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Abstract
We report on the selection process leading to the sixth version of the Mixed Integer
Programming Library, MIPLIB 2017. Selected from an initial pool of 5721 instances,
the newMIPLIB 2017 collection consists of 1065 instances. A subset of 240 instances
was specially selected for benchmarking solver performance. For the first time, these
sets were compiled using a data-driven selection process supported by the solution of
a sequence of mixed integer optimization problems, which encode requirements on
diversity and balancedness with respect to instance features and performance data.

Keywords Mixed integer linear optimization · MIP · Benchmarking · Selection
methodology · Instance library

Mathematics Subject Classification 90C06 · 90C09 · 90C10 · 90C11

1 Introduction

Computational mixed integer (linear) optimization is an important sub-field of math-
ematical optimization. Hundreds of papers on the subject are published each year and
a multitude of companies provide tools for modeling and solution of mixed integer
optimization problems (MIPs) based on state-of-the-art techniques. Measuring per-
formance on benchmark test instances has lain at the heart of computational research
since the early days of mathematical optimization. Hoffman et al. [28] first reported
on a computational experiment comparing implementations of three algorithms for
linear optimization back in 1953. Their observation that “[many] conjectures about
the relative merits of the three methods by various criteria could only be verified by
actual trial” seems to hold to an even greater extent today. The variety of different
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techniques and their complex interactions regularly calls for empirical evaluation and
motivates the collection and curation of relevant test instances.

Brought into existence in 1992 by Bixby, Boyd, and Indovina [8], the goal of the
MIPLIB project has been to provide the research community with a curated set of
challenging, real-world instances from academic and industrial applications that are
suitable for testing new algorithms and quantifying performance. It has previously
been updated four times [3,9,32,39] in order to reflect the increasing diversity and
complexity of the MIPs arising in practice and the improved performance of available
MIP solvers. In this article, we describe its sixth version, MIPLIB 2017, together with
a new selection methodology developed during this process.

The exceptional algorithmic progress in solving real-world MIP instances over
the last decades is recorded in various articles [7,32,33,35]. Specifically, this can be
observed by examining results on the previous version, MIPLIB 2010, both in terms
of solvability and speed. By the end of 2018, the number of unsolved instances was
reduced by nearly half. Of the 134 instances for which no solution with provable
optimality guarantee was initially known, only 70 remain open. Comparable progress
in the overall speed of solvers can be observed in the results of benchmark testing
with different versions of available solvers. Since its release in April 2011, the subset
of instances of MIPLIB 2010 that form the so-called “benchmark set”, consisting of
87 problem instances, has been the accepted standard for evaluating solvers. Using
this benchmark set, Hans Mittelmann has been evaluating a number of MIP solvers,
including CPLEX [13], Gurobi [25], and Xpress [51]. When MIPLIB 2010 was
released, the version numbers of these three commercial solverswereCPLEX12.2.0.2,
Gurobi 4.5.1, and Xpress 7.2. Aggregating the benchmark results of these three
solvers at that time, we can construct results corresponding to a so-called “virtual
best” solver and a so-called “virtual worst” solver. These are hypothetical solvers that,
for each instance, produce run times that are equal to the best and theworst of the three,
respectively. Doing this analysis yields shifted geometric mean runtimes of 36.3 and
113.0 s for the virtual best and virtual worst solver, respectively.1 In December 2018,
the solver versions were CPLEX 12.8.0, Gurobi 8.1.0, andXpress 8.5.1. On the same
hardware (with a newer operating system) the shifted geometric means of the runtimes
had decreased to 13.5 s for the virtual best, and 31.3 s for the virtual worst solver.
This corresponds to speed-up factor of 2.70 and 3.62, respectively, which amounts to
roughly 16% per year, just from improvements in the algorithms.

It was because of this development that the MIPLIB 2010 benchmark set was no
longer considered to sufficiently reflect the frontier of new challenges in the field and
the process of constructing a new MIPLIB began. In November 2016, a public call
for contributions was launched and a group of 21 interested researchers, including
representatives of the development teams of nine MIP solvers formed a committee in
order to steer the process of compiling an updated library.2 As with MIPLIB 2010,

1 The computations used 12 parallel threads. The corresponding log files can be found at [40]. The means
were computed with a shift of 1 second (see Achterberg [1]).
2 Themembers of theMIPLIB 2017 committeewere TobiasAchterberg,Michael Bastubbe, TimoBerthold,
Philipp Christophel, Mary Felenon, Koichi Fujii, Gerald Gamrath, Ambros Gleixner, Gregor Hendel, Kati
Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans Mittelmann, Derya Ozyurt, Imre Pólik, Ted
Ralphs, Domenico Salvagnin, Yuji Shinano, Franz Wesselmann, and Michael Winkler.
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the overall goal was the compilation of two sets of instances. The MIPLIB 2017
benchmark set was to be suitable, to the extent possible, for performing a meaningful
and fair comparison of the average performance ofMIP solvers (and different versions
of the same solver) across a wide range of instances with different properties, in
a reasonable amount of computing time. The larger MIPLIB 2017 collection was
to provide additional instances for a broader coverage without restrictions on the
total runtime of the test set, including unsolved instances (as a challenge for future
research) and instances not suitable for benchmarking due to problematic numerical
properties, special constraint types (such as indicators), or exceptionally largememory
requirements.

It should be emphasized that the benchmark set we have scientifically constructed
is designed for the purpose of comparing the overall performance of general purpose
solvers on a wide-ranging set of instances. Average performance on this set is not a
suitable criterion to decidewhichMIP solver to use in a particular application scenario.
For such decisions, it is important to consider what specific class(es) of instances are
relevant, as well as what criteria beyond the raw speed and the ability to solve a wide
range of problems are of interest. This is also underlined by the fact that each of the
eight solvers that were used to collect performance data (see Sect. 4.6) proved to be
the fastest solver on at least one instance.

Compiling a representative andmeaningful instance library is a nontrivial endeavor.
Compared to previous editions of MIPLIB, the increased number of submissions, the
goals of compiling a significantly larger collection of instances and including a larger
number of representatives of solvers posed new challenges to the selection process. In
addition, MIPLIB 2017 is the first edition to provide supplementary data regarding the
instances, such as the matrix structure and decomposability, as well as the underlying
models from which the instances originated, where available. In order to produce a
well-balanced library in a fair and transparent manner, we designed a new, heavily
data-driven process. The steps applied between the initial submissions and the final
MIPLIB 2017 are outlined in Fig. 1. Driven by a diverse set of instance features, our
methodology used multiple clusterings to populate a MIP model that was then solved
to generate suitable candidates for the final library to be presented to the MIPLIB
committee.

We consider this process of selecting instances from a large pool of submissions to
be the main new feature of MIPLIB 2017. By contrast, the instances constituting pre-
vious versions of MIPLIB were manually selected by the members of the committee,
depending heavily on their expertise in benchmarking to avoid common pitfalls like
overrepresentation of certain problem classes. As one byproduct of this data-driven
approach, we are now able to identify similar instances, which leads to sometimes
surprising insights into connections between different, seemingly unrelated instances
in the library. In addition to the raw feature data, we provide, for each instance, the five
most similar instances in the collection on a newly designed web page (see Sect. 6.3).

Despite the heavy use of quantitative methodology, the overall process inherently
requires many manual decisions and heuristic choices. Some examples are the choice
of features, the number of clusters to use when clustering instances according to this
feature data, the definition of which instances to consider as computationally easy
or hard, and our formalizations of diversity and balancedness with respect to the
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Fig. 1 Outline of the steps involved in the selection of the MIPLIB 2017 collection and benchmark set.
Number of instances remaining are given in parentheses

feature data. All of these decisions have a high impact on the final result. Hence, in the
remainder of this articlewe try to describe the collection and selection ofMIPLIB 2017
at a sufficiently high level of technical detail in order to make this process transparent
to the reader.

The article is organized as follows. Section 2 addresses related work and gives a
brief historic overview on standards for computational experiments in mathematical
optimization. Section 3 describes the efforts to collect instances and meta data on their
background and solvability. Section 4 details the collection of feature data for each
instance that forms the basis for quantifying similarity of instances and balancedness
of a given selection. In Sect. 5, we describe how this data was used as input in order to
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compute good candidates for the library by solving aMIPmodel. Section 6 summarizes
the final result. We conclude with our final remarks and acknowledgements in Sect. 7.

2 Related work

With the evolution of computational research, standards and guidelines for conducting
computational experiments were proposed and updated. Next to performance mea-
sures, software availability and machine specifications, these guidelines also discuss
the choice of test problems and the availability of standard test sets.

In 1978, Crowder et al. [14] presented an early list of best practices, emphasizing
the necessity of reproducibility of computational experiments. In this course, they also
discussed the value of test problems being documented and the importance of using
real-world problems. At the same time, they pointed out that sharing test problems is
expensive and time-consuming—an issue that we have fortunately overcome.

The work of Jackson et al. [31] was motivated by a controversy around the first
published computational results for interior point LP solvers. Besides others, the ad-
hoc committee stated: “We recommend that standard test problem sets and standard test
problem generators be used wherever possible.” Further, they encouraged researchers
that “whenever new problems are used in a computational evaluation, these problems
be …submit[ed] to a standard collection like netlib.”

In his seminal paper from 1993, John Hooker characterized an empirical science
of algorithms [29]. He discussed the importance of identifying typical representatives
of a problem class to conduct a study on, at the same time mentioning that any choice
is open to the criticism of being unrepresentative. There are several resolutions for
this issue; a well-known, long-standing and publicly available standard test set is
certainly one of them. Another resolution that Hooker pointed out is to make “the issue
of problem choice …one of experimental design”. This means making the question
how performance depends on test set characteristics part of the experiment itself.
The approach taken to set up MIPLIB 2017—a data-driven instance selection that
parameterizes the creation of a test set—can be seen as an extension of this idea.

There are various publications that formalize the problem of compiling a test set.
McGeoch [37,38] developed an abstract model of algorithms and the paradigm of
simulation research, partially in response to Hooker’s paper.

A complementary line of research that is not touched on in this paper is the cre-
ation of new test instances to fill “gaps” in a test set, by learning from the instance
parameter space, see [49]. Smith-Miles et al. [48] use such an approach to work out
the strengths and weaknesses of optimization algorithms on an enlarged instance set
that they extrapolated from a standard test set. They detect so-called pockets where
algorithm performance significantly differs from average performance. This take on
instance diversity complements our approach of trying to achieve a best possible cov-
erage of the feature space subject to a fixed set of candidate instances.

Work on standard test sets for benchmarking naturally connects to work on algo-
rithm selection [43]. The work of Bischl et al. [6] brings both fields together by
publishing a benchmark library for algorithm selection. They introduce a data format
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to formally define features, scenarios, working limits and performance metrics. Since
2016, this library contains a MIP section, based on MIPLIB 2010.

Finally, related work of course includes various other libraries for mathematical
optimization problems, including, but not limited to MINLPLib [11], QPLIB [16],
Netlib [10], the COR@L collection [34], and OR-Library [4]. The latter is one of the
oldest online collections of optimization problems, existing for 30 years now and still
being regularly updated.

3 The collection process

The first step in the creation of MIPLIB 2017 was to collect a large set of candidate
instances. This section elaborates on the submission process and the origin of the
submitted instances, as well as preparatory steps for the subsequent selection process,
such as instance cleanup and grouping.

3.1 The submission phase

The collection process started with a call for contributions in November 2016, which
was advertised at many conferences, on numerous mailing lists, and in direct commu-
nication with partners from industry. Submissions were accepted until August 1, 2017.
Overall, we received 128 submissions (each containing multiple instances) from 66
submitters with 54 different affiliations, 38 of them being academic and 16 industrial.
Note that the affiliation of the submitter alone does not imply anything about the source
or type of the model. Several of the submitters with academic affiliation submitted
instances from industry projects and one submitter from industry submitted instances
modeling a combinatorial game.

Each submission was automatically committed as a new subdirectory to the pub-
lic git repository https://git.zib.de/miplib2017/submissions. In the repository, these
subdirectories are structured as follows. In the root of the subdirectory there are two
files: a bibtex file with references to papers related to the instances, if provided by
the submitter, and a meta file containing information about the submitter, creator, and
owner of the submitted instances, as well as a description of the instances and licensing
information. For the first time, all contributions were required to be submitted under a
license in order to explicitly grant the right of redistribution, among others. The default
license was chosen to be the Creative Commons CC BY-SA 4.0.3 license, but it was
possible to specify a different license if desired. In addition to these two files, there
are up to three subdirectories. The instances subdirectory contains the instances
themselves (.lp or .mps format, possibly compressed). The models subdirectory con-
tains associated model files, which contributors were encouraged to include in order to
provide researchers with richer information on the structure of the instances. Finally,
additional information is provided in the misc subdirectory, ranging from extended
descriptions to log files and MIP start files.

3 https://creativecommons.org/licenses/by-sa/4.0/.
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In total, 3670 instances were newly submitted to MIPLIB 2017. Table 1 lists all
submitters and the number of instances they submitted. We arrived at a total of 5721
instances by adding 2051 instances that were submitted for inclusion inMIPLIB 2010,
keeping their original submission information intact. Those 2051 comprised most of
the submissions to MIPLIB 2010 except for a few duplicates already present in other
MIPLIB 2017 submissions.

Table 2 reports the origin of the submitted instances. It shows that there are two
blocks of new submissions with a high number of instances: the instances submitted
to the NEOS server and MIP models of instances that were part of the MiniZinc
Challenges4 from 2012 to 2016. Even excluding those instances, the remaining new
contributions comprise about as many instances as were submitted to MIPLIB 2010,
half of which were collected from publicly available sources back then. Note also that
nearly 50 instances originate from submissions to the user support of two commercial
solvers.

3.2 Submissions from the NEOS Server

Before moving on, we briefly discuss how the instances originating from the NEOS
Server were collected, since this was a separate procedure unto itself. The NEOS
Server is a free internet-based service for solving numerical optimization problems
hosted by the Wisconsin Institute for Discovery at the University of Wisconsin in
Madison, with remote solving services provided by various sites, such as Arizona
State University.

In the calendar years 2014–2016, more than 1 million MIP instances were solved
usingNEOS.A subset of these instanceswas collected and submitted for inclusion into
MIPLIB 2017. To avoid misunderstandings, we note that the reduction methodology
described in the following happened prior to the MIPLIB 2017 effort and is not part
of the selection procedure conducted for MIPLIB 2017. However, because the NEOS
instances account for a large number of newly submitted instances, we outline the
process briefly for the sake of completeness and transparency.

To begin, the 14,571 MIP instances that were modeled through the AMPL [15]
language and whose solution required more than five minutes of wall clock time
to solve were collected. In discussions with the MIPLIB committee, it was decided
that a representative, yet diverse, sample of around 700-800 instances would be an
appropriate number of submissions from NEOS. The strategy to select the instances
was based on clustering the instances with similar traits and then selecting instances
from the clusters.

All 14,571 of these instances were re-run using CPLEX 12.6 to collect the optimal
solution (if possible within 12 h) and the solution to the root LP relaxation. For each
instance, the following properties were collected:

– the number of variables, constraints, and nonzeros,
– the percentage of binary variables and of general integer variables,
– the best solution value found by CPLEX, the root gap, and the percentage of binary
or integer variables with fractional value in the root LP solution.

4 https://www.minizinc.org/challenge.html.
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Table 1 Submitters of new instances, and number of instances from their submission(s) after cleanup

Submitter # Submitter #

Andrea Arias 360 Felix Cebulla 3

Dimitri Papageorgiou 300 Irv Lustig 3

Pierre Le Bodic 121 Jesus Rodriguez 3

Qie He 120 Jeff Linderoth (NEOS server) 710

Simon Felix 101 Jeff Linderoth (other) 3

Gleb Belov (MiniZinc challenge) 988 Jonathan Eckstein 3

Gleb Belov (other) 100 Siwei Sun 3

Simon Bowly 92 Felix J L Willamowski 2

Gerald Gamrath 76 Janos Hoener 2

Hans Mittelmann (NEOS server) 75 Joshua Friedman 2

Haroldo Gambini Santos 71 Utz-Uwe Haus 2

Shunji Umetani 60 Andreas Baermann 1

Matias Soerensen 42 Balabhaskar Balasundaram 1

Jordi Castro 34 Christian Liebchen 1

Toni Sorrell 34 Christopher Daniel Richards 1

Stephan Beyer 32 Dan Neiman 1

Manuel Iori 30 Daniel Bienstock 1

Michael Winkler 28 Daniel Rehfeldt 1

Cezar Augusto Nascimento e Silva 26 Gavin Goodall 1

Pelin Damci-Kurt 26 Gerald Lach 1

Domenico Salvagnin 22 Hsiang-Yun Wu 1

Michael Bastubbe 19 Jesse Liu 1

George Fonseca 18 Juan Javier Dominguez Moreno 1

Sascha Kurz 17 Koichi Fujii 1

Antonio Frangioni 15 Mark Husted 1

Daniel Heinlein 12 Paula Carroll 1

Marc Pfetsch 11 Sujayandra Vaddagiri 1

Tamas Terlaky 11 Timo Berthold 1

Berk Ustun 10

Philipp Leise 9

Salim Haddadi 9

Dan Hiroshige, Koichi Fujii 8

Christopher Hojny 7

Laurent Sorber 6

Yoshihiro Kanno 6

Andrew Stamps 5

Alexandra M Newman 4

Austin Buchanan 4

Rob Pratt 4

Sean MacDermant 4
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Table 2 Origin of the submitted
instances. Each instance is
counted only once, in the first
applicable row

MIPLIB 3 65

MIPLIB 2003 28

MIPLIB 2010 335

MiniZinc Challenge 2012–2016 988

New submissions (NEOS server) 785

New submissions (other) 1897

MIPLIB 2010 submissions 1623

Instances whose number of variables or constraints was more than 3 standard devi-
ations away from the mean were excluded as outliers. In an attempt to eliminate
duplicate instances, only one instance in a group that had the same number of con-
straints, samenumber of variables, and sameoptimal solution value, aswell as the same
associated email address, was retained. After this removal of outliers and suspected
duplicates, 6531 instances remained.

Each of these instances was assigned to a multi-labeled category using three inde-
pendent calls to a k-means clustering algorithm [26] as follows. First, the instances
were divided into four clusters according to properties associated with problem size:
the number of constraints, number of variables, and number of nonzeros. Second, the
instances were again divided into four clusters, this time according to the percentage
of binary and general integer variables in the instance. Finally, the instances were
divided into four more clusters based on two properties of the root LP relaxation: root
gap and the percentage of integer variables whose root LP relaxation value was not
integer-valued.

From these clusterings, each of the 6531 instances was given a label in {0, 1, 2, 3}3,
all in all giving 43 = 64 (possibly empty) clusters. Let Si be the number of instances
in the i-th cluster. The final selections were then made as follows:

– For each cluster with size Si ≤ 2, all instances of the cluster were selected;
– for each cluster with size 3 ≤ Si ≤ 10, �|Si |/2� instances were selected at random;
– for each cluster with size Si > 10, �|Si |/10� instances were selected at random.

This strategy ensured a diverse sample, and resulted in a total of 710 instances to be
considered for inclusion in MIPLIB 2017.

Separately, Hans Mittelmann also contributed 75 instances submitted to one of the
ASU-hosted servers through the NEOS platform. These servers process requests for
the SCIP, FEASPUMP, PROXY, and Qsopt_ex solvers. Using scripts, these user
submissions were screened for promising instances with an emphasis on those that
contain model information.

In combination, this resulted in a total of 785 new instances arising from NEOS. In
addition, the instance pool for MIPLIB 2017 contains 391 NEOS instances that have
been either included in previous versions of MIPLIB or were considered during past
selection processes.
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3.3 Instance cleanup

Following the close of submissions, we performed several cleanup steps, as follows.

Instance renaming While we tried to preserve original file names where possi-
ble, some submissions required renaming to create uniquely identifiable names. For
instance, some submissions contained multiple instances with the same file name that
originated from the same base model populated with different data. We also tried to
make the names as short and expressive as possible, containing only lower-case char-
acters, numbers and hyphens. After re-naming, the longest instance name was reduced
from 151 to 31 characters. Note that submissions for MIPLIB 2010 were renamed to
be consistent with the naming scheme of the final MIPLIB 2010 instances, but no
submissions already present in MIPLIB 2010 were renamed.

Making NEOS instances identifiable NEOS instances have traditionally been named
neos-xyz, where xyz is a number with up to 7 digits, representing the unique NEOS
instance ID of the submitted instance. In order to allow easier identification of the
instances in papers and personal communications, we compiled a list of river names
from all over the world and appended a river name to the original name, resulting
in names of the form neos-xyz-river. As an example, NEOS instance 3075395 has
been renamed neos-3075395-nile such that it can be colloquially called the “nile
instance”. We excluded river names such as “Amazon” to avoid ambiguous renaming.
Note that we applied this renaming procedure only to the 785 NEOS instances newly
submitted for MIPLIB 2017 (see Sect. 3.2), leaving all previously available NEOS
instances under their old name to avoid confusion.

Format conversion and cleanup All instances in the MIPLIB 2017 collection are
provided in MPS format [30,42]. Therefore, instances submitted in LP format were
read into CPLEX and written out in MPS format. Given that different MIP solvers
support different extensions of the MPS format, we ensured that all solvers could
read all instances by restricting the format to a basic version. Maximization problems
were turned into minimization ones by negating objective coefficients; lazy constraint
markers were removed so that the constraints are treated as standard constraints; and
coefficients stated as hexadecimal numberswere converted to their decimal equivalent.
Additionally, we added a NAME section or changed the existing one to the updated
instance name. For a small number of instances, it was necessary to change the MPS
files because they contained ambiguous definitions or outright incorrect formatting.
In those cases, we performed the minimally necessary changes to make the instance
file adhere to the basic MPS standard.

3.4 Model groups

In most cases, the instances in a single submission are closely related in the sense that
they originate from the same or a very similarMIPmodel. Some submissions, however,
containmanyunrelated instances. Therefore,we introducedmodel groups to keep track
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Table 3 Model groups and counts for the different instance sources. Each group is counted only in the first
applicable row

Type Groups Group size ∈
{1} {2, . . . , 5} {6, . . . , 10} {11, . . . , 360}

MiniZinc 80 0 16 38 26

NEOS 110 8 24 34 44

MIPLIB 2017 submissions 130 81 15 10 24

MIPLIB 2010 submissions 241 172 30 16 23

of this form ofmeta information that may not be directly inferable from the submission
ID or the numerical instance features described in Sect. 4. A model group represents a
set of instances that is based on the same model or a very similar formulation but with
different data. This grouping allowed us to avoid overrepresentation of a particular
application or model class in the final library by limiting the number of instances with
known similar model background during the selection process.

Each instance was assigned to one model group as follows. Initially, a submission
of homogeneous instances was assigned to its own model group. If a submission
containedmultiple sets of instances, each implementing a different model for the same
problem and data set, an individual group was created for each of the different model
types. This procedure was applied to both the submissions to MIPLIB 2017 and the
submissions to MIPLIB 2010. Publicly available instances with known application
were grouped by hand by the authors. Examples for such cases are the MiniZinc
instances submitted to MIPLIB 2017 and the instances from older MIPLIB versions
and public instance sets submitted to MIPLIB 2010.

Instances from the NEOS server, however, are anonymous and lack meta data from
the submitters that could be used to infer model groups. Nevertheless, users often
submit multiple, similar instances. Hence, we used feature data described in the next
section in order to infer synthetic model groups in an automated way. In order to group
the NEOS instances, a k-means clustering was computed with respect to the entire
instance feature space (see Sect. 4). The parameter k = 110 was chosen manually
to achieve a clustering with very similar instances in each NEOS model group. This
clustering was applied to all 1176 NEOS instances both from new submissions and
previously available sources.

Table 3 summarizes the number of resulting model groups and the corresponding
group sizes for the different sources of instances. These numbers are givenwith respect
to the 5666 instances inI sub (see Fig. 1). The largest model group cmflsp comprises
360 instances of a capacitated multi-family lot-sizing problem.

4 Feature computation

The ultimate goal of the selection process was to select a representative sample of
all available instances with respect to problem structure and computational difficulty,
while avoiding overrepresentation of similar models. In the spirit of data-driven deci-
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sionmaking and in light of relatedwork in the fields of algorithm selection andmachine
learning, we based this process both on performance data and on an extensive set of
instance features. The first step in the selection process was simply to determine the
features of interest. In the terminology of [48], this means that we defined a feature
space of measurable characteristics and computed a feature vector associated to each
element of the problem space of candidate instances.

Although this may seem straightforward, it is important to note that the feature
vector corresponding to an instance can be affected by seemingly irrelevant properties
of its representation in MPS format. For instance, some of the raw MPS instances
contained modeling language artifacts or artifical redundancies. For this reason, the
instance features were computed only after applying some straightforward simplifi-
cation steps, which we refer to as trivial presolving. We first describe this presolving
process before describing what features of the instances were used and how their
values were determined for each instance.

4.1 Trivial presolving

As is traditional for MIPLIB, the submitted instances are being made available in their
original, unmodified form (with the exception of minor corrections toMPS formatting
that were necessary in some cases). This means that the distributed instances were not
presolved or simplified in any way for the purposes of distribution. For the purposes
of extracting features of the instances, however, so-called “trivial” presolving was
applied, as described below. It may seem strange that the version of each instance
made publicly available in the final collection may actually be slightly different than
the version considered during the selection process, but there are good reasons for this
approach that we elaborate on next.

The justification for distributing the instances in their original submitted form is
simply that this allows the most complete and realistic testing of the ability of each
solver to deal with real-world instances, including all of the idiosyncratic artifacts that
may arise in themodeling process. In particular, algorithms for presolving instances are
actively developed and have a high impact on the performance of a solver (see [2,20]).
They not only strengthen the original formulation, but also simplify and remove unnec-
essary artifacts. These procedures are computational in nature and their efficiency and
effectiveness also needs testing. In some cases, there may be choices made in the
presolving that can only be made with foreknowledge of the properties of the solution
algorithm itself. For all these reasons, it was considered highly desirable in promot-
ing test conditions that are as reflective of real-world conditions as possible to avoid
modifying the distributed versions of the instances.

On the other hand, because MIP solvers do universally apply certain well-known
simplification procedures to an instance before the branch-and-bound search, the
unmodified descriptive data of the original instance may not properly reflect the “true”
features of that instance for the purposes of clustering instances according to similarity,
as we did during the selection process. The features considered that may be affected by
presolving include not only obvious properties, such as instance size, but less obvious
ones, such as the type of constraints and variables present in the model. A model may,
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for example, have all variables integer with the exception of one continuous variable
whose value is fixed to 1 and whose purpose is to model an objective offset. It would
be unreasonable to consider such an instance to be an instance with both integer and
continuous variables. At the other extreme, we may have an instance in which all
binary and integer variables are implicitly fixed, leaving a purely continuous problem
after presolving.

While it seems necessary to do some presolving before computing instance features,
the full presolving done by solvers is itself a difficult computational balancing act and
each solver does it differently. Toomuch presolving before feature computation would
result in a presolved instance with features no more representative of the “true” ones
than the completely unpresolved instance. As a compromise, all instance features
introduced in Sects. 4.3–4.5 were collected after applying a reduced set of the most
obvious presolving techniques to the instance, but no more sophisticated techniques.

For this trivial presolving, we used SCIP 5.0, but disabled most presolving tech-
niques, applying only simple ones, such as the removal of redundant constraints and
fixed variables, activity-based bound tightening, and coefficient tightening. In contrast
to standard SCIP presolving, which stops if the problem size could be reduced by only
a small percentage during the last presolving round, we applied the simple presolving
steps until a fixed point was reached. The complete set of SCIP parameters used to
do the presolving is provided on the MIPLIB web page (see Sect. 6.3) as part of the
feature extractor download.

For 55 of the 5721 submitted instances, trivial presolving turns the instance into a
pure LP or is even able to solve the instance by fixing all variables. These instances
were not considered for inclusion and also serve to emphasize the importance of
this preprocessing step. Overall, trivial presolving reduced the number of variables on
3782 instances (66% of the submission pool), sometimes by as much as 93% (instance
a2864-99blp). For 445 instances (8%), more than 50% of the variables were fixed.
On average, trivial presolving reduced the number of variables by 15%.

4.2 Canonical form

Because the feature computation can be affected not only by presolving but also by the
exact form inwhich the instance is represented (equality constraints versus inequalities
etc.), we transformed all presolved instances into the following canonical form, which
is slightly more general than the usual one, prior to feature computation.

Definition 1 A mixed integer optimization problem P with input

– m, n, nb, ni , nc ∈ N, n = nb + ni + nc,
– coefficient matrix A ∈ Q

m×n ,
– left-hand and right-hand side vectors �A, uA ∈ Q

m±∞,
– lower and upper bound vectors �x , ux ∈ Q

n±∞, and
– objective coefficient vector c ∈ Q

n

is defined to be an optimization problem of the form

min
{
c�x : �A ≤ Ax ≤ uA, �x ≤ x ≤ ux , x ∈ {0, 1}nb × Z

ni × Q
nc

}
.
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It is important to note that transformation to the canonical form of Definition 1 is
not uniquely determined for each instance. There remain certain degrees of freedom to
formulate equivalent instances by scaling continuous columns, scaling the objective
function c�x , or scaling a constraint �Ai ≤ a�

i x ≤ uA
i . This may cause problems

with the computation of some features. For example, some features of interest involve
comparison of row coefficients, but this comparison is difficult if rows of the constraint
matrix may have coefficients differing by several orders of magnitude. We address
these issues by normalizing the objective coefficients c and every constraint �Ai ≤
a�
i x ≤ uA

i by their maximum absolute coefficient ‖c‖∞ and ‖ai‖∞, respectively, so
that all objective and matrix coefficients lie in the interval [−1, 1] before computing
the feature matrix F (the downloadable instances are not altered).

It is based on this final presolved canonical representation that we define the Q =
105 features we consider. This results in a feature matrix F ∈ R

N×Q , where N is the
total number of instances submitted. Table 4 lists these features, which were divided
into K = 11 feature groups (also listed in the table). Feature groups were used for
the selection process, during which instance clusters were computed for each feature
group individually. Every feature group was chosen to represent a particular aspect of
an instance in the form specified by Definition 1. The computation of features in most
of the groups only requires information that can be extracted directly from the input
of the (trivially presolved) problem. Two exceptions are the constraint classification
and decomposition groups, which need to identify structures in the model. These are
described in Sects. 4.4 and 4.5 .

4.3 Instance features

Here, we describe the first nine feature groups in Table 4. We use the shorthand vector
statistics to refer to five values summarizing the entries of a vector v ∈ R

d±∞. Let
d ′ = |{ j : |v j | < ∞}| be the number of finite entries of v, which can be smaller than
d in the case of, e.g., bound vectors, and let v′ be the restriction of v to its finite entries.
We assume without loss of generality that v′ is sorted, v′

1 ≤ v′
2 ≤ · · · ≤ v′

d ′ . The five
values are

– min : v 
→ v′
1,

– max : v 
→ v′
d ′ ,

– mean : v 
→ 1
d ′

d ′∑

j=1
v′
j ,

– median : v 
→
(

v′
� d′+1

2  + v′
� d′+1

2 �

)
/2, and

– std : v 
→
√

1
d ′

d ′∑

j=1

(
v′
j − mean(v′)

)2
.

Note that infinite entries can only occur for the variable bound vectors �x and ux and
the left- and right-hand side vectors �A, uA. For a vector v that contains only infinite
entries, i.e., for which d ′ = 0, the above vector summaries are not well-defined. If
d ′ = 0, the corresponding statistics were set to 0 in the data. Note that even if the
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Table 4 Description of instance features used. Set notation is abbreviated, e.g., {A �= 0} denotes {(i, j) ∈
{1, . . . ,m} × {1, . . . , n} : ai, j �= 0}
Group Features Description Scaling

Size 3 Size m,n of matrix, nonzero entries
|{A �= 0}|

log10(x)
2

Variable
types

3 Proportion of binary, integer, and
continuous variables nb

n ,
ni
n ,

nc
n

Objective
nonzero
density

5 Nonzero density of objective function
|{c �=0}|

n both total and by variable type
(bin., int., cont.), 0–1 indicator for
feasibility problems without objective

Objective
coefficients

6 Vector statistics and dynamism of c c normalized
by ‖c‖∞

Variable
bounds

12 Finite densities |{|�x |<∞}|
n ,

|{|ux |<∞}|
n

of bounds, vector statistics of upper
bounds ux and bound ranges ux − �x .

Vector
statistics
scaled by
siglog(x)

Matrix
nonzeros

6 Vector statistics of nonzero entries
|{ai �= 0}| by row in A, nonzeros per

column |{A �=0}|
n

log10(x) for
nonzeros per
column

Matrix
coefficients

19 Vector statistics of the four
m-dimensional vectors describing the
min, mean, max, and std of the nonzero
coefficients {ai �= 0} in each row

Every ai
normalized
by ‖ai‖∞

Row
dynamism

5 Vector statistics of row dynamism
‖ai ‖∞

min j {|ai j |�=0}
log10(x)

Sides 19 Vector statistics of left- and right-hand
sides �A, uA and concatenated
(|�A|||uA|), nonzero and finite
densities of �A , uA

Every ai
normalized
by ‖ai‖∞

Constraint
classifica-
tion

17 Proportion of classes of special linear
constraints: singleton, precedence,
knapsack, mixed binary (see Sect. 4.4)

Decomposition 10 Features describing decomposition D
found by GCG with maximum
area score (see Sect. 4.5):
areascore(D), k, vector statistics

(except std) of

( |Dr
1 |

m , . . . ,
|Dr

k |
m

)�

and

( |Dc
1|
n , . . . ,

|Dc
k |
n

)�
. Not available

for all instances
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original formulation has infinite bounds on variables, trivial presolvingmay often infer
finite bounds for those variables.

The dynamism of a vector with finite entries is the ratio of the largest and smallest
absolute entries, i.e., ‖v‖∞/min{|v j | : v j �= 0}. The dynamism is always at least 1. If
the dynamism of any single constraint exceeds 106, this is an indication of a numer-
ically difficult formulation. Note that the dynamism is invariant to the normalization
procedure. Combining the dynamism of each constraint yields anm-dimensional vec-
tor, which can be summarized using vector statistics.

The feature group Matrix coefficients summarizes the nonzero coefficients
of the matrix A as follows. First, each row ai , 1 ≤ i ≤ m, of A is normalized by
its largest absolute coefficient, such that all coefficients are in the range [−1, 1]. The
nonzero entries of ai are then summarized by four of the five vector statistics explained
above, namely the min, max, mean, and std. Going through all rows, we obtain four
m-dimensional vectors describing the min, max, mean, and std per row. Each of these
vectors is then summarized via vector statistics, which yields a total of 20 statistics
that summarize the cofficients of A. Examples are the mean minimum coefficient over
all m rows, or the standard deviation of all m maximum coefficients, etc. The feature
group comprises 19 out of these 20 coefficient statistics, because the maximum over
all m maximum coefficients is equal to 1 for every instance in our data set.

For the feature group Sides, them-dimensional left- and right-hand side vectors �A

and uA are summarized individually via vector statistics of all their finite elements.
Besides, we compute vector statistics for the finite elements of the concatenated 2m-
dimensional vector (|�A|, |uA|) that combines the absolute left- and right-hand sides
of all rows. Note that the row normalization by the maximum absolute coefficient also
affects the row left- and right-hand sides.

For features such as the row or objective dynamism, which may differ by orders
of magnitude between instances, we used a logarithmic scaling. While logarithmic
scaling is fine for vectors with positive entries, it is not applicable to vectors with
potentially negative entries such as the variable lower and upper bound vectors. In
those cases, we apply a customized scaling

siglog : R → R, x 
→ sig(x) log10(|x | + 1)

to every entry of the corresponding column in the feature matrix F . The map siglog
preserves the sign of each entry.

The collection of the instance features was performed with a small C++ application
called the feature extractor, which extends SCIP by the necessary functionality needed
to report features after trivial presolving and optionally accepts a settings file tomodify
the default presolving explained in Sect. 4.1. The feature extractor is amodified version
of a code used already by [22] and available for download on the MIPLIB 2017 web
page (see Sect. 6.3). 5

5 The actual computations reported in the following were carried out with five additional, redundant matrix
features. Only during the preparation of the manuscript, they were identified to be identical to other features.
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Table 5 Classification of linear constraints, sorted from most specific to most general. A constraint is
always assigned the first (topmost) type that applies. Notationally, a, b, c denote coefficients and right-
hand, possibly restricted to integer and/or nonnegative values, while x , y, and z are variables

Type Linear constraints …

Empty with no variables

Free with no finite side

Singleton with a single variable

Aggregation of the form ax + by = c

Precedence of the form ax − ay ≤ b where x and y are binary/integer/continuous

Variable Bound of the form ax + by ≤ c, x ∈ {0, 1}
Set Partitioning of the form

∑
xi = 1, xi ∈ {0, 1} ∀i

Set Packing of the form
∑

xi ≤ 1, xi ∈ {0, 1} ∀i
Set Covering of the form

∑
xi ≥ 1, xi ∈ {0, 1} ∀i

Cardinality of the form
∑

xi = k, xi ∈ {0, 1} ∀i, k ≥ 2

Invariant Knapsack of the form
∑

xi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Equation Knapsack of the form
∑

ai xi = b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Binpacking of the form
∑

ai xi + ax ≤ a, x, xi ∈ {0, 1} ∀i, a, ai ∈ N∀i, a ≥ 2

Knapsack of the form
∑

ai xi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Integer Knapsack of the form
∑

ai xi ≤ b, xi ∈ Z ∀i, b ∈ N

Mixed Binary of the form
∑

ai xi + ∑
b j z j {≤, =} c, xi ∈ {0, 1} ∀i, z j ∈ R ∀ j

General Linear with no special structure

4.4 Constraint classification

Table 5 lists the constraint classification types used for the feature group Constraint
classification. A total of 17 types of linear constraints that often occur as a subset
of the constraints of MIP instances were identified. The table is sorted from most
specific to most general. If a constraint belongs to multiple types, the classification
always assigns the most specific, i.e., topmost, type that applies. Note that even empty,
free, and singleton constraints are listed. While these types are removed during trivial
presolving, they may well be present in the original formulation.

There are several types of constraints supported by the MPS format [30,42] that are
not strictly linear as required by Definition 1. A well-known extension are indicator
constraints, which are conditional, linear constraints that only need to be satisfied if a
corresponding binary variable, the so-called indicator variable, is set to 1. It is possible
to linearize such a constraint by employing a sufficiently large coefficient M for the
indicator variable, in which case the reformulation is called a big-M formulation.
In many practical applications, big-M formulations require a very large value of M ,
which is why they often lead to numerically difficult models. Directly expressing
such constraints as indicator constraint allows the solver to handle them in a more
algorithmically advantageous way.

Indicator constraints were allowed into the MIPLIB 2017 collection, but (as we
describe later) were not allowed in the benchmark set. The only feature used that
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involves indicator constraints was their fraction among all constraints. This feature is
also part of the feature groupConstraint classification in Table 4. Other features
regarding, e.g., the linear part of the indicator constraint, are not collected. In total,
437 of the submitted instances contain indicator constraints. Many of them appear in
instances of the MiniZinc submission, which were additionally submitted as big-M
formulations.

There are other special types of constraints allowedbyMPS, such as special-ordered
sets (SOSs), semicontinuous variables, and piecewise linear constraints that not all
solvers support. However, none of the instances submitted used such constraints.

4.5 Block-structured decomposition features

Dantzig-Wolfe reformulation andLagrangian relaxation are decomposition techniques
that can exploit the presence of logical groupings of constraints and variables in the
model. Classically, one identifies “complicating” or “linking” constraints that, when
removed from the model, result in several subproblems that can be solved indepen-
dently. Concretely, this occurs when the constraint matrix has so-called block angular
structure (defined below). One challenge in applying these techniques within a gen-
eral purpose solver is identifying such structure. Standard input formats do not allow
information about these structures to be passed to the solver directly. For this reason,
several decomposition-based solvers have been developed that accept auxiliary input
files indicating this structure when it is present. These include GCG [21], DIP [17–
19], and DECOMP (a decomposition-based solver that is part of SAS/OR and SAS
Optimization [44]). All three can exploit the identified structure by reformulating the
instance and applying a branch-and-price algorithm to solve it.

Although block structure may be “obvious” in the original model, this structure
is often lost when the model is populated with data and transformed into a format
such as MPS. When information about the block structure is not provided, it can still
be derived algorithmically. This information is thus at a higher level of abstraction
than the other instance features alone. Contributors to MIPLIB 2017 were invited to
provide complementary material, such as model files in GAMS or AMPL format or
information on block-structured decompositions in the .dec file format. While some
20 submitters accompanied their instances with model files to produce them, no block
structure information was contributed. Nevertheless, GCG, DIP, and DECOMP are
all able to derive information about the block structure automatically (see, e.g., [23,
Sec. 5]).

Given the coefficient matrix A of an instance, we formally characterize a (block
structured) decomposition by a partition of the rows Dr = (Dr

1, . . . , D
r
k , L

r ) of A
and a partition of the columns Dc = (Dc

1, . . . , D
c
k , L

c) of A, such that for every
entry ai, j �= 0 of A with i ∈ Dr

k1
and j ∈ Dc

k2
it holds that k1 = k2. We say

that such a decomposition has k blocks. The number k of blocks (normalized by the
average number of blocks over all instances), the vector statistics (except the standard
deviation) of the numbers of rows and columns per block, respectively, and the so-
called area score give rise to ten features related to block-structured decompositions
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Fig. 2 Instance b1c1s1 after trivial presolving; left the nonzero entries as they appear in the original
constraint matrix; right with rows and columns re-arranged according to the decomposition produced by
GCG

that were derived from the trivially presolved instances using the detection capabilities
of GCG 3.0.

The area score for a decomposition D = (Dr , Dc) of A is defined as

areascore(D) = 1 −
∑k

b=1|Dr
b||Dc

b| + n|Lr | + m|Lc| − |Lr ||Lc|
mn

,

which intuitively measures the fraction of the matrix that is “white” in Fig. 2b. A
variant of this score is used by GCG 3.0 to select a decomposition in the case that
several, different ones are found (which is typically the case). An area score closer
to 1.0 is better. A very low area score indicates that the model does not contain any
substructures that are easily identifiable by GCG 3.0. This does not imply that there
is no such structure, but rather that it is not obvious.

As computing decompositions can be very time consuming, in particular for huge
instances, GCG was run in a minimal detection configuration. In this configuration,
GCG first groups the constraints of A according to (a) their type in SCIP, (b) their
MIPLIB type (see Table 4), and (c) their number of nonzeros. For each respective
grouping, the smallest cardinality groups of constraints are joined until a specified
(small) number of groups remains. From this collection, each subset is potentially
selected as the set Lr of linking constraints of the decomposition. The so-called con-
nected finisher assigns all remaining rows to as many blocks as possible. It is possible
that this last step identifies a single block only. In this case the area score of the resulting
decomposition is 0.0. From the pool of decompositions that are constructed this way,
one with maximum area score is selected for computing the decomposition features
of the instance.

4.6 Acquisition of performance data

The selection of the completeMIPLIB 2017 collection (see Sects. 5.2–5.4) wasmainly
driven by the feature data described above. The selection of the benchmark set (see
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Table 6 List of solvers used for
performance evaluation

Solver Version Threads Ref.

CBC 2.9.8 4 [12]

IBM CPLEX 12.7.1 4 [13]

Gurobi 7.5.1 4 [25]

MATLAB R2017b 1 [36]

MOSEK 8.1.0.30 4 [41]

SAS/OR 14.2 4 [44]

SCIP 4.0.0 1 [45]

FICO Xpress 8.2 4 [51]

Sects. 5.1, 5.5, and 5.6), however, took into account information about the computa-
tional and numerical difficulty of the instances. In order to quantify these empirically,
we collected performance data using current solver software.

Every submitted instance was processed with each of the eight solvers listed in
Table 6 to collect performance data. The experiments were performed on two Linux
clusters. The first one consisted of 32 nodes, each equipped with two 3.20GHz 4-core
Intel Xeon X5672 CPUs and 48GB RAM, the second consisted of 16 nodes, each
equipped with two 2.50GHz 10-core Intel Xeon E5-2670 v2 CPUs and 64GB RAM.
Two such jobs were run in parallel on the same cluster node, each job using a time limit
of 4 h and 4 threads, except for SCIP and MATLAB,6 which are both single-threaded.
In total, this performance evaluation required almost 40 CPU years.

Figure 3a shows for every possible cardinality k = 0, 1, . . . , 8 the number of
instances solved by exactly k solvers. 1969 of the 5721 instances (34%) were not
solved by any solver within 4 h. An instance was considered solved if there were
no inconsistencies between solvers and the solution was verified to be feasible (see
Sect. 4.7). There were 1155 instances (20%) that could be solved by all eight solvers.

To summarize the results of the experiments, we report here the performance mea-
sures for virtual solvers, as described in the introduction. For each instance, a virtual
solver is a summary of all tested solvers by means of an aggregation function such as
min, max, and median, resulting in the best, worst, and median virtual solvers, respec-
tively. The term “virtual” is used to distinguish the presentation from the best (fastest)
or worst (slowest) actual solver over the complete set of instances. The performance
measures collected are the time to optimality and the number of branch-and-bound
nodes processed.

Figure 3b compares the fraction of instances solved by the virtual best and worst
solvers. A large discrepancy between the curves can be observed. The virtual best
solver finished on about 20%, 40%, and 60% of the submissions within 1 s, 1 min,
and 1 h, respectively. The virtual worst solver required more than a second for any
instance, and solved only 20.2% of the instances within the time limit of 4 h. The
virtual best solver solved more instances in 2 s than the virtual worst solver was able
to solve in 4 h. Note that all eight tested solvers contributed to the performance of the
virtual best solver, i.e., each solver was the fastest on at least one instance.

6 MATLAB was run using the command intlinprog, which is part of the Optimization Toolbox (TM).

123



MIPLIB 2017: data-driven compilation...

1969

385 348
417 460

289 291
406

1155

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8
Solvers

S
ol

ve
d 

in
st

an
ce

s

(a) Number of instances solved by a specific number of solvers.

0.0

0.2

0.4

0.6

1 sec 1 min 1h 2h 3h4h
Time

Fr
ac

. o
f I

ns
ta

nc
es

virtual solver

best

worst

(b) Fraction of instances solved by virtual best and worst solver for different time limits.

0.00

0.25

0.50

0.75

1.00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08
Nodes

Fr
ac

. o
f I

ns
ta

nc
es

Virtual solver (nodes)

best

worst

(c) Explored branch-and-bound nodes for solved instances.

Fig. 3 Aggregated results of the performance evaluation on the entire submission
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Figure 3c summarizes data about the number of branch-and-bound nodes processed.
As expected, the number of branch-and-bound nodes varies significantly between
instances, but also between solvers on individual instances. In Fig. 3c, the minimum
and maximum number of explored nodes are shown. In this figure, we consider only
runs that completed sucessfully.Note that there are differences in howsolvers report the
required number of branch-and-bound nodes. Concretely, the solution of an instance
during presolving may be reported as 0 or 1 nodes depending on the solver used. We
therefore normalize the node results so they are always at least 1, i.e., we consider
presolving as part of the root node solution process. This is also justified because we
only consider instances that could not be solved completely by trivial presolving. At
the left end of the scale are the instances that could be solved within 1 node. This
group amounts to 1507 instances, which corresponds to 40% of the instances that
could be solved at all and 26% overall. For more than 50% of the solved instances, the
solution process required less than 1000 nodes. The maximum number of explored
nodes is considerably larger. Less than 25% of the considered instances were solved
within 1000 nodes by all solvers that finished within the time limit. Note that for all
385 records (see Fig. 3a) for which only one solver finished within the time limit, the
minimum and maximum number of explored nodes coincide.

4.7 Consistency check of solver results

In order to identify numerically challenging instances and incorrect answers returned
by the solvers, the results of the performance runs were independently verified in two
different ways.

First, the feasibility of every primal solution reported at the end of a solution process
was checked. To accomplish this step, a solution checker, whose purpose is to validate
feasibility of the solutions computed by a givenMIP solver against the original model,
has been bundled with the MIPLIB scripts since MIPLIB 2010. The checker tries to
recognize incorrect results, while at the same time taking into account that most MIP
solvers use floating-point arithmetic, and thus exact feasibility cannot be expected. The
overall structure of the solution checker has been largely unchanged since MIPLIB
2010. It is important to emphasize that it only checks feasibility of a given solution, it
cannot checkoptimality in general. The solutionvector returnedby the solver is verified
against the original instance in MPS format, with all computations performed using
the arbitrary precision arithmetic package GMP [24]. Feasibility of linear constraints,
integrality and the objective value are all verified according to given tolerances. We
refer to the MIPLIB 2010 paper [32] for more details on the solution checker design
and limitations.

For MIPLIB 2017, we updated the solution checker such that it uses a more flexible
(and forgiving) definition of violation of a linear constraint. The previous version of the
checker used an absolute tolerance of ε = 10−4, so that when given a linear constraint
a�
i x ≤ uA

i and a solution x∗, it would have considered the constraint satisfied if and
only if

a�
i x

∗ − uA
i ≤ ε.
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However, this turns out to be too strict if the linear constraint has coefficients with a
large absolute value. At the same time, switching to a purely relative tolerance was not
considered a viable option, as it can lead to a too small effective tolerance when tiny
coefficients are involved. So, in the new version we introduced a different definition
of violation, that tries to combine the strengths of absolute and relative tolerances,
and also to possibly cope with cancellation effects when evaluating the variable part
(activity) of the constraint. In particular, we split the value a�

i x
∗ into its positive

and negative parts as a�
i x

∗ = (a�
i x

∗)+ − (a�
i x

∗)− and consider the linear constraint
satisfied if and only if

a�
i x

∗ − uA
i ≤ ε · max{(a�

i x
∗)+, (a�

i x
∗)−, |uA

i |, 1}.

Given the relaxed definition of violation, it was decided to use the stricter value ε =
10−5 as tolerance. The very same logic is applied when checking variable bounds,
and when checking the objective value c∗ reported by the solver—we just treat it as
the linear constraint c�x∗ = c∗. Note that integrality is still checked with a purely
absolute tolerance of 10−4. Finally, the solution checker was extended to support
indicator constraints.

Following the feasibility check, which can be done independently for each solver
and solved instance, the results were compared between solvers to identify discrepan-
cies in the optimal values reported or inconsistencies in primal and dual bounds. We
used the publicly available tool IPET [27] to parse the solver log files and validate the
results. We considered results inconsistent when solver A reported a verified, feasible
solutionwith value c∗, while solver B timed out reporting a dual (lower) bound thatwas
higher than c∗. This included the special case that an instance had been reported infea-
sible by solver B. For example, on the instance bc1, seven of eight solvers agreed
on an optimal value of 3.338 after exploring search trees with 3k–20k nodes. The
eighth solver, however, reported a solution of value 3.418 as optimal after 720 nodes.
The eighth solver cut off the optimal solution. Note that while such a behavior can be
caused by a bug in the solver, it is also possible that different optimal values can be
“correctly” obtained when different tolerances are used. Since all MIP solvers rely on
floating-point arithmetics and use feasibility tolerances, the definition of “the optimal
objective value” for a problem instance is ambiguous. In particular, for numerically
challenging problems, a solver might return a different optimal objective value as a
result of applying slightly stricter tolerances within the algorithm. Instances exhibit-
ing such ambiguity are not suitable for benchmarking, since handling this numerical
ambiguity can be done in different ways, requiring different amounts of computational
effort. This leads to difficulties in comparison. Therefore, we disregarded all instances
with such inconsistencies during the selection of the benchmark set (see Sect. 5.6),
unless the inconsistency was obviously caused by a bug in one solver; 328 instances
(5%) were removed for this reason.
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5 Selectionmethodology

Due to the vast number of collected instances and the stark overrepresentation of some
problem classes and instance types, it was crucial to reduce the submitted instances
to a carefully chosen selection that provides both researchers and practitioners with
a meaningful basis for experimental comparison. MIPLIB 2017 provides two main
instance sets, namely the benchmark set and the collection. In the following,we discuss
the actual selection process and the obtained result.

We approached this task in reverse order by first selecting the larger MIPLIB 2017
collection from the submitted instances, and then choosing the MIPLIB 2017 bench-
mark set as a subset of the collection. An overarching goal for both the collection and
benchmark sets was to provide good coverage of the feature space of all submissions
while maintaining balance. Note that we thus explicitly avoid allowing the distribu-
tion of instance properties observed in the set of submitted instances to affect the
distribution in the final collection, since it is to be expected that the set of submitted
instances would be highly unbalanced in its instance feature representation, if for no
other reason than that some submissions contained many more related instances than
others. A second overarching goal was to choose a collection as large as possible, in
order to obtain a rich and diverse test set, but without sacrificing balance. As explained
above, the benchmark selection step required additional restrictions. With respect to
the benchmark set, the goal was to choose a large set of instances, but with a bias
towards instances that are currently hard for all solvers and keeping in mind that it
should be possible to perform benchmarking in a “reasonable” amount of time.

It seems quite natural to formulate the selection task as an optimization problem.
In fact, we approach the generation of MIPLIB 2017 with a sequence of optimization
problems: a set of diversity preselection MIPs, the collection MIP, and finally, the
benchmark MIP. After an initial cleanup, large model groups (see Sect. 3.4) are cut
down to a handful of diverse instances by the application of the diversity preselec-
tion model described in Sect. 5.2. The main purpose of the first selection procedure
was to avoid overrepresentation of instance types from large and very homogeneous
submissions that do not add to the diversity of the instance library. Sections 5.3 and
5.5 introduce the clustering procedures to partition the instances based on instance
features and performance data, respectively. Sections 5.4 and 5.6 describe the mixed
integer optimization models used to compute the MIPLIB 2017 collection and bench-
mark sets. Although the selection of the benchmark set is only the final step of the
process, the initial reduction steps must be aware of which instances are judged to
be suitable for the benchmark set. Otherwise, too many benchmark-suitable instances
might be excluded initially for selecting a good benchmark set later. Hence, we start
in Sect. 5.1 by giving our definition of benchmark suitability.

Note that before the selection steps outlined here, the submission pool of 5721
instances was already reduced to 5666 instances by the removal of LPs (no discrete
variables) and instances that are empty after a trivial presolving (see Sect. 4.1). Further-
more, we removed pairs of duplicate instances identified during the selection process.
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5.1 Benchmark suitability

The following definition characterizes the requirements for an instance to be in the
benchmark set of MIPLIB 2017. It is important to point out that because we allow
infeasible instances, successful “solution” of an instance for the purposes of this defi-
nitionmeans that the solver either produced a (claimed) optimal solution or a (claimed)
proof of infeasibility.

Definition 2 (Benchmark-suitable instance)We call an instance i ∈ I benchmark-
suitable if

(B.1) it can be solved by at least one considered solver within 4 h;
(B.2) it requires at least 10 s with 50% of the solvers;
(B.3) it has a constraint and objective dynamism of at most 106 (see Sect. 4.3);
(B.4) the absolute value of each matrix coefficient is smaller than 1010;
(B.5) the results of all solvers on i are consistent (see Sect. 4.7);
(B.6) it has no indicator constraints (see Sect. 4.4);
(B.7) it is either infeasible or has a finite optimum;
(B.8) it is either infeasible, or its (objective) solution value is smaller than 1010;
(B.9) it has at most 106 nonzero entries.

The subset of benchmark-suitable instances from the ground setI sub is denoted byB.

(B.2) eliminates instances from the benchmark selection that are too easy. Con-
versely, (B.1) ensures that benchmark instances can be solved by at least one solver, as
already done for MIPLIB 2010. This avoids the situation of MIPLIB 2003, for which
four instances still remain unsolved 15 years after the release of the test set. The criteria
(B.3), (B.4), (B.5), (B.8) ensure that the benchmark set does not contain numeri-
cally difficult instances for which results may be ambiguous. Furthermore, benchmark
instances should not contain special constructs that are not supported by all solvers. As
noted in Sect. 4.4, the only special constraint type in the submissions are constraints of
indicator type, which are excluded from the benchmark set via (B.6). (B.7) excludes
feasible instances that do not have a finite optimal value from the benchmark set for
two reasons. First, a feasible, rational MIP has a finite optimal value if and only if
its LP relaxation has a finite optimal value, rendering detection of this property more
a continuous than a discrete problem. Second, there is currently no clear consensus
on the expected behavior and output of MIP solvers in the case of a feasible MIP
without a finite optimum. Note that in contrast, infeasible instances are deliberately
not excluded. Finally, (B.9) reduces the hardware requirements to perform tests with
the benchmark set.

Table 7 lists for each criterion the number of excluded instances. Note that an
instance may be excluded for several reasons. In total, 3407 instances were labeled as
not benchmark-suitable, the majority of them because no solver solved them within
the time limit of 4 h.

The larger MIPLIB 2017 collection covers a broader range of MIP instances. It
includes at least one instance from each submitter, a constraint that cannot be enforced
for the benchmark set due to runtime considerations. It may contain instances that
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Table 7 Number of instances considered not benchmark-suitable (I sub \ B), as described in Sect. 5.
The column “Crit.” refers to the corresponding criterion in Definition 2. The ground set is the set of 5666
instances available before diversity preselection

Crit. Exclusion reason Instances

(B.1) Too hard: min. solver time > 4 h 1958

(B.2) Too easy: median solver performance ≤ 10 s 741

(B.3) Objective or constraint dynamism too large 552

(B.4) Absolute matrix coefficients > 1010 525

(B.6) Presence of indicator constraints 437

(B.5) Instances excluded for inconsistent results 334

(B.7) Unbounded instances 87

(B.8) Best known solution exceeds 1010 80

(B.9) Too many (> 106) nonzeros 40

are considered too easy or too hard for the benchmark set. It may contain instances
with more dubious numerics suited for testing the robustness of solvers in general
and techniques that explicitly aim at increasing numerical robustness. It may contain
unbounded instances and instances with indicator constraints. It may contain up to
five instances from each model group.

5.2 Diversity preselection

As with previous editions of MIPLIB, the number of instances varies significantly
between different submissions and, more importantly, also between the model groups
described in Sect. 3.4. While some model groups contain a single MIP instance that
represents an optimization problem on a specific data set, other model groups contain
hundreds of instances using the same underlying model for different data. Hence, for
larger model groups, we preselect a diverse subset of instances as follows.

Let I = I sub denote the index set of submitted instances and let B ⊆ I sub be
the subset of benchmark-suitable instances according to Definition 2. The choice of
a subset of instances can be naturally encoded using a vector of binary variables xi
equal to one if and only if instance i ∈ I is selected. For two instances i, j ∈ I , di, j
denotes the Euclidean distance of their feature vectors. Then for a given model group
G ⊂ I of instances and specified κ ∈ N, we wish to choose κ instances maximally
diverse in the sense that theminimumdistance between two selected instances becomes
maximal. If the model group contains benchmark-suitable instances, at least one of
these should be included in the preselection. Such a preselection can be performed by
solving the mixed binary optimization problem

max z (1a)

s.t. z ≤ (di, j − d̄)xi x j + d̄ for all i, j ∈ G , i �= j (1b)
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Diversity Preselection MIPLIB 2017 Collection MIPLIB 2017 Benchmark Set

Fig. 4 The results of diversity preselection for the model group “drayage”, which contains a total of 165
instances, in a t-SNE plot. A red diamond indicates that the instance has been selected for the corresponding
set

∑

i∈G
xi = κ (1c)

∑

i∈G∩B
xi ≥ 1 if G ∩ B �= ∅ (1d)

x ∈ {0, 1}G , z ∈ [0, d̄] (1e)

An instance i ∈ G is preselected if and only if the corresponding binary variable xi
equals one. The value d̄ := max{di, j : i, j ∈ G } acts as big-M in Constraint (1b). In
order to solve this optimization problem with a MIP solver, the bilinear product xi x j
in (1b) must be linearized by replacing it with an auxiliary binary variable wi, j under
the additional constraints wi, j ≤ xi , wi, j ≤ x j , and wi, j ≥ xi + x j − 1 for all pairs
i �= j ∈ G .

This preselection was performed for each model group exceeding five instances.
The value of κ used was κG = 5 for groups with 6 ≤ |G | ≤ 10 and κG = 10 for larger
groups. The number of variables and constraints of the preselection model depends
on the size of the corresponding model group. For the largest model group “cmflsp”,
which comprises 360 instances of a capacitated multi-family lot-sizing problem, the
diversity preselection instance has 129,242 rows, 64,981 columns, and 323,485 nonze-
ros. Except for this largest model group, which required approx. 800 s, all preselection
problems could be solved to optimality within a time limit of 500 s using Gurobi 7.5.1.

As an example, Fig. 4 depicts the results of the preselection procedure for the
model group “drayage”, which consists of 165 instances in total. The plot shows
the instances from this group three times. The x and y-coordinates are computed
using t-SNE [50], a technique to embed points of the high-dimensional feature space
in 2D based on their distances. The leftmost plot highlights the optimal solution of
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the corresponding diversity preselection instance. Visually, the selected solution for
this group is scattered evenly across the feature space of this group. The middle
and right plot show the instances from this group that are selected for the collec-
tion and benchmark set, respectively, for which stricter cardinality restrictions on
model groups apply. Despite those cardinality restrictions, the corresponding selec-
tions appear evenly spread across the ground set. A look at the performance results,
which are taken into account for the selection of the benchmark set, reveals that the
two selected instances also vary substantially regarding solution time. The easier of
the two instances, namely drayage-100-23 could be solved by seven solvers with
a median running time of 40 s. The harder instance drayage-25-23, on the other
hand, could only be solved by three solvers and hence has a median running time of
4 h. The three other instances that are part of the collection lie in between. In total,
diversity preselection reduces the instance set from 5666 to 2182 instances.

The preselected instances form a reduced index set I pre, which serves as input
for the selection of the MIPLIB 2017 collection. Although the following selection
procedure could have been applied to the entire set of submissions, we noticed several
benefits of preselection empirically. It improves the results of the k-means clustering
heuristic described in Sect. 5.3, reduces the size and difficulty of the selection MIPs
to be solved, and finally leads to a larger collection and benchmark set.

5.3 Preparingmultiple clusterings

One major challenge in selecting a test set is how to navigate the trade-off of good
coverage of all observed instance properties against a balanced selection that avoids
overrepresentation. The first goal is best achieved by simply selecting all suitable
instances, while balancedness explicitly asks for removing instances from overrepre-
sented problem classes.

A straightforward method would be to compute one clustering according to the
entire feature matrix and pick instances uniformly from each cluster. When applied in
a high-dimensional feature space, as in our setting, this naïve approach suffers from
several problems well-known in data analysis, such as the curse of dimensionality [5]
and the relative scaling of numerical features. The first term refers to the fact that with
increasing dimensionality of the feature space, the difference of distances of one point
to its nearest and to its farthest neighbor becomes smaller in relative terms. Hence,
similar instances cannot be identified reliably. Conversely, depending on scaling, the
distance with respect to one crucial feature may be dominated by less useful features,
such that different instances cannot be distinguished reliably. Arguably, the same
problem holds true everywhere where we use Euclidean distances in the selection
process, for example during the diversity preselection in the previous section. An
important difference between this section and the preselection is that for preselection,
we only considered onemodel group (withmany instances) at a time so that we already
knew that all instances were similar to each other. In this and the following sections,
however, this model group association is no longer used for the clustering, as we now
incorporate also instances with no known model group association.
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Table 8 Clustering statistics for the collection MIP in Sect. 5.4

Feature group Quality [%] Lk Small Large δk,p

Min. Max.

Variable bounds 91.28 23 7 1 6.57 22.03

Matrix coefficients 87.73 41 2 1 5.33 13.95

Matrix nonzeros 89.10 33 3 0 5.86 16.70

Decomposition 99.99 9 1 1 11.54 15.53

Row dynamism 91.70 17 3 3 9.85 18.12

Constraint classification 87.77 35 6 1 6.63 12.92

Objective nonzero density 93.17 9 0 1 9.95 14.01

Objective coefficients 96.51 43 2 3 4.39 23.05

Sides 98.33 35 10 0 1.00 18.77

Size 87.46 9 2 0 10.95 15.01

Variable types 95.26 7 0 1 8.89 13.54

We therefore counteract the problems of a high-dimensional feature space by using
multiple clusterings of the entire preselected instance set I pre according to disjoint
groups of features. Subsequently, we select instances such that they are balanced with
respect to each of these clusterings. This selection process is more complex and cannot
be achieved by simply picking uniformly from each cluster of each clustering. Instead,
we formulate a mixed integer optimization problem with approximate balancing con-
straints for each of the multiple clusterings.

Formally, for a given index setI of instances we have K different clusterings, i.e.,

I = Ck,1 ∪ · · · ∪ Ck,Lk (2)

for k ∈ K = {1, . . . , K }, with disjoint Ck,1, . . . ,Ck,Lk being a partition of the
index setI for every k. The number of clusters Lk is allowed to vary, since different
subsets of features may require a different number of clusters to achieve a high-
quality clustering. We denote the index set of all clusters by C := {(k, �) : k =
1, . . . , K , � = 1, . . . , Lk}. Furthermore, the cluster sizes contain outliers, which need
special treatment in order to avoid limiting the size of the resulting test set too much.
Hence, we partition the set of clusters into small, medium (regular-sized), and large
clusters and denote the respective index sets byS,M, andL ⊆ C, as follows. A cluster
Ck,l is denoted small if its size is less than half the average size of Ck,1, . . . ,Ck,Lk . On
the other hand, a cluster is treated as large if it is displayed as an outlier in a typical
boxplot. Concretely,Ck,l is considered large if its size exceeds the 75%quantile among
Ck,1, . . . ,Ck,Lk by more than 1.5 interquartiles.

For the selection of the MIPLIB 2017 collection, we use one clustering for each
of the K = 11 groups of instance features listed in Table 4. The clusterings of all
preselected instances (2182 instances) are computed using a k-means heuristic [26],
which yields a first family of clusterings denoted byK1 = {1, . . . , 11}.
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Table 8 gives insight into the result of this clustering process. It shows the total
number of clusters (value of Lk) for each feature group clustering. The quality column
describes the percentage of the total feature group distance between clusters. More
formally, for a clustering k ∈ {1, . . . , K } of instances, the quality of this clustering is

∑
i �= j∈I di, j − ∑Lk

�=1

∑
i �= j∈Ck,�

di, j
∑

i �= j∈I di, j
· 100%.

The value range of the above fraction is the interval [0, 1] such that the quality lies
between 0 and 100%. A clustering has a high quality if long distances between
instances are between different clusters. Note that for the distance computation for
the quality measure, only features contained in the corresponding feature group were
considered. The table shows that the quality of the clustering was at least 87% and
often significantly above 90%, yielding an average quality of 92%. The individual
value of Lk has been manually selected for every feature group as the minimum
integer L that admits a clustering with at least 90% quality over the set I sub (5666
instances) unless the targeted quality was not achievable using a reasonable amount
of clusters. In addition to the number of clusters Lk , the table presents the number of
small and large clusters, which are constrained less strictly than the medium clusters,
see Constraints (4a) and (4b) below.

The last two columns report the minimum and maximum total dissimilarity per
feature group. For each cluster (k, �) ∈ C, its total dissimilarity δk,� ≥ 1 is defined as
the shifted geometric mean of the pairwise Euclidean distances {di, j : i < j ∈ Ck,�}
between its instances, using a shift of 1. Here, distances are computed with respect to
the entire feature space, in contrast to the above cluster quality computation. Because
of the shift by 1, the smallest possible value of δk,� is 1, which only occurs for clusters
containing exactly one element, or for clusters that contain only instances which are
indistinguishable in the feature space. All cluster parameters from Table 8 enter the
selection constraints described in the next section.

For the selection of the benchmark set, we additionally use performance data to
hand-craft three clusterings for each of the eight participating solvers, which yields
additional clusterings K2 = {12, . . . , 35}, see Sect. 5.5 below.

5.4 Selection of theMIPLIB 2017 Collection

In the following, we describe linear formulations to enforce the requirements specified
by the committee. At this stage, the instance set was limited to the instancesI = I pre

left after the diversity preselection procedure. The set of clusterings K = K1 was
the one determined using the instance feature groups from Table 4.

To express balancedness, consider one clustering I = Ck,1 ∪ · · · ∪ Ck,Lk .
Naïvely, we would like to pick the same number of instances from each cluster, i.e.,∑

i∈Ck,�
xi ≈ yk for an auxiliary variable yk ≥ 0. However, enforcing this for all clus-

terings is highly restrictive. Furthermore, while the instances in each of the clusters
Ck,1, . . . ,Ck,Lk should be homogeneous with respect to the features that were used
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to compute clustering k, they may be heterogeneous with respect to the entire feature
vector. This interaction between different clusterings must be taken into account.

To achieve this,we consider the total dissimilarity of the clusters thatwas introduced
above. Arguably, from clusters with higher total dissimilarity, more instances should
be picked, i.e.,

∑
i∈Ck,�

xi ≈ δk,�yk . Introducing a tolerance parameter ε, 0 < ε < 1,
we arrive at the balancedness constraints

(1 − ε)δk,�yk ≤
∑

i∈Ck,�

xi ≤ (1 + ε)δk,�yk . (3)

Concretely, we used ε = 0.5 for the selection of the collection and the benchmark set.
In practice, we discard the left inequality for small clusters and the right inequality for
large clusters and use

∑

i∈Ck,�

xi ≥ (1 − ε)δk,�yk for all (k, �) ∈ C \ S, (4a)

∑

i∈Ck,�

xi ≤ (1 + ε)δk,�yk for all (k, �) ∈ C \ L. (4b)

Additionally, if two instances have identical feature vectors, then at most one of them
should be chosen , i.e.,

xi + x j ≤ 1 for all i, j ∈ I × I with i < j, di, j = 0. (4c)

At most five instances should be selected from each model group. If the model
group contains benchmark-suitable instances, at least one of those should be included
into the MIPLIB 2017 collection. Let I = G1 ∪ . . . ∪ GP denote the partition of
instances into different model groups, then this condition reads

∑

i∈Gp

xi ≤ 5 for all p = 1, . . . , P, (4d)

∑

i∈Gp∩B
xi ≥ 1 for all p = 1, . . . , P with Gp ∩ B �= ∅. (4e)

Furthermore, from each submitter at least one instance should be selected, i.e.,

∑

i∈Ss

xi ≥ 1 for all s = 1, . . . , S, (4f)

whereI = S1∪· · ·∪SS denotes the partition of instances with respect to S submit-
ters.

Finally, we imposed relative limits on a small number of specific subsets of
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Table 9 Instance sets for which relative limits on the selection apply, with limits shown for the collection
and benchmark MIPs individually. The Size columns show the size of this set within the respective ground
set the selection is based on. The parameter ρk is a relative limit on the allowed instances from this set in a
solution as specified by Constraint (4g)

k Sets Collection MIP (2182) Benchmark MIP (499)

Size ρk Size ρk

1 MiniZinc instances 484 0.05 14 0.05

2 NEOS instances 696 0.33 182 1.00

3 small (n ≤ 2000) 691 0.20 124 0.20

4 medium (n ≤ 10,000) 1309 0.50 290 0.50

5 BP (n = nb) 422 0.20 109 0.20

instances, Rr ⊂ I , by requiring

∑

i∈Rr

xi ≤ ρr
∑

i∈I
xi for all r ∈ {MiniZinc, NEOS, small, medium, BP}. (4g)

The concrete values for ρr , for both the collection MIP and the benchmark MIP
described in Sect. 5.6, are given in Table 9. The numbers in parentheses show the size
of respective ground setsI pre andI col∩B, fromwhich instances were selected. The
number of instances from theNEOSserverwas limited by the committee because of the
lack of reliable information on their application and model background. Purely binary
problems (BP) were limited because they often represent academic applications such
as combinatorial puzzles, but less often occur in industrial, “real-world” instances. The
limit ensures that enough actual mixed integer instances are selected for the collection
and benchmark sets. For the groups in Table 9 that refer to instance features, the
features are always evaluated after trivial presolving.

Subject to those constraints, our objective was to include as many instances as
possible, preferring benchmark-suitable instances. Hence, we formulate the collection
MIP as the mixed binary optimization problem

max
{ ∑

i

βi xi : (4a) − (4g), x ∈ {0, 1}I pre
, y ∈ R

K≥0

}
, (5)

with objective cofficients β to prefer benchmark-suitable instances,

βi =
{
2, if i ∈ B,

1, otherwise.

We solved the collection MIP over the ground setI pre of 2182 instances (after diver-
sity preselection). Despite our efforts to remove obvious duplicates, there remained
48 pairs of instances in I pre with a feature distance of zero. From each such pair, at
most one instance was selected for I col because of Constraint (4c). We obtained the
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Table 10 Influence of the parameter ε used in Constraints (4a) and (4b) on the number of instances selected
for the collection set. The second row reports how many of the selected instances are benchmark-suitable

ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Selected instances – – 740 946 1065 1110 1125 1140 1140

Benchmark-suitable – – 355 465 499 546 560 561 564

MIPLIB 2017 collection I col, which comprises 1,065 instances, 499 of which are
benchmark-suitable.

The choice of the balancedness parameter ε used inConstraints (4a) and (4b) clearly
plays a central role in the formulation of the collection MIP. In order to analyze the
sensitivity of the result to this parameter, we solved the collection MIP for different
values of ε. Table 10 reports on the sizes of the resulting collection sets. The smallest
tested value of 0.1 makes the collection MIP infeasible, while the second smallest
value of 0.2 did not return with a feasible selection after 15 minutes. For larger values
of ε, the collection MIP is feasible and can be solved reasonably quickly. The number
of selected and benchmark suitable instances increases along with the balancedness
parameter and allows us to control the number of selected and benchmark-suitable
instances.

5.5 Performance clusterings

In addition to instance features that depend exclusively on instance data, computational
difficulty is an important aspect to consider for the benchmark set. We assessed the
computational difficulty of every instance empirically by considering the performance
data of the eight tested solvers (see Sect. 4.6). To quantify performance, we considered
a matrix of running times tw,i > 0 for each solver w ∈ W := {1, . . . ,W } and
instance i ∈ I . If w could not solve the instance i , tw,i was set to the time limit of 4
h. We denote by Iw ⊆ I the set of instances that were solved by w within the time
limit.

For each of the participating solvers, we created three different clusterings of the
instances to capture different aspects of performance. The base set I for these clus-
terings are the 499 benchmark-suitable instances within the MIPLIB 2017 collection,
i.e.,I = I col∩B. The overall goal was to avoid a biased selection of instances, i.e.,
to avoid that the absolute and relative performance of a solver on the benchmark set
appears different than on I col. Each of the three clusterings avoids a different bias.

Absolute performance clustering The first clustering uses an absolute performance
ranking. For each solver w, we sorted the instances in Iw according to increasing
running time tw,i . For a fixed number of clusters B, which we set to B = 11, we
grouped the instances in Iw into B equally-sized clusters w.r.t. increasing rank, i.e.,
we assigned the instances solved fastest to the first cluster, the next fastest set of
instances to the second cluster, …, and the slowest instances to the last cluster, so that
each cluster contained approximately |Iw|/B instances.
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The instances inI \Iw that could not be solved by solver w seem indistinguish-
able with respect to performance. However, it could be that the solution process was
terminated only seconds prior to concluding the proof of optimality, or that the solu-
tion process would have continued unfinished for days or even months. We took this
into account by inspecting the performance of the other solvers and formed two more
clusters from those instances: instances that could be solved by exactly one solver and
instances that could be solved by more than one solver. The case that instances could
be solved by no other solver does not appear since such instances are not benchmark-
suitable (Definition 2, Criterion (B.1)).

Relative performance clustering In contrast to the absolute performance clustering,
the instances were ranked based on relative solver performance for a second clustering
as follows. To this end, we defined the relative performance of solver w on instance i
with respect to the other solvers as

t relw,i := tw,i + σ

min
w′ �=w

tw′,i + σ
, (6)

where σ ∈ R≥0 is a nonnegative shift as in the computation of shifted geometric
means. Relative performance locates the individual solver performance relative to all
other solvers on an instance, regardless of the absolute scale. The motivation is that
solvers and solver improvements are traditionally measured by the shifted geometric
mean instead of the arithmetic mean. For the instances that could be solved by this
solver, we used this ranking to define B equally-sized clusters in the same fashion as
with the absolute performance ranking. The timeout instances were again divided into
two further clusters of instances that could be solved by exactly one and by more than
one other solver, respectively.

Binned absolute performance clustering The third clustering uses absolute solving
time directly, partitioning possible solving times into B ′ = 7 intervals

[T0 = 0, T1), [T1, T2), . . . , [TB′−1, TB′), (7)

whose breakpoints are equal for all solvers. The concrete bin width used grows expo-
nentially as follows.

Tj = 10−3.5+0.5 j · 14400, j = 1, . . . , 7.

Hence, the righmost bin T7 has the time limit of 4 h as right breakpoint. Then for
each solver w ∈ W we formed B ′ clusters {i ∈ Iw : tw,i ∈ [Tj−1, Tj )}, j =
1, . . . , B ′. Empty clusters were discarded. This is different from the absolute and
relative performance clusterings in that it partitions the instances solved by a solver
into clusters that differ in size. The instances in I \ Iw, which could not be solved
by solver w, were again treated as two further clusters as above.

All in all, this led to 24 clusterings,K2 = {12, . . . , 35} The ranking-based cluster-
ings yield approximately equal cluster sizes overIw, but these cluster sizes may differ
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to the ones onI \Iw. The binned absolute performance clustering does not control
cluster size and may yield very unequally sized clusters. In the following benchmark
MIP we picked from the performance clusters according to their size, i.e., we use
δk,� = |Ck,�| for all k ∈ K2 in Constraint (4a) and (4b).

In the case of SCIP, as an example of an absolute performance clustering, each of the
11 parts contained between 20 and 22 instances, and the remaining 263 instances were
split into 58 instances which could only be solved by one solver, and 205 instances
solved by at least two solvers. Although the absolute and relative performance clusters
were, by design, almost equal in size, we observed quite different partitions of the
ground set. An example is the fastest relative performance cluster for SCIP, which
shares 8 of its 21 instanceswith the fastest absolute cluster. The remaining 13 instances,
for which SCIP was particularly fast compared to its competitors, were spread across
8 of 10 possible absolute clusters. This shows that, to some extent, the two suggested
clusterings exhibit an almost orthogonal instance partition.

5.6 Selecting theMIPLIB 2017 benchmark set

The benchmark set was selected from the ground set of benchmark-suitable instances
in the MIPLIB 2017 collection, I = I col ∩ B. The balancedness constraints (4a)
and (4b) are now defined using instance feature and performance clusterings, K =
K1 ∪ K2. The rationale is that the current performance of solvers in the collection
should be reflected by the performance on the benchmark set in order to avoid any
unintentional bias towards a solver during the selection of instances. The relative limit
constraints (4g) are kept, but the restriction on instances from the same model group is
reduced to one instance from NEOS groups and two instances, otherwise. The stricter
limit on NEOS instances is imposed because little information is available for these
anonymously submitted instances and the chance for duplicate instances in the same
model group is deemed higher.

In addition, executing one benchmark run on this test set should be possible within a
reasonable time frame on modern hardware, possibly a compute cluster. We specified
a total time limit τ of 32 days for running the benchmark set with a hypothetical solver
with median running times capped to a time limit of 2 h, i.e., t̄i := min{median{tw,i :
w ∈ W }, 7200}. The resulting benchmark MIP reads

max
∑

i

βi xi (8a)

s. t. (4a), (4b), (4g),
∑

i∈Gp

xi ≤
{
1
2

for all p = 1, . . . , P from NEOS,

otherwise,
(8b)

∑

i∈I
t̄i xi ≤ τ, (8c)

x ∈ {0, 1}I , (8d)

y ∈ R
K≥0. (8e)
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This approach has a potential drawback. Representing current solver performance
may overly favor instances that are tractable by current solver technology. This is
opposed to one main goal of the MIPLIB project, which is to provide a test bed that
drives solver development forward. Hence, we used the objective coefficient

βi := 1 + 1

20

√
min
w∈W

tw,i (9)

for instance i ∈ I . This favors instances that are challenging even for the virtual best
solver. The concrete choice of the square root was empirically motivated.

Using I col ∩ B containing 499 instances as ground set, we solved the bench-
mark MIP that respects all feature group and performance clusterings. The solution to
the benchmark MIP contained 240 instances and now constitutes the MIPLIB 2017
benchmark setI bench. We note that the imposed running time constraint (8c) was not
tight on our performance data. A solver with median running times and a time limit
of 2 h would take about 14 days to process all benchmark instances sequentially.

We also note that for several reasons, the goal of representing computational dif-
ficulty in the reduced benchmark set cannot be achieved perfectly and is not even
well-defined: The performance data is only a snapshot of current algorithms. It was
gathered using a time limit, performance variability and parallel scalability were not
captured, and correctness was only enforced approximately with respect to the toler-
ance parameter ε. Last but not least, the different performance clusterings may even
contradict each other. However, we hope that it helps to avoid unintentionally and
unconsciously introducing a bias both towards instances of a particular difficulty and
towards any of the solvers.

6 The final collection and benchmark sets

The MIPLIB 2017 collection I col has been compiled with a focus on a balanced
and diverse representation/coverage of the feature space. The benchmark set I bench

incorporates similar requirements also for the performance data. This section discusses
the feature and performance aspects of the compiled sets.We also assess the descriptive
power of the feature space by (re-)detecting known model group associations.

6.1 Representation in feature space

A frequent question during the discussions about the MIPLIB 2017 compilation pro-
cesswaswhether the choice of features and their scaling is able to distinguish instances
in a useful way. Ideally, two instances based on the same model for the same appli-
cation, but with different data, should be close to each other in the feature space,
regardless of variations of, e.g., the size of the matrix. For MIPLIB 2017, we have two
sources to assess similarity between instances, namely their distances in feature space
and the model groups G from Sect. 3.4. In this paragraph, we evaluate the descriptive
power of the feature space by comparing similarity in feature space and model group
association of instances.
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Let X denote the instances in the MIPLIB 2017 collection (|X | = 1065). The
complete graph KX = (X , E) on the vertex set X has |E | = (|X |

2

) = 566, 580 edges.
Now consider two subsets of the edges. Let EG denote edges between instances from
the same model group. Furthermore, let for every x ∈ X , Sx ⊂ X \ {x} denote the
set of five most similar instances to x in the collection w.r.t. the distance in the scaled
feature space. With the sets Sx , we define ES to be the set of similarity edges as

ES := {(x, y) ∈ E : x ∈ Sy or y ∈ Sx }.

Note that x ∈ Sy does not necessarily imply the opposite containment y ∈ Sx , but
holds in many cases. The actual cardinalities of the two sets are |EG | = 1327 and
|ES | = 3747 andhence comprise less than1%of the total edge set. Indeed, computing
the probability for an edge e that was selected uniformly at random from E to be a
similarity edge is

P(e ∈ ES ) = |ES |
|E | ≈ 0.007

Now what is the probability that a group edge is also a similarity edge? This question
can be answered by computing the conditional probability

P(e ∈ ES | e ∈ EG ) = P(e ∈ ES ∩ EG )

P(e ∈ EG )
= |ES ∩ EG |

|EG | = 974

1327
≈ 0.734.

The majority of group edges is contained in the similarity set, and the probability for a
group edge to be a similarity edge is more than 100 times higher than for a randomly
selected edge.

Recall from Sect. 3.4 that the model groups have been partially derived from the
feature data. For submissions from the NEOS server, which have an unknown origin,
clustering has been used to group similar NEOS instances into pseudogroups. If we
omit all NEOS instances from the above computations (by considering the complete
graph KX\XNEOS with 714 vertices), the probability for an edge to be a similarity edge
is about the same,P(e ∈ ES ) ≈ 0.008, whereas the conditional probability of a group
edge to be a similarity edge is ≈ 0.815 and hence even higher than for KX .

From this observation, we conclude that the feature space has been designed suf-
ficiently well for the clustering approach. In fact, the used feature space recovers the
model group data better than we expected. Even for an instance that does not belong to
a dedicated model group or lacks bibliographical information, the similarity to other
model groups can yield interesting hints at the type and application of this instance.
Therefore, the web page of MIPLIB 2017 (see also Sect. 6.3) allows to browse the
five most similar instances for every instance of the MIPLIB 2017 collection.

Figure 5 uses t-SNE [50] to give a spatial impression of the locations of theMIPLIB
2017 benchmark set, the benchmark-suitable instances, and the collection, relative to
each other in feature space. The distance computation is based on the feature vectors
after they have been scaled over the entire set of submissions. Note that there is a
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MIPLIB 2017

Benchmark Set (240)

Benchmark−suitable (499)

Collection (1065)

Fig. 5 Two-dimensional embedding of the distances in the feature space using t-SNE

subset relation for those sets, i.e.,

Benchmark Set � Benchmark-suitable � Collection,

such that the plot only shows the innermost setmembership for every instance. Figure 5
shows that benchmark-suitable instances cover the majority of the feature space that
is comprised by the collection except for a few regions.

6.2 Solver performance

One of the goals ofMIPLIB has always been to provide a representative set to measure
and compare solver performance. In this section, we analyze the solver performance
on the collection, and in particular on the new benchmark set of 240 instances. For
this analysis, we use the computational results obtained during the 4 h runs conducted
for the selection process. Note, however, that in this article, solver performance is not
reported directly for several reasons. One reason is that due to hardware restrictions,
not all runs could be performed exclusively on the same hardware, and should hence
not be reported in a way that could be confused for an actual benchmark. Again, the
individual results are aggregated into the virtual best solver, i.e., a solver that always
finishes as fast as the fastest actual solver for each individual problem instance.

In Fig. 6, we compare the performance of this virtual best solver on the benchmark
sets of MIPLIB 2010 and 2017. One of the motivations for the creation of MIPLIB
2017 was the demand for a harder benchmark set. As a consequence of Definition 2,
the virtual best solver solves all instances within 4 h (or 14,400 s) as this is one of
the criteria for benchmark suitability. The plot shows that the majority of the old
benchmark set can be solved by the virtual best solver in less than 100 s, and that there
is no instance left where the virtual best solver requires 1 h or more. By contrast, the
benchmark set of MIPLIB 2017 is much more demanding, as a significant portion of
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Fig. 6 Minimum solving time in seconds of the benchmark sets of MIPLIB 2010 and MIPLIB 2017

Table 11 Percentage of
benchmark instances that could
not be solved within 1–4 h by the
virtual best and median solvers

Virtual median Virtual best

2010 (%) 2017 (%) 2010 (%) 2017 (%)

> 1 h 17.2 66.7 0 19.6

> 2 h 12.6 61.7 0 8.8

> 3 h 6.9 51.2 0 4.2

> 4 h 5.7 48.3 0 0.0

The percentages are relative to the individual benchmark sets (2010:
87 instances, 2017: 240 instances)

instances lies at the right end of the scale. Due to its increased size, the bars for the
MIPLIB 2017 benchmark set lie almost consistently above the ones for the previous
set. The MIPLIB 2017 benchmark set covers much more of the relevant performance
scale than its predecessor covers nowadays. Note that theMIPLIB 2010 benchmark set
appearing easy is an impressive result of 7 years of continuous solver improvements.

Table 11 shows the percentage of instances of the respective benchmark set (2010
or 2017) for which the virtual best solver takes longer than a certain time threshold,
which we vary between 1 and 4 h. As mentioned before, all instances of the 2010
benchmark set could be solved within 1 h by the virtual best solver. The table shows
that among the new benchmark set, almost 20% of the instances cannot be solved
within 1 h by the virtual best solver. Along with the virtual best solver, Table 11 also
shows the performance of the virtual median solver, based on the median solution
time over the eight involved solvers. Since the number of involved solvers is even, the
median is computed by averaging the timing result of the two solvers ranking 4th and
5th for each instance individually. Therefore, the virtual median solver is faster than
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half of the solvers. On the MIPLIB 2010 benchmark set, 17.2% of the instances are
not solved within 1 h by the virtual median solver. In contrast to the virtual best solver,
the virtual median solver still times out after 4 h on 5.7% (5 of 87) instances even
on the 2010 benchmark set. On the MIPLIB 2017 benchmark set, the virtual median
solver needs more than 1 h on two thirds of the instances, and still needs more than 4
h of solving time on almost 50% of the instances.

In Fig. 7, the fraction of instances solved by the virtual median solver as a function
of time is shown. The figure shows the corresponding curves for the MIPLIB 2017
collection of 1065 instances, the set I col ∩ B of 499 benchmark-suitable instances,
and the MIPLIB 2017 benchmark set (240 instances). Recall that an instance is only a
candidate for the benchmark set if it takes the virtualmedian solver at least 10 s to solve
it, which is also visible from the plot. As minimum for any time measurement, 0.5 s
were used, which is visible in the curve of the MIPLIB 2017 collection. The objective
function for the benchmark set was designed to prefer harder instances. The effect of
this design choice is visible in the figure, in which the percentage of solved instances
of the benchmark set consistently lies below the curve for the 499 benchmark-suitable
instances. The slope of the curve for the collection is approximately linear for about
90% of the visible area. Due to the logarithmic scaling of the horizontal (time) axis,
this suggests that to a certain extent, the solving behavior of the virtual median solver
can be approximated by fitting a logarithmic function. Note that the clear change in
behavior of the curves, which are otherwise almost logarithmic, towards the right end
of the scale is an artifact from the median computation, which weighs in as soon as the
4th solver could still solve the instance, but the 5th solver couldn’t. Their timings can
even be very different. On the instance blp-ic98, the four best performing solvers
finish within 1700 s, while the fifth solver times out after 4 h. The median solver
therefore has a performance of 8050 s. All individual curves of the actual solvers
tested have a similar, almost logarithmic shape without the median artifact.

Statistically speaking, the curves in Fig. 7 describe empirical cumulative density
functions (CDF) of the random variable that represents median solving time for an
instance. The Kolmogorov–Smirnov (KS) test is a statistical approach to measuring
the similarity between a pair of CDF F1, F2. To this end, the KS test measures the
maximum vertical distance.7 D between F1 and F2. With increasing D, the likelihood
decreases that F1 and F2 represent samples from the same distribution. In order to
further quantify the hardness of the benchmark set, a KS test has been performed for
every solver, comparing its individual CDF pair on the benchmark set and the set of
benchmark-suitable instances. As alternative serves the hypothesis that the CDF of
the benchmark set lies below the CDF of the larger set.

For the performance of the virtual median solver as depicted in Fig. 7, the distance
D is approximately 0.10, which results in a p value of 0.04. A much smaller p-value
of 6.513 · 10−5 is obtained for the virtual best solver at a distance of D = 0.17. For
four of the actual solvers, the maximum D is larger than 0.1, and the accompanying
p value is smaller than 1%. This is significant evidence that for those solvers, the
benchmark set has been selected as a particularly hard selection among all suitable
instances. For the other four solvers, the value of D is smaller, which in turn results

7 This distance D is the supremum norm supx∈R |F1(x) − F2(x)|.
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Fig. 7 Virtual median solver performance on subsets of the MIPLIB 2017 collection

in larger p-values (each greater than 0.1). Note that even here, the curves of the CDF
on the benchmark set tends to undercut the CDF of the set of suitable instances, but
this discrepancy is not large enough to render the KS test significant. Hence, for those
four solvers, the performance curve is more or less representative of the CDF over
all suitable instances. The results show that the selection methodology has achieved
both its conflicting goals, hardness and representability, with respect to the solver
performance, equally well.

6.3 TheMIPLIB 2017Web Page

For the release of MIPLIB 2017, the web page http://miplib.zib.de has been written
from scratch and received a modern design. The main page shows the current status of
instances regarding the categories easy, hard, and open. The two main tables list the
instances of the MIPLIB 2017 collection and benchmark set together with some key
properties, their model group, and their optimal or best known objective value. All
tables use tags on the instances to highlight certain properties thatmaybe interesting for
researchers, such as pure feasibility instances with no objective function, instances for
which good decompositions are known, instances with critical numerics, the presence
of indicator constraints, etc. It is possible to search and filter for instances by name,
status, model group, or tag, or to sort the table by column.

The individual instance pages offer a short description of each instance and biblio-
graphical information. Also, more information on the constraint mix of each instance
before and after presolving is displayed, aswell as decomposition information, if avail-
able. Finally, the optimal or best known solutions for every instance are displayed, as
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well as the five most similar instances as explained in Sect. 6.1. The web page also
offers additional downloadable content, including

– the MIPLIB 2017 collection and benchmark sets,
– lists of instances with certain tags,
– available solutions,
– optimal/best known objective values for all instances,
– the collection and benchmark MIPs,
– the feature extractor, and
– bash scripts to run and validate solver performance experiments.

Some of the tags may change over time, such as the instances that fall into the
categories easy, medium, and hard. Also, best known objective values are naturally
changing or eventually proven to be optimal. Therefore, we provide versioned files for
accurate referencing. The versioned files are periodically updated. All downloadable
solutions are checked for feasibility with the solution checker from Sect. 4.7. Also,
their exact solution values after fixing all integer variables are computed using SoPlex
with iterative refinement. The actual collection and benchmarkMIPs are also available
for download. Obviously, these instances cannot be part of the actual collection and
benchmark sets, respectively, since their presence would alter the feature space and
hence their own formulation. Contributions in terms of updated bibliographic infor-
mation or corrections to the instance descriptions are very welcome. In particular, we
are constantly accepting and checking improving solutions to the open instances of
the MIPLIB 2017 collection. In contrast to previous MIPLIBs, not only new optimal,
but any improving solution will be considered for the periodic update of the page data.
Improving solutions should be sent to the maintainers of the page, together with a
description of how they have been obtained. Note that every submitted solution must
adhere to the format accepted by the MIPLIB solution checker (Sect. 4.7), which is
also available on the web page.

7 Conclusion

The sixth version of MIPLIB has, as was the case in previous updates, significantly
increased in size compared to its predecessors. The distinction between a dedicated
benchmark set and the entire collection, which was introduced with MIPLIB 2010,
has been preserved. These sets now contain 240 and 1065 instances, respectively.
The process of how to reduce the initial submission pool of over 5000 instances to a
balanced selection of this size, however, has been completely redesigned. Beyond the
new MIPLIB 2017 itself, the development of this fully data-driven and optimization-
based methodology is the main contribution of this paper.

We propose two related MIP models that have successfully provided decision sup-
port for the selection process to the MIPLIB committee. One key ingredient of this
approach is the definition of a feature space covering more than a hundred different
dimensions for characterizing a MIP instance. In order to ensure a balanced selection
with respect to these features and, for the benchmark set, with respect to performance
data, we advocate the use of multiple instance clusterings over partitions of the fea-
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ture vector. A comparison with manually assigned model groups available from meta
data of the submissions shows the high descriptive power of the used feature space.
By approaching the selection problem as a MIP that encodes a balanced, simultane-
ous selection from each such clustering, the collection and benchmark MIPs provide
the flexibility to incorporate both feature coverage and performance requirements as
well as other restrictions from the comittee. Besides improving the final outcome, this
formalization of the selection criteria has served to increase the transparency of the
selection process.

While the selection methodology proposed here is not intended as a general
blueprint for construction of test sets, we hope that parts of the process of constructing
the MIPLIB instance sets may apply to the curation of other test sets in the future.
Certainly, many variations and adjustments of the approach are possible. Not only
the chosen constants or heuristic clustering methods can be adapted, but also the role
of objective function and constraints may be redefined. Furthermore, the interplay
between the main selection models and the diversity preselection offers potential for
variation. For example, a different approach may directly select and fix a number of
instances with maximum diversity from each large model group for the collection and
afterwards complete the collection with instances from smaller groups and instances
with no knownmodel group association. In light of these degrees of freedom andmany
ad hoc decisions that had to be made in advance, the final result is clearly only one
of many possible and justified outcomes. However, we believe that the collection and
benchmark sets presented in this paper are a profound attempt to provide the research
community with test sets that represent the versatility of MIP.

One of the main characteristics of the benchmark set is that it provides a snapshot
of current solver performance. Our hope is that the performance of solvers on this
benchmark set will serve as a sort of bellwether for progress in the field of mixed
integer optimization as a whole in the coming years. As future work, we propose
to assess the performance representability of the benchmark set from hindsight, i.e.,
by comparing speed-ups for entire model groups as well as for the selected instances.
Such data will finally allow to better compare different (pre-)selection models such as,
e.g., the one presented here that favors diversity to a different one that selects nearest
neighbors and maximizes representability.

Another benefit of our MIP-based selection process is the fact that the MIP mod-
els can be used to approach questions beyond the initial creation of the test set.
One example is the following case, in which it occurred that benchmark instances
needed to be replaced as new computational data became available. Despite all the
care that was taken to exclude numerically critical instances from the benchmark set,
problematic numerical properties of the two instances neos-5075914-elvire
and neos-3754224-navua remained undetected during the selection process.8 A
variant of the benchmark selection MIP was used to compute a minimal update of
the benchmark set that exchanges the discussed instances while preserving the bal-

8 Both instances are at the border between feasibility and infeasibility, but at the time of collecting solution
data no inconsistencies could be observed. For the first instance, two solvers agree on the optimal solution
value although the instance shouldmathematically be infeasible. The second instance has only been declared
infeasible byone solver during the selectiongprocess;we received a solution that is feasiblewithin tolerances
half a year after the original publication of the benchmark set.
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ancedness requirements. An accordingly updated version of the benchmark set was
published in June 2019.

Finally, by the time of this writing, the challenges of MIPLIB 2017 collection have
already attracted a wide audience. In fact, we have received many new solutions to
previously open instances. While some of those optimality or infeasibility proofs have
been obtained by the use of massively parallel codes such as the Ubiquity Generator
framework [46,47], other instances inspired the development of customized cutting
plane approaches, or even a rigid mathematical proof of infeasibility without any code
in the case of the instance fhnw-sq3. In total, 68 originally open instances have
already been solved.9 We are looking forward to further contributions and many more
years (and versions) of MIPLIB to come.
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