 above. Having arranged the points of a
given permutation S, we construct an extended arrangement of points which can be covered by p subsequences of the
requested monotonicity type if and only if the original set S of points can be covered by � increasing and m decreasing
lines.

A basic component of our construction is given below, it is denoted by Ah for some 1 � h � n. It consists of
h(k + 1) quadratic blocks arranged in a sequence going rightwards and upwards. Each block contains h points located
on a line going rightwards and downwards, see Fig. 2. Since we may assume that k � n, the number of points in Ah

is polynomial in n.
We first prove the following property.

Claim. The component Ah can be covered by h increasing lines and it cannot be covered by h − 1 k-modal lines. If
Ah is covered by h k-modal lines then each of them has to be increasing somewhere inside Ah.
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Fig. 2. Components A3 and B2 for k = 2 used in the proof of Theorem 1.

Fig. 3. Arrangement of A and B blocks for k = 5 (� = 2, m = 3). The relative vertical position of blocks in one row is of no significance to our
construction since A and B blocks are vertically separated.

Evidently, Ah can be covered by h parallel increasing lines where the ith line covers the ith point in each block. For
the remaining assertions the proof is by induction. For h = 1 the claim is trivially true. So consider h � 2. A k-modal
line can cover more than one point in at most k + 1 blocks since for any two consecutive blocks the left one contains
a minimum and the right one contains a maximum. Consequently, there are at least (h − 1)(k + 1) blocks where just
one point is covered. Now consider a decreasing line. It can cover points of at most one block of Ah. So in this case
h(k + 1) − 1 � (h − 1)(k + 1) blocks without covered points remain. By the induction hypothesis, in both cases at
least h − 1 lines are necessary to cover these blocks.

We define components Bh which actually are Ah flipped vertically. For Bh the above claim analogously holds with
increasing replaced by decreasing.

For the reduction we arrange several of such Ah and Bh components around a given instance S of MONOTONE.
Starting at S and going leftwards we add a component Bm and then alternatingly components Ap and Bp where
the Ap components are below S, and Bm and the Bp components are above S. The total number of these additional
components is k + 1. By a suitable placement of blocks we ensure that no two points have the same vertical position
(and thus we obtain a permutation), see Fig. 3 for a suggestive arrangement. Finally, to the right of S we add B�

located above all other components.
We prove that there is a solution with p = �+m lines to this instance of k-MODAL if and only if there is a partition

of S into m decreasing and � increasing lines. So let a k-modal cover for the constructed instance be given. By the
claim all p lines cover points in all Ap’s and Bp’s. At least m of these lines also cover points in Bm. These lines must
have at least k internal extrema to the left of S. Therefore only the remaining decreasing part can cover points in S.
None of these lines can be extended to cover points in B�. Consequently, B� must be covered by � lines not covering
points in Bm and these lines are increasing in S. Altogether there are m lines with decreasing part in S and � lines
with increasing parts in S.
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Fig. 4. Arrangement of blocks Bp and S used to prove NP-hardness of UNIMODEC.

On the other hand a given solution of the instance S of MONOTONE with m decreasing and � increasing lines can
be extended to a solution of k-MODAL in the obvious way where additional increasing and decreasing parts of the
lines cover components Ap , Bp , Bm, and B� as described in the proof of the claim.

The constructed instance of k-MODAL has the property that in any cover with p lines these lines are upper k-modal,
when k is odd, and lower k-modal, when k is even. Therefore, this instance can be interpreted as an instance of UPPER

k-MODAL, possibly after vertical flipping.
Finally, UPPER UNIMODAL reduces to UNIMODEC by adding a component Bp to the left and below a given instance

S of the latter problem, see Fig. 4. To cover Bp at least p decreasing parts are necessary as was shown before.
Therefore a solution of UNIMODEC with p lines exists if and only if a solution of UPPER UNIMODAL with p lines
exists. �
4. Optimal partitions: Mixed integer programs

4.1. Set partitioning formulation

A most natural formulation of our problems is as a set partitioning program. We use a binary variable λσ for each
feasible (monotone, k-modal, . . . ) subsequence σ ⊆ S. Every element of S has to appear exactly once in some selected
subsequence:

(1)min
∑
σ

λσ

(2)s.t.
∑

σ : i∈σ

λσ = 1 for all i

(3)λσ ∈ {0,1} for all feasible σ

This concise integer program may contain an exponential number of variables and one would solve it by branch-and-
price [13]. We postpone this discussion and present first its compact counterpart from which the set partitioning model
follows by a Dantzig–Wolfe decomposition.

4.2. Network flow and network design models

We will see that a minimum cost flow computation solves problem DECREASING. By means of additional binary
variables, the flow model extends to a network design problem which solves k-MODAL in general. We describe the
respective directed graphs from which our mixed integer programs (MIPs) immediately follow.

Given a sequence S we start with its associated (directed) permutation graph G = (S,E). We split all vertices
si ∈ S, and obtain a new arc ei for each element si . Arcs previously entering and leaving si now enter and leave the
tail and the head of ei , respectively. We add to a source s and a sink t , arcs from s to the tail of ei , and arcs from the
head of ei to t . Arcs leaving the source have unit cost, all other arc have cost zero. We introduce arc flow variables
x(e) � 0 for arc e and add lower bounds x(ei) � y(ei) := 1 on all arcs ei . Since this augmented network component is
acyclic, every s-t -flow decomposes into a collection of s-t -paths, each of which represents a decreasing subsequence
in S. The cost structure and the lower bounds y(ei) ensure that a minimum cost s-t -flow represents a minimum cover
with the flow value equal to the cover size. This is the basis for our mixed integer programs.

Starting from Ḡ rather than from G we obtain an augmented network component for representing increasing
subsequences, see Fig. 5.

If we concatenate several copies N1,N2, . . . of the above two network components, we can represent more general
sequences. Two consecutive network components Nj and Nj+1 are connected with directed arcs from the head of e

j
i

to the head of e
j+1, where e

j denotes the arc representing element si in Nj . The lower bounds y(e
j
) on arcs e

j are
i i i i
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Fig. 5. Acyclic augmented network component on the left: An s-t -path represents an increasing subsequence in S = [3,1,5,2,4]. Depicted on the
right is our symbolic shorthand notation for decreasing and increasing network components, respectively.

Fig. 6. Augmented network with two acyclic network components and its shorthand notation. An s-t -path represents an upper unimodular subse-
quence in S = [3,1,5,2,4].

Fig. 7. Augmented network with three acyclic network components in shorthand notation. An s-t -path represents a unimodecsubsequence.

Fig. 8. Augmented networks in shorthand notation. An s-t -path represents a monotone, unimodal, and k-modal subsequence, respectively.

now binary variables satisfying

(4)
∑
j

y
(
e
j
i

) = 1, for all i.

Again, this chain of network components is augmented by a source s and a sink t . Only the first and the last network
component are connected to s and t , respectively. Fig. 6 shows the construction for UPPER UNIMODAL. If necessary,
the arcs connecting two network components can be modified in such a way that every s-t -path has exactly one
internal extremum.

One can interpret a unimodecsequence as first traversing a decreasing subsequence in reverse order followed by an
upper unimodal subsequence. Therefore, it is convenient to have one more network component which is the decreasing
component with all arcs reversed, see Fig. 7.

In the general case we use two parallel chains of network components, again augmented by a single source and
a single sink. These are connected to both chains, cf. Fig. 8. Then, a minimum cost s-t -flow (in fact, a collection of
disjoint s-t -paths) corresponds to minimum monotone, unimodal, and k-modal partitions of S, respectively. In the
latter case each chain has k + 1 network components.

4.3. Comparison of the linear relaxations

For solving the linear relaxation of (1)–(3) by column generation [13] one starts with a restricted set of feasible
subsequences and dynamically generates more as needed. Associated to every constraint (2), i.e., to every element
si ∈ S is a dual variable π(si) ∈ R. From an optimal dual solution we check the reduced cost 1 − ∑

i∈σ π(si) of
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variables λσ which should be all non-negative. This is done via the following pricing subproblem

(5)min

{
1 −

∑
i∈σ

π(si) | σ is a feasible subsequence

}
.

This problem can be solved efficiently by a shortest s-t -path computation in a modified version of the acyclic networks
as described in Section 4.2: Capacities are removed, and we introduce costs −π(ei) on arcs e

j
i . A consequence of this

is the following.

Lemma 2. The LP relaxations of the network design model and the LP relaxation of the corresponding set partitioning
model have the same optimal objective function value.

Proof. The set partitioning model is a Dantzig–Wolfe decomposition of the network design model; an optimal solu-
tion to the pricing problem (5) is always integer. Under these circumstances the bound of the linear relaxations are
known to coincide [11]. �

In principle the set partitioning model surpasses the network design models in terms of modeling flexibility. This
advantage comes at the cost of extra implementation efforts.

Remark. The interpretation as hypergraph coloring mentioned at the end of Section 2 leads to a MIP with partitioning
and packing constraints. However, we found that its LP relaxation gives very weak bounds, and we omit a further
discussion.

5. Approximation algorithms

Fomin, Kratsch, and Novelli [10] develop a 1.71-approximation algorithm for finding a minimum partition of a par-
tially ordered set into chains and antichains. In particular, this algorithm gives a 1.71-approximation for MONOTONE.
From this we easily derive a 1.71(k + 1)-approximation algorithm for k-MODAL as follows.

Lemma 3. An α-approximate solution for MONOTONE is a (k + 1)α-approximate solution for k-MODAL. An α-
approximate solution for k-MODAL can be converted to a (k + 1)α-approximate solution for MONOTONE.

Proof. Denote by zα
mon and by zα

k the size of an α-approximate partition for MONOTONE and for k-MODAL, respec-
tively. Since any k-modal sequence can be split into at most k + 1 monotone subsequences, the optimal partition sizes
zmon and zk relate as zmon � (k + 1) · zk . This gives

zα
mon � α · zmon � (k + 1) · α · zk,

which proves the first part. Any monotone sequence is k-modal, and therefore zk � zmon. Together with the above
mentioned splitting of a k-modal sequence we immediately obtain

(k + 1) · zα
k � (k + 1) · α · zk � (k + 1) · α · zmon,

which proves the second part. �
It is an open question whether there exists a polynomial time approximation scheme (PTAS) for MONOTONE, let

alone k-MODAL. We see no way of obtaining stronger approximation results from the elegant algorithm in [10] since
its analysis is tight for MONOTONE, and the combinatorial argument used for its correctness does not generalize to
k-MODAL. However, we will describe an LP rounding approach which applies to our network design model and yields
improved approximation factors.

We consider a particular integer programming problem

(IP)z∗ := cT x∗ := min
{
cT x | x ∈ P,y ∈ Y,x � y, x integer, y binary

}
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with optimal solution x∗, y∗. Let Y ⊆ [0,1]p be defined by a set of generalized bound constraints: The variables
yj , j ∈ Iq , appear in the qth generalized bound constraint

∑
j∈Iq

yj = 1,

all other yj variables are fixed with L := {j | yj = 0}, U := {j | yj = 1}. The sets L, U , and the union I = ⋃
q Iq

are pairwise disjoint. Let ρ denote the maximum number of variables in a generalized bound constraint, i.e., ρ =
maxq |Iq |, We require ρ � 2. The polyhedral set P ⊆ R

p has the important property ρ · P ⊆ P .
In particular, our network design models are of this form since any multiple (larger than one) of a feasible flow in a

network without upper bounds is again a feasible flow. Formally, the network design models only use y-variables on
a subset of the arcs, but we can easily add zero valued variables for all other arcs. The model contains n generalized
bound constraints (4), one for each element of the permutation, and ρ is the number of its network components.

Algorithm (LP Rounding for IP).

• Compute an optimal solution xLP, yLP of the linear relaxation LP of IP.
• Choose a set of representatives R ⊆ {j ∈ I | yLP

j � 1
ρ
} with |R ∩ Iq | = 1 for all q .

Rounding up according to R defines the binary vector ŷ with ŷj = 1 ⇐⇒ j ∈ R ∪ U .
• Compute an optimal solution x̄ of the linear programming relaxation LP2 of the integer program IP2 cT x̂ :=

min{cT x | x ∈ P,x � ŷ, integer}.

The choice of ρ implies the existence of a suitable set R of representatives. Moreover, ρ ·xLP � ŷ ∈ Y and ρ ·xLP ∈
P , i.e., ρ · xLP is feasible for LP2. In particular, the algorithm can be applied to our network design model. Since for
fixed lower bound vector ŷ the network design model reduces to a network flow problem, the corresponding LP
relaxation has an integer optimum.

Theorem 4. Let ŷ denote the rounded vector obtained from LP ROUNDING and let ρ be the maximum number of
variables in a generalized bound constraint (4). If the LP relaxation LP2 has an integer optimum x̄, then x̄, ŷ is a
ρ-approximation of IP.

Proof. If x̄ is integer, then x̄, ŷ are feasible for IP. As remarked above, ρ · xLP is feasible for LP2 and ŷ ∈ Y .
Therefore,

cT xLP � cT x∗ � cT x̄ � cT
(
ρ · xLP)

,

proving that x̄, ŷ is a ρ-approximation of IP. �
Corollary 5. LP ROUNDING yields

– a 2-approximation for MONOTONE, UPPER UNIMODAL, and LOWER UNIMODAL,
– a 3-approximation for UNIMODEC,
– a (k + 1)-approximation for UPPER k-MODAL and LOWER k-MODAL, and
– a 2(k + 1)-approximation for k-MODAL.

In general, the approximation factor is determined by the number of monotone pieces in the considered subse-
quences, with an additional factor of 2 if we do not fix the monotonicity of the first part. It would be interesting to see
whether one can eliminate this factor 2.

We note that the integrality gap of our MIP model for MONOTONE and UPPER UNIMODAL is at least 3
2 as is shown

e.g., by the sequence [6,2,1,4,3,5]. For both problems, the optimal LP value is 2.0; the optimal integer objective
is 3.0.
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6. Online algorithms

Not least in view of our practical motivation it is natural to ask for the online version of our problems in which
the permutation becomes known sequentially. We have to assign elements to subsequences without looking at the
remaining elements of the permutation, see e.g., [9] for background on online algorithms. For INCREASING and
DECREASING the (optimal) greedy algorithm is in fact an online algorithm [8]. For MONOTONE the situation is much
worse.

Theorem 6. There is no o(logn) competitive online algorithm for MONOTONE.

Proof. Consider any online algorithm A for MONOTONE. Depending on the decisions made by A we construct a
sequence S = [1, . . . , n] with n = 2h − 1 elements, for some integer h. Initially, we have the range of numbers a = 1
to b = n. The first element of S is (a +b)/2 = 2h−1, and A has to open a subsequence. We arbitrarily set a = 2h−1 +1
or b = 2h−1 − 1, and serve (a + b)/2 as second element. In general, A has three options (of which in fact only two
are actually possible). We describe this for the second iteration. First note that a decision to append to an existing
subsequence decides upon whether that sequence is increasing or decreasing.

If A decides to append in an increasing way we set b = 2h−1 − 1. If A decides to append in a decreasing way
we set a = 2h−1 + 1. In either case we have a connected range of 2h−1 − 1 numbers none of which can be appended
to an already existing subsequence of at least two elements. If a new subsequence is opened we adapt either a or b

arbitrarily as above. We iterate with the new values of a and b, and it follows by induction that A generates at least
h/2 subsequences for the first h elements of S (since each subsequence contains at most two elements).

Let a1, . . . , ah and b1, . . . , bh be the values of a and b throughout the first h iterations described above. The
ith element of S is either ai+1 − 1 or bi+1 + 1. Since the sequences a1, . . . , ah and b1, . . . , bh are increasing and
decreasing, respectively, the first h elements of S can be covered by an increasing subsequence of a1 − 1, . . . , ah − 1
and by a decreasing subsequence of b1 + 1, . . . , bh + 1.

If the remaining elements of S are arranged in an increasing way the optimal solution contains 3 subsequences.
However, the solution determined by A contains at least h/2 subsequences. Therefore, A is log2(n+1)/6-competitive
at best. �
Restatement of Theorem 6. The problem of cocoloring a permutation graph with n vertices does not allow an online
algorithm with competitive ratio better than �(logn).

Since the publication of the conference version [17] of this paper, Demange and Leroy-Beaulieu [7] adapted our
proof to the situation where the range of numbers in the permutation is not known in advance. For this case, they
strengthen the lower bound to n/4 + 1/2.

We next discuss the performance of two online algorithms for MONOTONE, UPPER UNIMODAL, and LOWER UNI-
MODAL, both of which are reminiscent of simple bin packing online algorithms.

Online Algorithm Next Fit.
Open an empty subsequence.
Add arriving elements s to one and the same open subsequence as long as feasibility of the generated subsequence

is not violated. Otherwise close the currently open subsequence and open a new subsequence with s.

Lemma 7. NEXT FIT is exactly n/4-competitive for MONOTONE and UPPER UNIMODAL.

Proof. Any two elements of the input sequence S form a monotone (unimodal) subsequence. Thus, we have n/2 as a
trivial upper bound for the number of subsequences determined by NEXT FIT. If S itself is monotone (unimodal) the
algorithm finds the optimal solution. Otherwise, the optimal solution consists of at least two subsequences giving a
competitive ratio of n/4. To see that this bound is tight consider the sequence S = [n,1, n−1,2, . . .]. For MONOTONE

and UPPER UNIMODAL NEXT FIT will determine a solution consisting of n/2 subsequences with two elements each.
The optimal solution consists of two sequences in both cases. Therefore, NEXT FIT is exactly n/4-competitive. �
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Next we make use of the fact that we know the set of pending elements, which are the numbers in 1, . . . , n we have
not yet seen in the input sequence.

Online Algorithm Best Fit.
Start with two subsequences containing only one dummy element 0 and n + 1, respectively.
Add arriving elements s to one subsequence P of the current solution for which P ∪ s stays feasible and for which

the number of pending elements between s and the last element of P is minimal. If P is a dummy subsequence then
P is redefined by P := {s} and a new subsequence having the same dummy element as P is added to the solution
unless it consists of n/2 subsequences. Resolve ties arbitrarily, preferring subsequences without dummy elements.

Note that in each iteration at least one of the at most n/2 subsequences contains one (dummy) element only.
Therefore in each iteration an appropriate P exists. Unfortunately, for MONOTONE the extra effort made in BEST FIT

in comparison to NEXT FIT does not improve the competitive ratio.

Lemma 8. BEST FIT is exactly n/4-competitive for MONOTONE.

Proof. If the input permutation is itself feasible, BEST FIT is optimal. Otherwise, by definition, it generates at most
n/2 feasible subsequences and is at least n/4-competitive. To see that the upper bound is tight, we consider the permu-
tation S = [2,1,4,3, . . . ,2k,2k − 1, . . .]. The algorithm generates decreasing two-element subsequences [2k,2k − 1]
for all k, but the optimal partition contains only the two increasing subsequences [2,4, . . .], [1,3, . . .]. �

The sequence defined in the last proof also gives a tight example for the n/4-competitiveness of the analogue of
the bin packing algorithm FIRST FIT.

7. Computational results

We generated random permutations (with the standard shuffling algorithm as described by Knuth) with 30, 60, 90,
and 120 elements; 90–120 elements appear to be a reasonable size for rail car shunting. For each size we generated 100
instances. All experiments were conducted on a Linux PC (AMD Athlon MP 2800+) with 2.1 GHz and 3.5 GByte
main memory. For solving linear and mixed integer programs we use the standard solver CPLEX 9.0 with default
parameter settings. On every computation we impose a time limit of 900 CPU seconds.

Table 1 summarizes our results. Allowing ourselves a conservative judgment only, we see that we can optimally
solve instances of the given size with the network design model within an acceptable time frame. For the set cover
formulation we generated the entire integer program. It shows an exceptionally bad performance due to the fact that
the lower bound only very slowly improves during the branch-and-bound process. To be fair at this point we remark
that a true branch-and-price algorithm would probably outmatch the network design MIP in terms of computation
time on larger instances.

The greedy algorithm, which iteratively extracts longest feasible subsequences, runs in a split second and yields
very good solutions on the average as well as in the (empirically) worst case. The quality of solutions obtained with
the LP ROUNDING is significantly better than the theoretically guaranteed approximation factors suggest. NEXT FIT

empirically performs as poorly as predicted by competitive analysis, whereas BEST FIT gives fair results on average.

8. Conclusions

We studied minimum partitioning of permutations into subsequences with certain monotonicity properties. Par-
ticularly interesting subsequences are increasing, monotone, upper unimodal, k-modal, and unimodec. Problems of
this kind arise as subproblems in railroad logistics, see e.g., [2,8,19]. Theoretical hardness legitimates studying and
applying computationally expensive approaches like solving (probably large scale) mixed integer programs. These
also yield (small) constant factor approximation algorithms via LP rounding.

Several extensions can be incorporated in our models, e.g., a bounded track length, i.e., the length of a subsequence
must not exceed a given number of elements. Then, solutions of our network flow based models become resource
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Table 1
Average and worst case results for MONOTONE and UPPER UNIMODAL. The columns list (in that order): |S| = n; the quality (as a factor as
compared to optimal = 1.000) for the greedy algorithm, LP ROUNDING, and the LP relaxation; CPU seconds for optimally solving the network
design MIP and the set partitioning model; and the quality (as a factor) of the online algorithms NEXT FIT and BEST FIT. The † sign indicates that
the time limit of 900 CPU seconds was almost always exceeded

n Greedy LP RND. LP Flow (1)–(3) NEXT BEST

monotone

30 avg 1.066 1.060 .810 .092 .123 2.259 1.350
worst 1.200 1.400 .726 .240 1.120 2.800 2.000

60 avg 1.127 1.111 .827 1.841 139.335 3.214 1.484
worst 1.285 1.625 .742 35.340 900.060 3.857 1.875

90 avg 1.123 1.116 .821 19.953 869.234 3.853 1.581
worst 1.222 1.333 .770 158.450 900.630 4.444 2.111

120 avg 1.151 1.133 .824 218.340 † 4.468 1.653
worst 1.300 1.454 .769 900.040 † 5.000 2.100

upper unimodal

30 avg 1.098 1.051 .804 .033 .386
worst 1.250 1.500 .678 .100 5.330

60 avg 1.142 1.076 .803 .560 455.885
worst 1.400 1.333 .714 14.600 900.350

90 avg 1.161 1.081 .812 19.009 †
worst 1.285 1.428 .717 407.680 †

120 avg 1.193 1.090 .811 255.213 †
worst 1.375 1.250 .727 900.080 †

constrained shortest paths, which are NP-hard to compute. The set partitioning model is most flexible in terms of
extendibility. It is able to capture more “dirty” side constraints which do not fit into the context of this paper.

Among the remaining interesting open questions are:

• What is the exact approximability status of MONOTONE and K-MODAL, in particular, does there exist a PTAS?
Can our LP techniques lead to an improvement of the 1.71 approximation for MONOTONE? Such a result would be
quite fascinating since the algorithm in [10] already elegantly exploits the combinatorial structure of the problem.

• Considering the lower bound on the competitive ratio given in Theorem 6 one would be interested in an online
algorithm matching this bound. Which competitive ratio is possible when look-ahead is allowed? In [7] some
preliminary results are obtained.

• The crucial property we use in the construction of the graphs underlying our MIP models, and which ensures
that paths correspond to increasing or decreasing subsequences, is the transitivity of the ordering of elements. We
would have liked to generalize our positive results for permutations to partially ordered sets (corresponding to
comparability graphs). However, in general, the transitivity is lost for the complement of a comparability graph.
Is there a network flow based model similar to ours which allows LP rounding, thus yielding a constant factor
approximation?
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