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a b s t r a c t

This paper focuses on the resolution of the capacitated minimum cost flow problem on a
network comprising n nodes and m arcs. We present a method that counts impervious-
ness to degeneracy among its strengths, namely the minimum mean cycle-canceling algo-
rithm (MMCC). At each iteration, primal feasibility ismaintained and the objective function
strictly improves. The goal is towrite a uniform and hopefullymore accessible paperwhich
centralizes the ideas presented in the seminal work of Goldberg and Tarjan (1989) as well
as the additional paper of Radzik and Goldberg (1994) where the complexity analysis is re-
fined. Important properties are proven using linear programming rather than constructive
arguments.

Wealso retrieve Cancel-and-Tighten from the former paper,where each so-called phase
which can be seen as a group of iterations requires O(m log n) time. MMCC turns out to be
a strongly polynomial algorithm which runs in O(mn) phases, hence in O(m2n log n) time.
This new complexity result is obtained with a combined analysis of the results in both
papers along with original contributions which allows us to enlist Cancel-and-Tighten as
an acceleration strategy.

© 2014 Published by Elsevier B.V.

1. Introduction

This paper addresses the resolution of the capacitated minimum cost flow problem (CMCF) on a network defined by
n nodes and m arcs. We present the minimum mean cycle-canceling algorithm (MMCC). The seminal work of Goldberg and
Tarjan [13], as presented in the book of Ahuja et al. [1], aswell as the paper of Radzik andGoldberg [17],where the complexity
analysis is refined, are the underlying foundations of this document. The current literature states that MMCC is a strongly
polynomial algorithm that performs O(m2n) iterations, a tight bound, and runs in O(m3n2) time.

While Goldberg and Tarjan [13] present Cancel-and-Tighten as a self-standing algorithm, we feel it belongs to the realm
of acceleration strategies incidentally granting the reduction of the theoretical complexity. Our understanding is that this
strategy can be shared at any level of the complexity analysis. Indeed, its very construction aims to assimilate the so-called
notion of phase which can be seen as a group of iterations. This strategy exploits an approximation scheme to manage this
assimilation and as such nevertheless necessitates a careful analysis. We propose a new approximation structure which
allows us to reduce the global runtime to O(m2n log n). It is namely the product of a refined analysis that accounts for O(mn)
phases, each one requiring O(m log n) time.

The reader should view this work as muchmore than a synthesis. It is the accumulation of years of research surrounding
degeneracy that led us to realize the ties with theories drafted some forty years ago.We not only hope to clarify the behavior
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of theminimummean cycle-canceling algorithm but also provide strong insights about the ins and outs of its idiosyncrasies
and more importantly establish a solid unified framework against which we can rest current and future work. On that note,
let us underline the linear programming mindset which simplifies the construction of one of the most important parts
of the algorithm, namely the pricing problem. The justification of some of its properties also benefit from straightforward
implications provided by thatmindset. Some fundamental properties of network problems are also incorporated throughout
the text which sometimes facilitate if not, certainly enlighten, the comprehension of the proofs presented by the listed
authors.

The paper is organized as follows. The elaboration of MMCC takes place in Section 2 where the combination of the so-
called residual network along with optimality conditions give birth to a pricing problem which is put to use in an iterative
process. Section 3 analyzes its complexity which is decomposed in two parts: the outer loop and the bottleneck. Although
the latter comes at the very last, it acts as the binding substance of the whole paper. It is indeed where the behavior of
the algorithm can be seen at a glance alongside the justification for the significance of the aforementioned phases. This is
followed by the conclusion in Section 4.

2. Minimummean cycle-canceling algorithm

Consider the formulation of CMCF on a directed graph G = (N, A), where N is the set of n nodes associated with an as-
sumedbalanced set bi, i ∈ N , of supply or demanddefined respectively by a positive or negative value such that


i∈N bi = 0,

A is the set of m arcs of cost c := [cij](i,j)∈A, and x := [xij](i,j)∈A is the vector of bounded flow variables:

z∗
:= min


(i,j)∈A

cijxij

s.t.


j:(i,j)∈A

xij −


j:(j,i)∈A

xji = bi, [πi] ∀i ∈ N (1)

0 ≤ ℓij ≤ xij ≤ uij, ∀(i, j) ∈ A,

where π := [πi]i∈N is the vector of dual variables, also known as node potentials. When right-hand side b := [bi]i∈N is the
null vector, formulation (1) is called a circulation problem.

Let us enter the world of network solutions with a fundamental proposition whose omitted proof traditionally relies
on a constructive argument. It is so rooted in the network design that, case in point, straightforward derivatives are used
throughout this document.

Proposition 1 (Ahuja et al. [1, Theorem 3.5 and Property 3.6]). Any feasible solution x to (1) can be represented as a combination
of paths and cycles flows (though not necessarily uniquely) with the following properties:

(a) Every directed path with positive flow connects a supply node to a demand node; at most n + m directed paths and cycles
have non-zero flow among which at most m cycles.

(b) In the case of a circulation problem, by definition there are no supply nor demand nodes, which means the representation can
be restricted to at most m directed cycles.

This section derives MMCC, devised to solve instances of CMCF, in the following manner. Section 2.1 defines the corner
stone of the resolution process, namely the residual network.Whether its inception goes back to the optimality conditions or
its usage came as an afterthought is an enigma for whichwe have no answer. Either way, the latter are introduced thereafter
and pave the way for the pricing problem in Section 2.2. Section 2.3 exhibits the algorithmic process which is ultimately
information sharing between a control loop and a pricing problem. The former ensures primal feasibility while the latter
provides a strictly improving direction at each iteration. Section 2.4 illustrates the behavior of the algorithmon themaximum
flow problem.

2.1. Residual network and optimality conditions

The residual network takes form with respect to a feasible flow x0 := [x0ij](i,j)∈A and is denoted G(x0) = (N, A(x0)). As
eloquently resumed in Fig. 1, each arc (i, j) ∈ A is replaced by two arcs representing upwards and downwards possible flow
variations:

• arc (i, j) with cost dij = cij and residual flow 0 ≤ yij ≤ r0ij := uij − x0ij;
• arc (j, i) with cost dji = −cij and residual flow 0 ≤ yji ≤ r0ji := x0ij − ℓij.

Denote A′
:= {(i, j)∪(j, i) | (i, j) ∈ A} as the complete possible arc support of any residual network. The residual network

G(x0) consists of only the residual arcs, i.e., those with strictly positive residual capacities, that is, A(x0) := {(i, j) ∈ A′
| r0ij >

0}. The combination of the current solution x0 along with the optimal marginal flow computed on the residual network is
optimal for the original formulation. Indeed, the residual network with respect to x0 corresponds to the change of variables
xij = x0ij + (yij − yji), ∀(i, j) ∈ A. Observe that traveling in both directions would be counterproductive and can be simplified
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Fig. 1. A change of variables.

to the net flow in a single direction. This means that the marginal flow must be such that yij yji = 0, ∀(i, j) ∈ A, which is
naturally verified by any practical solution.

Letting z0 = cᵀx0 means that CMCF can be reformulated as:

z∗
:= z0 + min


(i,j)∈A(x0)

dijyij (2)

s.t.


j:(i,j)∈A(x0)

yij −


j:(j,i)∈A(x0)

yji = 0, [πi] ∀i ∈ N (3)

0 ≤ yij ≤ r0ij , ∀(i, j) ∈ A(x0). (4)

Take a moment to consider an optimal solution of (2)–(4) on the residual network G(x0). Mathematically speaking, it
corresponds to a circulation problem. The right-hand side in (3) is zero everywhere, we are thus looking for a solution that
respects the equilibrium already present in the current solution x0. Verifying that a directed cycle in G(x0) exists as a cycle
in G is as straightforward as applying the flow conservation principle, that is, we use the forward direction of arc (i, j) when
yij > 0 or the backward direction when yji > 0.

Suppose that x and x0 are any two feasible solutions to formulation (1). Therefore some feasible circulation y in G(x0)
satisfies the property that x = x0 + y, and the cost of solution x is given by cᵀx = cᵀx0 + dᵀy, where d := [dij](i,j)∈A(x0).
Moreover, Proposition 1(b) means that there exists a way to decompose y in at mostm cycles. We can therefore think of an
optimal solution of (2)–(4) on G(x0) as a collection of intertwined cycles. This is stated in the following proposition.

Proposition 2 (Ahuja et al. [1, Theorem 3.7]). Let x and x0 be any two feasible solutions of a network flow problem. Then x
equals x0 plus the flow on at most m directed cycles in G(x0). Furthermore, the cost of x equals cᵀx0 plus the cost of flow on these
augmenting cycles.

Hence, there exists a way to move between any two feasible solutions in at mostm cycles! It is quite a testament to how
trivial reaching x∗, granted it is actually known. The fact of the matter is that the residual network problem (2)–(4) is not
easier to solve than the original problem (1). Nevertheless, there exists at least one sequence of transitions which constructs
a series of residual networks allowing to move from x0 to an optimal solution x∗ in a finite number of iterations.

It is indeed possible to think of the cycles contained in the residual network as transitioning possibilities. Consider the
marginal changes instilled in x0 with respect to some negative (or improving) cycle and repeat this step until no such cycle
remains. As simple as it may sound, we have stated the generic cycle-canceling algorithm as proposed by Klein [16], which
ultimately amounts to a line search optimization method. Showing finiteness, at least as far as today’s computer tractability
is concerned (Ford and Fulkerson [10] show that pathological instances with irrational data could misbehave indefinitely
or even worse converge to a bad solution), is as trivial as realizing this procedure performs a strict improvement in the
objective function at each iteration until optimality is reached. However, it turns out that the order in which these cycles
are identified has tremendous impact on the performance of this generic algorithm. Given integer data, denote the greatest
absolute cost value by C := max(i,j)∈A |cij| and the greatest interval range value by U := max(i,j)∈A uij − ℓij. Then the number
of iterations of the generic algorithm ranges anywhere from O(m) to O(mCU).

Optimality conditions. With respect to π, the reduced cost of variable xij, (i, j) ∈ A, is given by c̄ij := cij − πi + πj. Let the
reduced cost d̄ij of variable yij, (i, j) ∈ A(x0), be computed in the same way, i.e., d̄ij := dij − πi + πj. For a feasible flow
x0, we distinguish three equivalent necessary and sufficient optimality conditions. With respect to linear programming
vocabulary, the first two can be qualified of primal and dual nature on the residual network G(x0) while the third is that of
complementary slackness on network G, see [1, Theorems 9.1, 9.3, and 9.4]:

Primal: G(x0) contains no negative cycle.
Dual: ∃π such that d̄ij ≥ 0, ∀(i, j) ∈ A(x0).
Complementary slackness: ∃π such that, for every arc (i, j) ∈ A,

x0ij = ℓij if c̄ij > 0; x0ij = uij if c̄ij < 0; c̄ij = 0 if ℓij < x0ij < uij. (5)
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We underscore that if feasible flow x0 is actually optimal, all these conditions are verified simultaneously. Observe that
the primal and dual conditions are only verifiable on the residual network G(x0). The complementary slackness conditions
however are verified onG by the combination of the current primal solution and the information gathered by the dual vector.

2.2. Pricing step: finding the minimum reduced cost

The pricing step elaborated in this section is derived from the residual network by capturing the rationale of the
optimality conditions. According to the dual optimality condition, x0 is optimal if and only if there exists a vector π such
that dij − πi + πj ≥ 0, ∀(i, j) ∈ A(x0). This can be verified by finding the smallest reduced cost, denoted µ0, and formulated
as the following linear program:

µ0
:= maxµ (6)

s.t. µ + πi − πj ≤ dij, [yij] ∀(i, j) ∈ A(x0). (7)

Observe thatπ is not fixed but optimized in formulation (6)–(7). Its dual is expressed in terms of flow variables [yij](i,j)∈A(x0):

µ0
:= min


(i,j)∈A(x0)

dijyij (8)

s.t.


j:(i,j)∈A(x0)

yij −


j:(j,i)∈A(x0)

yji = 0, [πi] ∀i ∈ N (9)


(i,j)∈A(x0)

yij = 1, [µ] (10)

yij ≥ 0, ∀(i, j) ∈ A(x0), (11)

where π is associated with the flow conservation constraints (9) while µ is a dual scalar associated with the convexity
constraint (10). We already know optimality conditions provide alternative ways to prove the optimality status of feasible
solution x0. It might not be all that surprising that if pricing problem (6)–(7) expresses the dual optimality condition on
G(x0), formulation (8)–(11) echoes the verification of the primal optimality condition on the residual network. Indeed, the
latter is known as the minimum mean cycle problem, arguably giving all meaning to the algorithm’s name. The following
paragraphs contain the explanation and a word of justification that allows it to stand on its own.

The convexity constraint (10) produces a scaling in the y-variableswhich is echoed in the objective function. As amatter of
fact, problem (8)–(11) no longer belongs to the family of network problems. Nevertheless, that scaling does not compromise
the existence of a cycle in G(x0), but it does create a distortion of the cost associated with said cycle. The meaning of this
distortion resides in the fact that (8)–(11) finds a single directed cycle with the smallest average cost, the average being
taken over the number of arcs (or nodes) in the cycle. Notice the use of the word cycle against formulation (8)–(11) which
we have explicitly excluded from the network family. The concept is so important, we take the time to break the flow of the
text to carry an explanation.

Define W 0
:= {(i, j) ∈ A(x0) | y0ij > 0} as the set of active variables in an optimal solution y0 to formulation (8)–(11).

Granted W 0 describes a single cycle, constraint set (9) guarantees that the value is the same for all the variables that are
actually present in that selected cycle. Therefore, we must have y0ij = 1/|W 0

|, ∀(i, j) ∈ W 0. Furthermore, we say W 0 is
directed with respect to the orientation of the arcs in G(x0) corresponding to the selected positive variables in y0. While the
notation is abusive, the burden of an additional variable for values so closely related is not worthwhile. In any single cycle, at
most one of y0ij or y

0
ji may be positive which in turn satisfies the flow condition yijyji = 0. Fortunately, the expectancy of this

particular kind of solution is not a strong restriction as it is synonymous of an extreme point solution of the linear program
(8)–(11). There is one notable exception to this one-way rule which can only happenwhen x0 is optimal. Since the identified
cycle can be discarded for lack of improvement, so can the exception. From now on, a solution to the pricing step is assumed
to honor the design of the minimum mean cycle problem meaning that W 0 is a single directed cycle. Furthermore, we can
interchangeably speak of cycleW 0 on G(x0) or A(x0). Finally, note that in the dual formulation, one can additionally impose
µ ≤ 0. As a consequence, the associated convexity constraint in (8)–(11) becomes a less than or equal inequality and the
primal pricing problem is always feasible even if the residual network is acyclic (in which case µ = 0). Observe that if the
obtained cycle has a negative mean reduced cost, x0 is not optimal for (1). The solution of the pricing step can therefore be
seen as a direction. By definition of the residual network, it even qualifies as a strictly improving direction.

Remark. The justification for the validity of the primal version of the pricing step might go as follows. We are looking to
improve current solution x0 using the concept of negative cost cycles. More specifically, we are looking for the existence
of such a cycle, say W 0 on G(x0). Observe that the residual capacities are not relevant in the cycle identification process.
Then again, omitting these quantities from formulation (2)–(4), that is, removing yij ≤ r0ij , ∀(i, j) ∈ A(x0), creates an
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unbounded circulation problem. The silver lining comes from the realization that this new problem is a cone for which the
unique extreme point solution y = 0 reflects status quo. Non linear optimization has an impressive inventory of choices
to search among improving directions. These choices all have their rationalization but ultimately mean that the cone is cut
according to somemetric. One of the recognized choices is the convexity constraint imposed on the selection. Indeed, for any
non-zero solution in the cone, there exists a scaled one such that 1ᵀy = 1. Historically speaking, the pricing step is reported
as an abstract form of its interpretation, that is, minW


(i,j)∈W dij/|W |. Whether Goldberg and Tarjan [13] accidentally built

the minimum mean cycle-canceling algorithm according to these principles or it was meticulously devised is unclear, the
conclusion is all the same: the convexity constraint is indeed enlisted in (8)–(11).

2.3. Algorithmic process

MMCC is initialized with a feasible flow x0. At every iteration k ≥ 0, the pricing step solution yk identifies a minimum
mean cost cycle W k

:= {(i, j) ∈ A(xk) | ykij > 0} taking value µk in G(xk). Flow units are sent along this cycle according to a
control mechanism which relies solely on the residual capacities rk. A new solution xk+1 is obtained and G(xk+1) is updated
accordingly. This process is repeated until the residual network contains no negative cycle.

Let us take a look at some computations that can be done regarding the transition between two iterations. The flow of
every arc in the negative cost cycleW k can be augmented by the smallest residual capacity on the cycle δk

:= min(i,j)∈W k rkij ,
hence the new solution becomes

xk+1
ij = xkij + δk

|W k
|(ykij − ykji), ∀(i, j) ∈ A, (12)

and the improvement 1zk of the objective function in (1) is given by

1zk := δk
|W k

|µk
= δk


(i,j)∈W k

dij < 0. (13)

Notice that both δk and 1zk evaluate to integers if certain conditions are verified. The former requires the integrality of
the bounds as well as the demands/supplies while the latter depends on the integrality of the costs.

It stands to reason that MMCC is already in the works with Ford and Fulkerson [9] providing the concept of augmenting
paths between solutions while Edmonds and Karp [7] show that a particular selection of augmenting paths would be more
efficient on the maximum flow problem. While we use the latter to present an application of MMCC, the reader is invited to
appreciate the narrative description as a tribute to the aforementioned papers. The illustrative example also serves to get a
feel for the subsequent complexity analysis.

2.4. Illustrative example: the maximum flow problem

Themaximum flowproblem is a particular instance of network optimization inwhich a source s and a sink t are connected
through a capacitated subnetwork. The goal is tomaximize the outgoing flow of the source under the restriction of the usual
flow conservation constraints. One should realize the null cost structure of all the arcs except xts ≥ 0 for which cts = −1.
Let us apply MMCC and assume lower bounds are null for all arcs, meaning that x0 = 0 is feasible.

It is worthwhile to notice that the cycle found on the residual network at any iteration k ≥ 0 is constructed in two parts:
a path from s to t and the lone variable yts. Let W k be the negative cycle identified at iteration k, hence µk

= −1/|W k
|.

The pricing step sequentially favors the smallest paths (in number of arcs) from s to t starting from length 1 to n − 1 until
optimality is reached. The sequence of µk is non-decreasing and takes its values from the finite set


−1
2 , −1

3 , −1
4 , . . . , −1

n


.

When the path length changes from 2 to a longer one, the increase factor of µ takes a value among range {
2
3 ,

2
4 , . . . ,

2
n }.

Observe that higher values of the increase factor induce smaller jumps on µ. Therefore, the minimal increase factors 2
3 ,

3
4 , . . . ,

n−1
n


of µk, for each length level, are computed using adjacent values of µ, the smallest possible one being

attained when going from level −1
n−1 to −1

n and measured by (1 − 1/n). Fig. 2 depicts the behavior of µk, k ≥ 0, on a network
comprising 502 nodes and 10,007 arcs: only four levels of µ are required within 188 iterations at which point µ = 0 thus
proving optimality and discarding the associated cycle defined by variables y188st = y188ts = 1/2. Observe that in this particular
example, the increase factors are 5

6 ,
6
7 and 7

8 all of which producing a bigger increase on µ than would have 501
502 .

We draw the reader’s attention on solving the pricing step.We are looking, on the residual network, for the shortest path
(in number of arcs) from s to t . This can be done in O(m) using a breadth-first-search algorithm. Next, we derive from the
previous paragraph that there are at most n − 1 increases of µ, and since every iteration identifies a path through which at
least one arc is saturated with the step size, each increase is attained within m iterations, hence O(mn) iterations. In total,
Goldberg and Tarjan [13] realize that applying MMCC to the maximum flow problem exactly corresponds to the strongly
polynomial algorithm of Edmonds and Karp [7] which runs in O(m2n) time.
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Fig. 2. Smallest reduced cost µ for a maximum flow problem.

3. Complexity analysis

The complexity analysis is implicitly decomposed in two parts: the outer loop and the bottleneck. Obtaining the global
runtime is then a matter of factoring out these complexities. In MMCC, the natural definition of the bottleneck relates to the
pricing step andwe therefore study the upper bound on the number of callsmade to the latter. For the sake of argument, one
can think of the bottleneck as a group of calls which, in the end, is purely cosmetic. Yet, an efficacy gain is made if solving
for a group can be done more efficiently than would the sequential operations. That is where lies the significance of the
so-called phases.

Although this paper recruits its inspiration from the very fine presentation of the minimum mean cycle-canceling
algorithm proposed by Goldberg and Tarjan [13] and described in [1], the presentation is reorganized to first thoroughly
discuss the outer loop analysis (Sections 3.1–3.4) and then spend time on the bottleneckmanagement (Section 3.5). We also
rapidly divert to phase-wise results in accordance with our understanding of the Cancel-and-Tighten strategy. The latter is
presented in the bottleneck management section opposite the traditional pricing problem. Ultimately, we consolidate all
complexity results in the summary (Section 3.6). The latter also points out different practical aspects of the algorithm by
using computational results.

We startwith basic properties of the algorithmwhich lead to the actual complexity analysis. The first proposal ofGoldberg
and Tarjan [13] is aweakly polynomial behavior ofO(mn log(nC)) iterations for integer arc costswhile the second establishes
the strongly polynomial result of O(m2n log n) iterations for arbitrary real-valued arc costs. Radzik and Goldberg [17] refine
it to O(m2n) iterations and also show this bound to be tight. The concept of phase is strategically positioned after the
first complexity result expressed in terms of iterations to allow the reader to appreciate the similarity. The bottleneck
management brings the Cancel-and-Tighten strategy into play and reduces the global runtime complexity to O(m2n log n),
our new complexity result for the minimummean cycle-canceling algorithm.

3.1. In embryo

Let us recall a fundamental network flow property before dwelling in the algorithmic analysis. It examines the relation-
ship with the cost and the reduced cost of a cycle.

Cycle cost. For any vectorπ of node potentials, the cost and the reduced cost of a directed cycleW in G(xk), k ≥ 0, are equal.
Finding a minimummean cost cycleW k in G(xk) is therefore equivalent to finding a minimummean reduced cost cycleW k

in G(xk). Hence, the optimal value of the objective function in pricing problem (8)–(11) computes

µk
=


(i,j)∈W k

dijykij =


(i,j)∈W k

dij
|W k|

=


(i,j)∈W k

d̄ij
|W k|

. (14)

The first equality sums over the optimal cycle, the second uses the fact that we know all strictly positive y-variables are
equal to one another, and the last recalls the equivalence between the cost and the reduced cost of a cycle.

Optimality parameter µ. Themechanics of theminimummean cycle-canceling algorithm do not require the use or computa-
tion of reduced costs. Indeed, MMCC relies solely on the primal optimality condition to achieve optimality. The complexity
analysis however exploits the dual and complementary slackness conditions using the equivalences provided by (14). Ul-
timately, the idea is to study the convergence towards zero of µk, the current most negative reduced cost. The synonymy
is granted as a side effect of Proposition 3, for which the proof is given using linear programming tools, and is the rea-
son we interchangeably use the expression optimality parameter. With respect to πk

:= [π k
i ]i∈N at iteration k ≥ 0, let

c̄kij := cij − π k
i + π k

j , (i, j) ∈ A, be the reduced cost of variable xij. In the same way, d̄kij := dij − π k
i + π k

j is the reduced
cost of variable yij, (i, j) ∈ A(xk). Observe that the superscript is understood to mean the computation is done with the
corresponding vector πk of node potentials.
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Fig. 3. Aftermath of cycle-canceling in the residual network.

Proposition 3 (Goldberg and Tarjan [13, Theorem 3.3]). Given a non-optimal solution xk, k ≥ 0, there exists some vector πk

such that the optimality parameter is equal to the most negative reduced cost, i.e., µk
= min(i,j)∈A(xk) d̄

k
ij. Moreover all arcs of the

identified cycle W k share that same value, i.e., d̄kij = µk, ∀(i, j) ∈ W k.

Proof. At iteration k, constraint set (7) can be written as µ ≤ dij − πi + πj, ∀(i, j) ∈ A(xk). At optimality, µk
≤ d̄kij, ∀(i, j) ∈

A(xk) and the objective function (6) pushes µk to the smallest reduced cost. Furthermore, the complementary slackness
conditions guarantee that the equality holds in (7) for all ykij > 0, that is, µk

= d̄kij, ∀(i, j) ∈ W k. �

ϵ-optimality conditions. The complexity analysis is born out of a chain of arguments that is bound by a series of equivalences.
Many strongly polynomial algorithms for CMCF use the concept of ϵ-optimality obtained by relaxing the complementary
slackness constraints, see for example, [2,19,21,11,13,17]. Ultimately, it turns out that parameters ϵ and µ are linked by an
equality expression, that is, ϵ = −µ. We argue that it all comes together with the linear programming formulation of the
pricing problem’s dual. This line of thoughts allowsus to discard the ϵ-parameter and is indeed the reasonwe cannot saywith
certainty it was understood as such. In the spirit of the coined expression, a µ-optimal solution xk can be understood in the
sameway as its ϵ-counterpart, that is, relaxed complementary slackness conditions which provide approximate optimality,
see [1, relations (10.1)–(10.2)]. Feel free to compare (5) with the following relaxed conditions:

xkij = ℓij if c̄ij > −µ; xkij = uij if c̄ij < µ; ℓij ≤ xkij ≤ uij if µ ≤ c̄ij ≤ −µ. (15)

It should come as no surprise that solution xk is µk-optimal. The reader may want to verify that the equivalent condition
on the residual network G(xk) questions whether there exists π such that d̄ij ≥ µ, ∀(i, j) ∈ A(xk).

The following propositions stand outside the scope of complexity theorems for several reasons. The first is that they are
very strong results for MMCC. The second is that their validity is independent of any assumptions regarding problem data.
The third is that we ascertain the comprehension of the transitive mechanics between two solutions.

Proposition 4 (Goldberg and Tarjan [13, Lemma 3.5]). For any two consecutive iterations k and k + 1, the value of µ is non-
decreasing, that is, µk

≤ µk+1, k ≥ 0.

Proof. The proof consists of examining the effect of canceling cycleW k in light of the new solution xk+1 andmore specifically
the marginal modifications incurred in G(xk+1). There are only four possibilities as displayed in Fig. 3. First off, either the
residual network G(xk) contains arcs in both directions or only one between nodes i and j. Secondly, either the flow that
passes on an arc of cycleW k saturates it (arcs in bold) or not.

By Proposition 3, vector πk ensures that d̄kij ≥ µk in G(xk) such that d̄kij = µk, ∀(i, j) ∈ W k. In G(xk+1), the saturated arcs
in cycleW k are removed and new arcs appear in the reverse direction with a reduced cost equal to −µk > 0. Therefore, by
construction, every arc of G(xk+1) has a reduced cost d̄kij ≥ µk computed with respect to πk. Since the mean cost of a cycle
is at least as great as the minimum cost of any of its terms, µk+1

≥ µk. �

We take the time to stress the fact that MMCC is an iterative algorithm. Even though the previous proposition is true
of any two consecutive iterations, the proof still uses a point of reference. The following proofs base their arguments on a
sequence of iterations and it is imperative to take a step back to appreciate the global picture.
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Proposition 4 is not sufficient to provide convergence properties. It is indeed mandatory for µ to strictly increase
sporadically towards zero. Define a jump on the optimality parameter as the situation where there exists some factor
0 ≤ τ < 1 such thatµk+1

≥ τµk > µk, for k ≥ 0. Recall Fig. 2 which exhibits this behavior for themaximum flow problem.

Proposition 5 (Goldberg and Tarjan [13, Lemma 3.6]). Given a non-optimal solution xk, k ≥ 0, a sequence of no more than m
iterations allows µ to jump by a factor of at least (1 − 1/n).

Proof. Recall that the cost and the reduced cost of a cycle take the same value. Hence, the reduced costs can be computed
with any set of potentials. In order to show the statement, we use vector π0 found at iteration 0, hence d̄ 0

ij ≥ µ0,

∀(i, j) ∈ A(x0). At iteration k ≥ 1, we distinguish two types of cycles according to the following definitions. A cycle W k

of Type 1 contains only arcs of strictly negative reduced costs, i.e., d̄ 0
ij < 0, ∀(i, j) ∈ W k, while a cycle of Type 2 contains at

least one arc with a non-negative reduced cost, i.e., ∃(i, j) ∈ W k
| d̄ 0

ij ≥ 0.
We prove that within m iterations, the algorithm finds a Type 2 cycle otherwise the optimal solution to (1) has been

reached. The same reasoning used in Proposition 4 allows us to realize two things regarding Type 1 cycles. First, there is at
least one saturated arc of strictly negative reduced cost that is removed in the next residual network. Second, reversed arcs
added all have strictly positive reduced costs with respect to π0. Since there are no more thanm arcs with strictly negative
costs, optimality is reached after at mostm consecutive Type 1 cancelations.

For l ≤ m, assume a Type 2 cycle W l is found, then at least one of its arcs has a non-negative reduced cost. The worst
case scenario in terms of mean reduced cost is to pass through |W l

| − 1 ≤ n − 1 arcs of cost µ0 and one of zero. As such,
µl

≥
(|W l

|−1) µ0

|W l|
≥

(n−1) µ0

n =

1 −

1
n


µ0. �

Proposition 6. Given a non-optimal solution xk, k ≥ 0, a sequence of no more than mn iterations allows µ to jump by a factor
of at least 1/2.

Proof. Basic calculus shows that (1 − 1/n)n < 1/2, ∀n ≥ 2 as it converges to 1/e. This means that every mn iterations, the
value of µ increases by a factor of at least 1/2. �

3.2. Integer costs: O(n log(nC)) phases

This section contains the first installment regarding the actual complexity of MMCC. The only assumption is that all cost
data are integers. Recall that C := max(i,j)∈A |cij|.

Theorem 1 ([13, Theorem 3.7]). Given a capacitated network with integer arc costs, MMCC performs O(mn log(nC)) iterations.

Proof. Let us consider the values of µ obtained for each iteration as a sequence. This sequence may be bounded below
because no mean cycle can cost less than −C . It is also bounded above by the highest strictly negative reduced cost cycle
computed as (−1)+(n−1)0

n = −1/n. In light of Proposition 6, it is possible to construct a geometric progression of reason at
least 1/2 with some elements of the sequence {µk

}. As it stands, solving for the power of −C
 1
2

κ
= −1/n, the geometric

system that prevails everymn iterations, one obtains κ = log(nC). Therefore, the image of the objective function can always
be traversed in O(mn log(nC)) iterations. �

Let us revisit Proposition 5 in order to extract what, in retrospective, seems like a key property. Indeed, Goldberg and
Tarjan [13] use a Type 2 cancellation as amarker for the jump factor on the optimality parameterµ. We stress that while it is
an elegant (read sufficient) condition, it is certainly not necessary. Type 1 cancellations can indeed run into jumps however
we still do not know how to measure them. Type 2 cancellations are thus markers formeasurable jumps. It is probably what
prompts Radzik and Goldberg [17] to define a phase with a definition that is much closer to the spirit of Proposition 5.

Definition 1. A phase is a sequence of iterations terminated by a Type 2 cycle. A phase solution xh, h ≥ 0, is understood as
the solution at the beginning of phase h.

We stress that while the two phase numbers h and h+1 are consecutive, by Proposition 5, the number of cycles canceled
within phase h is at mostm. Let l ≤ m be that length. For the remainder of this article, the notations k and h are respectively
reserved for iteration and phase based operations. The notation l is used to refer to the last cycle identified in the phase, that
is, the Type 2 cycle.

Proposition 7. Given a non-optimal phase solution xh, h ≥ 0, the optimality parameter obtained on the following phase solution
strictly increases by a factor of least (1 − 1/n) and increases by a factor of at least 1/2 every n phases.

Proof. The proof is immediate from the definition of a phase. Indeed, a Type 2 cycle implies a measurable jump on µ
and means that the relation of the optimality parameter between two consecutive phases is µh+1

≥ (1 − 1/n) µh > µh.
Moreover, µh+n

≥ (1 − 1/n)n µh > 1
2 µh. �
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Assuming a mechanism that allows the resolution to terminate a phase under the same conditions, we can make
abstraction of the Type 1 iterations and express the outer loop in terms of phases instead of iterations. For instance, the
weakly polynomial complexity of O(mn log(nC)) iterations obtained in Theorem 1 can be rewritten as O(n log(nC)) phases.
While one might argue that this change is purely cosmetic, Section 3.5 holds the key to the justification. In a nut shell, the
implementation choice dictates the actual complexity depending on whether a phase is solved in an integrated manner or
not.

Although the following idea is already present in the proof of Proposition 5, we feel it warrants a repetition. The same
node potentialsπh can be used throughout thewhole phase. As such, in the adaptation to a phase-wise analysis, the reduced
costs of each arc is also unchanged during the phase. Consider a sequence of iterations consisting of consecutive Type 1
cycles starting from phase solution xh. Solving the pricing step at every iteration implicitly associates the minimum mean
cycle found with a tight vector of node potentials along with the optimality parameter in accordance with the primal–dual
formulations. However, by definition the very first vector of node potentials, πh, validates the Type 1 condition of the
cancellations throughout the series of residual networks traversed. In other words, whileπh might not be the tightest vector
of node potentials for every residual networks associated with this sequence, it is sufficient to allow the identification of
these cycles. Let it be clear that the existence of this sustainable vector πh, valid until a new vector πh+1 is required, is
irrelevant to the solving process of MMCC. What is important to retain is that the node potentials can have a lasting effect
of at mostm iterations, the maximal length of a phase during the resolution process.

3.3. Arbitrary costs: O(mn log n) phases

So far,wehave shown thatMMCC runs inweakly polynomial time from twodifferent perspectives: the strictly decreasing
objective function and the sequence of strictly increasing µh which can, in some way, be interpreted as a subsequence of
{µk

}. In order to speak of strongly polynomial time, a new angle is required. That angle is named arc fixing. The idea is to tag
an arc as being fixed at one of its bounds. In line with the complementary slackness optimality conditions (5), this tagging
occurs when the reduced cost associated with an arc is sufficiently far from zero, that is, positively large enough for fixing a
variable at its lower bound or negatively small enough for fixing it at its upper bound.

The following proposition states the arc fixing rule. The argument is based on the logical implication of the complemen-
tary slackness conditions (5) to create a correspondence between the current value of the optimality parameter µk and the
flow value of certain arcs.

Proposition 8 ([13, Theorem 3.8]). Let k ≥ 0 denote a non-optimal iteration number. Arc fixing occurs for arc (i, j) ∈ A if and
when |c̄kij| ≥ −2nµk. Expressed in terms of G(xk), we have: arc (i, j) ∈ A(xk) is fixed at zero if and when d̄kij ≥ −2nµk.

Proof. The proof establishes a contradiction with the previous properties when a fixed arc is used. Assume, without loss of
generality, that arc (i, j) ∈ A has reached c̄kij ≥ −2nµk at iteration k. According to Proposition 3, A(xk) must contain arc (i, j)
and not (j, i) because its reduced cost would be less than µk, which means that xkij = ℓij and d̄kij = c̄kij ≥ −2nµk.

Assume xs, s > k, values xsij > 0. By Proposition 2, xs equals xk plus the flow on at most m directed cycles in G(xk), and
vice versa. Hence, there exists a cycle in G(xk), sayW+, using arc (i, j). The mean reduced cost of this cycle, denoted µ(W+),
could even be valued by

µ(W+) ≥
−2nµk

+ (|W+
| − 1) µk

|W+|
≥

−2nµk
+ (n − 1) µk

|W+|
=

−(n + 1)
|W+|

µk.

The existence of cycleW+ in G(xk) means that the reverse cycle denotedW− exists in G(xs) with a mean reduced cost of
µ(W−) = −µ(W+) ≤

n+1
|W+|

µk < µk, which is a contradiction with Proposition 4 on the fact that the optimality parameter
µ is non-decreasing.

The correspondence between the original and the residual arcs is subtle. Arc (i, j) ∈ A is fixed at ℓij because d̄kij ≥ −2nµk

such that arc (i, j) ∈ A(xs), s > k is fixed at zero. The proof for arc (i, j) ∈ A being fixed at its upper bound uij when
c̄kij ≤ 2nµk or equivalently for arc (j, i) ∈ A(xk) being fixed at 0 when d̄kji ≥ −2nµk is similar. �

This proof assumes the non-decreasing property of the optimality parameter over the iterations which is lost when using
the Cancel-and-Tighten strategy. A careful yet straightforward adaptation can be made using the following proposition.

Proposition 9. Let h ≥ 0 denote a non-optimal phase number. Arc fixing occurs for arc (i, j) ∈ A if and when |c̄hij | ≥ −2nµh.
Expressed in terms of G(xh), we have: arc (i, j) ∈ A(xh) is fixed at zero if and when d̄hij ≥ −2nµh.

This proposition holds exactly the same value for the complexity analysis because the second installment of the
theoretical complexity only uses phases to capture the concept of arc fixing. Let us define a block accordingly.

Definition 2. A block is a sequence of phases terminated by the fixing of at least one arc. A block solution is understood as
the solution at the beginning of a block.
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Theorem 2 ([13, Theorem 3.9]). Given a capacitated network with arbitrary real-valued arc costs, MMCC performs O(mn log n)
phases.

Proof. This proof relies on the concept of arc fixing. The idea is to show that at least one new arc is fixed within a limited
number of phases. We show this bound to be n(⌈log n⌉ + 1) ≡ O(n log n) phases. As such, consider this particular sequence
of phases as a block.

For phase number h, let x◦
= xh and x•

= xh+n(⌈log n⌉+1) be respectively the solutions prior to the first and after the last
iteration of any given block. By Proposition 7, we know µ increases by a factor of at least 1/2 every n phases, so the increase
in a block is

µ•
= µ◦+n(⌈log n⌉+1)

≥
1

2⌈log n⌉+1
µ◦

≥
1
2n

µ◦.

FoundonG(x◦), consider cycleW ◦ withmean reduced costµ◦, a value independent of the potentials used. Therefore,with
respect to π•, the arc reduced costs in W ◦ cannot all be greater than µ◦. Hence, there exists a variable, say yji, (j, i) ∈ W ◦,
with a reduced cost d̄•

ji at most equal to µ◦, that is, d̄•

ji ≤ µ◦
≤ 2nµ•. On G(x•), variable yij appears with a reduced cost of

d̄•

ij = −d̄•

ji ≥ −2nµ•. By Proposition 8, the value of variable yij does not change anymore and the corresponding variable xij
is fixed at its lower bound. Moreover, as part of the optimal cycleW ◦, the algorithmmodifies the value of xij in the very first
iteration of the block. In retrospective, arc (j, i) ∈ G(x◦) must have saturated the residual capacity and it is quite interesting
to note that the confirmation of the flow value comes later than the time at which it is established. The proof for arc fixing
at upper bound is a straightforward adaptation.

Let it be clear that x• is a block solution in that it becomes x◦ in the following block. All in all, each block fixes a different
arc. Since there arem arcs, the proposed complexity is achieved. �

3.4. Arbitrary costs: O(mn) phases

The final piece of the complexity puzzle comes much later than the seminal paper of Goldberg and Tarjan [13] which
elaborates all the propositions we have seen thus far. Although they utilize properties of the complementary slackness
conditions (5) at every iteration, Radzik and Goldberg [17] make use of the properties of an optimal primal–dual pair in
their complexity analysis, establishing the best possible strongly polynomial result for the minimummean cycle-canceling
algorithm.

Radzik and Goldberg [17] obviously have such a good understanding of MMCC that it really allows them to think outside
the box.While an optimal vector of node potentialsπ∗ is unknown, we can use the fact that it does exist. Denote the reduced
costs computed using such a set of optimal potentials by c̄∗

ij := cij − π∗

i + π∗

j , ∀(i, j) ∈ A.

Proposition 10 ([17, Lemma 9]). Let k ≥ 0 denote a non-optimal iteration number. Implicit arc fixing occurs for arc (i, j) ∈ A if
andwhen |c̄∗

ij | > −nµk. Expressed in terms of G(xk), we have: arc (i, j) ∈ A(xk) is implicitly fixed at zero if andwhen d̄∗

ij > −nµk.

Proof. If c̄∗

ij > −nµk, then c̄∗

ij > 0 and x∗

ij = ℓij by the complementary slackness optimality conditions (5). Now assume
arc (i, j) ∈ A has reached c̄∗

ij > −nµk at iteration k but xkij > ℓij. By Proposition 2, x∗ equals xk plus the flow on at most
m directed cycles in G(xk), and vice versa. Hence there exists a cycle W+ in G(xk) using variable yji to push the flow back
towards ℓij. The reverse cycle W− exists in G(x∗) using arc (i, j) with d̄∗

ij = c̄∗

ij > −nµk. Because optimal arc reduced costs

on G(x∗) are greater than or equal to zero, µ(W−) >
−nµk

|W−|
. Therefore µ(W+) = −µ(W−) <

nµk

|W−|
< µk, a contradiction on

the optimality of µk at iteration k. The proof for an arc (i, j) ∈ A being implicitly fixed at its upper bound uij when c̄∗

ij < nµk

is similar. �

Once again, the following analysis still revolves around phases. Using the Cancel-and-Tighten strategy modifies the
statement of the previous propositionwithout compromising its value. The comparisonmust be done against the optimality
parameter computed at each phase h.

Proposition 11. Let h ≥ 0 denote a non-optimal phase number. Implicit arc fixing occurs for arc (i, j) ∈ A if and when
|c̄∗

ij | > −nµh. Expressed in terms of G(xh), we have: arc (i, j) ∈ A(xh) is implicitly fixed at zero if and when d̄∗

ij > −nµh.

The third and last installment of the complexity analysis is at hand. The avid reader might even recall the introductory
complexity proposition. With a statement so closely matching that of Theorem 2, the expectation of an analogous proof
is annihilated from the start. While the previous proof bounds the length of each block against a uniquely defined value,
the following propositions show that the more subtle kind of implicit arc fixing of Propositions 10 and 11 happens in a
unpredictable manner. Nevertheless, Radzik and Goldberg [17] are able to prove by a global analysis that the whole implicit
arc fixing process is itself bounded. The first step towards this result is to bind the number of phases to the number of arcs
contained in the cycles identified within these phases. The latter in turn grants a tighter measurable jump factor for the
optimality parameter according to the following observation.
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Fig. 4. Optimal absolute arc reduced costs on the axis.

Tighter jump factor. Given a non-optimal phase solution xh, h ≥ 0, the impact of the jump factor for a phase of length l ≤ m
can be tightened by the size of the Type 2 cycleW l. This is evaluated by

µh+1
≥


1 −

1
|W l|


µh

≥


1 −

1
n


µh. (16)

The proof of Proposition 5 can be trivially modified to accommodate this observation by using, for the Type 2 cycle,
|W l

| − 1 instead of n − 1. Yet, this new tighter jump factor strongly endorses the empirical behavior of cycle sizes much
smaller than n. The parameter, L(xh), used to bind these values together emerges from the following construction.

Let e ∈ A denote an arc of network G with optimal reduced cost c̄∗
e . For the purpose of the complexity analysis, the arcs

are sorted in decreasing order of their absolute optimal reduced cost values, that is, 0 ≤ |c̄∗
m| ≤ · · · ≤ |c̄∗

2 | ≤ |c̄∗

1 |. While the
notation is introduced hereafter, the rightmost part of Fig. 4 visually explains the sort.

For a given solution x, let m(x) := min{e ∈ A : |c̄∗
e | ≤ −nµ(x)} be the smallest index for which arcs e ≥ m(x) have not

yet been implicitly fixed and Sm(x) :=
m

e=m(x) |c̄∗
e | be the sum of their absolute reduced costs.

As optimality parameter µ increases towards zero, |c̄∗

1 | > −nµ and arc e = 1 is the first arc implicitly fixed. Next
implicit fixing occurs for arc e = 2, and so forth for the remaining arcs. Arc variable xe with an index value e < m(x) cannot
be part of an improving cycle for a non-optimal solution x because, by Proposition 10, its value does not change anymore.
Therefore, index m(x) increases towards m whereas largest absolute reduced cost |c̄∗

m(x)| and sum Sm(x) decrease towards
zero. When Sm(x) = 0, every variable with an optimal reduced cost different from zero has been implicitly fixed while any
free variable lies within its interval domain with a zero-value optimal reduced cost, hence satisfying the necessary and
sufficient complementary slackness optimality conditions (5). As such, let p ≤ m denote the largest arc index for which the
optimal absolute reduced cost is strictly positive. The latter is the last arc variable which can answer to the implicit arc fixing
rule. Observe that this means that Sm(x) :=

m
e=m(x) |c̄∗

e | =
p

e=m(x) |c̄∗
e |.

The complexity analysis is based on ratio value Sm(x)
|LBµ|

computing, for the unfixed variables, the sum of their absolute

reduced cost values over |LBµ|, where LBµ is a lower bound on µ(x). Given a non-optimal phase solution xh, h ≥ 0, a lower
bound on the optimality parameter is LBµ = −|c̄∗

m(xh)|. The next proposition determines how many phases are required to
increase this lower bound by a factor greater than 1/2. The samequestion is then answered for 1/n in the following proposition.
In both cases, the number of phases required to reach their respective jumps is established as a function of ratio value
Sm(xh)

|c̄∗
m(xh)

|
.

Proposition 12 ([17, Lemma 12]). Let h ≥ 0 denote a non-optimal phase number. A sequence of no more than L(xh) :=

min


2Sm(xh)

|c̄∗
m(xh)

|


, n

phases allows µ to jump by a factor over 1/2.

Proof. For non-optimal phase solution xh, we have µh
≥ −|c̄∗

m(xh)|. Suppose some Type 2 cycle W l at the end of phase

l ≤ L(xh) has cardinality |W l
| >

2Sm(xh)

|c̄∗
m(xh)

|
. Then,

µL(xh)
≥ µl

≥
−Sm(xh)

|W l|
>

−Sm(xh)
2Sm(xh)

|c̄∗
m(xh)

|

=

−|c̄∗

m(xh)|

2
.

Otherwise, all phase cycles in these L(xh) phases have cardinalities at most L(xh) arcs. Therefore, by (16),

µL(xh)
≥ µh


1 −

1
L(xh)

L(xh)

≥ −|c̄∗

m(xh)|


1 −

1
L(xh)

L(xh)

>
−|c̄∗

m(xh)|

2
. �

Proposition 13 ([17, Lemma 13]). Let h ≥ 0 denote a non-optimal phase number. A sequence of no more than O


nSm(xh)

|c̄∗
m(xh)

|


phases allows µ to jump by a factor over 1/n.

Proof. For non-optimal phase solution xh, we have µh
≥ −|c̄∗

m(xh)|. As long as variable xm(xh) is not fixed, Sm(xh) remains

the same. By Proposition 12, we have µ >
−|c̄∗

m(xh)
|

2 after


2Sm(xh)

|c̄∗
m(xh)

|


phases, µ >

−|c̄∗
m(xh)

|

4 after


2Sm(xh)

|c̄∗
m(xh)

|/2


new phases,
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µ >
−|c̄∗

m(xh)
|

8 after


2Sm(xh)

|c̄∗
m(xh)

|/4


additional phases, and so on for the following steps increasing each time the lower bound

by a factor greater than one half. The number of steps t such that 2t
≥ n is t = ⌈log n⌉, so that the total number of phases

during these t steps is given by

⌈log n⌉−1
t=0


2Sm(xh)

|c̄∗

m(xh)|/2
t


≤ ⌈log n⌉ +

⌈log n⌉−1
t=0

2Sm(xh)

|c̄∗

m(xh)|/2
t

≤ ⌈log n⌉ +
2Sm(xh)

|c̄∗

m(xh)|

⌈log n⌉−1
t=0

2t

= ⌈log n⌉ +
2Sm(xh)

|c̄∗

m(xh)|


2⌈log n⌉

− 1


≤ ⌈log n⌉ +
2Sm(xh)

|c̄∗

m(xh)|
(2n − 1). (17)

Hence, the number of phases needed to increase µh by a factor of over 1/n is O


nSm(xh)

|c̄∗
m(xh)

|


. �

The following theorem brings all these elements together. The idea is that it does not require the same amount of phases
for each variable to be implicitly fixed. For some variables, the jump provided by Proposition 12 is sufficient while others
must wait for that of Proposition 13.

Theorem 3 ([17, Theorem 1]). Given a capacitated network with arbitrary real-valued arc costs, MMCC performs O(mn) phases.

Proof. Starting with x1 followed by x2, . . . , xp, these variables are (implicitly) fixed one by one as µ increases. The fixing of
xe, 1 ≤ e ≤ p, the yet unfixed variable with the largest absolute reduced cost value, to its lower or upper bound is done
with Proposition 11. Observe that until xe+1 is fixed, Se = |c̄∗

p | + · · · + |c̄∗

e+2| + |c̄∗

e+1| + |c̄∗
e | does not change.

The fixing of xe is fast if
|c̄∗e−1|

2 ≤ |c̄∗
e | ≤ |c̄∗

e−1|, that is, the successive absolute reduced cost values are relatively close to
each other. Otherwise, the fixing of xe is slow.

By Proposition 12, for every variable xe for which the fixing is fast, the number of phases to do so is at most n. Thus, the
total number of phases of fast fixing for at most p ≤ m variables is O(pn) ≡ O(mn).

Regarding the slow fixing process of a variable xe+1, we have |c̄∗

e+1| <
|c̄∗e |

2 , hence
|c̄∗e+1|

|c̄∗e |
< 1

2 . If the fixing process of xe+2

is also slow, we have
|c̄∗e+2|

|c̄∗e+1|
< 1

2 , hence
|c̄∗e+2|

|c̄∗e |
=

|c̄∗e+2|

|c̄∗e+1|
×

|c̄∗e+1|

|c̄∗e |
< 1

22
. In the worst case, the fixing process is slow for at most

p variables. By Proposition 13, the number of phases is bounded above by

p
e=1

O


nSe
|c̄∗

e |


= O


n

p
e=1

Se
|c̄∗

e |



= O


n

p
e=1

|c̄∗
e | + |c̄∗

e+1| + |c̄∗

e+2| + · · · + |c̄∗
p |

|c̄∗
e |



= O


n

p
e=1


1 +

|c̄∗

e+1|

|c̄∗
e |

+
|c̄∗

e+2|

|c̄∗
e |

+ · · · +
|c̄∗

p |

|c̄∗
e |



< O


n

p
e=1


1 +

1
2

+
1
22

+ · · · +
1

2p−e



< O


n

p
e=1

(1 + 1)


= O(pn) ≡ O(mn). (18)

Whether it is fast or slow, the total implicit fixing process takes O(mn) phases. �

Remark. The beauty of the slow analysis is thatwhile the current candidate variable, xe, may take longer to fix, it also implies
that the optimal reduced cost distribution of the remaining non-fixed variables is skewed towards zero exponentially faster
than the current candidate’s optimal reduced cost. In other words, the higher number of phases required to implicitly fix xe
is eventually amortized by the much faster implicit fixing of the remaining xe+1, . . . , xp variables.

Radzik and Goldberg [17] also show this bound is tight by using certain minimum cost flow examples that behave as bad
as the worst case complexity would have it. This means that the absolute reduced cost spread is such that arcs are implicitly
fixed precisely at the bounds computed previously.
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Fig. 5. Optimality parameter µ for Instance 1 [iteration base].

Fig. 6. Cycle size |W | for Instance 1 [iteration base].

3.5. Bottleneck management

Althoughwe have presented the complexity analysis in terms of phases, each of these can be seen as a group of iterations.
As such, this section is separated in twoparts. The first is reserved to the actual resolution of the pricing stepwhile the second
considers the phase as awhole, that is, using the Cancel-and-Tighten strategy. Several plots are presented to help grasp some
of the ideas as well as appreciate the empirical behavior on a relatively large capacitated network flow problem comprising
1025 nodes and 91,220 arcs. We refer to the latter as Instance 1.

3.5.1. Iteration base
Solving the pricing step at every iteration corresponds to the traditional form of MMCC. Fig. 5 depicts the behavior of

µk, k ≥ 0, on Instance 1: 1937 iterations are performed to reach optimality at µ = 0. As expected, values of µ are non-
decreasing satisfying Proposition 4. In Fig. 6, we see that the optimal cycle size |W | however exhibits no pattern, a behavior
quite different from the one observed for the maximum flow problem in Fig. 2.

For the purpose of the complexity analysis, the dynamic programming approach devised by Karp [15] runs in O(mn)
time. The proof of complexity is actually more simple than its design. While it is true that the first layer of the algorithm is
based on dynamic programming, finding the optimal solution µ requires an additional layer of computations which break
an important feature of the strategy matrix, that is, the knowledge of optimal strategies for each action state. If that is not
enough, extracting the associated optimal cycle requires additional computations.

We also state without proof that it is a best-case complexity making the resolution of the pricing step systematically
expensive. From a practical point of view, a word of caution is therefore in order. In fact, this problem is at the heart of many
industrial challenges, see [6,5], or [12] for in-depth experimental analysis of different algorithms. Ahuja et al. [1, Chapter
5] also review several of them. While practice shows that the two algorithms of Howard [14] (as specialized by Cochet-
Terrasson et al. [3]) and Young et al. [22] are top performers, their theoretical complexities are higher than that of Karp’s.

Theorem 4 ([13, Theorem 3.10] and Radzik and Goldberg [17]). MMCC runs in O(m2n2 log n log(nC)) time for integer arc costs
and O(m3n2) time for arbitrary real-valued arc costs.

Proof. The proof is immediate from the runtime complexity O(mn) of each iteration combined with either Theorem 1 or
Theorem 3 depending on the data type. Note that the theorems must first be translated back to iteration results. �

Regardless of the algorithm selected to solve the pricing step, it is still no match to the better design of Cancel-and-
Tighten. In order to support this claim, we argue that the performance of the iteration based algorithm is vulnerable to the
starting solution. We have launched the resolution process using x0 as the optimal solution of the maximization problem.
The reader is now invited to consider the markings on Fig. 5. These markings indicate the starting point of each phase. Both
cases traverse roughly the same number of phases, namely 90 and 87. The second launch actually requires 31,231 iterations
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to reach optimality at µ = 0, yet the first 4 phases contain over 90% of the total iterations. Let us move on to a more
integrated approach.

3.5.2. Phase base
We have already underlined the importance of the node potentials πh established at the beginning of phase h for

their ability to determine several Type 1 cycles. To appreciate the validity of alternative strategies, we underline that the
complexity analysis addresses only the behavior of the optimality parameter; the actual path of resolution along with the
corresponding primal solutions are irrelevant. There is in fact absolutely no reason for any two implementations to reach
the same phase solution. From this rationale emanates what is fundamentally important in the complexity analysis: the
phases. The importance of Proposition 4, the non-decreasing optimality parameter µ, is discarded along with the order
of cancellation in favor of the strict increase from one phase to the next. This means that any strategy falling under the
premises of a phase can benefit from the outer loop complexity analysis. The remainder of this section is dedicated to one
such approach, namely Cancel-and-Tighten [13, Section 4]. Of course, the latter is subtle by nature as it aims to analyze the
complexity of the whole phase using an efficient system carefully designed to ensure a phase is indeed delivered.

The name of Cancel-and-Tighten is self-explanatory of its two main steps: the cycle cancellations and the adjustment of
node potentials. This strategy shines by the way these two steps are carried out. Recall that a phase is a group of sequential
iterations defined by consecutive Type 1 cycles and terminated by a Type 2 cycle. The idea of the first step defers to the
first part whereby only cycles of Type 1 are canceled. While the cliffhanger is not intentional, the repercussion of the Type 2
cycle is handled in the second step which refines the node potentials using the measurable jump property. Since the Cancel
step focuses on Type 1 cycles, the idea of working on a subgraph that does the same is quite natural. Before moving to the
technical aspects of the steps, let us describe the so-called admissible network.
Admissible network. Given π, the nature of Type 1 cycles is to contain only negative reduced cost arcs with respect to these
node potentials. Let us define the admissible networkwith respect to solution x accordingly: G(x, π) := (N, A(x, π)), where
A(x, π) := {(i, j) ∈ A(x) | d̄ij < 0}, that is, a residual arc is admissible if its reduced cost is strictly negative.

Cancel step. Let h ≥ 0 denote a non-optimal phase number, xh the solution at the beginning of the phase, and π some
dual vector. By definition of the admissible network G(xh, π), any and all cycles it contains are of Type 1. This means that
by sequentially eliminating at most m Type 1 cycles, however arbitrary the order, one reaches some solution x which can
be substantially different than the input xh. As the Cancel step progresses, the content of the admissible network becomes
difficult to describe in mathematical terms because the notation looses track of the current solution. Nevertheless, recall
that the reduced cost of every arc stays the same during the whole phase regardless of the cycles canceled because the node
potentials are fixed to π throughout the step. In other words, as Type 1 cycles are canceled, only the residual capacities
are modified and the admissible network is updated accordingly. The update is actually simpler to carry out than in the
residual network. Indeed, by definition of admissibility, an arc and its reverse cannot be admissible simultaneously. This
also means that the admissible network G(x, π) gets sparser because at least one new arc is saturated each time a Type 1
cycle is canceled.

Regardless of how the Cancel step is performed, one eventually reaches a solution xh+1 such that G(xh+1, π) is acyclic.
Of course, we have yet to prove optimality. In fact, we have yet to actually terminate the phase since the Type 2 cycle is still
unconsidered. Let us see how this last operation is handled in the Tighten step.
Tighten step. Assume optimal values [πh, µh

] are known and that the admissible networkG(xh+1, πh) is acyclic. By definition
of a phase, we know the would be following iteration, say l, induces a Type 2 cycle W l in the residual network G(xh+1). By
Proposition 3, we also know that there exists some optimal vector of node potentials πl such that all arcs on this cycle have
the same negative reduced cost evaluated at µl. Observe that W l is a Type 2 cycle with respect to selected π = πh but, by
considering a new phase and modifying the node potentials to πl, this same cycle is a Type 1 cycle in G(xh+1, πl). Let us
rephrase this. The admissible network G(xh+1, π) is defined by the current solution xh+1 and the reduced costs which are
themselves defined by the selected vector π of node potentials. A solution xh+1 can induce different admissible networks
depending on the selection of π. The latter therefore sit at the top of the chain of command.

The Tighten step can be seen as the last operation that must be completed to start a new phase. Solving the pricing step
effectively fetches the wanted information, that is, the best µh+1 along with an optimal dual vector πh+1 which can be used
for the duration of the next phase. This can of course be done with the dynamic programming approach of Karp [15]. Fig. 7
shows the result of the experiment we have carried on Instance 1. The resolution process requires 88 phases. Even though
the node potentials are updated under one hundred times, the truth of thematter is that this approach is still too expensive.
Nevertheless, the reader should think of this result as a reference convergence performance for Instance 1.

The alternative is to estimate both the new node potentials and the optimality parameter. However, in order for Cancel-
and-Tighten to benefit from the complexity analysis, one must have a valid combination of such estimates at the beginning
of each phase. Goldberg and Tarjan [13] call this the explicit maintenance of a price function [π̂

h
, µ̂h

], h ≥ 0. Recall the
dual version of the pricing problem (6)–(7). Once the node potentials are fixed, there is actually little room for µ̂h. Indeed,
µ̂h

:= min(i,j)∈A(xh) d̂
h
ij, where d̂hij := dij − π̂h

i + π̂h
j , which means that µh

≥ µ̂h.
Given that µh+1 would be the optimal solution to the pricing step at the current state of the algorithm (canceling a Type

2 cycle W l), the goal is simple: establish [π̂
h+1

, µ̂h+1
] such that µ̂h+1

= µh+1. Of course the latter is only wishful thinking
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Fig. 7. Optimality parameter µ for Instance 1 [phase base—optimal].

but fortunately we still have one card up our sleeve. Assume µh+1 is a valid lower bound for µh+1. The new node potentials
π̂

h+1 must therefore be such that

µ̂h+1
≥ µh+1

≥ (1 − 1/n) µ̂h. (19)

The right-hand side inequality ensures that µ̂h+1 > µ̂h within the minimalist specifications of the (1 − 1/n) jump prop-
erty. The importance of the lower bound lies in its ability to transfer additional information to the node potentials in a
constructive manner. As such, this lower bound not only aims to lift the optimality parameter as much as possible, it must
also sport some intrinsic valuewith respect to the definition of ameasurable jumpobtained at the end of a phase.Weprovide
a new approximation structure influenced by the tighter jump factor seen in (16).

In the spirit of the leading premise of the Tighten step, assume estimates [π̂
h
, µ̂h

] are readily available. Let us establish
whatwedoknowabout thenextminimummean cycle. SinceG(xh+1, π̂

h
) is acyclic, it is possible to associate a level, Lhi , i ∈ N ,

to each node using a topological ordering. These levels are recursively defined as

Lhj := max
(i,j)∈A(xh+1,π̂h)

Lhi + 1,

with Lhi := 0 if node i has no incoming admissible arcs. By construction of the ordering, if an arc (i, j) ∈ A(xh+1) is still
admissible with respect to π̂

h then the levels Lhi and Lhj are such that Lhj > Lhi . All other arcs have Lhj ≤ Lhi .

Proposition 14. The marginal update π̂h+1
i := π̂h

i −
Lhi

Lh+1
µ̂h, ∀i ∈ N, yields a valid estimation for µ̂h+1. Three possible values

for Lh are

Lh(a) := n − 1, Lh(b) := max
i∈N

Lhi , Lh(c) := max
(i,j)∈A(xh+1)|Lhi >Lhj

Lhi − Lhj .

Proof. Since the levels start at 0, the value Lh can be seen as the length of a path in the admissible network. Update Lh(a) is the
first of two implementations proposed by Goldberg and Tarjan [13] and obviously extracts nothing from the level values.
Update Lh(b) can be seen as the length of the longest path in terms of the number of arcs. Update Lh(c) refines this value by
checking in the residual network for the existence of an arc capable of inducing a cycle on the longest path. In order to show
that all options for Lh induce valid lower bounds for µh+1, it suffices to realize that any arc added to create a cycle on the
path referred by Lh has a non-negative reduced cost. Observe that these arc length values can be ordered as Lh(a) ≥ Lh(b) ≥ Lh(c).

The proof that the transformation is valid is reminiscent of (19) and shows that the inequality is indeed verified. The
modified reduced costs are evaluated by

d̂h+1
ij := dij −


π̂h
i −

Lhi
Lh + 1

µ̂h


+


π̂h
j −

Lhj
Lh + 1

µ̂h


= d̄hij −

Lhj − Lhi
Lh + 1

µ̂h, ∀(i, j) ∈ A(xh+1). (20)

In the case of admissible arcs, we have 1 ≤ Lhj − Lhi ≤ L. Therefore,

d̂h+1
ij ≥ µ̂h

−
Lhj − Lhi
Lh + 1

µ̂h
=


1 −

Lhj − Lhi
Lh + 1


µ̂h

≥


1 −

1
Lh + 1


µ̂h.

In the case of non-admissible arcs, we have 0 ≤ Lhi − Lhj ≤ Lh. We also know that these arcs have a non-negative reduced
cost. Therefore,

d̂h+1
ij ≥ 0 −

Lhj − Lhi
Lh + 1

µ̂h
=

Lhi − Lhj
Lh + 1

µ̂h
≥


1 −

1
Lh + 1


µ̂h. �
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Fig. 8. Optimality parameter µ and estimate µ̂ for Instance 1 [phase base—update Lh(a)].

Fig. 9. Optimality parameter µ and estimate µ̂ for Instance 1 [phase base—update (d)].

Althoughwe did not include the second implementation proposed in [13], call it Update (d), we have carried experiments
using all four. The reasons for this omission are twofold. First, it does not performaswell as our twonewupdate proposals Lh(b)
and Lh(c). Second, it does not land itself naturally to our presentation with value Lh which is needed to reduce the complexity.

The update is as follows: π̂h+1
i := π̂h

i − qLhi , ∀i ∈ N , where q := min(i,j)∈A(xh+1)|Lhi >Lhj

d̄hij−µ̂h

Lhi −Lhj +1
. Observe that using value 0

instead of d̄hij delivers Update Lh(c).

Initialization. Notice that while optimal values [πh, µh
] do exist, the point of the approximation scheme is to carry out the

computations with the approximation values [π̂
h
, µ̂h

] instead. As such, the explicit price function can be trivially initialized
to π̂0

i := 0, ∀i ∈ N , and µ̂0
:= min(i,j)∈A(x0) dij.

The importance of properly updating the node potentials is capital to the speed of convergence. Indeed, the systematic
computations over approximation values means that the associated errors are cumulative. Intuitively, a poor update of the
node potentials induces a new admissible network that is not sufficiently altered to reveal new Type 1 cycles. Figs. 8–10
illustrate the point. Each figure contains three elements: two plots and a marking. The top level plot is the optimal value of
µh retrieved for the sake of evaluating the quality of the estimate µ̂h as seen in the lower level plot. Themarking indicates the
phase number at which the optimal solution is reached although without proving it. Fig. 8 uses Update Lh(a) and suffers from
an extremely poor convergence rate. There are in fact over 7000 additional phases required to prove optimality. In Fig. 9,
we see that Update (d) performs much better than Update Lh(a). However, as can be seen in Fig. 10, it is still outperformed by
Update Lh(b). These approximations require respectively 464 (343) phases to prove optimality. The results for Update Lh(c) are
omitted because they are almost the same as those of Update Lh(b). As expected by the update mechanism, the estimate µ̂h

is a lower bound for the optimal value µh. The quality of the update clearly influences how fast this bound is increased.

Proposition 15 ([13]). The combination of the Cancel and Tighten steps runs in O(m log n) time.

Proof. The Tighten step consists of a succession of basic operations on the arcs or the nodes, the most complex one being
the topological ordering which runs in O(m) time. The proof that the Cancel step terminates in O(m log n) time, making
it the dominant method, is influenced by the works of Sleator and Tarjan [20]. The key lies in the realm of computer
science whereby the sophisticated splay tree data structure allows for an efficient way to exhaustively search the admissible
network. �

Using this strategy transcends the bottleneck incarnated by the pricing step with a convoluted approach. The bottleneck
operation is now the completion of a phase which effectively allows the complexity analysis to trade the initial O(m2n) time
per phase in favor of an amortized O(m log n) time. The improvement provided by the Cancel-and-Tighten strategy is the
fruit of careful design. It is obtained by shedding another light on the iteration-wise analysis.
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Fig. 10. Optimality parameter µ and estimate µ̂ for Instance 1 [phase base—update Lh(b)].

While it is possible to fetch optimal node potentials at the end of every phase, this measure brings the global complexity
toO(n log(nC))×[O(m log n)+O(mn)] ≡ O(mn2 log(nC)) for integer arc costs andO(mn)×[O(m log n)+O(mn)] ≡ O(m2n2)
for arbitrary real-valued arc costs.

The following two theorems present the global runtime complexity of MMCC when the Cancel-and-Tighten strategy
is incorporated along with the approximation scheme. Although we have separated these theorems to highlight our new
proposal in the second one, the reader is invited to read them as one. The idea behind their proofs is to place the resolution
process in the same conditions as the complexity analysis of the outer loop. Since µ̂h

≤ µh, it is conceivable to rewrite
Propositions 9 and 11 using approximation values [π̂

h
, µ̂h

] instead. Indeed, arc fixing then occurs in a more conservative
fashion.

Theorem 5 ([13, Theorem 4.3]). MMCC accompanied by the Cancel-and-Tighten strategy runs in O(mn log n log(nC)) time for
integer arc costs and O(m2n(log n)2) time for arbitrary real-valued arc costs.

Proof. With respect to integer arc costs, the adaptation is straightforward. It turns out that the approximation values µ̂ fol-
low the same geometric progression as the optimal ones. Indeed, the construction of the proof of Theorem 1 also holds with
the approximation values. This means that µ̂ > −1/n is a valid stopping criterion and O(n log(nC)) phases are performed.

In the case of arbitrary real-valued arc costs, we consider here the point of view of Theorem 2. It is therefore sufficient
to have a measurable jump of (1 − 1/n) at the end of each phase to obtain the wanted complexity. In the Tighten step, ir-
respectively of whether these phases are approximated or not, this same property is verified by construction, see (19). The
approximation values therefore still follow the same behavior as the optimal ones. Hence, the number of phases using the
Cancel-and-Tighten strategy is alsoO(mn log n). As far as the stopping criterion is concerned, polling for the optimal value of
µ every n-th phase to assert the optimality certificate can effectively be done without compromising the complexity result.
Indeed, the O(mn) runtime of this operation can be discarded with respect to the amortization against the runtime of the
n − 1 previous approximated phases, i.e., O((n − 1)m log n + mn) ≡ O(mn log n).

Since each phase runs in O(m log n) time, the proof is brought to terms with its statement. �

Theorem 6. MMCC accompanied by the Cancel-and-Tighten strategy runs in O(m2n log n) time for arbitrary real-valued arc
costs.

Proof. From the point of view of Theorem 3, the use of the explicit price function [π̂, µ̂] in accordance with Proposition 14
commands another look at Proposition 12. The following modified version of the proof basically suggests that a valid size
indicator, say Lh + 1, for the jump is sufficient, the actual size of the Type 2 cycle is not really needed.

Assume all update coefficients Lh + 1 ≤ L(xh) in these L(xh) phases. Then, by (16),

µ̂L(xh)
≥ −|c̄∗

m(xh)|


1 −

1
L(xh)

L(xh)

>
−|c̄∗

m(xh)|

2
.

Otherwise, some coefficient Ll + 1 at the end of phase l ≤ L(xh) has cardinality Ll + 1 >
2Sm(xh)

|c̄∗
m(xh)

|
. Then,

µ̂L(xh)
≥ µ̂l

≥
Ll µh

Ll + 1
≥

−Sm(xh)

Ll + 1
>

−Sm(xh)
2Sm(xh)

|c̄∗
m(xh)

|

=

−|c̄∗

m(xh)|

2
.

Combine this with Proposition 13 and the O(mn) result of Theorem 3 still stands. The global complexity ensues once the
per phase runtime of O(m log n) is accounted for. The polling argument for the optimal value of µ is still applicable for the
stopping criterion. �

Remark. While the original intent of Update (d) is not aligned with that of the approximation structure proposed, a value
Lh(d) could still be extracted from the determination of the value q and therefore would still have the same complexity as the
other updates listed.
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Table 1
Complexity analysis summary.

Point of view Outer loop Global runtime complexity
No. of iterations No. of phases Cancel-and-Tighten strategy

Without With

Theorem 1 O(mn log(nC)) O(n log(nC)) O(m2n2 log(nC)) O(mn log n log(nC))

Theorem 2 O(m2n log n) O(mn log n) O(m3n2 log n) O(m2n(log n)2)
Theorem 3 O(m2n) O(mn) O(m3n2) O(m2n log n)

3.6. Summary and observations

The first part of this section assembles all the complexity results we have seen while the second raises several worthy
observations about technical and mechanical aspects of the algorithm.

Table 1 summarizes the content of the complexity analysis. The first two columns display the complexity of the outer
loop of MMCC depending on whether one thinks in terms of O(m2n) iterations or O(mn) phases. An implementation which
uses the Cancel-and-Tighten strategy grants a better theoretical complexity by consolidating several bottleneck operations.
The last two columns show the global complexity of MMCC depending on whether or not it is incorporated.

Observe that the better complexity achieved by the integration of the Cancel-and-Tighten strategy within the MMCC
framework is not a contradiction with the tight complexity of Radzik and Goldberg [17]. It is rather a testament to the
importance of careful design. Indeed, the tight bound of O(m2n) iterations is superseded by the equivalent one of O(mn)
phases.

Aside from the theoretical improvements, the very essence of Cancel-and-Tighten exudes efficiency on several fronts.
First, its conception allows for a more straightforward approach to the identification of negative cycles which further
benefits from running on a sparser graph, that is, A(xh+1, π̂

h
) ⊆ A(xh, π̂h

) ⊆ A(xh). Second, the data structure allows
better redundancy control than the iteration base approach which systematically restarts from scratch. Third, the ability to
reuse information regarding the node potentials is not only appealing but also proves to be useful. Finally, its designmatches
the critical component of the complexity analysis and only aims to reach these important Type 2 cycle checkpoints as fast
as possible.
Explicit arc fixing. The strongly polynomial complexity is obtained by introducing the concept of arc fixing. Truth be told,
the bidirectional verification of the alternative statement for Proposition 8 can actually be carried out in any vanilla
implementation of MMCC without compromising the resolution process nor the theoretical complexity. Fixed arcs can
be removed from the system thus giving the rule a very practical effect. The arc fixing rule provided by Proposition 8 (or
Proposition 9, extended to phases) can be, for all intent and purposes, explicit. Furthermore, observe that arc fixing is reserved
for non-free variables. When µ = 0, optimality is achieved. Post applying Proposition 8 would imply all variables get fixed
regardless of their status. We underscore the fact that, in Proposition 10 (or Proposition 11, extended to phases), arc fixing
is invariably implicit because it depends on an unknown optimal set of node potentials.
Cancellations. Recall that the iteration base necessitates 1937 iterations to terminate (Fig. 5). This means that the same
number of cycles are canceled. Whether the phase base contains more or less cancellations is matter of resolution course
but it is possible to give meaning to what we have observed. Let us speak numbers. In the optimal update method (Fig. 7),
4176 Type 1 cycles are canceled while in the three approximations (Figs. 8–10), these numbers are respectively 2192 and
5202 and 4417. The first approximation is strikingly different from the rest and actually is much closer to the iteration base
number. Let us address this case first. With a poor update of the node potentials, the content of the admissible network is
limited to a small fraction of arcs. This means that although we are not looking expressly for it, the minimum mean cycle
is more likely to be identified. In other words, the Cancel-and-Tighten strategy behave similarly to the iteration base. In
the other two approximations, the admissible network contains a lot of negative arcs and Type 1 cycles are identified in a
random manner. It appears natural that more cycles are identified in this way than does the meticulous process of finding
the best ones sequentially. What comes out of this interpretation is that it is more important to identify negative cycles fast
than it is identifying the best one.
Tailing-off. The iteration base suffers froma tailing-off effectwhich can be explained by the nature of line search optimization
and also that of MMCC. Regardless of the quality of the solution, all the little improvements must be accounted for before
granting the optimality certificate. Since the optimality parameter is a gage for the expected improvement and that it
converges to zero from below, the end of the resolution process is very much like a quest for crumbs. In the phase base,
notice that all three approximation updates also suffer from a tailing-off effect which is even present in the optimal update
method. Since the optimality parameter still intervenes, the same explanation holds as well for this approach. But there is
more. The quality of the update plays a great role in shortening the tail. Indeed, the latter dictates both the content of the
admissible network and the distance to optimality.
Switch offs. In practice, the tailing-off effect leads to believe that, when the optimality parameter reaches a very small value,
it might be worthwhile to switch off to the iteration base. Indeed, as the process nears the optimal solution, the number
of negative cycles becomes very small which makes the content of the admissible network even more limited in terms of
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Type 1 cycles. Furthermore, the important graph reduction induced by the arc fixing dramatically reduces the computational
penalty of the iteration base. On another note, the usefulness of Update Lh(c) is still unclear but the otherwise lack of tractable
benefit suggests it might be wise to postpone its usage until the first variables get fixed in order to limit the impact of the
additional O(m) time it requires.
Dantzig–Wolfe decomposition. The decomposition of the residual problem (2)–(4) using a Dantzig–Wolfe decomposition
scheme [4] brings yet another perspective to Cancel-and-Tighten. Let k ≥ 0 denote a non-optimal iteration number. At
every iteration, define the master problem as the set of upper bound constraints yij ≤ rkij, (i, j) ∈ A(xk), and formulate the
subproblem for finding the minimum reduced cost. This results in the proposed pricing step defined by the primal–dual
pair of linear programs (6)–(7) and (8)–(11). Its solution provides an improving cycle for which the maximum step size is
computed using the master problem constraints. Therefore, Cancel-and-Tighten corresponds to heuristic solutions of that
pricing problem, indeed a partial pricing devoted to Type 1 cycles only. An optimal solution to the residual problem (2)–(4)
can only be guaranteed by solving the pricing subproblem to optimality and finding µ = 0.

4. Conclusion

This paper aims to present the minimum mean cycle-canceling algorithm in its entirety by regrouping the knowledge
from different sources. Ranging from the objective function to implicit arc fixing, a key component which traverses most
of the proofs is a line of rationalization which questions the existence of admissible solutions. This admissibility defers to
a fundamental piece of network theory, namely the flow decomposition principle. In the end, the same algorithm has been
studied under numerous angles, each one providing theoretical breakthroughs. A very interesting point is that better bounds
are obtained via very practical observations such as tighter jump factors or well conditioned admissible networks.

The original purpose of this work was a literature review preliminary to further researches, but we have come to see
it as more than a summary. First of all, we harness the power of duality to simplify one of the building blocks of the
algorithm. Secondly, the new way to look at the analysis directly in terms of O(mn) phases is elegant in itself. We feel that
we have integrated Cancel-and-Tighten to the minimum mean cycle-canceling framework under a new perspective and
even contributed to its performance with new update approximations in the Tighten step. This in turn grants the reduction
of the global runtime to O(m2n log n) and speaks volume about the importance of thinking in terms of phases. This third
contribution is made possible by the generalization of Proposition 12. Finally, the computation results are enlightening of
the resolution course of the minimum mean cycle-canceling algorithm. The different observations which come out of this
study serve the practical side of things by reducing the wall-clock time of any generic implementation.

As a final note, this work is part of a much broader plan which includes generalizations to linear programming as well as
understanding the ramifications with the Improved Primal Simplexmethod [8,18] in order to extract necessary adjustments
required to recuperate some of the properties established herein.

Acknowledgment

Jacques Desrosiers acknowledges the Natural Sciences and Engineering Research Council of Canada for its financial
support.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.
[2] Dimitri Panteli Bertsekas, A distributed algorithm for the assignment problem, Technical Report, Laboratory for Information and Decision Systems

Working Paper, MIT, Cambridge, MA, 1979.
[3] Jean Cochet-Terrasson, Guy Cohen, Stéphane Gaubert, Michael Mc Gettrick, Jean-Pierre Quadrat, Numerical computation of spectral elements inmax-

plus algebra, in: IFAC Conference on System Structure and Control, Nantes, France, July 8–10 1998.
[4] George B. Dantzig, PhilipWolfe, Decomposition principle for linear programs, Oper. Res. 8 (1) (1960) 101–111. http://dx.doi.org/10.1287/opre.8.1.101.
[5] Ali Dasdan, Experimental analysis of the fastest optimumcycle ratio andmean algorithms, ACMTrans. Des. Autom. Electron. Syst. 9 (4) (2004) 385–418.

http://dx.doi.org/10.1145/1027084.1027085.
[6] Ali Dasdan, Sandy S. Irani, Rajesh K. Gupta, Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems, in: 36th Design

Automation Conference, 1999. Proceedings, 1999, pp. 37–42. http://dx.doi.org/10.1109/DAC.1999.781227.
[7] Jack Edmonds, Richard Manning Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM 19 (2) (1972) 248–264.

http://dx.doi.org/10.1145/321694.321699.
[8] Issmail Elhallaoui, AbdelmoutalibMetrane, Guy Desaulniers, François Soumis, An improved primal simplex algorithm for degenerate linear programs,

INFORMS J. Comput. 23 (2011) 569–577. http://dx.doi.org/10.1287/ijoc.1100.0425.
[9] Lester Randolph Ford Jr., Delbert Ray Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404. http://dx.doi.org/10.4153/CJM-

1956-045-5.
[10] Lester Randolph Ford Jr., Delbert Ray Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, USA, 1962.
[11] Satoru Fujishige, A capacity-rounding algorithm for the minimum cost circulation problem: A dual framework of Tardos’ algorithm, Math. Program.

35 (1986) 298–308. http://dx.doi.org/10.1007/BF01580882.
[12] Loukas Georgiadis, Andrew V. Goldberg, Robert Endre Tarjan, Renato F. Werneck, An experimental study of minimum mean cycle algorithms,

in: Irene Finocchi, John Hershberger (Eds.), 2009 Proceedings of the EleventhWorkshop on Algorithm Engineering and Experiments (ALENEX), SIAM,
2009, pp. 1–13. http://dx.doi.org/10.1137/1.9781611972894.1.

[13] Andrew V. Goldberg, Robert Endre Tarjan, Finding minimum-cost circulations by canceling negative cycles, J. ACM 36 (4) (1989) 873–886.
http://dx.doi.org/10.1145/76359.76368.

[14] Ronald Arthur Howard, Dynamic Programming and Markov Processes, The MIT Press, Cambridge, MA, USA, 1960.

http://refhub.elsevier.com/S0166-218X(14)00306-0/sbref1
http://refhub.elsevier.com/S0166-218X(14)00306-0/sbref2
http://dx.doi.org/doi:10.1287/opre.8.1.101
http://dx.doi.org/doi:10.1145/1027084.1027085
http://dx.doi.org/10.1109/DAC.1999.781227
http://dx.doi.org/doi:10.1145/321694.321699
http://dx.doi.org/doi:10.1287/ijoc.1100.0425
http://dx.doi.org/doi:10.4153/CJM-1956-045-5
http://dx.doi.org/doi:10.4153/CJM-1956-045-5
http://dx.doi.org/doi:10.4153/CJM-1956-045-5
http://refhub.elsevier.com/S0166-218X(14)00306-0/sbref10
http://dx.doi.org/doi:10.1007/BF01580882
http://dx.doi.org/doi:10.1137/1.9781611972894.1
http://dx.doi.org/doi:10.1145/76359.76368
http://refhub.elsevier.com/S0166-218X(14)00306-0/sbref14


20 J.B. Gauthier et al. / Discrete Applied Mathematics ( ) –

[15] Richard Manning Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (3) (1978) 309–311. http://dx.doi.org/10.1016/
0012-365X(78)90011-0.

[16] Morton Klein, A primal method for minimal cost flows with applications to the assignment and transportation problems, Manag. Sci. 14 (3) (1967)
205–220.

[17] Tomasz Radzik, Andrew V. Goldberg, Tight bounds on the number of minimum-mean cycle cancellations and related results, Algorithmica 11 (3)
(1994) 226–242. http://dx.doi.org/10.1007/BF01240734.

[18] Vincent Raymond, François Soumis, Dominique Orban, A new version of the improved primal simplex for degenerate linear programs, Comput. Oper.
Res. 37 (1) (2010) 91–98. http://dx.doi.org/10.1016/j.cor.2009.03.020.

[19] Hans Röck, Scaling techniques for minimal cost network flows, in: Uwe Pape (Ed.), Discrete Structures and Algorithms, Carl Hanser, Munich, 1980,
pp. 181–191.

[20] Daniel Dominic Kaplan Sleator, Robert Endre Tarjan, A data structure for dynamic trees, J. Comput. System Sci. 26 (3) (1983) 362–391. http://dx.doi.
org/10.1016/0022-0000(83)90006-5.

[21] Éva Tardos, A strongly polynomial minimum cost circulation algorithm, Combinatorica 5 (3) (1985) 247–255. http://dx.doi.org/10.1007/BF02579369.
[22] Neal E. Young, Robert Endre Tarjan, James B. Orlin, Faster parametric shortest path andminimumbalance algorithms, Networks 21 (2) (1991) 205–221.

http://dx.doi.org/10.1002/net.3230210206.

http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://refhub.elsevier.com/S0166-218X(14)00306-0/sbref16
http://dx.doi.org/doi:10.1007/BF01240734
http://dx.doi.org/doi:10.1016/j.cor.2009.03.020
http://refhub.elsevier.com/S0166-218X(14)00306-0/sbref19
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/doi:10.1007/BF02579369
http://dx.doi.org/doi:10.1002/net.3230210206

	About the minimum mean cycle-canceling algorithm
	Introduction
	Minimum mean cycle-canceling algorithm
	Residual network and optimality conditions
	Pricing step: finding the minimum reduced cost
	Algorithmic process
	Illustrative example: the maximum flow problem

	Complexity analysis
	In embryo
	Integer costs:  O (nlog(nC))  phases
	Arbitrary costs:  O (mnlogn)  phases
	Arbitrary costs:  O (mn)  phases
	Bottleneck management
	Iteration base
	Phase base

	Summary and observations

	Conclusion
	Acknowledgment
	References


