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Abstract. Column generation has become a powerful tool in solving large scale integer programs. It is well
known that most of the often reported compatibility issues between pricing subproblem and branching rule
disappear when branching decisions are based on imposing constraints on the subproblem’s variables. This
can be generalized to branching on variables of a so-called compact formulation. We constructively show
that such a formulation always exists under mild assumptions. It has a block diagonal structure with identical
subproblems, each of which contributes only one column in an integer solution. This construction has an
interpretation as reversing a Dantzig-Wolfe decomposition. Our proposal opens the way for the development
of branching rules adapted to the subproblem’s structure and to the linking constraints.
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Introduction

Branch-and-bound is a practically very successful generic method for solving mixed
integer programs. It has been tailored to many particular applications, most notably by
customized branching rules which exploit the respective problem structure. When the
number of variables is huge, the bound at each node is obtained by column generation,
that is, by iteratively adding variables via the questioning of an oracle (or subproblem or
column generator, synonymously). The overall process, known as branch-and-price or
integer programming column generation, hinges on what is called the compatibility of
the branching rules with the oracle. Our discussion puts the notion of compatibility into
a new perspective.

∗Corresponding author.
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Suppose a problem can be formulated in a compact way which explicitly reflects
the oracle structure and a set of linking constraints. This type of formulation naturally
leads to a solution by a decomposition process, such as the one proposed by Dantzig and
Wolfe (1960). Therefore this problem can also be formulated in an extensive way, which
results from the enumeration of a subset of solutions to the oracle. We make the point
that the compact formulation does not only most naturally give rise to branching rules
for the extensive formulation; its proper use also eliminates almost all difficulties with
compatibility. Solving the compact formulation integrally is theoretically not different
from solving any integer program, except for the way of computing the bounds by using
the extensive formulation.

However, in particular in applications, it is not rare that only an extensive for-
mulation and a pricing oracle are given. The contribution of this paper is to show, by
construction, the existence of an associated compact formulation, and to demonstrate
how it reduces compatibility issues.

Solving an extensive column generation formulation by way of a compact formula-
tion can be seen as a straightforward, but useful complement of the use of the processes
developed in the literature for decomposable integer programs, see e.g., Dantzig-Wolfe
decomposition and Lagrangian relaxation. We outline how to algorithmically use the
recovered compact formulation in integer programming column generation. The alter-
native we propose opens the way for the development of branching rules adapted to the
oracle structure and to the linking constraints, in particular in a branch-and-cutcontext.

1. Column generation for integer programs

Consider the following program which we call the compact formulation C :

v(C) := min{cT x | Ax = b, x ∈ X }. (1)

This is an integer program for X = P ∩ Z
n
+ where P ⊆ R

n is a polyhedron. We
remark that X could have a much more complicated non-linear definition. Without loss
of generality, we assume that v(C) be finite. Replacing X by conv(X ) does not change
v(C). It is well known (see Schrijver, 1986) that we can represent each x ∈ conv(X )
as a convex combination of extreme points {pq}q∈Q plus a non-negative combination of
extreme rays {pr }r∈R of conv(X ), where the index sets Q and R are finite, i.e.,

x =
∑

q∈Q
pq yq +

∑

r∈R
pr yr ,

∑

q∈Q
yq = 1, y ∈ R

|Q|+|R|
+ .
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Substituting for x in (1) and applying the linear transformations c j = cT p j and a j = Ap j ,
j ∈ Q ∪ R, we obtain an equivalent extensive formulation EC of C :

v(EC ) := min
∑

q∈Q
cq yq +

∑

r∈R
cr yr

subject to
∑

q∈Q
aq yq +

∑

r∈R
ar yr = b

∑

q∈Q
yq = 1 (2)

y ≥ 0

x =
∑

q∈Q
pq yq +

∑

r∈R
pr yr

x ∈ Z
n
+.

Typically, problem EC has a large number |Q| + |R| + n of variables, but possibly
substantially fewer rows than problem C . Equation

∑
q∈Q yq = 1 is referred to as

the convexity constraint over the extreme points of conv(X ). This substitution easily
generalizes to block diagonal matrices A, see Dantzig and Wolfe (1960). When we relax
the integrality of x, (2) becomes separable in x and y, and we may also relax their linking
constraints, obtaining a linear program in the variables y only. In general, requiring
integrality of variables y does not lead to an integer program equivalent to C .

Alternatively, since the original variables x have to be integer (see also Holm and
Tind, 1988), it is only natural to use them as the source of information in guiding branching
and cutting decisions. Constraints representing these decisions on x are incorporated
in C , either in the oracle structure or at the level of the linking constraints, and the
decomposition process is then repeated. Problem EC is then used only to compute a lower
bound and to identify a solution in terms of the relaxation of the compact formulation.

Consider now the following integer program E formulated in an extensive way

v(E) := min
∑

j∈J

c j y j

subject to
∑

j∈J

ai j y j = bi i ∈ I := {1, . . . , m}
y j ∈ Z+ j ∈ J

(3)

the linear relaxation E ′ of which is supposedly solved by column generationusing a given
pricing oracle in any form, regardless of whether mixed integer program, combinatorial
algorithm, or other. Observe that in general E has no convexity constraint. We are not
given an equivalent compact formulation on which we can analyze the solution of E ′, but
we will show how to construct one. It has a block diagonal structure with identical sub-
problems. We also propose a general separation strategy, based on imposing constraints
on the oracle’s domain.

We can always assume that the finite set J contains an index 0 for a dummy variable,
i.e., c0 = 0 and a0 = 0. It is later used as a slack variable in the reformulation CE of E .
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We denote by A = {(c j , a j )} j∈J the set of all coefficient vectors. Note that this implies
that A contains no duplicate elements, i.e., there is an obvious bijection between J and
A. In column generation, the elements of A are accessed using an oracle. We think of
it as a surjective function f: X → A for some set X . The usefulness of the oracle relies
on a smaller implicit description of X compared to A, and on knowing an algorithm to
compute a negative reduced cost column as in

min
x∈X

f0(x) −
∑

i∈I

ui fi (x),

where u ∈ R
m and f = ( f0, ( fi )i∈I ).

2. Solving E by branch-and-bound

2.1. Bounding

We obtain a lower bound on v(E) from the linear programming relaxation E ′. The
reduced cost c̄ j (u) = c j − ∑

i∈I ui ai j of variable y j is defined as a function on the dual
variables u ∈ R

m . Customarily, according to Dantzig’s minimum reduced cost rule, the
oracle returns a vector a ∈ A corresponding to an index in arg min j∈J c̄ j (u). Interestingly,
not all elements a ∈ A can be generated this way. In the following example, if c2 > 1,
variable z2 cannot be generated:

min z1 + c2z2 + z3

subject to z1 + 2z2 + 3z3 = 2
z1, z2, z3 ∈ Z+.

(4)

Given the dual variable u ∈ R associated with the equality constraint, z2 is of minimum
reduced cost if and only if c2 − 2u ≤ 1 − u and c2 − 2u ≤ 1 − 3u, that is, if c2 ≤ 1 −|u|,
in contradiction with c2 > 1. It is a well known observation that the subset of generated
columns may be integer infeasible. Here, we expose the stronger principal defect that
even if feasibility could be ensured, sometimes we cannot obtain an optimal integer
solution. This happens in (4) if 1 < c2 < 2: the unique optimal integer solution is
(z1, z2, z3) = (0, 1, 0) of value c2 while the solution restricted to the variables that can
be generated is (z1, z3) = (2, 0) of cost 2 > c2.

Similarly, Villeneuve (1999) illustrates that in Dantzig-Wolfe decomposition not
all extreme points of the subproblem’s polyhedron can be generated. We believe that
analogous bad examples exist for other pricing rules as well. In conclusion, column gen-
erationmay not only be necessary after branching, but also branching may be necessary
to generate the right columns. Clearly, column generationhas to be invoked not only
at the root node but also at other nodes of the branch-and-boundtree. The next section
shows various approaches reported in the literature which simultaneously take the pricing
oracle’s structure into account.
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2.2. Branching

A branching rule partitions the solution space such that the current fractional solution
is excluded, optimal integer solutions remain intact, and finiteness of the algorithm is
ensured. The most immediate choice is to branch on variables of E . When the oracle
supports excluding solutions which correspond to variables already down-branched on,
this amounts to finding a kth best oracle solution instead of an optimal one (Sweeney and
Murphy, 1979). This option is appealing because of its robustness against any restriction
on J whatsoever. On the downside is the increased complexity of the oracle which grows
proportionally to the total number of variables excluded at the current node, which can
be far greater than the depth of this node in the tree. When the oracle is for instance a
shortest path problem, a pricing algorithm must not return paths which belong to a set of
forbidden paths (Villeneuve and Desaulniers, 2005). It may not always be as easy as that
and without taking care, the oracle structure can be destroyed by branching decisions
(see e.g., Johnson, 1989; Savelsbergh, 1997; Vance, 1998).

An alternative to branching on single fractional variables of E is to create two
branches by imposing lower and upper bounds on a fractional sum of variables. When
the oracle can be solved as an integer program, Vanderbeck (1994) proposes a strategy
using a discretization of the oracle’s domain. It is based on a rule originally developed
by Ryan and Foster (1981) for set partitioning problems: Two rows must be covered
either by one or by two distinct variables (see also Barnhart et al., 1998; Vanderbeck,
2000b). Vanderbeck and Wolsey (1996) generalize this to integer programs with general
integer coefficients. Several other authors propose such a branching on constraints, either
generic (branching on generalized upper bounds, or on special ordered sets, Nemhauser
and Wolsey (1988)), or tailored to the respective oracle (e.g., Barnhart, Hane and Vance
1997; Chen and Powell 1999; Mehrotra, Murphy, and Trick, 2000; Mehrotra and Trick
1996; Ryan and Falkner, 1987; van den Akker, Hoogeveen, and van de Velde, 1999;
Vanderbeck, 2000a). In general, the structure of the oracle has to be modified to take
into account dual variables associated with the added branching constraints. Additional
constraints may suffice, but more complex modifications may involve new constraints
in E ′ as well as new binary variables and constraints in the oracle. The major drawback
again is the increased size of the oracle integer program which might grow in some cases
proportionally to the depth of the search tree.

The evident trade-off between a more elaborate branching rule and the resulting
complication in the oracle leads to the notion of a compatible branching rule: The regen-
eration of variables which are forbidden in E (by whatever rule) has to be avoided while
not increasing too much (better: at all) the oracle complexity with the growing depth of
the search tree. When the oracle allows for constraints in the form of bounds we may
as well impose branching decisions to the oracle’s domain. This is a natural support for
branching on the original variables of a compact formulation, as is often implicitly done
in rules which branch on constraints, see the references above. When branching rules
and the oracle are not considered separately but in an integrated way, based on a common
structure, the notion of compatibility becomes void. In fact, branching decisions reduce
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the oracle’s complexity until its solution becomes trivial. The relaxation E ′ is then used
for the purpose of bounding only and for identifying a solution in terms of the variables
of the compact formulation.

This approach was originally proposed by Desrosiers et al. (1984) for a vehicle rout-
ing problem with time windows. Interestingly, there are two types of branching strategies
in that paper: One applies directly to the flow variables of the oracle while the other
imposes cuts on the total cost and the number of vehicles utilized. The link between both
types is indeed the compact formulation where one finds the original decision variables
(network flow and time variables), some of them being part of the linking constraints
and the oracle structure. Multicommodity flow formulations for various applications of
vehicle routing and crew scheduling proposed by Desaulniers et al. (1998) are similar
to this scheme. Several other authors also use the same idea, see e.g., Desrochers et al.
(1991, 1995), Kohl et al. (1999), and Sol (1994).

3. A reformulation CE of E

We construct a compact formulation CE from which E follows by application of a decom-
position process. More precisely, Dantzig-Wolfe decomposition applied to CE yields an
extensive formulation equivalent to E , however, with multiple column generators instead
of the original single oracle we start with. Each generator contributes only one column in
a final integer solution. We restrict ourselves to the case where X is closed and bounded,
hence there exists a hyperbox B such that X ⊂ B ⊂ R

n . We assume that we know a
κ ∈ Z+ such that

∑
j∈J\{0} y j ≤ κ for a feasible solution y, i.e.,

∑

j∈J

y j = κ and y0 = κ −
∑

j∈J\{0}
y j . (5)

We now formulate problem CE which explicitly reflects the functioning of the oracle:

v(CE ) := min
∑

k∈K

f0(xk)

subject to
∑

k∈K

fi (xk) = bi i ∈ I

xk ∈ Xk k ∈ K := {1, . . . , κ}.
(6)

We define for each Xk ⊆ X a subset J k ⊆ J of indices associated with the set f(Xk) of
obtainable columns. We establish the connection between E and CE via the following
intermediate problem C̃E , the variables yk

j of which split the variables y j of E in κ parts,
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i.e., y j = ∑κ
k=1 yk

j :

v(C̃E ) := min
∑

k∈K

∑

j∈J k

c j yk
j

subject to
∑

k∈K

∑

j∈J k

ai j yk
j = bi i ∈ I

∑

j∈J k

yk
j = 1 k ∈ K

yk
j ∈ {0, 1} k ∈ K , j ∈ J k .

(7)

Proposition 1. Problems CE and C̃E are equivalent.

Proof. Since f is surjective, |A| = |J | is finite, and Xk ⊆ X , k ∈ K , we may partition
each Xk into a finite number of equivalence classes, defined by xk

1 ≡ xk
2 if and only

if f(xk
1) = f(xk

2). Taking a single representative per equivalence class we obtain a finite
subset X̃ k ⊆ Xk which we use instead of Xk in (6). In order to reformulate CE , let
xk

j ∈ X̃ k denote a representative of the equivalence class indexed by j ∈ J k ⊆ J . By
means of a binary linear combination of variables yk

j we express each xk ∈ X̃ k , k ∈ K
by exactly one of its |J k | representatives:

{
xk =

∑

j∈J k

yk
j x

k
j ,

∑

j∈J k

yk
j = 1, yk

j ∈ {0, 1}, j ∈ J k

}
k ∈ K . (8)

Using (8) we can write this change of variables in (6) as follows:

min
∑

k∈K

∑

j∈J k

yk
j f0

(
xk

j

)

subject to
∑

k∈K

∑

j∈J k

yk
j fi

(
xk

j

) = bi i ∈ I

∑

j∈J k

yk
j = 1 k ∈ K

yk
j ∈ {0, 1} k ∈ K , j ∈ J k

∑

j∈J k

yk
j x

k
j = xk ∈ X̃ k k ∈ K .

(9)

At optimality constraints
∑

j∈J k yk
j x

k
j = xk ∈ X̃ k, k ∈ K are not necessary since exactly

one xk
j ∈ X̃ k is picked on the left-hand side by the binary variables. With f0(xk

j ) := c j

and fi (xk
j ) := ai j , formulation 9 obtained by a change of variables in problem CE as

given in 6 becomes identical to problem C̃E as given in (7).

Formulation CE is defined in such a way that it is valid for any branching deci-
sions that will be made during branch-and-bound. This is why each Xk ⊆ X . The next
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proposition gives a sufficient condition to establish the equivalence between the root
node problem CE and E .

Proposition 2. If Xk = X for all k ∈ K , problems C̃E and E are equivalent.

Proof. Xk = X implies J k = J . To complete the transformation, define variables
y j = ∑

k∈K yk
j , y j ∈ Z+. Summing up the κ convexity constraints of C̃E yields

∑

j∈J

∑

k∈K

yk
j = κ ⇐⇒

∑

j∈J

y j = κ, (10)

the last constraint being redundant by definition of κ in (5). Therefore C̃E becomes

min
∑

j∈J

c j y j

subject to
∑

j∈J

ai j y j = bi i ∈ I

y j ∈ Z+ j ∈ J

y j =
∑

k∈K

yk
j j ∈ J

∑

j∈J

yk
j = 1

yk
j ∈ {0, 1} k ∈ K , j ∈ J∑

j∈J k

yk
j x

k
j = xk ∈ X̃ k k ∈ K .

(11)

It remains to be shown that C̃E given in (11) is equivalent to E presented in (3). Clearly,
any solution to (11) satisfies 3. On the other hand, we show that any solution to 3 in
the non-negative integer variables y j can be split into κ parts (allowing as many parts
in variable y0 as needed) which translate into variables yk

j of (11). By (10), at most κ

variables y j are positive. Without loss of generality, let y0, y1, . . . , yp be these variables,
with y0 = κ − ∑p

j=1 y j . One possible assignment is:

yk
0 =

{
1 if 1 ≤ k ≤ y0

0 otherwise,

yk
1 =

{
1 if y0 + 1 ≤ k ≤ y0 + y1

0 otherwise,

...

yk
p =





1 if

p−1∑

j=0

y j + 1 ≤ k ≤ κ

0 otherwise,

yk
j = 0 if j /∈ {1, 2, . . . , p} and 1 ≤ k ≤ κ .



ON COMPACT FORMULATIONS FOR INTEGER PROGRAMS SOLVED BY COLUMN GENERATION 383

Given this assignment, the xk-variables, k ∈ K are trivially computed. Therefore problem
E is a relaxation of C̃E , and the assertion follows.

More generally, an integral assignment can be done using the constraints of a
transportation problem. Note that for a solution to the linear relaxation of E which is
fractional in y j , there exists a solution in yk

j that satisfies the linear relaxation of C̃E .
Indeed, assume that y j , j ∈ J , is a solution to E ′ and assign to yk

j , k ∈ K , j ∈ J , the
values:

yk
j = y j

κ
, k ∈ K , j ∈ J.

By using (10), it is then easy to verify that this solution also satisfies C̃ ′
E .

4. Solving E using CE

By Proposition 1, a lower bound on v(CE ) is provided by v(C̃ ′
E ). Indeed, the linear

relaxation C̃ ′
E is based on the convexification of each subset Xk by using a convex

combination of all feasible points in Xk instead of the binary linear combination used in
Proposition 1.

At a node in the branch-and-boundtree, when the solution of C̃ ′
E is integer, it

replaces the incumbent solution if it improves on it. When C̃ ′
E is fractional, we make use

of xk = ∑
j∈J k yk

j x
k
j ∈ X̃ k , k ∈ K to reconstruct a solution in terms of the variables of

problem CE . Since X ⊂ B, we define Bk := B, k ∈ K at the first node.

• If C̃ ′
E is fractional and xk /∈ Xk for some k ∈ K , we create two new nodes by dividing

the hyperbox Bk controlling the domain of Xk .

• If C̃ ′
E is fractional and xk ∈ Xk for all k ∈ K , then the fractional combination of

solutions of Xk results in an integer solution for CE . If v(C̃ ′
E ) = v(CE ), i.e.,

∑

k∈K

∑

j∈J k

yk
j f0

(
xk

j

) =
∑

k∈K

f0

(
∑

j∈J k

yk
j x

k
j

)
,

the current solution is integer for CE (and E), and we explore the remaining nodes.

• If C̃ ′
E is fractional, xk ∈ Xk for all k ∈ K , but v(C̃ ′

E ) < v(CE ), the difference is
reflected by some index k ∈ K . This may occur if the cost function f0 is non-linear.
In this case, we also create two new nodes by dividing the hyperbox Bk .

By successive reductions of Bk, k ∈ K this branching process allows for the ex-
ploration of all solutions of problem CE , an equivalent compact version of the extensive
formulation E . We note that branching strategies are not limited to the bisection of
Bk, k ∈ K . This strategy serves as a simple illustration on how to produce a valid
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search tree where the oracle does not become more complicated as branching decisions
accumulate.

Problem C̃ ′
E may be huge, the number of variables compared to E being increased

by a factor of κ , plus the κ convexity constraints. In the beginning, all subproblems
are identical; hence a natural way to compute v(C̃ ′

E ) is to aggregate the variables and
the convexity constraints, and to use a single oracle. Subproblems may differ only after
branching, and the corresponding convexity constraints are introduced as needed.

5. Applications

In this section we present some applications, that is, the reconstruction of an adequate
compact formulation on which branching and cutting strategies can easily be applied.
Consider first the one-dimensional cutting stock problem, a classical example in column
generation. Given are paper rolls of width W , and m demands bi , i ∈ I := {1, . . . , m}
for orders of width wi . The goal is to minimize the number of rolls to be cut into orders,
such that the demand is satisfied. The standard extensive formulation by Gilmore and
Gomory (1961), known for the strength of its linear relaxation bound, is

min
{
1T y | Ay ≥ b, y ∈ Z

|J |
+

}
, (12)

where A encodes the set of |J | feasible cutting patterns, i.e., ai j ∈ Z+ denotes how
often order i is obtained when cutting a roll according to j ∈ J . From the definition
of the feasible patterns, condition

∑
i∈I ai jwi ≤ W must hold for every j ∈ J , and y j

determines how often the cutting pattern j ∈ J is used.
Given the dual multipliers ui , i ∈ I , the linear relaxation of (12) is classically

solved via column generation, where the pricing oracle is:

min

(
x0 −

∑

i∈I

ui xi

)

subject to
∑

i∈I

wi xi ≤ W x0

x0 ∈ {0, 1}
xi ∈ Z+ i ∈ I.

(13)

In the above formulation, vector x = (x0, (xi )i∈I ) separates in two parts: xi , i ∈ I is a
non-negative integer variable that denotes the number of times order i is cut in a roll,
and x0 is a binary variable assuming value 1 if a roll is used and 0 otherwise. Note that
when x0 is set to 1, (13) is equivalent to solving a knapsack problem while if x0 = 0,
then xi = 0 for all i ∈ I and this null solution corresponds to an empty pattern, i.e., a
roll that is not cut.

Our constructive procedure to recover a compact formulation equivalent to (12)
leads to the definition of a specific subproblem for each roll. Let K := {1, . . . , κ}
be a set of rolls of width W such that 1T y ≤ κ for some feasible solution y. Let xk =
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(xk
0 , (xk

i )i∈I ), k ∈ K , be duplicates of the x-vector, that is, xk
0 is a binary variable assuming

value 1 if roll k is used and 0 otherwise, and xk
i , i ∈ I is a non-negative integer variable

that denotes the number of times order i is cut from roll k.
Defining f0(xk) := xk

0 and fi (xk) := xk
i , i ∈ I the compact formulation (6) reads

as follows:

min
∑

k∈K

xk
0

subject to
∑

k∈K

xk
i ≥ bi i ∈ I

∑

i∈I

wi x
k
i ≤ W xk

0 k ∈ K

xk
0 ∈ {0, 1} k ∈ K

xk
i ∈ Z+ k ∈ K , i ∈ I.

(14)

Formulation (14) of the cutting stock problem is due to Kantorovich (1960). It is
known for the weakness of its linear relaxation. However, by applying an appropriate
Dantzig-Wolfe decomposition, that is, in keeping the pricing oracle as an integer program
given by (13), the lower bound provided by the linear relaxation of the resulting extensive
formulation and that of 12 are the same. Branching decisions are then obviously taken
on the x-variables.

It should be pointed out that existence of a compact formulation does not mean
uniqueness. There exist alternative compact formulations for the cutting stock problem
that give rise to the same linear relaxation of the extensive formulation. Valério de
Carvalho (1999, 2002) proposes a clever network-based compact formulation in which
the knapsack subproblem is solved as a particular minimum cost flow problem. Each
subproblem path flow in that network gives a valid cutting pattern, and it corresponds
to an extreme ray, except the null pattern which is the unique extreme point of the
oracle’s domain. We can turn the vast freedom of choosing a compact formulation into
our advantage. For instance, we may wish to avoid symmetry (Barnhart et al., 1998) in
the formulation. In fact, the process outlined in Section 4 is a good device in itself for
reducing symmetry.

As a second type of application, consider column generation approaches used in
the area of vehicle routing and crew scheduling. There the master problem is very often
a set partitioning or a set covering problem while the oracle is given as a constrained
shortest path problem. A path in the appropriate network represents a feasible itinerary
for a vehicle, or for a crew. Therefore, it is only natural to define a specific subproblem
for each vehicle or each crew member. This leads to (constrained) multicommodity flow
problems as compact formulations, for which specialized branching and cutting decisions
have been developed, see Desaulniers et al. (1998) for more details and the description
of numerous branching and cutting rules. In the remainder we present two examples.

In Kohl et al. (1999), a subproblem is defined for each vehicle of the vehicle rout-
ing problem with time windows. The compact multicommodity flow formulation that is
used allows cutting planes to be developed in terms of the network flow variables at
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the level of the linking constraints. These cuts generalize the subtour elimination con-
straints of the traveling salesman problem. Gamache et al. (1998) exploit in a special
way the multicommodity formulation of their airline rostering problem. Here there is
a subproblem for each pilot. The authors impose a very deep cut into selected sub-
problem domains. It does not only cut off the current infeasible fractional solution
but at the same time it also removes from the oracle’s domain a number of integer
solutions.

Conclusion

Column generation and branch-and-boundare often reported to suffer from compati-
bility problems. Instead of considering these two components as separated we adopt a
unifying perspective on solving extensive formulations by integer programming column
generation. The principal advantage of solving an integer program by way of a compact
formulation is to easily and directly exploit the structure of the oracle and that of the set
of linking constraints. To a large extent the notion of compatibility becomes void in this
framework. The small price we pay is the increased algorithmic administration of two
concurrent formulations at a time.

Because of our rather general assumptions on the oracle there is quite some degree
of freedom in obtaining a compact formulation, and imagination and experience are
certainly helpful. Solving the compact formulation integrally is theoretically not different
from solving any integer program, except for the way of computing the bounds by using
the extensive formulation. This fundamental and indeed extremely simple approach has
been in use now for almost twenty years (Desrosiers, Soumis, and Desrochers, 1984),
and has been continually refined during this time.
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Villeneuve, D. and G. Desaulniers. (2005). “The Shortest Path Problem with Forbidden Paths.” European J.

Oper. Res. 165(1), 97–107.


