
MANAGEMENT SCIENCE
Vol. 57, No. 4, April 2011, pp. 647–666
issn 0025-1909 �eissn 1526-5501 �11 �5704 �0647

informs ®

doi 10.1287/mnsc.1100.1302
©2011 INFORMS

Integrated Sequencing and Scheduling in
Coil Coating

Wiebke Höhn, Felix G. König, Rolf H. Möhring
Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany

{hoehn@math.tu-berlin.de, fkoenig@math.tu-berlin.de, rolf.moehring@tu-berlin.de}

Marco E. Lübbecke
Department of Operations Research, RWTH Aachen University, 52056 Aachen, Germany,

marco.luebbecke@rwth-aachen.de

We consider a complex planning problem in integrated steel production. A sequence of coils of sheet metal
needs to be color coated in consecutive stages. Different coil geometries and changes of colors necessitate

time-consuming setup work. In most coating stages one can choose between two parallel color tanks. This can
either reduce the number of setups needed or enable setups concurrent with production. A production plan
comprises the sequencing of coils and the scheduling of color tanks and setup work. The aim is to minimize the
makespan for a given set of coils. We present an optimization model for this integrated sequencing and schedul-
ing problem. A core component is a graph theoretical model for concurrent setup scheduling. It is instrumental
for building a fast heuristic that is embedded into a genetic algorithm to solve the sequencing problem. The
quality of our solutions is evaluated via an integer program based on a combinatorial relaxation, showing that
our solutions are within 10% of the optimum. Our algorithm is implemented at Salzgitter Flachstahl GmbH, a
major German steel producer. This has led to an average reduction in makespan by over 13% and has greatly
exceeded expectations.

Key words : sequencing; scheduling; integrated steel production; coil coating; 2-union graphs; independent set;
branch-and-price

History : Received March 12, 2010; accepted November 17, 2010, by Dimitris Bertsimas, optimization.

1. Introduction
Almost every stage in integrated steel production
requires solving a sequencing problem as subprob-
lem, that is, deciding about a good order of steel slabs
or coils in which they should be processed, e.g., for
the melt in the blast furnace or when rolling slabs in
the hot and cold rolling mills to coils, to state only two
examples. In all of these problems, however, sequenc-
ing is only one part of devising a complete production
plan: For a given processing sequence, a schedule for
performing certain tasks on workpieces or machinery
also needs to be computed. The nature of this schedul-
ing problem often depends largely on the processing
sequence; hence, the quest for good sequences can be
answered accurately only by taking into account the
cost of the ensuing scheduling problem as well. In this
paper, we deal with the final processing step in sheet
metal production, the coating of steel coils, which
may be seen as a prototype of such an integrated
problem: In addition to sequencing coils, a challeng-
ing concurrent setup scheduling (CSS) problem needs to
be solved, and both problems strongly interdepend.
The coil coating process plays an essential role in

shaping steel producers’ extremely diverse product

portfolio: The coils used for home appliances, for
instance, already have their typical white coating
when bought from the steel supplier, and the sheet
metal used for car bodies already has an anti-
corrosion coating before it arrives at the automotive
plant for pressing. Already in the 1960s, associations
were formed to promote the evolution of coil coating.1

Progress in the development of new and improved
coating materials and techniques fosters an ongoing
diversification in precoated metal products, and in
recent years, coil coating has been investigated from
chemical and engineering perspective in several pub-
lications, e.g., Delucchi et al. (1999), Deflorian et al.
(2000), Duarte et al. (2005), and Zhang et al. (2009).
As is typical for paint jobs, the coil coating pro-

cess may be subject to long setup times, mainly for
the cleaning of equipment, and thus very high setup
cost. To reduce this cost, modern coil coating lines are
equipped with so-called shuttle coaters or quick (color)
change coaters, offered by different manufacturers as
standard machinery; see, e.g., GFG Peabody, Bronx

1 http://www.coilcoating.org/; http://www.prepaintedmetal.eu/.

647

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
648 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Figure 1 Coils of Different Widths as They Are Processed in the Coating Line (from Left to Right)

Tank 1

Roller changes

Roller and
color change

Color changes
Concurrent
roller and

color change
Tank 2

Tank 1

(b) Solution for a shuttle coater(a) Solution for a classical coater with only one tank

Note. Setup work (such as color or roller changes to be defined later) has to be performed whenever a coil has to be coated with a different coating or is wider
than its predecessor on that tank.

International, or SMS Siemag.2 Shuttle coaters possess
two separate tanks allowing for holding two differ-
ent coating materials at the same time. The advan-
tage is twofold: The shuttle can be used to switch
between two coatings on the same coater at (essen-
tially) no setup cost, or alternatively the unused tank
can be set up while coating continues from the other
tank in the meantime. We refer to this possibility to
perform setup work during production, which is some-
what uncommon in scheduling literature, as concur-
rent setup; see Figure 1 for an illustrative example.
Literature regarding optimization in the planning

process for coil coating is scarce at best; to the best
of our knowledge, only Tang and Wang (2009) con-
sider planning for a coil coating line. They apply tabu
search to a rather basic model without shuttle coaters.
The present work is the first incorporating shuttles
and concurrent setup work in a thorough mathemat-
ical investigation.
Our work is concerned with a somewhat standard

coil coating line as operated by many major steel com-
panies worldwide, consisting of a primer and a fin-
isher, each comprising two coaters to coat the top
and bottom sides of a coil (cf. Meuthen and Jandel
2005, Delucchi et al. 1999). Each of the coaters may
or may not be a shuttle coater, whose introduction
significantly changes the flavor and the complexity
of production planning: Which tank do we use for
which coil, and how do we schedule concurrent setup
work without exceeding available work resources?
We aim to find a sequence (the order of the coils)
and a schedule for that sequence (the tank assignment
and scheduling of setup work) that minimizes a joint
objective (the makespan).
To precisely capture the scheduling step, we intro-

duce the concurrent setup scheduling problem, which
also fits other applications involving concurrent setup.
By relating it to the independent set problem in cer-
tain generalized interval graphs called 2-union graphs,
we obtain a dynamic program running in polynomial
time for any fixed number of shuttle coaters, while

2 http://www.gfg-peabody.com/; http://www.bronxintl.com/; http://
www.sms-siemag.com/en/1577.html.

proving NP-hardness when this number is part of
the input. Moreover, we prove corresponding results
for the independent set problem in special 2-union
graphs, which are of interest in their own right.
The dynamic program inspires a fast and good

heuristic for concurrent setup scheduling, which we
embed into a genetic algorithm for sequencing. Alto-
gether, we develop a practical heuristic that solves the
integrated sequencing and scheduling problem and
computes a detailed production plan for the coil coat-
ing line. The quality of our plans is assessed with
the help of an integer program, which we solve by
branch-and-price.
Our algorithm has been added to PSI Metals’ plan-

ning software suite,3 and is currently in use on a coil
coating line with shuttle coaters at Salzgitter Flach-
stahl GmbH,4 Germany (SZFG for short). There, it
yields an average reduction in makespan by over
13% compared to the previous manual planning pro-
cess. In addition, our lower bounds suggest that the
makespan of the solutions computed by our algo-
rithm is within 10% of the optimal makespan for typ-
ical instances.5 Because most setup cost calculations
are incorporated into our methods as a black box, our
algorithm can be adapted easily to other coil coating
lines with different setup rules and a different number
of shuttle coaters.

2. Problem Formulation
Steel coils are a highly individualized product, and
all nonproductive time in coil coating depends on
certain characteristics of coils. They usually have a
length of 1–5 km, and their central attributes are nat-
urally the coatings they receive in the four coating
stages, chosen from a palette of several hundreds,
and their width, usually 1–1�8 m. More intuitively, we
will henceforth refer to coating materials as colors.
We refrain from listing further coil attributes, because

3 http://www.psimetals.de/en/.
4 http://www.salzgitter-flachstahl.de/en/.
5 This success has made this contribution a finalist of the 2009
EURO Excellence in Practice Award.

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 649

their list is very long; yet all relevant information is
included in our calculations.
For a concise description of the optimization task,

we shall briefly familiarize the reader with some coil
coating terminology:
• A coater comprises all machinery necessary for

applying one of the four layers of color to the coils,
primer and finish on top and bottom.
• A tank holds the color currently in use at a coater,

and each tank has its own rubber roller for applying
the color to the coil.
• Naturally, a coater has at least one tank. A shuttle

coater has two tanks, each with its own roller, which
can be used alternatingly to apply color.
• A color change refers to cleaning a tank and filling

it with a new color. A roller change needs to be per-
formed when a coil with smaller width is preceding
a coil with larger width on the same tank: Because of
the wear the roller incurred at the edges of the former
coil, the coating of the latter would bear imperfections.
Before entering production, each coil is unrolled

and stapled to the end of its predecessor. To bridge
nonproductive time during setups, scrap coils are
inserted in between actual coils, so essentially a never-
ending strip of sheet metal is continuously running
through the coil coating line. After undergoing some
chemical conditioning of their surface, the coils run
through a top and bottom primer coater, an oven, a
top and bottom finish coater, and through a second
oven. In the ovens, the respective coating layers are
fixed. After the coating process, the coils are rolled up
again, now ready for shipping. A schematic view of a
typical coil coating line is depicted in Figure 2.
An instance of our optimization problem comprises

a set �n� �= �1� � � � �n� of coils to be coated. For the
account in this paper, each coil j is characterized by
its colors c

	k

j ∈ � on coaters k = 1� � � � �m, its width

wj ∈�+, and its processing time pj ∈ �+, the time it

Figure 2 Schematic View of a Coil Coating Line with Chemical, Primer, and Finish Coater

Chem coater

Sling
buffer

Sling buffer

Primer coater

Finish coater

Oven

Oven

Note. Here, the chemical (chem) and the bottom finish coaters are standard coaters; the remaining have shuttles.

takes for j to pass any given point on the coating
line. Note that even though a coil passes the different
stages of the coating line one after the other, it is fea-
sible to think of a coil as being processed at all stages
at once, because the time it takes a section of a coil to
get from one stage to the next is negligible compared
to coil lengths.
The optimization goal is to minimize the makespan

for coating the given set of coils, i.e., the completion
time of the last coil in the sequence. This is essentially
equivalent to minimizing nonproductive time, or cost,
in the plan, which ensues for two reasons:
Transition Coils. To satisfy certain technical restric-

tions, transition coils of different lengths, widths, etc.,
may be required in between two consecutive coils in
the sequence. The duration of transition coils neces-
sary for each pair of coils 	i� j
 ∈ �n�×�n� if run consec-
utively is explicitly specified in an instance as sloc	i� j
,
and we refer to it as local cost.
Setups. Setups comprise color or roller changes.

Both require roughly the same amount of time,
denoted by t. If coils i� j ∈ �n� are run consecutively
on the same tank of a coater k, setups of total length
s	k
	i� j
 = s

	k

cc 	i� j
 + s

	k

rc 	i� j
 have to be performed in

between, comprising the sum of durations of a possi-
ble color and roller change, where

s
	k

cc 	i� j
 =

{
t if c

	k

i �= c

	k

j ,

0 otherwise;

s
	k

rc 	i� j
 =

{
t if wi < wj ,
0 otherwise.

(1)

Because of the dependency of consecutive coils on
a tank, it does not suffice to consider pairs of con-
secutive coils in the sequence to quantify necessary
setup work. Larger sets of coils need to be taken into
account—the entire sequence in the worst case; see

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
650 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Figure 3 Optimum Tank Assignment for a Fixed Sequence of Coils

Tank 1

Tank 2

...

Note. The setup right before the last coil—none, in this example—depends
on its predecessor on the tank, i.e., on the whole sequence.

Figure 3. Hence, we refer to nonproductive time ensu-
ing because of setup work as global cost.

Finally, a plan for the coil coating process consists
of the following two parts:
• a sequence � ∈ �n, i.e., a permutation stating the

processing order of the coils;
• a schedule S comprising a tank assignment T ∈

�1�2�n×m stating for each coil from which tank it is
coated for each of the m shuttle coaters, and a feasi-
ble setup schedule for the set of setups W = W	��T

defined by � and T as described above. We elaborate
on the structure of feasible schedules in the following
section.
There is a strong interdependence among the dif-

ferent parts of a solution: A tank assignment T is only
meaningful in conjunction with a sequence �, and the
set W of setups to be scheduled depends on T and �.

2.1. Concurrent Setup Scheduling
We will now focus on the subproblem of comput-
ing a schedule for a given sequence �. Deciding
on a tank assignment T settles the predecessors of
coils on the tanks, yielding the set W = W	��T
 of
setups to be performed. These can be scheduled either
between coils during nonproductive time or concur-
rently to production on an idle tank. Whereas the
former results in an increase in makespan, the latter
does not. Consequently, there are two possibilities to
save cost by good scheduling: On the one hand, the
tank assignment can preserve used colors and/or a
rollers on an idle tank for later coils, thereby reduc-
ing the number of setups to be performed. On the
other, setups can be performed concurrently with pro-
duction on idle tanks, thereby keeping setups from
increasing the makespan.
Setup schedules have to respect certain constraints

to be feasible: Although there may be several work
teams to perform setups, at most one team can
work on the same coater concurrently to produc-
tion to ensure safety. Contrarily, during nonproduc-
tive time, the teams work together to finish work as
fast as possible. Moreover, concurrent setups are not
allowed while transition coils are run, because tran-
sitions require careful monitoring. Finally, the execu-
tion of one concurrent setup may not be preempted
by another. Note that as a result of these restrictions,

transition coils can be ignored when scheduling con-
current setups.
To capture this scheduling problem more formally,

we define the CSS problem as follows. Consider a
production process comprising m cells, each of which
being equipped with two identical, interchangeable
tools. A sequence of n jobs needs to be processed in
a fixed order � ∈ �n, where each job j has to be pro-
cessed for pj time units utilizing one tool on each of
the m cells simultaneously. If two jobs i and j are pro-
cessed in consecution on the same tool of cell k, setup
work taking time s	k
	i� j
 ∈ �≥0 has to be performed
on the tool after job i is completed and before job j
starts.
There are r setup resources available to perform

setup work in two distinct ways: If performed during
nonproductive time, all r resources work together as
one fast resource, achieving a speedup factor ≥ 1.
Alternatively, a setup can be performed concurrently
to production on an idle tool by one of the setup
resources, eliminating its impact on the makespan.
Partial concurrent setups are possible and remaining
setup work is finished during nonproductive time,
incurring a speedup as above.
A feasible solution to the CSS problem assigns one

of the two tools to each job for every cell and sched-
ules all resulting setups such that at most r concurrent
setups are performed at a time during production, and
only one setup at once during nonproductive time.
Concurrent setups may only be preempted by setups
during nonproductive time. The objective is to deter-
mine a plan 	��S
 minimizing the makespan. Note that
because all setup resources work together during non-
productive time, the makespan of a solution is insen-
sitive to deferring nonconcurrent setups to the latest
possible time. Hence, it suffices to only schedule con-
current setups explicitly.
In our application, coaters resemble the cells, and

tanks are our tools. The number of setup resources is
r = 1, i.e., there is one team of workers performing
setups. Also, setup times have a special structure; see
Equation (1). Nevertheless, all of our results hold for
CSS in general, i.e., arbitrary setup times and any r .
Moreover, our model and algorithms for CSS

remain valid even in a more general setting where
each setup task can only be performed by a subset of
the resources. However, for the sake of a clear pre-
sentation and cleaner notation, we omit further com-
ments on this case.
A natural generalization of the CSS problem would

be to consider t tools for some general t ∈�. However,
our results are strongly based on the number of tools
being two.

2.2. Cost Computation
The cost of a coil coating plan decomposes into time
for transition coils and setups during nonproductive

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 651

Figure 4 Components of Cost and Tool Intervals

i

h

j

sloc(j,h)

Cost

1 s(k ′)

s(k)– t

Tank 2

Tank 1

t

succ(I)

(a)

(b)

pred(I) last(I)

I=[i, j]
... ...

�

1
�

predtank(h)
(k)

Notes. (a) A picture of a partial schedule on coater k is shown; s�k� is short for s�k��pred�k�

tank�h�� h� in this figure. When coil j is finished, a period of nonproductive
time begins: The color and roller need to be changed on Tank 2 of this coater, and this is only in part done concurrently, then finished during nonproductive
time. Additionally, more setups before h have to be performed on a different coater k ′, and this is done during nonproductive time as well. All setups that are
not concurrent incur speedup �. Finally, a transition coil of length sloc�j� h� needs to be run between coils j and h, and no setup can be performed during this
time. (b) Because transition coils do not allow concurrent setup, they can be ignored for scheduling. Thus, their length is not included in the length of intervals
in our model.

time. Because cost computation is quite complicated,
an illustrative example is given in Figure 4(a). Again,
concurrent setups incur no cost as they do not impact
the makespan, and no setup may be performed dur-
ing transition coils.
More formally, consider a sequence � ∈ �n and a

schedule S = S	�
 for �. Denote by pred	k

tank	j
 the pre-

decessor of coil j on the same tank of coater k in S,
and denote by C	S
 the total amount of concurrent
setup in S. Then, formally, the cost of plan 	��S
 is
given by

n∑
j=2

sloc
(
�	j − 1
��	j

)

+ 1

(m∑
k=1

n∑
j=2

s	k
	pred	k

tank	j
� j
 − C	S	�

)
�

the sum of the duration of all transition coils and
setup performed nonconcurrently.

2.3. Related Work
Sequencing and scheduling problems with setup
times and makespan minimization constitute a widely
studied field; see Allahverdi et al. (2008) for a recent
survey. In most of these problems, however, setups
are purely local, i.e., depend only on two successive
jobs on the same machine, and thus are closely related
to asymmetric traveling salesman problems; see Balas
et al. (2008). Also, more general problems with setups
typically involve only local setups. One such exam-
ple is scheduling problems with communication delays and
precedence constraints (see Bampis et al. 1997), where a
delay occurs only between pairs of jobs with a non-
transitive precedence constraint among them when
they are scheduled on different machines.

In contrast, our setup costs need to be calculated in
view of several, possibly many preceeding jobs. Such
nonlocal setups have only sporadically been consid-
ered in scheduling, e.g., by Koulamas and Kyparisis
(2008). They are more typical in multiproduct assem-
bly lines. But here one no longer considers sequencing
problems with makespan minimization, but aims at
finding batches of products that minimize the cycle
time of the robotic cells; see, e.g., Rekieck et al. (2000).
Setups concurrent with production also occur in

parallel machine scheduling problems with a common
server considered by Hall et al. (2000): Before process-
ing, jobs must be loaded onto a machine by a single
server, which requires some time (the setup time for
that job) on that server. Good sequences of jobs on
the parallel machines minimize the time jobs have to
wait to be setup because of the single server being
busy on a different machine. In this model, too, setups
are purely local, and once sequences for the machines
have been determined, scheduling the server consti-
tutes a trivial task.
Altogether, we are not aware of any papers on

sequencing or scheduling problems that come close
to the combined sequencing and concurrent setup
scheduling problem studied here. Our model and
results may thus pave the way for other applications
involving sequencing and concurrent setup schedul-
ing as they may occur in complex production envi-
ronments such as the automotive industry.

3. Interval Model for Concurrent
Setup Scheduling

In our solution approach, which we describe in §5,
we repeatedly solve instances of the CSS problem
resulting from different sequences of coils. Hence, an

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
652 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Figure 5 Some Saving Rectangles, Appropriately Positioned in the Plane

0 00

0

0

Tool interval
of rectangle R

Setup interval
of rectangle R

R Conflicts
with R

...

...

R
es

ou
rc

e
2

R
es

ou
rc

e
1

Cell mCell 1

Tool
intervals

Setup
intervals

Conflicts
with R

Cell 2

Notes. Selecting rectangle R, i.e., running all jobs belonging to its tool interval on the same tool of cell 1 and performing concurrent setup during its setup
interval, prohibits the selection of any rectangle whose projection onto one of the axes intersects that of R. The selection of nondisjoint tool intervals prevents
a proper tool assignment, whereas intersecting setup intervals violate resource constraints. For simplicity, only two resources are visualized.

efficient algorithm for CSS is of key importance. We
develop a representation of solutions as a family of
weighted two-dimensional intervals, where the first
dimension is related to a tool assignment and the sec-
ond to performing concurrent setup work. We call
two such intervals, or axis-parallel rectangles, indepen-
dent, if their projections onto neither of the axes inter-
sect. An optimal solution S to CSS will correspond
exactly to a maximum weight subset of pairwise inde-
pendent two-dimensional intervals; see Figure 5. This
section essentially lays the groundwork for the design
of both a fast heuristic algorithm and a dynamic
programming approach for our application, yield-
ing optimal coil coating plans for fixed sequences of
coils in polynomial time for any constant number of
coaters.
We model every possible assignment of a maximal

consecutive subsequence of jobs to the same tool of a
cell and every resulting possibility to perform concur-
rent setup work as weighted intervals called tool inter-
vals and setup intervals, respectively. Then, we com-
bine tool and setup intervals to form two-dimensional
intervals, i.e., axis-parallel rectangles. The weights of
intervals represent the reduction in cost (which may
be negative) achieved by the corresponding partial
tool assignment and the concurrent setup work per-
formed, compared to processing all jobs on the same
tool without performing concurrent setup work.
Setup intervals of all cells compete for the r avail-

able resources for concurrent setup work; i.e., a cho-
sen setup interval for one cell impacts the choice
of setup intervals on other cells. In contrast, we
can choose tool intervals of different cells indepen-
dently. We position the rectangles in the plane accord-
ingly, such that there is a one-to-one correspondence

between solutions to CSS on the one hand, and max-
imal independent sets of rectangles on the other. We
denote by pj the processing time of job j , and through-
out this section we assume that the jobs are numbered
as they appear in the fixed sequence, i.e., � = id ∈ �n.

3.1. Tool Intervals
A tool interval, always associated with a particular
cell, represents a maximal consecutive subsequence of
jobs that are processed on the same tool. Thus, for
each cell, any two jobs i� j ∈ �n�, i ≤ j , define a tool
interval I = �i� j� containing all jobs i� � � � � j . Selecting
such an interval will correspond to running all jobs
in it on the same tool, and switching the tool directly
before i and directly after j ; see Figure 4(b). Hence,
a set of nonintersecting tool intervals, covering every
job, defines a unique tool assignment, and the pro-
cessing time in I is

p	I
 �=
j∑

x=i

px� (2)

We call the last job before and the first job after I
its predecessor pred	I
 and successor succ	I
, respec-
tively. Also, let last	I
 denote the last job in I . The
weight w

	k

tool	I
 of a tool interval I of cell k comprises

the change in cost before succ	I
 resulting from pro-
cessing all jobs in I with one tool and pred	I
 and
succ	I
 with the other, compared to running all these
jobs from the same tool (and performing all neces-
sary setup work before succ	I
 during nonproductive
time). Thus, we have

w
	k

tool	I
 = 1

	s	k
	last	I
� succ	I

− s	k
	pred	I
� succ	I

�

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 653

Note that certain tool intervals may have nega-
tive weight, i.e., selecting them actually increases cost.
Because the requirement that all of � be covered by
tool intervals to obtain a well-defined tool assign-
ment, such intervals cannot be ignored. For computa-
tional purposes however, negative weights can easily
be eliminated, as we demonstrate in §3.4.

3.2. Setup Intervals
A setup interval Is is always associated with a tool
interval I = �i� j�, hence also with a particular cell k.
Furthermore, it is tied to one of the r setup resources.
It represents concurrent setup work performed
from pred	I
 to succ	I
 on k’s idle tool during jobs
i� � � � � j by a certain setup resource. A setup inter-
val’s weight wsetup	Is
 equals its length and describes
the amount of concurrent setup work performed. So
clearly, we always have

wsetup	Is
 ≤ min�p	I
� s	k
	pred	I
� succ	I

��

3.3. Saving Rectangles
We now define saving rectangles R = 	I� Is
 as a com-
bination of a tool interval I and a (possibly empty)
setup interval Is . The total weight of a saving rectan-
gle R is

w	R
 = wtool	I
 + 1

wsetup	Is
�

As for tool intervals, this weight may be negative.
Recall that a feasible solution to CSS shall corre-

spond to the selection of a maximum weight inde-
pendent subset of all possible saving rectangles. Quite
naturally, both dimensions of a saving rectangle, i.e.,
tool and setup intervals, are associated with a sense
of time; see Figure 5. We now make use of this fact
to position rectangles in the plane such that their pro-
jections onto one of the axes intersect, if and only if
the savings in makespan represented by their weight
conflict, i.e., cannot be realized jointly.
Two saving rectangles conflict if and only if one of

the following holds:
• They belong to the same cell and their tool inter-

vals intersect—tool intervals of one cell, whose inter-
section contains a job j , lead to conflicting tool usage,
because both intervals assign j to a different tools.
• They belong to the same setup resource and their

setup intervals intersect—each resource can perform
only one setup at a time.
Consequently, when positioning rectangles in the

plane, all rectangles associated with the same cell
receive their own section of the x-axis, whereas all
rectangles sharing the same setup resource are placed
in a distinct section of the y-axis. Within sections, all
rectangles are positioned in x and y direction accord-
ing to their natural sense of time; see Figure 5 for an
illustration.

Now, any subset of pairwise independent saving
rectangles, whose tool intervals cover all jobs on all
cells, naturally corresponds to a feasible concurrent
setup schedule with corresponding tool assignment.
Moreover, if such a subset has maximum weight,
the corresponding schedule is optimal: It realizes the
greatest savings possible compared to running all jobs
on the same tool.
By the construction above, saving rectangles also

have a very specific structure. We build upon these
properties when analyzing the independent set prob-
lem ensuing from CSS in §4:
• The projection of each rectangle onto the x-axis

is contained completely in one of the distinct sections
corresponding to the cells.
• If the projections onto the y-axis of two rectan-

gles intersect, their projections onto the x-axis contain
common jobs.
The latter is because, timewise, a rectangle’s setup

interval is always contained in its tool interval. Note
that projections of rectangles onto the x-axis contain-
ing common jobs need not necessarily intersect when
positioned as in Figure 5—they may well belong to
different cells and thus lie in different sections of the
x-axis.
Finally, note that for general instances of CSS, it

may not be tractable to explicitly model all possibili-
ties to perform concurrent setup work in an applica-
tion, as the number of setup intervals could become
superpolynomially large. In the case where all setup
durations have a sufficiently large common divisor,
however, we can prove a polynomial bound on the
number of setup intervals that need to be considered
for an optimal solution.

Lemma 1. Given an instance of CSS, let � denote the
greatest common divisor of all setup durations s	k
	i� j
.
Then, there is a set D of at most

N �= maxi∈�n� pi

�
· 	n − 1
	n − 2

2
points in time such that there exists an optimal selection
of saving rectangles �, whose setup intervals all have end
points in D.

Proof. We explicitly construct a set of potential
start points sufficient for an optimal solution and then
bound their number. In an optimal solution, setup
intervals may of course start with every but the last
job in the sequence, accounting for the first n − 1
points necessary. Given a potential start point for a
setup interval of length s, also the point exactly s
after it is a potential start point. Because preemption
is not allowed, any optimal selection of saving rectan-
gles can be transformed to a solution where all setup
intervals start at a point of the above form by shift-
ing every selected setup interval to the left as far as
feasibly possible.

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
654 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Assuming without loss of generality (w.l.o.g.) that
the fixed sequence of jobs is � = id ∈ �n, we now
observe that, moving through the sequence in order,
the number of new potential start points during the
processing of job i is bounded by i	pi/�
. Thus, the
total number of potential start points for setup inter-
vals necessary in an optimal solution is

∑
i∈�n−1�

i
pi

�
≤ maxi∈�n� pi

�
· 	n − 1
	n − 2

2
= N� �

Thereby, the number of savings rectangles that need
to be considered for an optimal solution is bounded
by k · r · n2	N + 1
, the number of possibilities to
pair each of the n2 possible tool intervals of each
cell with no or one setup interval of every setup
resource. Note that N is polynomial in n, as long as
the ratio 	maxi∈�n� pi/�
 is bounded polynomially in n.
This bound is also very coarse, because it takes into
account all possibilities to pair any setup interval with
a tool interval, although only setup intervals com-
pletely contained in it are really relevant.
In our application the duration of all setups is a

multiple of t, hence Lemma 1 applies with � = t. In
realistic instances, the maximum length of a coil is
roughly twice t, so the number of setup intervals nec-
essary for each cell is no more than 2n2.

3.4. Building Schedules from Maximal
Independent Sets

Given an independent set of saving rectangles such
that every job is covered by a tool interval on
every cell, the construction of a feasible concurrent
setup schedule with corresponding tool assignment
is straightforward: The schedule for concurrent setup
work is given explicitly by setup intervals, inter-
rupted by nonconcurrent setups and transition coils,
and at the end of each tool interval, we switch tools
on the corresponding cell. By construction, there is a
one-to-one correspondence between the cost of this
schedule and the cost of the chosen saving rectan-
gles �, i.e.,

c	�
 = ∑
i∈�n−1�

(
sloc	i� i + 1
 + ∑

k∈�m�

1

s	k
	i� i + 1

)

− ∑
R∈�

w	R
�

where the first part is the cost for running all jobs
from the same tool, depending only on � = id.
Moreover, note that negative rectangle weights can

be eliminated by adding a sufficiently large con-
stant to the weight of each rectangle, weighted by its
length. This does not change the structure of the prob-
lem, and we force any maximum weight independent
set to be maximal such that the selected rectangles
have tool intervals covering all jobs.

Finally, our model yields a fast algorithm for CSS
when sufficient setup resources are available; i.e., con-
current setup can be performed simultaneously on
all cells.

Lemma 2. In the special case when r ≥ m, CSS can be
solved in polynomial time.

Proof. By assigning a different resource to each
cell, we can assume that two saving rectangles con-
flict if and only if they belong to the same cell and
their tool intervals intersect. Thus, an optimal solution
can be computed independently for each cell, and the
problem reduces to finding maximum weight subsets
of pairwise disjoint intervals (i.e., maximum weight
independent sets in classic interval graphs), which can
be done very efficiently (Gupta et al. 1982). �

We shall comment on the complexity status of CSS
for all other cases of r and m in §4.

4. Independent Sets in Special
2-Union Graphs

We now make a connection from the CSS problem
to the independent set problem for a special class
of multi-interval intersection graphs. Although vari-
ous notions of multi-intervals and their intersection
graphs have been studied in literature (e.g., Gyárfás
and Lehel 1970, Kaiser 1997, Butman et al. 2010),
we are mainly concerned with the following class of
graphs.

Definition 1. An undirected graph G = 	V �E
 is
called a t-union graph if it is the edgewise union of t
interval graphs with common node set V .

Recall that an interval graph G = 	V �E
 is a graph
whose node set can be represented as a family of
�V � intervals where two intervals contain a common
point, if and only if the corresponding nodes share
an edge in G. As is common in literature, we assume
that a suitable interval representation for G is given
and use the notion of a node in G and its interval in
the given representation interchangeably. In a t-union
graph, we denote by vi the interval associated with a
node v in its ith interval graph.
Tool and setup intervals as defined in §3 define two

interval graphs, and their edgewise union is the graph
on the set of savings rectangles where two rectan-
gles share an edge exactly if their savings cannot be
realized jointly. Hence a maximum pairwise noncon-
flicting subset of savings rectangles corresponds to a
maximum weight independent set in a 2-union graph.
This problem is studied by Bar-Yehuda et al. (2006),
and the authors prove it to be APX-complete, even for
2-union graphs that have a representation where all
intervals are half open and have length two, and all
of their end points are integral. On the positive side,

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 655

they give a 2t-approximation algorithm based on a
linear programming relaxation of the problem for the
more general class of 2-interval graphs.
In this section, we demonstrate how the special

structure of the intervals in our application can be
exploited to partially circumvent the hardness result
above. To precisely define this special class of 2-union
graphs, we first introduce a certain notion of affin-
ity among the disjoint sections of the tool interval’s
dimension corresponding to the m different cells.

Definition 2. Let V ′ be a family of intervals con-
tained in a section L = �sL� eL� of the real line. For an
interval v = �sv� ev� ∈ V ′, we denote by

vL �= �sv − sL� ev − sL�

the L-relative interval of v. When referring to some
canonical section of the real line, we call these inter-
vals section relative.

Definition 3. Let G be a 2-union graph, i.e., the
edgewise union of two interval graphs G1 and G2. We
call G m-composite if G1 and G2 are the intersection
graphs of two families of intervals such that the fol-
lowing hold:
1. G1 has at least m connected components

C1� � � � �Cm.
2. Let L1� � � � �Lm denote the minimal sections of the

line containing all intervals in C1� � � � �Cm, respectively,
and assume w.l.o.g. that, by scaling G1’s intervals,
all Li have equal length. Then, for any u�v ∈ V 	G

with u1 ∈ Ci, v1 ∈ Cj ,

u2 ∩ v2 �= 	 ⇒ u1
Li

∩ v1
Lj

�= 	� (3)

Loosely speaking, when two nodes share an edge
in G2, their intervals in G1 would intersect if they
belonged to the same section. Note that 1-composite
and n-composite 2-union graphs are usual interval
graphs: In the former case, G2 is a subgraph of G1,
so G = G1, whereas in the latter, G1 has no edges, so
G = G2.
Considering the rectangles in CSS, property (3) is

always satisfied, because setup intervals are subin-
tervals of their tool intervals according to the natu-
ral sense of time. Because of separate resource sec-
tions along the y-axis, this holds for any number of
resources.
First, we show that for variable m, the max-

imum independent set problem remains NP-hard
for m-composite 2-union graphs, even in the
unweighted case. Afterward, we proceed to describe
an exact dynamic programming approach running in
polynomial time for any fixed m. Finally, we describe
how both negative and positive results carry over
to CSS.

Table 1 Intervals Associated with Literals in the Two Interval
Graphs G1 and G2

Literal Interval in G1 Interval in G2

xi �2r · �i − 1��2r · �i − 1
2 �� �i − 1� i�

�xi �2r · �i − 1
2 ��2r · i� �i − 1� i�

Theorem 1. For m part of the input, the maximum
independent set problem in m-composite 2-union graphs is
strongly NP-hard, even in the unweighted case.

Proof. We give a reduction from the satisfiability
problem with exactly three literals per clause (3SAT)
which is well known to be NP-complete (Cook 1971).
Let I denote an arbitrary 3SAT instance with n vari-
ables x1� � � � � xn and r clauses c1� � � � � cr . We may
assume w.l.o.g. that no clause contains two literals of
the same variable. With m �= 2n, we now construct
an m-composite 2-union graph G such that G admits
an independent set of cardinality n + r if and only if
there is a truth assignment for the variables of I such
that all clauses are satisfied.
We construct G as the edgewise union of two inter-

val graphs G1 and G2. We introduce a node for each
of I ’s 2n literals (the intervals for the nodes in G1
and G2 are given in Table 1). Therefore, the intervals
belonging to literals of different variables are always
disjoint in both G1 and G2, whereas the two literals of
one variable share an edge in G2; see Figure 6.
Furthermore, we introduce a node for each occur-

rence of a literal in a clause. Let y denote a literal in cj ,
whereas s is the start point of the interval associated
with y’s negation in G1 as in Table 1. These nodes’
intervals in G1 and G2 are defined in Table 2.
Now all occurrences of literals in the same clause

are adjacent in G2, whereas occurrences of literals in
different clauses are always independent in both G1
and G2; again, see Figure 6.

Now suppose the graph G, i.e., the edgewise union
of G1 and G2, admits an independent set S of cardi-
nality at least n + r . Because the two literals of each
variable are adjacent, S may contain at most n nodes
corresponding to literals. On the other hand, the three
occurrences of literals in each clause form a trian-
gle, so similarly, S may contain at most r of these
nodes. Consequently, S contains exactly one literal of
each variable and one occurrence of a literal for each

Table 2 Intervals Associated with Occurrences of Literals in Clauses
in the Two Interval Graphs G1 and G2, Where s Denotes the
Start Point of the Interval in G1 Associated with the Negation
of the Occurring Literal According to Table 1

Occurrence in clause Interval in G1 Interval in G2

cj

[
s + j − 1

r
�

s + j

r

)
�n + j − 1� n + j�

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
656 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Figure 6 Two-Dimensional Interval Representation of the Graph Constructed from the 3SAT Instance with Four Variables and Clauses � �x2 ∨ x3 ∨ �x4�,
� �x2 ∨ �x3 ∨ �x4�, �x1 ∨ x2 ∨ x3�, and � �x1 ∨ �x3 ∨ x4�

G2

G1

x1x1

x2x2

x3x3

x4x4

Notes. The two intervals associated with the two literals of variable x3 are highlighted with dots, and those belonging to the fourth clause � �x1 ∨ �x3 ∨ x4� with
stripes. The adjacency of the occurrences of literal �x2 in the first two clauses with x2 is highlighted with squares.

clause. Let us interpret the choice of literals in S as a
truth assignment X for the variables of I . Each occur-
rence of a literal in a clause is adjacent to its negation
in G, so such occurrence being in S implies it is true
in X, for S is an independent set. Hence, X fulfills
at least one literal in each clause of I , which is conse-
quently a yes-instance.
Conversely, suppose I is a yes-instance, and X is a

truth assignment fulfilling all clauses. Then an inde-
pendent set in G can be constructed in the same way,
picking n nodes corresponding to the literals in X and
an occurrence of a literal true in X for each clause.
Finally, for m = 2n, the graph G is also m-composite:

First, no interval in G1 crosses the end points of the
intervals corresponding to literals, so these intervals
define m disjoint sections of the line containing the
connected components of G1. Second, edges in G2

either join two literals of the same variable, or two
occurrences of two literals in the same clause. In
both cases, the adjacent nodes’ intervals in G1 have
identical section-relative intervals by our construc-
tion; hence G also satisfies property (3). �

Note that this reduction actually demonstrates that
the maximum independent set problem is even NP-
hard in 2-union graphs of a very specific structure:
The graph constructed is the edgewise union of a
collection of pairwise disjoint triangles and edges on
the one hand, and a collection of disjoint stars on
the other. It is not immediately clear, however, that
hardness of this problem entails hardness of CSS: it
remains to show that the reduction can be performed
such that the resulting interval representation is the

interval model of a CSS instance. We give the proof
of the following theorem in the appendix.

Theorem 2. For the number of cells m part of the
input, CSS is NP-hard for any fixed number r < m of setup
resources.

Let us now turn to positive results. We propose
the following dynamic programming algorithm to
compute a maximum weight independent set in
m-composite 2-union graphs, which runs efficiently
when m is a constant.

Theorem 3. For any constant m, a maximum weight
independent set in m-composite 2-union graphs can be
computed in polynomial time by dynamic programming.

Proof. Let the graph G again be represented as the
edgewise union of two interval graphs G1 and G2. We
define a state in our algorithm to be a m-tuple

Sv = 	v1� � � � � vm
�

where vi is either a node whose interval in G1 lies in
component Ci, or empty. Note that the nodes of one
state are thereby independent in G1, and 	n + 1
m is a
rough upper bound on the number of states. We call
a state feasible if its nodes also form an independent
set in G2 (and hence in G).
We now define a directed acyclic graph � on the set

of feasible states and prove that a longest path from
the empty state, whose components are all empty, to
some other state corresponds to a maximum weight
independent set in G. Because the number of states is
polynomially bounded, this will yield the result.

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 657

We call two states Su, Sv compatible if Su ∪Sv forms an
independent set in G. As in Definition 3, we denote by
L1� � � � �Lm the minimal sections of the line containing
all intervals in C1� � � � �Cm, respectively, and assume
again w.l.o.g. that all Li have equal length. For the ith
component vi of Sv, let sL	vi
 and eL	vi
 denote the
start and end point of the Li-relative interval of v1

i

in G1; set sL	vi
� eL	vi
 to zero when vi is empty. We
define the edge set of � as

E	�
 �= �	Su�Sv
 �Su�Sv compatible and eL	ui
≤eL	vj

∀ i�j =1�����m��

So, in a sense, when following a path in � , the
corresponding intervals in all components of G1 are
traversed simultaneously and in a certain monotone
fashion.
Now � is clearly acyclic, and we argue that any

path P = 	Ss� � � � � St
 in � defines an independent set
Ss ∪ · · · ∪ St in G: First, the union of two subsequent
states in P is independent by definition of E	�
. Fur-
thermore, the union of all states in P is independent
in G1 by construction. It remains to show that the
union of any two nonsubsequent states in P is inde-
pendent in G2 as well.
For the sake of contradiction, assume there is a state

Su ∈ P and a node ui ∈ Su that, in G2, shares an edge
with a node vj contained in a state succeeding Su on P .
Let Sv denote the first such state. Because adjacent
states form independent sets by definition of E	�
,
there must be a state Sa in between Su and Sv on P
that contains neither ui nor vj , so in particular aj �= vj .
Also, by our assumptions, Su ∪ Sa and Sa ∪ Sv form
independent sets.
Now, by property (3), we have sL	vj
 ≤ eL	ui
 ≤

eL	vj
. On the other hand, from the definition of E	�
,
we get eL	ui
 ≤ eL	aj
� and from the fact that Sa ∪ Sv

forms an independent set and aj �= vj , eL	aj
 < sL	vj
.
Finally, this results in eL	aj
 < sL	vj
 ≤ eL	ui
 ≤ eL	aj
,
a contradiction. Consequently any path in � defines
an independent set in G.
We now define the length of an edge 	Su� Sv
 as

the weight gained by a path, i.e., an independent set,
through its traversal:

l		Su� Sv

 �= ∑
x∈Su∪Sv

wx − ∑
x∈Sv

wx�

Because for any independent set in G its nodes can
be ordered by the end points of their section-relative
intervals in G1, any maximum weight independent set
also has a representation as a path in � , concluding
our argument. �

Note that in view of the hardness result for vari-
able m (Theorem 1), this approach may well be the
best possible in terms of efficiency. Moreover, our

interval model for CSS always leads to m-composite
2-union graphs. Hence, together with Lemma 1, we
immediately obtain the following.

Corollary 1. For an instance of CSS, let � denote the
greatest common divisor of all setup durations s	k
	i� j
.
When the number of cells m is fixed in advance, all
instances of CSS where

maxi∈�n� pi

�

is polynomial in the size of the input can be solved in poly-
nomial time, even if the number of setup resources r is part
of the input.

5. Algorithm
We now describe how we produce fully detailed pro-
duction plans for the entire coil coating problem.
Because of the enormous complexity of the task, an
optimal solution is currently out of reach. On top of
that, quick computation times are indispensable for
the practical usability of our algorithms: Planners at
SZFG require a plan covering 24–72 hours to be com-
puted within 180 seconds. This is why we propose
a special purpose heuristic, which is based on the
insights gained in the previous sections.
Mainly because of global cost, an effective algo-

rithm cannot rely on local decisions or optimal sub-
structures alone. Instead, meta heuristics generat-
ing many complete solutions quickly are a natural
approach. In their course, the cost of many sequences
needs to be evaluated, so the scheduling needs to be
performed very often as well. Hence, fast algorithms
for this subproblem are required.

5.1. Sequencing
We utilize a genetic algorithm for sequencing, which
by its nature combines solutions, or individuals, in
such a way that beneficial characteristics of solu-
tions persist, and costly characteristics are elimi-
nated (Aarts and Lenstra 1997). The set of solutions is
commonly referred to as population. In a crossover, the
combination of two parents from the current popula-
tion brings forth a new individual, whereas a mutation
creates a new individual by modifying one already
present. In an iteration, or generation, the population
is first enlarged through crossovers and mutations,
before a subset of all these individuals is selected for
survival. See Meloni et al. (2003) for a recent success-
ful application to a different production sequencing
problem.
A key to the success of our algorithm lies in the

construction of its initial population, which is highly
diverse with respect to (w.r.t.) different beneficial
aspects. Recall that the cost of a solution essentially
computes as the sum of local and global cost, where

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
658 Management Science 57(4), pp. 647–666, © 2011 INFORMS

the former only depends on the sequence, whereas
the latter is greatly affected by the scheduling. In a
sense, we would like to eventually avoid global cost
by switching tanks smartly, so we focus on transition
coils for the initial population.
Transition coils need to be inserted into the

sequence to bridge differences in certain criteria r of
subsequent coils, like their weight per meter, thick-
ness, etc. For simplicity, we have omitted these crite-
ria in our problem formulation in §2. This local cost
incurred between two coils i and j has the following
structure:

sloc	i� j
 �=max
r

��r 	i� j
��

where �r denotes the length of transition coils neces-
sary to bridge the difference between i and j in crite-
rion r .
When considering only one single criterion, we

may be able to avoid local cost completely by sort-
ing the set of coils according to it, minimizing the
largest occurring difference between subsequent coils.
On the other hand, by the definition of sloc, one set
of transition coil can be used to bridge differences in
several criteria at the same time, making the most of
some unavoidable transition coils, in a sense. These
two ideas are the essence of the algorithm generating
our initial population.
To create an individual � ∈ �n, we first pick a crite-

rion r1 by which we sort the set of coils to be coated.
To break ties, which occur frequently for some crite-
ria, we pick a second criterion r2. If in the ensuing
sequence, call it �12, transition coils becomes neces-
sary because of some other criterion r3, we know we
could have used them to bridge differences in any
other criterion at the same time, in particular differ-
ences in r1 and r2.
This suggests the following algorithm to build a

smarter � from �12: We choose a fixed criterion, r3,
different from r1 and r2. Then, we add coils to � in the
order of �12, skipping those that would cause local
cost in � because of differences in r3. After reaching
the end of �12, we add the first unused coil from �12
to the end of � and repeat the process regarding only
the coils in �12 that have not been added to � yet.
We can now create different individuals for the ini-

tial population by different choices of r1, r2, and r3,
and each individual is likely to avoid local cost due
to these criteria within certain parts of the sequence,
while utilizing unavoidable transition coils to bridge
differences in multiple criteria at once. Therefore, we
obtain a broad variety of completely different indi-
viduals, each composed of sections that are attractive
regarding their own part of the objective.
Finally, optimizing a sequence w.r.t. local cost only

amounts to solving an asymmetric traveling sales-
man problem, for which we use the Lin–Kernighan–
Helsgaun heuristic (Helsgaun 2000). We add an

individual corresponding to an often optimal tour to
the initial population as well, before completing it
with a number of random sequences.
During a run of our algorithm, we maintain a con-

stant population size across generations. For each
individual, we solve the scheduling subproblem as
described in the next section to assess its cost. Indi-
viduals with better makespans survive. Mutations are
conducted by inverting a random consecutive subse-
quence of an individual. For crossovers, we imple-
ment a classic mechanism for sequencing problems
originally proposed by Mühlenbein et al. (1988).
Upon the selection of two individuals from the cur-

rent population, a donor d and a receiver r , a random
consecutive subsequence of random length is taken
from the donor to form the basis for the construction
of the new individual, or offspring s. We complete s by
continuing from its last element i with the elements
following i in the receiver, until we encounter an ele-
ment already contained in s. Now we switch back to
the donor and continue completing s from d in the
same way, going back to r again when encountering
an element already added to the offspring. If we can
continue with neither r nor d, we add to s the next
element from r that is not in s yet and try again.

5.2. Scheduling
Given an individual from our genetic algorithm, i.e.,
a fixed processing order � for coils, we now solve the
resulting instance of CSS to obtain a complete solution
to the coil coating problem. Indeed, Corollary 1 yields
a polynomial algorithm for this subproblem in our
application. However, this approach is obviously not
feasible for practical use because of its runtime. Nev-
ertheless, we can use its ideas to define a fast heuris-
tic algorithm based on our independent set model for
concurrent setup scheduling.

5.2.1. Independent Set Heuristic. The complexity
of our exact algorithm stems from the need to con-
sider interval selections for all coaters simultaneously
to ensure that savings from all selected setup inter-
vals can be realized by the scarce work resource. Intu-
itively, the probability that concurrent setup work on
different cells can be scheduled feasibly, i.e., one setup
at a time, increases with the length of the associated
tool interval. This is our heuristic’s core idea for com-
puting good tank assignments.
Instead of considering all coaters at once, we con-

sider them separately. Recall that savings from tool
intervals for different coaters can be realized indepen-
dently in any case. Now, instead of explicitly adding
a setup interval Is to each tool interval I , we limit
cost savings wsetup	Is
 from I ’s potential setup inter-
vals according to how much concurrent setup work
for one coater we expect to be able to schedule dur-
ing I and add this value to the weight wtool	I
 of I .

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 659

More precisely, we define the new weight of a coater
interval as

w′
tool	I
 �= wtool	I
 +min���I �� �Is���

where � ∈ �0�1� is a parameter. When choos-
ing � = 0, concurrent setup work is assumed impos-
sible. For � = 1, all potential concurrent setup work is
assumed to be scheduled for each tool interval.
With these new modified weights, it suffices to con-

sider tool intervals alone. As a consequence, similar
to the case of sufficient work resources mentioned in
§3.4, computing a tank assignment T reduces to find-
ing a maximum weight independent set in an inter-
val graph, which can be dealt with very efficiently.
To compute a feasible concurrent setup schedule for
this tank assignment, we use an earliest-deadline-first
strategy as a simple scheduling rule. As before, each
setup w ∈ W	��T
 is associated with the coil i it is
performed for. We define a release time and a dead-
line for w as follows. Job w is released at rw when
the tank on which i is run becomes idle for the last
time before i in T ; its deadline dw is the start time
of coil i. Because only one concurrent setup may be
performed at a time, we are trying to schedule all
tasks on a single work resource. Whenever the work
resource becomes available, say, at time t, we sched-
ule the setup w with the earliest deadline for which
t ∈ �rw�dw�.

5.2.2. Online Rule: First In, First Out. Finally, we
have a look at the tank assignment rule that was
previously in use at SZFG: Whenever subsequent
coils have different colors, switch the tank. If the
new tank does not contain the required color, a color
change on that tank becomes necessary. So whenever
a third color besides the two in the shuttle tanks is
required, the color which was in use earlier is dis-
carded, i.e., we follow a first-in, first-out (FIFO) rule.
For scheduling the tasks in the resulting set W	��T
,
the same earliest-deadline-first rule as above is used.
The advantage of this rule is its online character (and
thus simplicity): the choice of tank depends only on
the current and the previous coils; but this rule may
produce suboptimal tank assignments.

6. Lower Bounds from a
Combinatorial Relaxation

Assessing the quality of heuristic solutions is not only
a theoretical contribution, but an important question
in practice: How much optimization potential is left?
In this section we describe a general way of com-
puting an instance-dependent lower bound on the
optimal makespan, when an online tank assignment
rule is used (see §5.2.2). Ignoring the need for setups
altogether, we obtain the trivial lower bound as the

sum of processing times of all coils, LBtriv �= ∑n
j=1 pj .

A more elaborate idea is to relax the complicating
global cost only. This reduces the coil coating prob-
lem to determining an optimal sequence with respect
to local cost—which can be formulated as a (small)
asymmetric traveling salesman problem (TSP), thus
we denote the obtained bound by LBTSP.
Global cost for a coil j depends—in the extreme

case—on the entire solution, in particular on the entire
tank assignment, prior to running coil j . Our relax-
ation now limits this dependency in limiting the num-
ber of coils that are considered when computing
global cost, i.e., we “don’t look back too far.” More
precisely, we concatenate subsequences containing a
constant number of coils, say, �, for which we exactly
compute the global cost. In between subsequences we
consider only local cost. By means of an integer lin-
ear program we find a cheapest such concatenation.
A solution is a sequence of all coils, and the tank
assignment is given implicitly.

6.1. An Integer Program: Concatenating Short
Subsequences

The logic of the model is to assign subsequences
of � coils each to �n/�� time slots, each consisting
of � consecutive positions, except the last, which
may possibly be shorter. For a subsequence � , we
denote by t	�
 ∈ �1� � � � � �n/��� its time slot, and
by p	�� j
 ∈ �1� � � � �n� the absolute position of coil j
in subsequence � . We subsume all possible subse-
quences of � coils in the set � . We slightly abuse
the set notation j ∈ � to express that coil j is con-
tained in subsequence � . Naturally, the cardinality of
� is exponential in n, and listing � explicitly in an
integer program is out of the question. The general
idea is to solve the linear relaxation of our model by
dynamically adding sequences, also known as column
generation, and embedding this into a branch-and-
price framework (Barnhart et al. 1998, Desrosiers and
Lübbecke 2005).
We have binary variables xp� j for deciding whether

coil j is assigned to position p or not. Variable z� ∈
�0�1� indicates whether subsequence � ∈� is selected
or not. Each � ∈ � has its local plus global cost c� ,
which is computed as if all coaters were entirely clean
and empty at the beginning of � . Local cost sloc	i� j

between coils i and j is abbreviated ci� j .
Note that to compute global cost, we need to know

a tank assignment that we do not explicitly com-
pute. For the optimal value of this model to deliver a
guaranteed lower bound, it is essential that the tank
assignment rule assumed within subsequences can
be concatenated to a tank assignment on the whole
sequence following the same rule. It is exactly the set
of online assignment rules (see §5.2.2), which possess

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
660 Management Science 57(4), pp. 647–666, © 2011 INFORMS

this property. Hence, we use the FIFO rule in the inte-
ger program and thereby obtain lower bounds for the
case when the FIFO rule is used:

min
∑
�

c�z� + ∑
i� j∈�n�

ci� jyi� j� (4)

∑
p∈�n�

xp� j = 1 j ∈ �n�� (5)

∑
j∈�n�

xp� j = 1 p ∈ �n�� (6)

∑
��j�

p	�� j
=p

z� = xp� j p� j ∈ �n�� (7)

xlast	t
� i + xfirst	t+1
� j ≤ 1+ yi� j

i� j ∈ �n�� t = 1� � � � � �n/�� − 1� (8)

xp� j ∈ �0�1� p� j ∈ �n�� (9)

yi� j ∈ �0�1� i� j ∈ �n�� (10)

z� ∈ �0�1� � ∈� � (11)

The constraints are interpreted as follows. Each coil
gets coated exactly once (Equation (5)), each posi-
tion is filled exactly once (Equation (6)), and a subse-
quence � needs to have coil j in position p if and only
if the corresponding xp� j indicates so (Equation (7)).
The precedence constraints (8) enforce that in between
two consecutive subsequences in time slots t and t +1
we incur local cost between coil i in the last position
last	t
 in t and coil j in the first position first	t + 1

in t + 1. The binary variable yi� j precisely takes care
of that, because its use is penalized in the objective
function (4) accordingly. The optimal objective value
of the integer program is denoted LBIP.
We may alternatively use variables xp� j� ta ∈ �0�1�,

which additionally decide about which tank to use
on every coater in each position of the sequence.
The index ta reflects the different combinations on
all coaters (in our case, eight essentially different
tank assignments because we have three shuttle
coaters). This way, we would obtain a lower bound
on the makespan for any tank assignment rule. At the
moment, this idea is computationally intractable.

6.2. Pricing
Initially, the integer program (4)–(11) contains all xp� j

and yi� j variables, but only some z� variables, namely,
those that correspond to subsequences derived from
a solution produced by our sequencing algorithm (it
is restricted to use the FIFO tank assignment rule in
that case). All other z� variables are generated only
as needed. The coupling constraints (7) are the only
ones that contain these variables; as a consequence
the corresponding dual variables �p� j ∈� are the only
relevant ones for calculating their reduced cost (which

must be negative to profitably add the variable to the
problem). The reduced cost of z� is

c̄� = c� −∑
j∈�

�p	�� j
 �j �

and the pricing problem is to find a subsequence of
minimum, or at least negative, reduced cost. To the
best of our understanding, there is no principal alter-
native to a brute force method because we are able
to evaluate the total cost of a subsequence only when
we see it in its entirety, thus we have to construct
it. This also rules out most of the traditionally used
dominance criteria in dynamic programming. There-
fore, a straightforward depth first search enumerates
the O	n�
 subsequences to solve the pricing problem.
A pruning criterion based on the dual variable val-
ues of coils not yet added to a subsequence helps in
mildly reducing the search space without compromis-
ing optimality.

6.3. Branching
When we determine an integer solution for the xp� j

variables, all other variables automatically assume
integer values as well, that is, a natural candidate for
taking branching decisions in the branch-and-bound
tree is to branch on ∑

��j� p	�� j
=p

z� � �0�1�

for a given coil j at position p. In fact, speaking
in terms of branch-and-price methodology, this is
branching on the so-called original variables xp� j of the
problem, which are explicitly present in this extensive
column generation formulation as well. The branch-
ing itself can be realized as a modification to the pric-
ing problem instead of adding an explicit branching
constraint to the master problem: one simply elim-
inates the forbidden coil j from position p (on the
down branch) or enforces it by eliminating all other
�n�\ �j� coils from position p (on the up branch). Note
that the master problem has to be updated accord-
ing to branching decisions: variables corresponding to
subsequences that do not respect the branching con-
straint have to be eliminated (technically, via an upper
bound of zero). To stay feasible after each branch-
ing decision, we further introduce artificial variables
(with large costs) in constraints (5), one for each coil.

7. Computational Study
Because the project was initiated with the explicit goal
to develop a tool to go live in an existing production
environment, we were provided with realistic data
right from the beginning. Planners at SZFG repeatedly
validated our solutions and addressed various issues
regarding the accuracy of cost calculations and the

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 661

Figure 7 Detail of the Visualization of an Integer Optimal Solution
to Our Integer Program with Subsequences with � = 4
Coils Each

Notes. Each block represents one shuttle coater with its two tanks; the
dark rectangles reflect the coils in the coating sequence. It is clearly visible
that the integer program ignores global cost in between subsequences. The
expert planner can also see where and when which type of setup has to be
performed.

practicability of work schedules, which were eventu-
ally solved. Visualizations of our solutions certainly
helped in that respect; see Figure 7.
The test instances fall in two categories. The first

comprises sets of up to 120 coils for a planning hori-
zon of up to 72 hours. These instances are solved well
ahead of time for long-term planning. The second cat-
egory is made up of 20–40 coils for a shorter time
horizon of at most 24 hours. These instances usually
occur when unplanned changes in demand or avail-
ability of coils necessitate short-term replanning.
For many test instances, SZFG provided a plan

devised by their expert planners for comparison with
our solutions. In most cases we were able to obtain
unexpected improvements over these plans. We can-
not report on the precise numerical characteristics of
our data and results because of nondisclosure agree-
ments, hence normalized numbers are presented.

7.1. Some Implementation Details
Parameters for the genetic sequencing algorithm were
determined by rigorous testing, with the goal to have
one fixed parameter set yielding good performance
across all data sets. For most short-term instances, our
algorithm finds its best solutions after less than 30 sec-
onds, whereas solutions keep improving toward the
runtime limit of 180 seconds for long-term planning.
In the construction heuristic for the initial pop-

ulation (§5.1), we use some coil properties that
were omitted in the problem formulation in §2 for
simplicity. All possible three-tuples of width, height,
processing speed, and temperature in primer and fin-
ish oven are taken as criteria r1, r2, and r3, account-
ing for about one-third of our initial population of
200 individuals. In each generation we create 100 new

individuals each from both mutations of random indi-
viduals and crossovers of two randomly chosen par-
ents. This results in a total population of 400, of which
we keep the 200 with the best makespan for the next
generation.
Especially on small instances, the population

quickly evolves to a set of individuals with almost
identical cost. When the makespan of all individuals
is within 5% of the best individual, we discard the
worst 90% of the population and replace it with a
new initial population. This usually leads to further
improvement of the best individuals in subsequent
generations.
Regarding scheduling, we performed extensive

testing using the heuristics described in §§5.2.1
and 5.2.2. We report on results for the independent
set heuristic for different values of the parameter � ∈
�0�1� compared with the simpler FIFO rule.
For lower bound computations, we implemented

a branch-and-price algorithm to solve the integer
program (4)–(11) within the publicly available SCIP
framework (solving constraint integer programs)
(Achterberg 2009). Its implementation is not tuned to
performance because we used it as a proof of concept
only, so we do not report computation times for lower
bounds (which were huge).

7.2. Interpretation of Results
Our algorithm produces plans with makespan reduc-
tions of up to 25%, on average over 13%, compared
to reference solutions actually gone to production in
both long-term and short-term planning; see Figures 8
and 10. Expert planners also assert that our solutions
“look very different” from theirs while retaining oper-
ability. Together with the fact that significant savings
are also realized over manual plans that “looked opti-
mal,” we take this as evidence that our rigorous math-
ematical analysis of the savings potential of shuttle
coaters fully paid off. It should also be noted again
that indeed every detail of production is controlled by
our plan, and that these plans were verified on-site at
SZFG’s coil coating line. Hence, cost savings are now
realized to their full extent in day-to-day production.

7.2.1. Long-Term Instances. As expected, our
independent set heuristic for setup scheduling proves
superior to the simpler FIFO online rule. We were
unable, however, to find a uniform choice of the
parameter � suitable for all instances alike. When
determining the best setting for � by trying all val-
ues in �0�1� � � � �0�8�, the graph heuristic outperformed
FIFO on 12 of the 16 instances, reducing cost by up to
30% (over FIFO). This translates to makespan savings
of up to 6%; see Figure 8. When fixing � to 0�5, the
independent set heuristic remains similarly superior
to FIFO on eight instances, while incurring an increase
in makespan of at most 1% in four cases; see Figure 9.

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
662 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Figure 8 Comparison of Normalized Makespans for Representative Long-Term Instances

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40
Best alpha
FIFO
Expert planner

Note. From left to right, makespans are for our solutions using the independent set heuristic with optimal choice of parameter 	, our solutions using the FIFO
online rule, as well as for a reference solution devised by an expert human planner where it was available.

7.2.2. Short-Term Instances. For all short-term
instances, we succeeded in computing lower bounds
by our branch-and-price approach, proving our solu-
tions to be within at most 10% of makespan optimal-
ity; see Figure 10. Yet, we did not solve all instances
to integer optimality and also used short subse-
quences only (� ≤ 6), so the lower bound is certainly
improvable.
If we concentrate on cost—in contrast to make-

span—it can be seen from Figure 11 that the integer
programming lower bound is able to close much more
of the gap to the upper bound than the TSP bound,
which is optimal w.r.t. local cost only.

Figure 9 Comparison of Normalized Nonproductive Time Included in Our Long-Term Solutions

0.00

0.20

0.40

0.60

0.80

1.00

1.20
Best alpha
Alpha=0.5
FIFO

Note. From left to right, costs are for our algorithm when using the independent set heuristic with optimal choice of 	, with fixed choice of 	 = 0
5, and when
using the FIFO online rule.

Finally, the superiority of the independent set
heuristic to FIFO is less significant in short-term plan-
ning. Although both heuristics were on a par for
most instances, small improvements over FIFO were
observed in three cases.

8. Summary and Conclusions
We have developed an exact mathematical model for
the complex integrated sequencing and scheduling
task in coil coating with shuttles and implemented
optimization software solving it in practice. Our
approach fulfills all requirements regarding speed

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 663

Figure 10 Comparison of Normalized Bounds and Makespans for Representative Short-Term Instances When Restricted to FIFO Tank Assignment

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60
Trivial lower bound
TSP lower bound
IP lower bound
FIFO
Expert planner

Notes. Bounds displayed from left to right are LBtriv , the sum of coil processing times; LBTSP, the sum of processing times plus local cost in an optimal, local
cost-based TSP solution; and our IP bound LBIP. Makespans are given for our solutions obtained using the FIFO online rule for scheduling, as well as for a
reference solution devised by an expert human planner where it was available.

and robustness for its application in the production
environment. Our model takes into account all rele-
vant aspects of production reality, including the sub-
tasks of sequencing the coils and scheduling the color
tanks and the scarce work resources to perform setup
work. The integrity of the plans computed and the
correctness of cost calculations have been verified
by the planners in charge of the coil coating line at
Salzgitter Flachstahl GmbH, Germany.

Figure 11 Percentage of the Closed Relative Gap Between the
Respective Trivial Lower Bound and the Optimum
Nonproductive Time Included in Our Short-Term
FIFO Solutions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
TSP lower bound
IP lower bound

Note. Our bound from the branch-and-price approach respects global cost
and closes considerably more of the gap than the TSP-based bound, which
considers only local cost.

Compared to previous plans, the optimized solu-
tions yield double-digit percentage reductions in
makespan, greatly exceeding what was deemed pos-
sible: After all, the careful analysis of the problem
necessary for devising the mathematical model has
lead to a deep understanding of structure and inter-
dependencies in the planning task, which enabled the
realization of hidden optimization potential.
For the scheduling subproblem, we have devel-

oped a graph theoretic model allowing for the fast
computation of optimal solutions in an environment
where sufficient work resources are available. For the
present resource-constrained case, this model leads
to a heuristic algorithm that is significantly superior
to the simpler FIFO rule, particularly for long-term
instances.
Finally, we have developed and implemented an

integer programming model of a combinatorial relax-
ation of the problem, which we are able to solve via
branch-and-price for short-term planning instances.
The solutions yield lower bounds on the optimal
makespan of our short-term instances when using
an online tank assignment rule, proving that our
heuristic solutions have an optimality gap of no more
than 10%. Our optimization module has been in
use for day-to-day planning at Salzgitter Flachstahl
GmbH since December 2009.

Acknowledgments
The authors thank Michael Bastubbe, Torsten Gellert, and
Olaf Maurer for help in implementing the branch-and-price
and genetic algorithms. Furthermore, the authors appreciate
the patience of Frank Barcikowski, Andreas Holdinghausen,

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
664 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Sigurd Schwarz, and Meister Krake at SZFG for answer-
ing countless questions concerning the even more countless
details of setup cost, and for carefully verifying their solu-
tions. The authors thank the referees for motivating them
to put their work in a more general context, in particular
for suggesting to consider the case r > 1; these comments
also led to a lighter notation and improved presentation.
This work was supported by the German Research Foun-
dation (DFG) as part of the Priority Program “Algorithm
Engineering.”

Appendix. Proof of Theorem 2
In this hardness proof, we follow the main ideas from the
proof of Theorem 1. Recall, that in this proof, the reduc-
tion from 3SAT was leading to an instance of the max-
imum independent set problem in m-composite 2-union
graphs with very few rectangles. However, it is no clear
how this instance corresponds to CSS. Hence, further inves-
tigations are necessary to show its hardness. Our proof is
divided into four major steps: In §A.1, we consider the spe-
cial structure of m-composite 2-union graphs resulting from
CSS instances. In general, these graphs contain a very high
number of rectangles. In §A.2, we investige a special CSS
instance with only one cell, for which we show that it is
sufficient to concentrate on a very limited set of rectangles
in the corresponding 2-union graph. This graph will be of
similar structure as the one in the proof of Theorem 1. In
the main part of the proof in §A.3, we reduce 1-in-3-3SAT
to CSS with one resource. Finally in §A.4, we generalize our
result to an arbitrary number of resources.

Throughout the proof, we speak of an interval being con-
tained in another according to the natural sense of time, i.e.,
referring to the time axis starting at the beginning of each
section; see Figure 5.

A.1. Structure of m-Composite 2-Union Graphs
for CSS Instances

The m-composite 2-union graphs corresponding to instances
of CSS exhibit a special structure: All possible tool intervals
for the given sequence � need to be considered for each of
the m cells. Moreover, for each tool interval I , we have to
take into account all setup intervals of length

wsetup	I
 =min�p	I
� s	k
	pred	I
� succ	I

��

or shorter if the setup interval is started less that wsetup	I

time units before I ’s end. We also need to consider the
case of empty setup intervals. In fact, we can think of all
setup intervals belonging to a tool interval I as only one
rectangle, which can be moved along the setup interval’s
time axis within the interval I . According to the number of
setup resources r , we copy this rectangle representation of
the m-composite 2-union graph to r different sections along
the y-axis to obtain the final graph for the CSS instance.
Note that all our argumentation also holds when consider-
ing only discrete start times of the setup intervals as given
in Lemma 1. Still, for simplicity, we assume them to be
arbitrary.

As described in §3.4, by adding a sufficiently large con-
stant to each tool interval, weighted by its length, we can
assume that every maximum weight independent set covers
every job on every cell. For simplicity, we do not consider

these additional weights in the following. Still, we assume
that in every maximum weight independent set, all jobs are
covered by a tool interval on every cell.

A.2. Zero-Cost Decision Variant for a
Special Instance of CSS

We consider a zero-cost decision variant of CSS for a spe-
cial instance with odd number of jobs n and m = r = 1.
Later, we will use our investigations on this simple instance
to construct a more elaborate one in our hardness proof.
We assume � = id. For any even job j , we have processing
time pj = 1, and for odd j , arbitrary pj ≥ 1. Setup costs are
specified by

s	i� j
 �=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j = i + 1 and i �= 1�n − 1�

M if j = i + 1 and i = 1�n − 1�

0 if j = i + 2 and i is even�

1 if j = i + 2 and i is odd�

C if i = 1 and j = n�

M otherwise,

with C > 0 and M >
∑

i pi. The variable M is chosen suffi-
ciently large such that in any zero-cost schedule, no setup
of length M occurs; the length of any tool interval is simply
not long enough to perform this setup work concurrently.

In the following, we will rule out rectangles that are
sufficient to be considered when searching for a zero-cost
schedule:

• Because of the size of M , we cannot chose any tool
interval containing the jobs 1 and 2 or n − 1 and n.
Hence, every zero-cost solution chooses the tool intervals �1�
and �n�. The setup intervals are empty, because no setup
has to be performed at the beginning and at the end.

• The tool interval �2�n − 1� can only be chosen if all
resulting setup is performed concurrently, i.e., if its setup
interval has length C.

• Consider tool intervals �j� for j = 2�3� � � � �n − 1. For
odd j , no setup is necessary, and hence the setup interval is
empty. If j is even, a setup interval of length 1 is required.
Because in this case pj = 1, there is no flexibility in starting
the setup interval.

• All other tool intervals require setup work of length M ,
and thus they do not occur in zero-cost solutions.

Summarizing, it suffices to consider the tool inter-
val �2�n − 1� and all intervals containing exactly one job,
where only �2�n − 1� provides some flexibility for concur-
rent setup work; see Figure A.1(a). This leaves exactly two
possible tool assignments: either we switch the tool after
every job or we only switch after the first job and before the
last job.

Finally, note that we can replace an even job i by pi unit-
size jobs i1� i2� � � � � ipi

without changing the set of rectangles
necessary to consider. We define the setup cost between con-
secutive replacement jobs to be 0, and transfer the setup cost
to and from i to i1 and ipi

, respectively. All remaining setup
cost is set to M. With the same arguments as above, it is suf-
ficient to assume that the jobs i1� i2� � � � � ipi

form one interval

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
Management Science 57(4), pp. 647–666, © 2011 INFORMS 665

Figure A.1 Instances of CSS That Are Used in the Proof of Theorem 2

Tool
intervals

Empty setup
intervals

Setup
intervals

3m′+2n′

3m′+2n′

2n′ jobs 2m′ jobs
n′(3m′+2n′)′ jobs

2n′ jobs 2m′ jobs
n′(3m′+2n′)′ jobs

Clause c5

Clause c1

Literal xi Literal xi

... ...
1 2 3 4 5 n–3

n–3

n–2

n–2

n–1

n–1

n

Setup
intervals

1
2
3
4
5

n

Empty setup
intervals

...

Tool
intervals

C

Rectangle for variable xiRectangle for variable xi

Clause c4

(a) (b)

Notes. (a) Necessary saving the rectangles for one cell of the instance from §A.2 when considering the zero-cost decision variant of CSS are shown. For
simplicity, pj = 1 for all j . (b) Cells 2i − 1 and 2i in the CSS instance represent literals xi and �xi from the instance of 1-in-3-3SAT. Grey rectangles mark
positions of variable and clause rectangles on other cells. In this example, the clauses c1 and c5 contain literal �xi , and c4 contains xi .

instead of, as previously, i. Thus, given a sequence of unit-
size jobs, any subset S ⊂ �2�3� � � � �n − 1� with �i − j� ≥ 2 for
any i �= j ∈ S defines a CSS instance as described in this sec-
tion. We interprete the jobs in S as formerly even jobs and
call them unit rectangle jobs.

A.3. Reduction of 1-in-3-3SAT to CSS with
One Resource

We will now show the strong NP-hardness of CSS when he
number of cells m is part of the input and when there is
only one resource. We reduce from 1-in-3-3SAT, a variant of
3SAT where one asks for a variable assignment such that
in every clause exactly one variable is true. This problem
variant is known to be strongly NP-hard (Schaefer 1978).
The main ideas of the reduction are taken from the proof of
Theorem 1.

Consider an instance I ′ of 1-in-3-3SAT with n′ variables
x1� � � � � xn′ and m′ clauses c1� � � � � cm′ . We reduce it to an
instance I of CSS with n �= 2	n′ + m′
 + n′ 	3m′ + 2n′
 unit-
size jobs and m �= 2n′ cells, one for each literal. Literals xi

and �xi, i ∈ �1� � � � �n� correspond to cells 2i−1 and 2i, respec-
tively. For each cell, we define the setup cost by specifying
the unit rectangle jobs as in §A.2: For xi and �xi, we choose
job 2i on the cells 2i − 1 and 2i. If literal l is contained in
the sth clause, then we choose job

2n′ + n′	3m′ + 2n′
 + 2s − 1

on the cell corresponding to l̄; see Figure A.1. We refer to the
related rectangles as variable rectangles and clause rectangles,
respectively, and set the setup cost C to 3m′ + 2n′. We will
show that there is a zero-cost schedule for I if and only if I ′

is a yes-instance of 1-in-3-3SAT.
Assume, we are given a truth assignment for I ′. For any

true literal we choose a rectangle based on the tool inter-
val �2�n′ − 1� and arrange these n′ rectangles without setup
conflict from job 2n′ + 1 til 2n′ + 1 + n′ 	3m′ + 2n′
. On all
remaining cells, we choose the variable rectangle and all
clause rectangles. This does not lead to a conflict, because
all of these variable rectangles belong to different variables,
and in every clause exactly one literal is true. By §A.2, the
chosen rectangles represent a zero-cost schedule for I .

Consider the rectangle representation� of a zero-cost CSS
schedule of I . By the amount of setup cost C, � cannot
contain more than n′ rectangles based on the tool inter-
val �2�n − 1�. Otherwise, not all setup work can be per-
formed concurrently. Assume that there is a variable for
which both such rectangles are chosen. Then, by the above,
there in another variable for which no such rectangle is cho-
sen. Because at most one of the corresponding variable rect-
angles can be contained in �, this leads to schedule with
positive cost. Hence, for each variable exactly one rectangle
based on �2�n−1� is selected. We set the corresponding liter-
als to true. On the remaining n cells, all variable and clause
rectangles must be chosen to allow a zero-cost schedule. This
is possible if and only if for each clause exactly one literal is
not covered by a �2�n − 1�-rectangle.

A.4. Generalization for an Arbitrary Number of
Resources

We generalize the result of §A.3 for r > 1 resources by
adding r − 1 cells to the reduction above. For these cells,
we define the setup costs as follows: Between consecutive
jobs, we have cost 0, except after the first and before the
last job, where the cost is defined to be M. Between job 1
and n, we set the cost to n − 2. In all remaining cases, the
cost is set to M. The only option to schedule the jobs on
such a cell without cost is to switch the tank after the first
and before the last job and to perform concurrent setup in
the meantime, blocking one full resource.

Note that with a similar construction, we can argue that
the hardness result of Theorem 1 holds even when there is
an arbitrary constant number of independent sections along
the y-axis.

References
Aarts, E., J. K. Lenstra, eds. 1997. Local Search in Combinatorial Opti-

mization. John Wiley & Sons, Hoboken, NJ.
Achterberg, T. 2009. SCIP: Solving constraint integer programs.

Math. Programming Comput. 1(1) 1–41.
Allahverdi, A., C. T. Ng, T. C. E. Cheng, M. Y. Kovalyov. 2008.

A survey of scheduling problems with setup times or costs.
Eur. J. Oper. Res. 187(3) 985–1032.

Höhn et al.: Integrated Sequencing and Scheduling in Coil Coating
666 Management Science 57(4), pp. 647–666, © 2011 INFORMS

Balas, E., N. Simonetti, A. Vazacopoulos. 2008. Job shop schedul-
ing with setup times, deadlines and precedence constraints.
J. Scheduling 11(4) 253–262.

Bampis, E., F. Guinand, D. Trystram. 1997. Some models for
scheduling parallel programs with communication delays.
Discrete Appl. Math. 72(1–2) 5–24.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
P. H. Vance. 1998. Branch-and-price: Column generation for
solving huge integer programs. Oper. Res. 46(3) 316–329.

Bar-Yehuda, R., M. M. Halldórsson, J. Naor, H. Shachnai, I. Shapira.
2006. Scheduling split intervals. SIAM J. Comput. 36(1) 1–15.

Butman, A., D. Hermelin, M. Lewenstein, D. Rawitz. 2010. Opti-
mization problems in multiple-interval graphs. ACM Trans.
Algorithms 6(2) 40:1–40:18.

Cook, S. A. 1971. The complexity of theorem-proving procedures.
Proc. 3rd Annual ACM Sympos. Theory Comput., ACM, New
York, 151–158.

Deflorian, F., L. Fedrizzi, S. Rossi. 2000. Effects of mechanical defor-
mation on the protection properties of coil coating products.
Corrosion Sci. 42(7) 1283–1301.

Delucchi, M., A. Barbucci, G. Cerisola. 1999. Optimization of coil
coating systems by means of electrochemical impedance spec-
troscopy. Electrochimica Acta 44(24) 4297–4305.

Desrosiers, J., M. E. Lübbecke. 2005. Selected topics in column gen-
eration. Oper. Res. 53(6) 1007–1023.

Duarte, R. G., A. C. Bastos, A. S. Castela, M. G. S. Ferreira. 2005.
A comparative study between Cr(VI)-containing and Cr-free
films for coil coating systems. Progress in Organic Coatings 52(4)
320–327.

Gupta, U. I., D. T. Lee, J. Y.-T. Leung. 1982. Efficient algorithms for
interval graphs and circular-arc graphs. Networks 12(4) 459–467.

Gyárfás, A., J. Lehel. 1970. A helly type problem in trees. P. Erdős,
A. Rényi, V. T. Sós, eds. Combinatorial Theory and Its Applica-

tions II, Vol. 4. Colloquia Mathematica Societatis János Bolyai.
North-Holland, Amsterdam, 571–584.

Hall, N. G., C. N. Potts, C. Sriskandarajah. 2000. Parallel machine
scheduling with a common server. Discrete Appl. Math. 102(3)
223–243.

Helsgaun, K. 2000. An effective implementation of the Lin-
Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1)
106–130.

Kaiser, T. 1997. Transversals of d-intervals. Discrete Computational
Geometry 18(2) 195–203.

Koulamas, C., G. J. Kyparisis. 2008. Single-machine scheduling
problems with past-sequence-dependent setup times. Eur.
J. Oper. Res. 187(3) 1045–1049.

Meloni, C., D. Naso, B. Turchiano. 2003. Multi-objective evolution-
ary algorithms for a class of sequencing problems in manu-
facturing environments. IEEE Internat. Conf. Systems, Man and
Cybernetics 1 8–13.

Meuthen, B., A.-S. Jandel. 2005. Coil Coating. Vieweg+Teubner,
Wiesbaden, Germany.

Mühlenbein, H., M. Gorges-Schleuter, O. Krämer. 1988. Evolu-
tion algorithms in combinatorial optimization. Parallel Comput.
7(1) 65–85.

Rekieck, B., P. D. Lit, A. Delchambre. 2000. Designing mixed-
product assembly lines. IEEE Trans. Robotics Automation 16(3)
268–280.

Schaefer, T. J. 1978. The complexity of satisfiability problems. Proc.
10th Annual ACM Sympos. Theory Comput., ACM, New York,
216–226.

Tang,L.,X.Wang. 2009. Simultaneously schedulingmultiple turns for
steel color-coating production. Eur. J. Oper. Res. 198(3) 715–725.

Zhang, W., R. Smith, C. Lowe. 2009. Confocal Raman microscopy
study of the melamine distribution in polyester-melamine coil
coating. J. Coatings Tech. Res. 6(3) 315–328.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

