
A Two-Stage Decomposition of High School Timetabling applied
to cases in Denmark

Matias Sørensen a,b,n, Florian H.W. Dahms c

a Section of Operations Research, Department of Management Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
b MaCom A/S, Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark
c Chair of Operations Research, RWTH Aachen University, Kackertstrasse 7, 52072 Aachen, Germany

a r t i c l e i n f o

Available online 5 September 2013

Keywords:
High school timetabling
Integer programming
Decomposition
Bipartite matching

a b s t r a c t

Integer Programming (IP) has been used to model educational timetabling problems since the very early
days of Operations Research. It is well recognized that these IP models in general are hard to solve, and
this area of research is dominated by heuristic solution approaches. In this paper a Two-Stage
Decomposition of an IP model for a practical case of high school timetabling is shown. This particular
timetabling problem consists of assigning lectures to both a timeslot and a classroom, which is modeled
using a very large amount of binary variables. The decomposition splits this model into two separate
problems (Stage I and Stage II) with far less variables. These two separate problems are solved in
sequence, such that the solution for the Stage I model is given as input to the Stage II model, implying
that irreversible decisions are made in Stage I. However, the objective of the Stage II model is partly
incorporated in the Stage I model by exploiting that Stage II can be seen as a minimum weight maximum
matching problem in a bipartite graph. This theoretically strengthens the decomposition in terms of
global optimality. The approach relies on Hall's theorem for the existence of matchings in bipartite graphs,
which in its basic form yields an exponential amount of constraints in the Stage I model. However, it is shown
that only a small subset of these constraints is needed, making the decomposition tractable in practice for IP
solvers. To evaluate the decomposition, 100 real-life problem instances from the database of the high school
ERP system Lectio are used. Computational results show that the decomposition performs significantly better
than solving the original IP, in terms of both found solutions and bounds.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Integer Programming (IP) has been used to model educational
timetabling problems since the very early days of Operations
Research (see e.g. [16,19]). It is well recognized that these IP models
in general are hard to solve (most forms of educational timetabling
are in fact NP�hard [4]), and this area of research is dominated by
heuristic solution approaches.

In this paper a large IP model for a real-world case of high school
timetabling is considered, which has previously been shown to be a
challenge for state-of-the-art MIP solvers. We consider a basic
version of this IP, which includes the essential constraints of most
timetabling problems. An innovative decomposition of this model is
shown, which proves to be more efficient to solve.

When facing a hard IP model, decomposition is a commonly
used tool to help speed up the solution procedure. Perhaps the
most successful decomposition method in recent years is Column

Generation (CG). However, not many papers on CG and timetabling
models are found in the literature, and it seems that only relatively
small instances have been attempted. Papoutsis et al. [23] use CG to
solve a Greek case of high school timetabling, with the largest
instance containing 9 class section, 21 teachers and 306 teaching
hours. Santos et al. [28] handle larger instances, but only generate
lower bounds. Qualizza and Serafini [27] describe a CG procedure for
a university timetabling problem with 63 courses and 25 timeslots.
The real-world instances considered in this paper are of much
larger size.

A crucial part of a CG procedure is the identification of a block-
diagonal structure in the problem, otherwise the CG procedure is
most likely not efficient. For the high school timetabling problem
described in this paper, it has not been possible to identify such a
structure. Therefore this paper shows a different type of decom-
position, a Two-Stage Decomposition (TSD). Such an approach was
first used for timetabling applications in Lach and Lübbecke [17,18]
with great success for the curriculum-based university course
timetabling problem. The goal of this paper will be to modify
the aforementioned approach to be applicable for the high school
timetabling problem – giving special attention to the high school
system in Denmark.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.08.025

n Corresponding author at: Section of Operations Research, Department of
Management Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark. Tel.: þ45 45254800.

E-mail addresses: msso@dtu.dk, sorensen.matias@gmail.com (M. Sørensen).

Computers & Operations Research 43 (2014) 36–49

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.08.025
http://dx.doi.org/10.1016/j.cor.2013.08.025
http://dx.doi.org/10.1016/j.cor.2013.08.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.08.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.08.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.08.025&domain=pdf
mailto:msso@dtu.dk
mailto:sorensen.matias@gmail.com
http://dx.doi.org/10.1016/j.cor.2013.08.025
http://dx.doi.org/10.1016/j.cor.2013.08.025

The considered timetabling problem essentially consists of assign-
ing lectures to rooms and timeslots, which is commonly modeled
using a very large amount of binary variables. There are three key
points to the TSD:

� By substitution, the total amount of variables is significantly
reduced, while linearity is maintained.

� Instead of solving the entire model at once, it can be solved in a
two-stage fashion. i.e. both the set of variables and constraints
are divided into two distinct sets, corresponding to two smaller
IPs (denoted Stage I and Stage II, respectively).

� It will be evident that, except for two soft-constraints, this
decomposition maintains optimality of the original model.

The outline of the TSD is to first solve Stage I, which provides a
solution where lectures are assigned to timeslots. This partial
solution is given as input to Stage II, which will assign rooms to the
lectures, obtaining a solution for the original problem. The draw-
back of this decomposition is that the timeslots assigned to
lectures in Stage I are considered as fixed by the Stage II model,
which might prevent an optimal allocation of rooms to lectures.
However, by exploiting the structure of the Stage II model, the
Stage I model can be constrained in such a way that some
penalties for assigning rooms to lectures are handled implicitly.
Note that if all penalties for room assigning could be handled
implicitly, the approach would be exact. However, two soft-
constraints are not fully incorporated, so only a lower bound on
the room penalties is known by the Stage I model. In fact, one of
these soft-constraints are not handled at all by the described
approach. Despite this, it seems likely that incorporating this
lower bound in the Stage I model will provide better results
overall (assuming that computing the lower bound does not have
very bad influence on the computational efforts of the used IP
solver). So instead of the Stage I model being completely unaware
of the penalties for room allocation, it seems better to at least
incorporate some of them. Furthermore, the decomposition of the
problem into two smaller problems presents a big advantage in
terms of reduction in the number of variables. Therefore the
overall benefits of the TSD out-weight the downsides, and com-
putational results will show that it is indeed way more effective
than solving the original IP.

The contributions of this paper are the following: (1) It is
shown that the approach from Lach and Lübbecke [17] can also be
applied to a high school timetabling problem originating from a
practical setting, and by extensive computational results it is
argued that the TSD is more effective than solving the original
IP. Notice that a similar decomposition is briefly mentioned in
Sørensen and Stidsen [31] for the same high school timetabling
problem, but this paper enhances the approach such that the
theoretical maximum gap from optimality is narrowed. The pre-
sented approach turns out to be the most efficient exact algorithm
for the problem so far. (2) Generally, it is shown how this type of
decomposition can be applied to models with set-packing struc-
ture, by modifying the underlying equations originating from
Hall's Theorem for matchings in bipartite graphs. (3) It is shown
how the room-priorities of lectures can be handled, by adding a
lower bound on the corresponding penalties to the Stage I model.
This facilitates the quality of the solutions found, as shown by the
computational results.

We expect that the basic structure required for applying the
TSD can be found in other timetabling problems as well, and
therefore the decomposition can potentially be used more broadly
than the case of high school timetabling shown in this paper. This
seems likely because the essential constraints used in the decom-
position are among the most common ones found in timetabling
problems.

The paper is structured as follows. First related papers are
described in Section 2. The basic IP model is introduced in Section
3, including the essential constraints. Section 4 shows the TSD of
this model, and derives the lower bound on room allocation
penalties for the Stage I model. Section 5 extends the model so it
encapsulates a practical version of the high school timetabling
problem, defined by the online high school administration system
Lectio. Section 6 shows computational results, comparing the
decomposition to previous approaches for 100 problem instances
taken from the Lectio database. Section 7 concludes on our
findings.

2. Related work

Integer Programming has been used to model various educa-
tional timetabling problems. However, heuristics are still the most
popular method for these problems, see surveys [29,24]. In terms
of IP, de Werra [12] describes what is called ‘a simple model’ for
the class-teacher problem, and existence of solutions is proven
under certain circumstances using graph theoretical models. The
problems considered are feasibility problems, and soft constraints
are not added to the models. Birbas et al. [5] describes a ‘fully
defined’ IP model for Greek secondary schools, which is evaluated
on five different schools with success. Avella et al. [1] formulates
an IP model which is used to solve small instances of various
origin. The IP is solved within a VLSN algorithm, with good results.

For the related university course timetabling problem, Daska-
laki et al. [11] presents a model which schedules courses to
timeslots and classrooms, using many so called operational rules.
Three different problem instances of significant size are all solved
to optimality using CPLEX. MirHassani [21] describes the problem
for an Iranian university, and reports good results by applying the
XA solver. In Dimopoulou and Miliotis [13] an IP model is used to
solve the timetabling problem for The Athens University of
Economics and Business.

Decomposition of IP models for educational timetabling is not a
very well researched topic. Burke et al. [7] state that: In the
timetabling community, the “times first, rooms second” decomposi-
tion is a standard procedure. However, it seems that this procedure
has not been applied much in context of IP models. Burke and
Newall [8] apply the procedure in context of an Evolutionary
Algorithm for Examination Timetabling. In terms of multistage-
decompositions, the importance of Lach and Lübbecke [17,18] has
already been discussed. Carter [9] presents an interesting decom-
position algorithm for course timetabling with elective courses.
Stating the problem in terms of a vertex coloring problem facil-
itates the decomposition of the graph by cliques, such that the
subproblem defined by each clique is solved separately.

In Burke et al. [7], experiments are conducted on disabling
different combinations of soft-constraint penalties of the Udine
Course Timetabling Problem, including one where all room penal-
ties on room allocation are disabled. Thereby a similar decom-
position to that of Lach and Lübbecke [18] is obtained.

Daskalaki and Birbas [10] presents an approach for university
timetabling, where courses are first assigned to days (skipping
some requirements for compactness), and in the following stage
the timetable for each day is treated locally (enforcing the
compactness). Convincing computational results are shown. In
Birbas et al. [6], a high school timetabling problem is solved by
first allocating ‘work shifts’ to teachers, and then solving the actual
timetabling problem. This is related to the type of decomposition
performed in this paper. Badri [2] uses a related approach for
university course timetabling, where faculties are first assigned to
courses, and then faculties are assigned to timeslots. However the
problems solved are tiny.

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–49 37

Recently, high school timetabling received attention in the
International Timetabling Competition 2011 (ITC2011), see Post et al.
[25]. This competition built upon an uniform format for formulating
problem instances (and their solutions), known as XHSTT [26].
Currently, around 50 problem instances are available in this format.
The problem considered in this paper deviates from the XHSTT
format in several important ways, which is beyond the scope of this
section to elaborate on. Even though many researchers participated
in ITC2011, it seems that all were applying heuristics.

3. An integer programming model for high school timetabling

As the origin for our approach lies the IP model presented in
Sørensen and Stidsen [31]. To make a clear presentation of the
TSD, this IP model is reduced to its essential parts, which is
described in the following. In Section 5, the full IP model is shown
in context of the TSD.

A set of events E is given. Each event generally represents one
lecture, which is defined as a meeting between specific resources,
with a certain subject as teaching-objective. The set of resources is
denoted A. The goal of the high school timetabling problem is to
assign each event to a room and to a timeslot, such that no
conflicts among resources occur. The set of rooms and timeslots
are denoted R and T , respectively. The decision variable
xe;r;tAf0;1g takes value 1 if event eAE is assigned room rAR
and timeslot tAT . To ensure a feasible solution exists, both the set
of timeslots T and the set of rooms R are extended with a single
dummy element, i.e. T ¼ fT [tDg and R¼ fR [rDg. This should
be interpreted in the way that assigning to these dummy-elements
actually means that no timeslot/room was assigned to the event.
Thereby the goal of the IP is to assign as many events as possible to
a timeslot and/or a room. From a practical point of view this is
desirable, as the model is used in a decision support context where
it might not be evident how to handle infeasibility. ϕe;tARþ

denotes the penalty for assigning event eAE to timeslot tAT , and
πe;rARþ denotes the penalty for assigning event eAE to room
rAR. Major penalties are given for assignments to the dummy-
elements, i.e.

ϕe;tD⪢ϕe;t 8eAE; tAT \tD ð1Þ

πe;rD⪢πe;r 8eAE; rAR\rD ð2Þ

A room might be unavailable in certain timeslots, indicated by
the binary parameter Gr;tAf0;1g, which takes value 1 if room rAR
is available in timeslot tAT , and 0 otherwise. Furthermore, a set of
eligible rooms exists for each event. Let parameter Ke;rAf0;1g take
value 1 if event eAE can take place in room rAR, and 0 otherwise.
Each event requires a fixed set of resources. Let E′a; aAA, denote
the set of events where resource a participates.

We include in the model a set of constraints which will be
described later, denoted by the constraint-set Pother, slightly
abusing notation. These constraints define various other important
criteria, such as forbidden timeslots for certain events, events
which must be placed in the same timeslots, etc. Since these
constraints are not required for describing the decomposition,
their definitions are postponed to Section 5. We allow the set of
constraints Pother to also denote soft-constraints (i.e. constraints
which result in a weighted penalty in the objective function if it is
not fulfilled). Thereby these constraints contain all necessary
conditions for modeling the timetabling instances in question,
and represent a large set of distinct types of constraints. It will be
argued in the next section that these constraints can be handled in
the decomposition such that optimality of the IP model is not lost,
with one exception.

Model (3) shows the IP model.

IP Model for High School Timetabling ð3Þ

min w¼ ∑
eAE;rAR;tAT

ðϕe;tþπe;rÞxe;r;t ð3aÞ

s.t.

ðone time=roomÞ ∑
rAR;tAT

xe;r;t ¼ 1 8eAE ð3bÞ

ðresource conf :Þ ∑
rAR;eAE′a

xe;r;tr1 8aAA; tAT \tD ð3cÞ

ðroom conf :Þ ∑
eAE

xe;r;t rGr;t 8rAR\rD; tAT \tD ð3dÞ

ðeligible rooms:Þ ∑
tAT

xe;r;t rKe;r 8eAE; rAR ð3eÞ

xe;r;tAPother ð3fÞ

xe;r;tAf0;1g ð3gÞ
The objective of the model is to minimize the overall penalty

for assignments, given by (3a). Constraint (3b) specifies that each
event must be assigned exactly one timeslot and one room. Events
which require the same resource cannot be scheduled simulta-
neously (except in the dummy-timeslot), which is ensured by
constraint (3c). A room cannot be used by more than one event in
each timeslot. This is specified in constraint (3d). The requirement
for eligible rooms is specified in constraint (3e). Constraint (3f)
specifies that constraints Pother should be respected.

Theorem 3.1. The High School Timetabling Problem as specified in
(3) is NP�hard.

Proof. We conduct a reduction from Vertex Coloring. Let G¼ ðV ; EÞ
be an arbitrary graph and k be an arbitrary number. The question
of the coloring problem would now be whether it is possible to
color G with k colors, such that no two adjacent vertices share the
same color.
Now construct a High School Timetabling instance in the follow-

ing way:

� Let there be an event for every vertex, i.e. E ¼ V .
� Make sure there are enough rooms for all events, therefore

create a room for every event (i.e. jRj ¼ jEj) and make sure all
events fit in all rooms (i.e. Ke;r ¼ 18eAE; rAR), and that all
rooms are available in all timeslots (i.e. Gr;t ¼ 18eAE; rAR).

� For every edge fv1; v2gAE we create a resource in A (i.e. A¼ E).
The events using this resource will be the vertices connected by
the edge (i.e. E′fv1 ;v2g ¼ fv1; v2g).� We use exactly k timeslots (i.e. T ¼ f1;…; kgÞ.

� The additional constraints Pother can be dropped without loss of
generality, as we impose no other restrictions on the time-
tabling instance. Also as we only search for a feasible solution,
the soft constraints can easily be ignored.

Now we have a direct relation between the Vertex Coloring
problem and the new timetabling instance. A solution of one
problem can be transformed into a solution of the other by
translating the colors of the vertices into timeslots, and vice versa.
The rooms pose no restriction as every event can be scheduled in
its own room.
Therefore solving the timetabling instance would result in

solving the Vertex Coloring Problem, and the High School Time-
tabling problem is NP�hard.

Here we remark that Model (3) encapsulates many of the basic
constraints required by most timetabling problems. If we for

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–4938

instance consider the XHSTT format, the basic requirement is to
assign events to timeslots and resources (corresponding to rooms
in our cases), subject to no clashes between resources. Therefore it
is believed that the type of decomposition considered in this paper
can in principle be applied to other timetabling problems as well.

4. Two-Stage Decomposition of the integer programming
model

The TSD of Model (3) is performed as follows. The model is split
into two stages; in Stage I, events are assigned to timeslots, and in
Stage II, events are assigned to rooms. The respective decision
variables for these stages are the following; ye;tAf0;1g takes value
1 if event eAE is assigned timeslot tAT , and 0 otherwise;
ze;rAf0;1g takes value 1 if event eAE is assigned room rAR, and
0 otherwise. This means that constraints (3b) and (3c) are part of
Stage I, and constraints (3d) and (3e) are part of Stage II.

As for constraints (3f), defined by the set Pother, it is assumed
that each of the constraints in Pother is either only touching the
assignment of events to timeslots (denoted Ptimeslot) or the assign-
ment of events to rooms (denoted Proom). It is shown in Section 5
that this assumption holds, with one exception. This means that
constraints Ptimeslot can be fully stated in terms of variable ye;t ,
and constraints Proom can be fully stated in terms of variable ze;r .
As constraints Ptimeslot are part of Stage I, these are handled
optimally. This is different for Proom, as those constraints are
harder to consider during Stage I. We will therefore address them
with greater care in the next sections and show how we can add
weighted room allocations to the decomposed model as a good
approximation.

The solution obtained from the Stage I model is given as a
parameter to the Stage II model, denoted yn

e;t . The advantage of this
approach is the huge reduction in the number of variables in both
stages, which results in a significantly decreased solving time. The
following substitution of variables are made:

∑
rAR

xe;r;t ¼ ye;t ðStage IÞ ð4Þ

xe;r;t ¼ yn

e;tze;r ðStage IIÞ ð5Þ
The objective (3a) of the original model defines a natural objective
for both Stage I and Stage II, since it can be split into two
independent expressions (denoted wI and wII , respectively). If this
was not the case (e.g. if an event had different priorities for rooms
depending on the timeslot it was assigned), it would complicate
matters in terms of the Stage I model.

To sum up, Models (6) and (7) show Stage I and Stage II,
respectively.

Stage I ð6Þ

min wI ¼ ∑
eAE;tAT

ϕe;tye;t ð6aÞ

s.t.

ðone timeslotÞ ∑
tAT

ye;t ¼ 1 8eAE ð6bÞ

ðresource conf :Þ ∑
eAE′a

ye;tr1 8aAA; tAT \tD ð6cÞ

ye;tAPtimeslot ð6dÞ

ye;tAf0;1g ð6eÞ

Stage II ðsolution from Stage I is denoted yn

e;tÞ ð7Þ

min wII ¼ ∑
eAE;rAR

πe;rze;r ð7aÞ

s.t.

ðone roomÞ ∑
rAR

ze;r ¼ 1 8eAE ð7bÞ

ðroom conf :Þ ∑
rAE

yn

e;tze;rrGr;t 8rAR\rD; rAT \tD ð7cÞ

ðeligible roomsÞ ze;rrKe;r 8eAE; rAR ð7dÞ

ze;rAProom ð7eÞ

ze;rAf0;1g ð7fÞ
The outline of the TSD is shown in Fig. 1. For a variable x the

star-suffixed version xn denotes a feasible solution. Stage I is solved
using a MIP solver to obtain a solution yn

e;t , which is given as input
to the Stage II model. Note that Stage I possesses the coloring
structure from Theorem 3.1. Therefore Stage I is already a hard
problem in its most basic form. Furthermore the value of the LP-
relaxation of the Stage I model (denoted wIn

LP) is a lower bound on
the original model, as the Stage I model can be seen as a relaxation.
Solving the Stage II model subject to the solution of the Stage I model
obtains a solution zne;t , and a solution to the original model xne;r;t can
then be derived by Eqs. (4) and (5).

For this paper we will solve Stage II using the specified IP even
though we have not established its complexity yet. But as con-
structing a polynomial time algorithm for Stage II that can cope with
all the additional constraints would be out of this papers scope we
will postpone this to a potentially later point in time. In the
computational results section we will see that solving Stage II will
not be the time-wise bottleneck anyhow.

As previously discussed, the penalties for room allocation can
be implicitly handled in Stage I, which is described in Section 4.1.
This extension of Stage I will not only allow better solutions to be
found, but possibly also improvements in the bounds found by
means of the LP relaxation.

As an alternative approach, we remark that an iterative
procedure could in principle be used, such that the solution
obtained from the Stage II model is given as input to the Stage I
model, and the whole procedure is repeated. It is however unclear
how the input from the Stage II model should effect the Stage I
model to obtain convergence towards better solutions in terms of
the overall objective. Furthermore, such an approach would
require that both Stage I and Stage II can be solved ‘quickly’ (for
the practical problem treated in this paper, computational results
will show that this is in fact not the case for the Stage I model).

4.1. Extending Stage I with room allocation

The key idea behind extending Stage I with room allocation
penalties is to consider Stage II as a matching problem in a
bipartite graph. Constraints (7e) are set aside in the following, as
they have not been defined yet. However, it will be seen later that

Fig. 1. Two-Stage Decomposition flow chart.

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–49 39

these constraints do not fully obey the matching problem struc-
ture, and therefore Stage II must be solved with a MIP solver. This
means that the room penalties are only partly incorporated in
Stage I, but still this seems better than having Stage I being totally
unaware of these penalties, as already discussed in Section 1.

Some basic graph notation is introduced in the following.
A graph is bipartite if its set of vertices can be partitioned into
two sets A and B, such that every edge has one endpoint in A, and
the other endpoint in B. A matching in a graph is a set of edges such
that no two of these edges share endpoints. A maximum matching is
a matching that contains the largest possible number of edges. The
matching number νðGÞ of graph G is the number of edges in a
maximum matching. For a graph with edge-weights, a minimum
weighted maximum matching is a maximum matching where the
sum of the weights on the edges of the matching is minimal.

In the Stage II model (7), notice first that the only constraint
which treats timeslots is constraint (7c). Since this constraint
applies to timeslots individually, Model (7) can be split into jT j
independent optimization problems. Second, assume that the
minimum weighted maximum matching problem of the weighted
bipartite graph Gt ¼ ðE [R; EtÞ fully describes the optimization
problem of timeslot t of Model (7). To recognize this, let RD be the
set of jEj distinct dummy-rooms. i.e. For each event a dummy-
room is created (and a corresponding edge is added to the graph)
to ensure a matching of every event to a room will always exist.
Hence the room-vertices of graph Gt is given by R ¼R [RD. The
set of edges is given by (skipping edge definitions for the dummy-
room vertices) Et ¼ feAE; rARjKe;r ¼ 14Gr;t ¼ 1g, and the weight
on each edge is given by πe;r . The goal of the matching problem is
to select a maximum matching with minimum weight. A trivial
maximum matching will assign every event to the dummy-room.
Clearly this resembles component tAT of Model (7).

Stating the Stage II model in terms of this graph allows us to
exploit some well-known properties of matching problems in
bipartite graphs. In the following, notation is simplified by drop-
ping the t-index where applicable, i.e. we write G instead of Gt and
E instead of Et . Denote by ΓðSÞ the neighbors of event-nodes SDE
in graph G, i.e. ΓðSÞ ¼ fiARjjAS; ði; jÞAEg. Hence ΓðSÞDR. The
well-known theorem of Hall states that a bipartite graph G¼ ðE [
R; EÞ has a matching of all vertices E into R if and only if
jΓðSÞjZ jSj 8SDE. Observe that for timeslot tAT , the variable
ye;t determines whether event eAE is part of graph G. Lach and
Lübbecke [18] used this theorem to add constraints of the form

∑
eAS

ye;tr jΓðSÞj 8SDE; tAT ð8Þ

to the Stage I model to guarantee that the Stage I model would
yield a feasible matching problem for every component tAT of
the Stage II model. However, such constraints are redundant in our
case, as we are guaranteeing that no matter how ye;t is selected,
a feasible matching will always exist (due to the dummy-rooms).
Instead we modify the expression (8) to provide a lower bound on
the weighted matching problem.

For the bipartite graph G¼ ðE [R; EÞ (the edge-weights are set
aside for now), let the deficiency of a vertex set SDE be defined as
defðSÞ ¼ jSj�jΓðSÞj. Let the deficiency of G be defined as defðGÞ ¼
maxSDEdefðSÞ. Theorem 1.3.1 of Lovász and Plummer [20] states
the following:

Theorem 4.1. The matching number of the bipartite graph G¼
ðE [R; EÞ, is νðGÞ ¼ jEj�defðGÞ.

i.e. for the bipartite graph G, defðGÞ denotes the amount of
vertices which are not matched in the maximum matching.

Let W denote the ordered set of different values found in πe;r , i.e.

W ¼ fwARþ j(eAE; (rAR : πe;r ¼wg ð9Þ

wiowj3ordwioordwj 8ðwi;wjÞAW ð10Þ
Notice that no restrictions are posed on the amount of different
values found, but it should be remarked that for our practical case,
the cardinality of W is small (typically below 10).

The bipartite graph G is split into subgraphs, one subgraph for
each wAW. A subgraph is denoted as Grw ¼ ðE [R; ErwÞ, where
the set of edges are those with at least weight w,

Erw ¼ fðe; rÞAEjπe;rrwg ð11Þ
By these definitions, it is clear that

jΓðGrw1 Þjr jΓðGrw2 Þjr…) ð12Þ

defðGrw1 ÞZdefðGrw2 ÞZ… ð13Þ
Using the deficiencies of these subgraphs, a lower bound on the
minimum weight maximum matching can be stated. Let awAN0

be defined as

awi ¼
νðGrwi Þ�νðGrwi�1 Þ ¼ defðGrwi�1 Þ�defðGrwi Þ if i41
νðGrw1 Þ ¼ jEj�defðGrw1 Þ otherwise

(

ð14Þ
The intuition behind aw is to measure the change in the matching
number when edges with weight w are added to the subgraph
Grwi�1 . Note that 0rawr jEj for any wAW, as 0rdefðGrwÞr jEj.

Theorem 4.2. The quantity

∑
wAW

w � aw

is a lower bound on a minimum weight maximum matching in the
edge-weighted bipartite graph G.

Proof. Assume for contradiction there exists a maximum matching
M with lower weight, i.e.

∑
eAM

weo ∑
wAW

w � aw

Let bw denote the number of edges inM of weight lesser or equal w,
i.e.

bw ¼ jfeAM : werwgj
Let k be the smallest number such that,

bwk 4 ∑
k

i ¼ 1
awk

This number must exist since M is a cheaper matching. For the
subgraph Grwk ; bwk can never exceed the matching number νðGrwk Þ
(by Theorem 4.1). We say ‘exceed’ as the matching might not include
precisely νðGrwk Þ edges of weight lesser or equal wk. This gives

bwk
rνðGrwk

Þ
¼ jEj�defðGrwk

Þ
¼ jEj�defðGrw1 ÞþdefðGrw1 Þ�defðGrw2 ÞþdefðGrw2 Þ…þdefðGrwk�1 Þ|ffl{zffl}

¼ 0

�defðGrwk
Þ

¼ ∑
k

i ¼ 1
awi

which is a contradiction. □

This lower bound is minimized in the objective of the Stage I
model. Hence, any lower bound on the Stage I model is a lower
bound on the overall problem. Additional notation is needed for
stating the extended Stage I model.

The neighbors of event-nodes SDE in graph Gt;rw are denoted
Γt;rwðSÞ for timeslot t and weight w. Let the variable def t;rwAN0

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–4940

be the deficiency of subgraph Gt;rw. The deficiencies for each
subgraph can be determined by adding the following constraint
(follows directly from Theorem 4.1 and the definition of the
deficiency for a bipartite graph),

∑
eAS

ye;t�def t;rwr jΓt;rwðSÞj 8SDE; tAT ; wAW ð15Þ

Model (16) shows the extended model. Variables def t;rw and at;w
are specified to be continuous as they will naturally take integer
values. Obviously an exponential amount of constraints is added
due to (16d), but it will be shown that for our practical purpose,
the amount of required constraints is low.

Stage I extended with Hall’s condition ð16Þ

min WI ¼ ∑
eAE;tAT

ϕe;tye;tþ ∑
tAT ;wAW

wat;w ð16aÞ

s:t:
ðone timeslotÞ ∑

tAT
ye;t ¼ 1 8eAE ð16bÞ

ðresource conf :Þ ∑
eAE′a

ye;tr1 8aAA; tAT \tD ð16cÞ

ðHall’sÞ ∑
eAS

ye;t�def t;rwr jΓt;rwðSÞj8SDE; tAT ; wAW ð16dÞ

ðLBÞ jEj�def t;rw1 ¼ at;w1 8 tAT ð16eÞ

ðLBÞ def t;rw�1�def t;rw ¼ at;w 8 tAT ; wAW; ordðwÞ41

ð16f Þ

ye;tAf0;1g ð16gÞ

def t;rw; at;wARþ ð16hÞ

Example 4.1. Below is shown an example of a bipartite graph and
its subgraphs for some timeslot. Three different room-weights exist,
W ¼ f0;2;10g. Clearly, an optimal solution to the matching problem
of this graph is ðe1; r1Þ; ðe2; r3Þ; ðe3; r2Þ with value 2. The subgraphs for
weights 0 and 2 are shown, and the lower bound derived.

Hence the lower bound is derived as

LB¼ a00þa22¼ 2

Example 4.2. Naturally, the lower bound is not necessarily tight,
as shown by the following small example.

For weight w1 ¼ 1 the deficiency of G1 is defðG1Þ ¼ 1 and there-
fore a1 ¼ 1. As the deficiency for G2 is defðG2Þ ¼ 0 we also have
a2 ¼ 1. The lower bound therefore reads 1 � 1þ2 � 1¼ 3. But
obviously the only (and therefore minimal weight) maximum
matching has weight 4. In fact, by increasing the weight on the
weight 2 edges, it is seen that the gap between the lower
bound and the actual minimal weight maximum matching could
potentially be arbitrarily large. For the practical problem handled
later, the weights can take values f1;2;…;10g, and therefore the
gap between weights is low. The gap between the lower
bound and the actual matchings obtained will be investigated
experimentally.

4.2. An exact approach using Egerváry's theorem

An alternative approach to the derived lower bound,
the theorem of Egerváry [15] can be used to characterize the
minimum weight of a matching in a bipartite graph, which
deserves a mentioning in this context. The theorem states the
following ([30, Theorem 17.1], here stated as a minimum weight
problem):

Theorem 4.3. Let G¼ ðV ; EÞ be a bipartite graph and let w : E-Rþ

be a weight function. Then the minimum weight of a matching in G is
equal to the maximum value of y(V), where y : V-Rþ is such that

yuþyvrwe 8u; vAV ; ðu; vÞAE

However, since we consider a bipartite graph for each timeslot,
and each bipartite graph in worst case has jEjjRj vertices (which
occurs often in practice), the amount of required constraints is of
magnitude jEjjRjjT j, so this is not a tractable approach.

Furthermore, since the graph is not static (i.e. its structure
depends on assignments of events to timeslots), a min–max
formulation would be required.

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–49 41

4.3. Generating Hall's inequalities

To generate the Hall's inequalities, it is necessary to exploit the
structure of the underlying graph. Thereby we use problem specific
knowledge to overcome the requirement of enumerating all subsets of
events. In the Lectio case, two important features are known about the
bipartite graphs:

� An event often has a special association with one specific room.
This is either because the event is locked to that room, or
because a penalty is imposed on not assigning an event to the
room it was previously assigned to. In the later case, this means
that one room has a lower weight than all other rooms for the
particular event. Hence, in the subgraph Grw for this respec-
tive lower weight, only a single edge exists for the event. An
event with only a single adjacent edge is denoted as a singleton
event from now on.

� Furthermore, predefined feature-groups of rooms exist. A
feature group of rooms is devoted to a certain type of lecture,
for instance chemistry or physics, which require a room with
specialized equipment. Hence many events are adjacent to the
exact same set of rooms.

These graphs are hence exploited by separately considering the
inequalities induced by singleton events and the inequalities
induced by all other events, and finally those inequalities induced
by combining these. The approach is formalized below. It should
be remarked that applying this type of decomposition will require
exploiting at least some properties of the underlying graph. We
refer to Balas and Pulleyblank [3], Edmonds [14], Lach and
Lübbecke [17] as helpful resources in this aspect.

For a subset of rooms RDR, let Γ�1ðRÞ be the set of events
adjacent to only rooms in R, i.e. Γ�1ðRÞ ¼ feAEjΓðfegÞDRg.

Theorem 4.4. The Hall inequalities

∑
eAS

ye�def r jΓðSÞj 8SDE

are fully contained in

∑
eAΓ�1ðRÞ

ye�def r jRj 8RDR

Proof. Let SDE be any set of events. Now we let R¼ΓðSÞ.
Obviously we have SDΓ�1ðRÞ ¼Γ�1ðΓðSÞÞ. If ∑eAΓ�1ðRÞye� defr
jRj holds we get

∑
eAS

ye�defr ∑
eAΓ�1ðR

ye�defr jRj ¼ jΓðSÞj □

This means that instead of having a constraint for every subset of
events we can do with a constraint for every subset of rooms
(which are considerably less).

Next we can further reduce the number of necessary con-
straints by exploiting symmetry between rooms. Rooms which are
adjacent to exactly the same events can be grouped, and essen-
tially treated as one room.

Theorem 4.5. Let R1;…;RmDR be distinct ðia j) Ri \ Rj ¼∅Þ
subsets of rooms. Let IDf1;…;mg be an index set such that

⋃
iA I
Γ�1ðRiÞ ¼Γ�1 ⋃

iA I
Ri

 !
ði:e: there is no event that only fits

into a combination of the room sets in IÞ

Then the Hall constraint

∑
eAΓ�1ð⋃iA IRiÞ

ye�defr ⋃
iA I

Ri

�����
�����

is dominated by

∑
eARi

ye�def ir jRij 8 iA I

∑
iA I

def i rdef

where def iAN0 is the deficiency of index iA I, i.e. def i ¼ defðΓ�1ðRiÞÞ.

Proof. First note that ∑iA Idef irdef implies

∑
eAΓ�1ð⋃iA IRiÞ

ye�defr∑
iA I

∑
eAΓ�1ðRiÞ

ye�def i

Next by ∑eAΓ�1ðRiÞye�def ir jRij we get

∑
iA I

∑
eAΓ�1ðRiÞ

ye�def ir∑
iA I

jRij ¼ ⋃
iA I

Ri

�����
�����

where the later equality holds as the Ri are distinct. □

Since the amount of possible ways to select I is exponential, this
shows a potential way to limit the amount of necessary inequalities.

The graphs of the Lectio instances usually have the following
structure, as previously discussed: Certain events are fixed to a
specific room. These events are known as singleton events, and are
denoted with the set E1. If the singleton events are discarded, all
other rooms can be grouped into groups I ¼ f1;2;…;mg,
i.e. RiDR 8 iAI , where every room is connected to the very
same events as the other rooms of the same group. In particular this
means

Γ�1ðRÞ\E1 ¼∅ 8R⊊Ri; iAI ð17Þ

meaning that no event is adjacent to only a subset of rooms of the
room-groups, except for the singleton events. The key observation
here is that the number of these groups of rooms is low, yielding a
tractable way to generate the Hall inequalities. By Theorem 4.4 we
know that a subset of rooms fully characterises one of the Hall
constraints (and that it is sufficient to consider only those).

Corollary 4.1. Given the structure of the Lectio graphs, only the
following subsets of rooms need to be considered w.r.t. Eq. (15) (in the
altered form defined by Theorem 4.4):

ðIÞ ΓðeÞ 8eAE1 ð18Þ

ðIIÞ ⋃
iA I

Ri 8 IDI ð19Þ

Proof. For contradiction, let ~RDR be any other subset of rooms, i.e.

~RaΓðeÞ 8eAE1

~Ra⋃
iA I

Ri 8 IDI

~R can be decomposed into subsets ~Ri; iAI , such that ~R1DR1;
~R2DR2;…; ~RmDRm and ⋃iAI ~Ri ¼ ~R.
For each of the decomposed room sets ~Ri we can now have one

of the three following cases (by Eq. (17), which disallows that
~RiaRi and Γ�1ð ~RiÞ\E1a∅):

1. ~Ri ¼ Ri

2. ~RiaRi and Γ�1ð ~RiÞ \ E1a∅
3. ~RiaRi and Γ�1 ~Ri ¼∅

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–4942

Let the respective indices be contained in the sets I1; I2 and I3.
The rooms from the third case (~Ri; iA I3) do not add events to the
left hand side of a Hall constraint and can therefore be ignored.
If combining the rooms from the first case to R′¼⋃iA I1

~Ri we get
one of the already considered combinations of room groups. Now
note that there is no event fitting into the combination of R′ with any
of the rooms from the second case (their Γ�1 only contains singleton
events) and therefore the condition for Theorem 4.5 is met

⋃
iA I2

Γ�1ð ~RiÞ
 !

[Γ�1ðR′Þ ¼Γ�1 ⋃
iA I2

~Ri

 !
[R′

 !

So we now know that the Hall constraint corresponding to ~R is
unnecessary. □

Algorithm 4.1 shows the implemented algorithm for generation
all necessary Hall constraints according to this construction.

Algorithm 4.1. Generating Hall's conditions.

1: input: bipartite graph G¼ ðE [R; EÞ
2: output: set of rooms H, which each constitute a Hall

inequality

3: identify E1 of G

4: Nr ¼ feAE\E1jrAΓðeÞa∅g ▹ Identity adjacent events for
each room

5: T ¼ fRDRjðri; rjÞAR; ia j;Nri ¼Nrj g ▹ Groups of rooms
which are adjacent to the same events

6: for all SAPðTÞ do ▹PðTÞ denotes the powerset of T, i.e. the
collection of all subsets

7: H¼H [frARjRASg ▹ Add set of room (Eq. (19))
8: end for
9: H ¼H [frg 8rAΓðE1Þ ▹ Add rooms of singleton events

(Eq. (18))

In Line 5 rooms are grouped. Here it should be remarked that
this is done in a way that identifies the minimum number of
groups of rooms. The amount of generated inequalities is hence
exponential in the number of groups of rooms. For the Lectio
high school timetabling problem, this number is in general low.
However, an artificial limit of a maximum of 12 different groups of
rooms is imposed, allowing in magnitude of 212 inequalities
to be generated for each timeslot. In practice, only two problem
instances are restricted by this limit (“HasserG2012” and
“SlagelG2012”). The room groups to generate inequalities are
selected by ordering the room groups in terms of total number
of adjacent events to all other room groups, and taking those room
groups where this number is highest. Obviously, omitting some
inequalities will not change the fact that the room allocation
penalty added to Stage I is a lower bound on the objective of
Stage II.

5. Lectio high school timetabling problem

To establish computational results, Stage I and Stage II are
extended to the full version of the Danish case of high school
timetabling described in Sørensen and Stidsen [31]. This variant of
the problem is used in the timetabling component of the high
school ERP-system Lectio, and hence reflects all aspects of a
practical timetabling optimization problem. Lectio Timetabling is
used by many high schools in Denmark, and this formulation of
the problem has been used in production mode for over a year. In
this paper a brief introduction to each of the added constraints and
variables is given. More in-depth description and motivation can
be found in Sørensen and Stidsen [31].

This timetabling problem contains more types of constraints
than what is usually found in the literature. This is mainly related
to the big number of different high schools which use it, which
inevitably gives a big variety of required features. However, a
conversion scheme from this timetabling problem to the general
XHSTT format is known, so the Lectio problem fits within the
general concepts of high school timetabling problems.

Extensive computational experiments have shown that the
usual formulation of this timetabling problem using a binary
variable with three indices is very challenging for the commercial
MIP solver Gurobi 5, which is among the very best general-purpose
MIP solvers according to recent benchmarks of Mittelman [22].
Therefore this timetabling problem is a good candidate for testing
the TSD approach.

5.1. Stage I

The set of timeslots T is defined by the combination of the set
of days D, and the set of daily-timeslots (known as modules) M.
The set of resources A consists of teachers and students, which is
also known as the set of entities. Furthermore, the set of classes is
denoted C. A class cAC is a non-physical resource treating a specific
teaching-subject, and is associated with a certain set of events.
Hence, an event can be viewed as a single lecture of a certain class.
Parameter Je;cAf0;1g takes value 1 if event eAE is part of class
cAC, and 0 otherwise.

Variable νa;tAf0;1g takes value 1 if entity aAA is active in
timeslot tAT , and 0 otherwise. Variable f a;dAf0;1g takes value 1 if
entity aAA has no events scheduled on events on day dAD (we
say that the entity has a day off, even though he/she might be
occupied by unscheduled activities, such as lecture preparation),
and 0 otherwise. Variable bc;tAf0;1g takes value 1 if class cAC has
at least one lecture in timeslot tAT , and 0 otherwise. Variable
nc;dAf0;1g takes value if class cAC has a neighbor-day conflict on
day dAD. A neighbor-day conflict occurs when the same class has
scheduled events on two consecutive days. Variable oa;dAf0;1g
takes value 1 if entity aAA has only one event on day dAD, and
0 otherwise. Days with only one lecture are undesirable and
should be avoided. Variable wcAN0 is the amount which class
cAC is ‘out of week-balance’. i.e. If the set of timeslots is made up
of times from more than one week, the amount of events of each
class in each week must be equivalent (as far as possible). Variable
ha;dAN0 is the amount of idle timeslots (a timeslot with no
activity, but there exists both at least one earlier and one later
timeslot with activity) for entity aAA on day dAD. Variables ha;d,
ha;dAN0 denote the ordinal number of the first and last timeslot
with activity on day dAD for entity aAA, respectively.

The objective consists of 6 additional terms. These denote the
weighted sum of entity idle slots (weight ϕaARþ), neighbor-day
conflicts (weight ζARþ), days with only one lecture (weight
ηaARþ), days-off for teachers (weight γaARþ), days-off for
students (weight δaARþ), and class week stability (weight
tARþ), respectively.

Let parameters Se and Ce be the set of events which should be
scheduled in the same timeslot as event eAE, and in the timeslot
immediately following event eAE, respectively. Parameter
Pd;d′Af0;1g takes value 1 if day dAD and day d′AD are neigh-
bor-days, and 0 otherwise. Parameter Rc;dAf0;1g takes value 1 if
class cAC is part of some event which is locked to some timeslot
on day dAD, and let NcAN0 be the number of allowed neighbor-
day conflicts for class cAC. T d denotes the set of timeslots on day
dAD. Parameter De;tAf0;1g takes value 1 if event eAE can be
scheduled in timeslot tAT , and 0 otherwise. Parameter FaAN0

denotes the amount of required days off for entity aAA. Parameter
WaAN0 denotes the maximum amount of events which can be
scheduled to entity aAA on any given day.

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–49 43

A class can only have one event assigned to each day, unless it
is specified that multiple events should be placed in contiguous
positions. We say that such day-conflicts are infeasible. The set
E‴DE denotes the set of events for which day-conflicts are
checked.

The most common case is that a school creates a timetable for a
single week. However, some schools desire to create a two-week
timetable instead. This allows more flexibility in the planning;
take for instance a class with a nominated teaching load of three
events per week. In case the school uses a two-week timetable,
this class can for instance have one double lecture in the first
week, and two double lectures in the second week. dðT Þ and dðT Þ
denote the sets of days in the first and in the second week,
respectively. T and T denote the timeslots in the first and second
week, respectively.

The complete Stage I model is shown in (20).

Stage I Lectio ð20Þ

min wI ¼ ∑
eAE; tAT

ϕe;tye;tþ ∑
tAT ; wAW

wat;wþ ∑
aAA; dAD

βaha;d

þζ ∑
cAC; dAD

nc;dþ ∑
aAA; dAD

ηaoa;d

þ ∑
aAA

γa jDj� ∑
dAD

f a;d

" #
þ ∑

aAA;dAD
δaf a;dþ ι ∑

cAC
wc ð20aÞ

s.t.

ðone timeslotÞ ∑
tAT

ye;t ¼ 1 8eAE ð20bÞ

ðentity time aux:Þ ∑
eAE′a

ye;t ¼ va;t 8aAA; tAT ð20cÞ

ðentity conf :Þ ∑
tAT d

va;tþ f a;dr1 8aAA; dAD ð20dÞ

ðHall’sÞ ∑
eAS

ye;t�def t;rwr jΓt;rwðSÞj8S� E; tAT ;wAW ð20eÞ

ðroom alloc: lbÞ jEj�def t;rw1 ¼ at;w1 8 tAT ð20f Þ

ðroom alloc: lbÞ def t;rw�1�def t;rw ¼ at;w 8 tAT ;wAW; ordðwÞ41

ð20gÞ

ðlocked timeÞ ye;t ¼ 1 8eAE; tAT ; LTe;t ¼ 1 ð20hÞ

ðsame timeÞ ye;t�ye′t ¼ 0 8eAE; e′ASe; tAT ð20iÞ

ðcont: timesÞ ye;t�ye′t′ ¼ 0 8eAE; e′ACe; ðt; t′ÞAT ; dt ¼ dt′;
ordðtÞþ1¼ ordðt′Þ ð20jÞ

ðn:d: conf :Þ ∑
tAT d

bc;tþ ∑
tAT d′

bc;t�nc;dr1 8cAC; ðd; d′ÞAD; Pd;d′ ¼ 1;

Rc;dþRc;d′r1 ð20kÞ

ðn:d: conf :Þ ∑
dAD

nc;drNc 8cAC ð20lÞ

ðforbid: timesÞ ∑
tAT ; De;t ¼ 0

ye;t ¼ 0 8eAE ð20mÞ

ðidle slotsÞ ha;d�ha;d� ∑
tAT d

va;tþ1¼ ha;d 8aAA; dAD ð20nÞ

ðidle slotsÞ jMj�ðMj�ordðtÞÞva;tZha;d 8aAA; dAD; tAT d

ð20oÞ

ðidle slotsÞ ordðtÞva;trha;d 8aAA; dAD; tAT d ð20pÞ

ðdays offÞ ∑
dAD

f a;dZFa 8aAA ð20qÞ

ðdays off Þ ∑
tAT d

va;tþ f a;dZ1 8aAA; dAD ð20rÞ

ðday conf :Þ ∑
eAE‴

Je;cye;trbc;t 8cAC; tAT ð20sÞ

ðday conf :Þ ∑
eAE‴

tAT d

bc;tr1 8cAC; dAD ð20tÞ

ðwork limitÞ ∑
eAE; tAT d

ye;trWa 8aAA; dAD ð20uÞ

ðone lectureÞ 2� ∑
tAT d

va;t�2f a;droa;d 8aAA; dAD ð20vÞ

ðclass stabl:Þ ∑
eAE; tAT

Je;cye;t� ∑
eAE; tAT

Je;cye;t

�����
������1¼wc 8cAC

ð20wÞ

ðd:o: stabl:Þ ∑
dAdðT Þ

f a;d� ∑
dAdðT Þ

f a;d

�����
�����r1 8aAA ð20xÞ

ye;tAf0;1g ð20yÞ

va;t ; f a;d; bc;tnc;doa;dA ½0;1� ð20zÞ

ha;d;ha;dha;d;wc;def t;rw; at;wARþ ð20aaÞ

Constraint (20c) constrains the auxiliary variable va;t properly.
Constraint (20d) treats entity conflicts in a slightly changed
formulation, to also constrain variable f a;d properly. Constraints
(20e)–(20g) define the lower bound on room allocation, and are
similar to those previously described. Constraint (20h) ensures the
assigning of events are locked to a certain timeslot. Constraints
(20i) and (20j) ensure the placement of events which must be
placed in the same/contiguous timeslots. Constraints (20k) and
(20l) ensure that variable nc;d is constrained properly, and that no
more than Nc neighbor-day conflicts are scheduled for class cAC.
Constraint (20m) poses restrictions on timeslots for which an
entity is unavailable. Constraints (20n)–(20p) ensure that idle slots
for entities are penalized accordingly. Constraint (20q) ensures
that sufficient days off are assigned to each entity. Constraint (20r)
makes sure that if an entity aAA has no event on some day dAD,
then variable f a;d is forced to take value 1. This is necessary as this
variable is minimized in the objective. Constraints (20s) and (20t)
ensure that day-conflicts for classes do not occur, and constrains
the variable bc;t properly. Constraint (20u) ensures that the limit
on the amount of events assigned to a day for entity a is respected.
For an entity, days with only one event scheduled are undesirable.
Constraint (20v) penalizes days with only one events scheduled
for entity a. Constraint (20w) forces week-stability for events of
classes, i.e. in case two-weeks are being planned, events for
courses must be spread evenly throughout the weeks. Constraint
(20x) ensures that in case several weeks are being planned, the
days off for an entity are spread evenly throughout the weeks.

5.2. Stage II

Let variable vc;rAf0;1g take value 1 if there is at least one event
of which class cAC participates assigned to room rAR, and
0 otherwise. Variable scAN0 is the amount of ‘excess’ rooms
assigned to events of class cAC, i.e. the total amount of rooms
assigned minus one. This is used to enforce room stability for
classes, since it is undesirable for a class to be assigned too many
different rooms. Parameter LRe;rAf0;1g takes value 1 if event eAE
is locked room rAR.

Stage II Lectio ð21Þ

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–4944

Table 1
Computational results. For each dataset is shown the objective ‘Obj’ obtained by each method. For the IP-based approaches, also the best found lower bounds ‘LB’ are shown (i.e. for the 3-index model is shown the final value of the
LP-relaxation used internally by Gurobi, and for TSD is shown the final value of the LP-relaxation of the Stage I model, as described in Section 4). If a solution is best overall, it is marked in bold. If a bound is best overall, it is marked
with a ‘n’. For the two-stage approach of this paper is shown the runtime ‘Time’ and final gap ‘Gap’ found by Gurobi for both Stage I and Stage II. For Stage II, column ‘Diff.’ denotes the difference between the lower bound for room

allocation of Stage I, and the actual matching obtained by Stage II (excluding room stability). Column ‘Gap ’ denotes the best overall gap, i.e. the gap between the best available solution and the best available bound.

Dataset Previous methods TSDRoomLB

ALNS 3-index model TSD Stage I Stage II

Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap

AalborTG2012 6317 6118 n5946 6018 5934 46480 0.7 4 0.0 0 6005 5941 1.0
AarhusA2011 10 037 58 015 – 15 872 n5986 46480 66.6 154 0.0 160 18 122 5985 40.4
AarhusA2012 7971 17 096 5722 8947 n6005 46480 49.4 108 0.0 48 11 936 5962 24.7
Aars2009 14 900 49 504 – 20 780 11 874 46480 47.9 14 0.0 0 24 240 n12 641 15.2
Aars2010 16 268 81 970 – 25 057 13 134 46480 42.7 22 0.0 1 24 692 n14 151 13.0
Aars2011 14 256 77 967 – 30 623 9709 46480 68.9 10 0.0 3 33 790 n10 501 26.3
Aars2012 10 701 55 049 – 21 206 7456 46480 60.3 21 0.0 1 20 274 n8044 24.8
Alssund2010 9967 52 717 – 23 173 6811 46480 67.9 324 0.0 8 21 455 n6876 31.0
Alssund2012 29 803 108 810 – 108 810 – 46480 – 6 0.0 0 108 810 – –

BagsvaG2010 3960 6777 3171 3916 3063 46480 19.4 14 0.0 9 4051 n3227 17.6
BirkerG2011 42 063 119 600 – 119 600 – 46480 – 7 0.0 0 119 600 – –

BirkerG2012 19 552 110 180 – 19 322 15 662 46480 0.9 4720 1.0 16 18 182 n17 709 2.6
BjerrG2009 16 877 52 639 – 35 514 11 094 46480 55.2 11 0.0 0 27 396 n12 288 27.2
BjerrG2010 4983 12 868 n3928 5788 3868 46480 33.1 13 0.0 37 5977 3925 21.2
BjerrG2011 6334 13 009 n4142 9302 4060 46480 64.8 97 0.0 20 11 676 4079 34.6
BjerrG2012 8023 17 200 n5055 15 265 5007 46480 71.2 160 0.0 16 17404 4991 37.0
BroendG2012 2040 2005 n1881 1929 1859 1028 0.0 17 0.0 5 1928 1877 2.4
CPHWGym2010 6775 34 415 – 19 363 n3759 46480 77.4 11 0.0 0 16 589 3752 44.5
CPHWGym2011 5679 38 232 – 16 212 4095 46480 72.7 10 0.0 0 15 046 n4103 27.8
CPHWGym2012 6762 40 945 – 15 543 4205 46480 75.5 19 0.0 1 17 194 n4215 37.7
CPHWHG2012 11 077 46 625 8157 23 088 n8338 46480 64.1 16 0.0 0 23 219 8326 24.7
CPHWHTX2010 11 342 27 174 9179 15 943 8828 46480 52.1 7 0.0 0 19 314 n9259 18.4
CPHWHTX2011 20 734 22 466 20 460 20 708 18 490 46480 0.6 6 0.0 11 20 632 n20 470 0.8
CPHWHTX2012 16 256 25 998 14 481 21 392 13 115 46480 35.4 4 0.0 0 22 481 n14 531 10.6
DetFG2012 7560 8017 n7168 7265 7018 46480 0.7 8 0.0 68 7258 7116 1.2
DetKG2010 2947 6058 1732 4006 n1821 46480 55.6 3 0.0 4 4102 1814 38.2
DetKG2011 2820 5594 1732 4366 1780 46480 60.9 2 0.0 2 4577 n1781 36.8
EUCN2009 3737 7557 2911 4298 2856 46480 40.3 4 0.0 0 5001 n2982 20.2
EUCN2010 3882 4231 3329 3463 3246 46480 1.4 6 0.0 1 3430 n3375 1.6
EUCN2011 1468 1435 n1395 1430 1384 46480 2.2 1 0.0 2 1426 1384 2.2
EUCN2012 3289 9430 2327 5059 n2363 46480 60.2 4 0.0 0 5913 2359 28.2
EUCNHG2010 1505 1476 1371 1421 1368 46480 2.1 2 0.0 0 1408 n1378 2.1
EUCS2012 3714 4689 3576 3783 3347 46480 3.0 3 0.0 0 3695 n3584 3.0
FaaborgG2008 68 124 125 330 – 125 330 – 46480 – 14 0.0 0 125 330 – –

FalkonG2009 10 449 88 890 – 88 890 – 46480 – 5 0.0 0 88 890 – –

FalkonG2011 8584 76 170 – 16 543 n5183 46480 75.9 4720 0.0 48 20 758 4953 39.6
FalkonG2012 10 143 100 190 – 16 666 n6105 46480 58.6 4720 0.1 121 14 908 6050 39.8
GUAasia2010 6527 6579 6354 6461 6035 26 0.0 4720 0.1 5 6422 n6374 0.7
GUQaqor2011 6674 19 623 4537 10 005 n4554 46480 59.9 3 0.0 18 11 396 4542 31.8
GUQaqor2012 5733 11 488 4314 7619 4294 46480 55.1 10 0.0 0 9650 n4324 24.6
HadersK2011 7128 51190 – 14 229 n3909 46480 76.2 4720 0.0 43 16 494 3888 45.2
HasserG2010 11 963 96 790 – 96 790 – 46480 – 6 0.0 0 96 790 – –

HasserG2011 16 061 99 840 – 99 840 – 46480 – 6 0.0 0 99 840 – –

HasserG2012a 18 338 112 160 – 112 034 – 46480 – 7 0.0 0 112 160 – –

HerningG2010 37 37 n37 37 35 0 0.0 1 0.0 0 37 35 0.0
HerningG2011 15 091 163 785 – 23 117 n9829 46480 61.8 108 0.0 169 26 410 9746 34.9
HerningG2012 13 147 185 433 – 14 952 9763 46480 48.4 4720 0.1 262 19 834 n9817 25.3
HoejeTaG2008 2958 6292 2253 2707 2563 46480 6.4 3 0.0 0 2775 n2587 4.4
HoejeTaG2009 9157 45 260 – 26 066 n5773 46480 79.7 105 0.0 3 27 779 5628 37.0
HoejeTaG2010 9862 45 095 – 25 678 n6188 46480 78.1 106 0.0 5 27 886 6116 37.3
HoejeTaG2011 10 158 51 050 – 32 630 n6726 46480 78.2 66 0.0 3 30 327 6601 33.8

M
.Sørensen,F.H

.W
.D

ahm
s
/
Com

puters
&

O
perations

R
esearch

43
(2014)

36
–49

45

Table 1 (continued)

Dataset Previous methods TSDRoomLB

ALNS 3-index model TSD Stage I Stage II

Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap

HoejeTaG2012 12 502 72 455 7592 18 627 7845 46480 79.8 9 0.0 3 39 326 n7952 36.4
HorsenS2009 3111 3100 n3100 3100 2865 1 0.0 4 0.0 13 3100 3059 0.0
HorsenS2012 10 056 86 090 – 86 090 – 46480 – 3 0.0 0 86 090 – –

Johann2012 23 001 92 575 – 27 781 18 456 46480 33.5 233 0.0 6 29 491 n19 590 14.8
KalundG2011 38479 126 150 – 126 150 – 46480 – 9 0.0 0 126 150 – –

KalundG2012 26 768 123 010 – 123 010 – 46480 – 11 0.0 0 123 010 – –

KalundHG2010 5631 12 103 4540 6351 4551 46480 29.7 6 0.0 0 6605 n4642 17.6
KoebenPG2012 888 1872 637 874 642 46480 37.9 1 0.0 2 1052 n645 26.2
KoegeH2012 11 418 108 347 – 20 150 9096 46480 53.7 12 0.0 0 20 390 n9440 17.3
KongshoG2010 4296 8889 2411 7954 n2488 46480 65.9 30 0.0 0 7208 2451 42.1
MariageG2009 8013 54 030 – 20 138 5118 46480 69.7 4720 0.0 18 17 506 n5286 34.0
MorsoeG2012 5651 42 762 – 10 241 3854 46480 66.0 23 0.0 6 11 674 n3947 30.2
NaerumG2008 24 104 118 370 – 117 894 – 46480 – 7 0.0 0 117 894 – –

NaerumG2009 7667 100 450 – 6681 n5114 46480 0.3 4720 6.2 0 5466 5113 6.4
NielsSG2011 4953 10 464 3323 6132 n3412 46480 37.6 9 0.0 0 5397 3367 31.1
NielsSG2012 6952 12 747 5722 8003 n5738 46480 37.6 14 0.0 4 9192 5724 17.5
NordfynG2012 5160 8201 n4152 4890 4048 46480 23.3 35 0.0 59 5510 4107 15.1
NyborgG2011 13 944 94 059 – 31809 n6129 46480 – 7 0.0 4 85 816 – 56.0
OdderCfU2010 18 219 59 540 – 40 032 12 188 46480 66.9 66 0.0 2 38 875 n12 865 29.4
OdderG2009 9308 59 851 – 57 586 – 46480 78.1 67 0.0 67 24686 n5361 42.4
OdderG2012 12 307 17402 9602 14 888 8878 46480 64.2 4 0.0 57 27 199 n9688 21.3
OrdrupG2010 13 663 75 700 – 12 936 10 665 46480 39.5 10 0.0 0 18 101 n10 810 16.4
OrdrupG2011 21 612 116 400 – 31 329 16 904 46480 38.7 305 0.0 8 28 884 n17 692 18.1
RibeK2011 21 679 61 945 – 43 175 16 209 46480 53.8 229 0.0 5 39 107 n18 055 16.7
RysenG2010 39 971 110 690 – 110 690 – 46480 – 6 0.0 0 110 690 – –

RysenG2011 22 260 100 313 – 25 989 17 756 46480 71.4 9 0.0 5 68 927 n19 725 11.4
RysenG2012 19 841 110 111 – 22 156 15 115 46480 71.7 14 0.0 15 59 124 n16 708 15.8
SanktAG2012 4207 4624 3415 3911 3376 46480 0.7 4720 0.5 39 3721 n3538 4.9
SkanderG2010 7209 7708 6051 6875 5712 46480 0.6 4720 0.5 72 6485 n6238 3.8
SkanderG2011 22 525 88 470 – 88 470 – 46480 – 5 0.0 0 88 470 – –

SkanderG2012 20 138 98 487 – 95 319 – 46480 – 7 0.0 3 95 319 – –

SkiveG2010 43 120 194 740 – 194 740 – 46480 – 526 0.0 0 194 740 – –

SlagelG2012a 32 167 162 960 – 162 765 – 46480 – 417 0.0 0 162 960 – –

SoendS2011 11 776 83 560 – 83 560 – 46480 – 131 0.0 0 83 560 – –

SoendS2012 8420 17 778 n6838 11 915 6647 46480 72.5 8 0.0 4 24 668 6739 18.8
StruerS2012 73 361 – – 207488 – 46480 – 700 0.0 0 211 960 – –

VardeG2012 10 777 20 933 n5921 20 622 5720 46480 72.1 12 0.0 2 20 496 5668 45.1
VejenG2009 11 264 69 450 – 69 450 – 46480 73.9 4720 0.0 7 27 954 n7290 35.3
Vejlefjo2011 13 514 52 035 – 18 043 8511 46480 60.0 456 0.0 3 22 066 n8805 34.8
VestfynG2009 5973 11 606 4176 5999 4137 46480 14.5 553 0.0 18 5032 n4211 16.3
VestfynG2010 6761 16 895 n4308 5974 4225 46480 16.3 65 0.0 21 5239 4290 17.8
VestfynG2011 7013 13 624 5110 6657 4925 46480 19.6 38 0.0 24 6522 n5159 20.9
VestfynG2012 5244 11 095 4279 5212 4210 46480 17.5 149 0.0 21 5319 n4315 17.2
ViborgK2011 14 923 99 170 – 99 170 – 46480 – 6 0.0 0 99 170 – –

ViborgTG2009 10 216 19 891 8695 12 077 8356 46480 34.7 45 0.0 3 13 387 n8740 14.4
ViborgTG2010 4932 12 727 4130 10 226 3990 46480 60.9 11 0.0 19 10 665 n4146 15.9
ViborgTG2011 7478 16 433 6716 9808 6204 46480 38.8 12 0.0 13 11 088 n6772 9.4
VirumG2012 27 738 140 883 – 32 183 17 770 46480 75.3 16 0.0 9 79 111 n19 486 29.7
VordingbG2009 8568 17 025 5457 9905 5243 46480 33.6 10 0.0 167 8972 n5787 32.5

Avg. 44.3 0.1 17.9 22.3

a An artificial bound on the amount of Halls' inequalities generated was enforced for tractability, see Section 4.3.

M
.Sørensen,F.H

.W
.D

ahm
s
/
Com

puters
&

O
perations

R
esearch

43
(2014)

36
–49

46

min wII ¼ ∑
eAE; rAR

πe;rze;rþε∑
c
sc ð21aÞ

s.t.

ðone roomÞ ∑
rAR

ze;r ¼ 1 8eAE ð21bÞ

ðroom conf :Þ ∑
eAE

yn

e;tze;rrGr;t 8rAR\rD; tAT \tD ð21cÞ

ðeligible roomsÞ ze;rrKe;r 8eAE; rAR ð21dÞ

ðlocked roomsÞ ze;r ¼ 1 8eAE; rAR; LRe;r ¼ 1 ð21eÞ

ðroom stbl:Þ ∑
eAE; tAT \tD

Je;cy
n

e;tze;r� ∑
eAE

Je;cvc;rr0 8rAR\rD; cAC

ð21f Þ

ðroom stbl:Þ ∑
rAR

vc;r�1rsc 8cAC ð21gÞ

ðnot only roomÞ ∑
rAR\rD

yn

e;tD ze;r� ∑
rAR

LRe;rr0 8eAE ð21hÞ

ze;r ; vc;rAf0;1g ð21iÞ

scARþ ð21jÞ
Constraint (21e) ensures that events with locked rooms are

assigned accordingly. Constraints (21f) and (21g) constrains vari-
ables vc;r and sc properly, and thereby penalizes room stability.
Constraint (21h) enforces that an event cannot be assigned a room
if it not assigned to a timeslot, unless the event is locked to a
specific room.

Notice that the room stability constraints (21f) and (21g) of
Model (21) are not handled in any way in the Stage I model.
Additional constraints which handle these constraints would
theoretically improve the decomposition. It is however not trivial
to model these constraints as a matching problem in a bipartite
graph, so another approach may be required. This is a subject for
future research. Apart from the room stability constraints, all other
constraints are optimally handled by the decomposition, with the
exception of the room allocation penalties, which are only partially
integrated in the Stage I model.

6. Computational results

For implementation purposes, Gurobi 5.0.1 was used as MIP
solver on a machine with an Intel Core i7 930@2.80 GHz CPU and
12 GB of RAM, running Windows 8 64bit. Default parameter
settings were used, and the interface was C# 4.5. The problem
instances have been taken directly from the Lectio database, and
are the same ones used in Sørensen and Stidsen [31]. These 100
real-world datasets provide a substantial ground for concluding on
the numerical experiments. Note that 3 of these instances are
available in the XHSTT format [25] at http://www.utwente.nl/ctit/
hstt/. We plan to make additional datasets available in this format
in the future.

A time limit of 7200 s was imposed (6480 s for Stage I, and
720 s for Stage II), and Gurobi was allowed to use 8 threads. For the
Stage I model, the initial solution given to Gurobi consists of
assigning all events to the dummy-timeslot, except for those
events locked to a specific timeslot. The initial solution for the
Stage II model is analogous; Events are assigned to the dummy-
room or the room which the event is locked too. A single run was
used to establish results, as Gurobi has deterministic behavior.

Two other solution approaches are described for the same
timetabling problem in Sørensen and Stidsen [31]. These are used

in comparison with the algorithm of this paper, and are briefly
described below:

� The ‘usual’ formulation using a three-index binary variable,
denoted 3-index model in the following. This is solved using
Gurobi with standard settings, with a time limit of 7200 s. The
objectives listed are the result of a single run.

� An Adaptive Large Neighborhood Search heuristic, denoted ALNS
in the following. The reported objectives for this method is the
average obtained over 10 runs, each run with a timelimit of
240 s. Hence, the comparison of objectives w.r.t. this heuristic is
not ‘fair’, but it will be seen that even with this shorter
timelimit, the ALNS in general performs best. This method is
the one currently used by the customers of Lectio.

Furthermore, we test the described decomposition both with
and without the room penalties added to the Stage 1 model (i.e.
Model (20) with and without Eqs. (20e), (20f) and (20g)). Thereby
an empirical test of the effect of extending Stage I is performed. In
the following, these two methods are denoted TSD and TSDRoomLB,
respectively. Notice that the results for TSD can also be found in
the technical report [31].

Table 1 shows the obtained results. Table 2 summarizes some
key numbers. Table 3 gives a summary for the three exact
methods. A gap between an IP objective z and a lower bound LB
is calculated by 100ðz�LBÞ=z.

A number of conclusions can be drawn from the numbers:

� For 97 instances, the solution obtained by TSDRoomLB is at least
as good as the solution obtained by the 3-index model, and for
most instances significantly better.

� TSDRoomLB is generally the best method for generating bounds,
finding the best bound on 49 instances overall.

� TSDRoomLB was capable of finding a lower bound for 80
instances. This means that for 20 instances, Gurobi was unable
to solve the LP-relaxation of the root node of the Stage I model
within the timelimit. Table 4 shows statistics for these
instances (the presolved models). It is seen that the problems
do not contain coefficients of huge magnitude in neither the
objective, system matrix, or rhs. Hence the issue seems related
to the relatively big number of constraints and variables. In
average, these instances have more than 100 000 constraints
and variables, hence we think its fair to consider them as large-
scale. Note that if the root-LP was not solved for an instance,
the reported solution replicates the initial solution provided by
us to Gurobi (Gurobi apparently starts its solution process by
verifying the feasibility of the MIP Start attributes).

Table 3
Comparison of the amount of best found solutions for the exact methods. Draws are
also counted.

3-index model TSD TSDRoomLB

Best solution 16 66 52

Table 2
Results summary. Note that rows ‘Best solution’ and ‘Best bound’ also counts draws.

ALNS 3-index model TSD TSDRoomLB

Solution found 100 99 100 100
Best solution 77 2 8 18
Bound found – 46 79 80
Best bound – 13 19 49

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–49 47

http://www.utwente.nl/ctit/hstt/
http://www.utwente.nl/ctit/hstt/

� TSDRoomLB produces the best solution for 18 instances overall,
while TSD produces the best solution on 8 instances. The ALNS
heuristic is best on 77 instances, and is currently the best
algorithm for this problem (keep in mind the ALNS algorithm
was allowed significantly less CPU time).

� Comparing the exact methods (Table 3), it is seen that it is
generally not profitable to use the extended Stage I model if the
goal is to obtain good solutions. Both variants of the decom-
position finds more best solutions than the pure 3-index model.

� The Stage I model of TSDRoomLB is a challenge for Gurobi, with
an average gap of 44.3% over all instances where a LB was
found. Only 4 instances are solved to optimality, and these are
among the smallest instances (see [31] for instance statistics).

� The Stage II model of TSDRoomLB is in general easy to solve. The
average gap for this model over all problem instances is 0.1%,
and 89 instances are solved to optimality. This means that
future research can focus on solving the Stage I model.

� The difference between the lower bound on room allocation
and the actual allocation of rooms (column ‘Diff.’) is low,
compared to the magnitude of objectives in general. This
means that only a small increase in solution quality can be
gained by improving the bound on room allocation.

As an extension to the decomposition, one could use the ALNS
heuristic to provide a starting solution. Since the ALNS heuristic is
able to produce a fairly good solution quickly, this would most
likely lead to improved performance.

As a loose remark, we mention that Burke et al. [7] formulate
an IP of the Udine Course Timetabling Problem (used in the Interna-
tional Timetabling Competition 2007), using a three-indexed binary
variable, and reports that CPLEX 11 uses up to 6400 s when solving
the root LP (using Dual Simplex, which is also used by Gurobi as
default). Their model is quite similar in structure to ours, so
possibly this class of IP formulations contain undesirable properties
in the eyes of general-purpose MIP solvers.

7. Conclusion

A Two-Stage Decomposition for a real-world high school time-
tabling problem has been shown. This splits the Integer Program-
ming model into two smaller models, which reduces the number
of variables significantly. Computational results show that this
approach is way more effective than solving the usual original IP
with a 3-index binary variable, in terms of both the obtained
solutions and the obtained bounds. This constitutes the TSD as the
best exact method for solving this particular timetabling problem.
However, the integration of the lower bound on room allocation in
the Stage I model has bad influence on the quality of solutions,
but makes the decomposition capable of achieving better lower
bounds. Nevertheless this extension of the Stage I model repre-
sents interesting theory which can likely be used in the context of
decomposing other timetabling problems.

For other types of (timetabling) problems, this type of decomposi-
tion might be a way of enhancing computational times. However,
a special structure is required for applying the decomposition, which
limits the set of applicable problems. On the other hand, the
advantage gained by reducing the number of variables should not
be underestimated, and we encourage researchers to attempt this
type of decomposition if possible.

Approximating the room allocation penalties in the Stage I
model is an interesting approach, and also sets a possible agenda
for future work; (1) Can a better approximation (or even the exact
value) be found for the minimum weight maximum matching
problem representing room penalties? (2) Can the room stability
penalties be incorporated in the Stage I model? However, the most
important issue for future research is a more efficient way of
solving the Stage I model. This is the bottleneck of the TSD for this
particular problem.

References

[1] Avella P, DAuria B, Salerno S, Vasilâev I. A computational study of local search
algorithms for Italian high-school timetabling. Journal of Heuristics 2007;13:
543–56.

[2] Badri MA. A two-stage multiobjective scheduling model for [faculty-course-
time] assignments. European Journal of Operational Research 1996;94
(1):16–28.

[3] Balas E, Pulleyblank W. The perfectly matchable subgraph polytope of a
bipartite graph. Networks 1983;13(4):495–516.

[4] Bardadym V. Computer-aided school and university timetabling: the new
wave. In: Burke E, Ross P, editors. Practice and theory of automated time-
tabling, lecture notes in computer science, vol. 1153. Berlin, Heidelberg:
Springer; 1996. p. 22–45.

[5] Birbas T, Daskalaki S, Housos E. Timetabling for greek high schools. Journal of
the Operational Research Society 1997;48 1191–1200(10).

[6] Birbas T, Daskalaki S, Housos E. School timetabling for quality student and
teacher schedules. Journal of Scheduling 2009;12(April):177–97.

[7] Burke E, Marecek J, Parkes A, Rudová H. Decomposition, reformulation, and
diving in university course timetabling. Computers & Operations Research
2010;37(3):582–97.

[8] Burke E, Newall JP. A multistage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation 1999;3(1):63–74.

[9] Carter M. A decomposition algorithm for practical timetabling problems.
Technical report. 83-06, Department of Industrial Engineering, University of
Toronto; 1983.

[10] Daskalaki S, Birbas T. Efficient solutions for a university timetabling problem
through integer programming. European Journal of Operational Research
2005;160(1):106–20.

[11] Daskalaki S, Birbas T, Housos E. An integer programming formulation for a
case study in university timetabling. European Journal of Operational Research
2004;153:117–35.

[12] de Werra D. An introduction to timetabling. European Journal of Operational
Research 1985;19(2):151–62.

[13] Dimopoulou M, Miliotis P. Implementation of a university course and
examination timetabling system. European Journal of Operational Research
2001;130(1):202–13.

[14] Edmonds J. Maximum matching and a polyhedron with 0, 1-vertices. Journal
of Research of the National Bureau of Standards B 1965;69:125–30.

[15] Egerváry E. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai
Lapok 1931;38:16–28.

[16] Gotlieb CC. The construction of class-teacher timetables. In: Popplewell CM,
editor. IFIP congress, vol. 62. North-Holland Publication Co.; 1962. p. 73–7.

[17] Lach G, Lübbecke M. Optimal university course timetables and the partial
transversal polytope. In: McGeoch C, editor. Experimental algorithms, lecture

Table 4
Statistics of the Stage I models (after presolve) where Gurobi was unable to solve the LP-relaxation of the root-node within the timelimit (i.e. for those instances where the

TSDRoomLB) was unable to provide a lower bound). Column ‘Cons.’ shows the number of constraints and ‘Non-zeros’ shows the amount of non-zeros in the model. ‘Variables’
shows the amount of continuous, integer and binary variables. ‘Obj. coef.’, ‘Model coef.’, and ‘RHS coef’ shows the smallest and largest coefficient in the objective function,
system matrix and right-hand side, respectively.

Cons. Non-zeros Variables Obj. coef. Model coef. RHS coef.

Cont. Integer Binary Min. Max. Min. Max. Min. Max.

Min. 73 293 881 433 24 089 52 518 41121 1 84 1 4 0 6
Max. 167 978 4 200 206 52 015 252 514 246 874 1 1120 1 16 1 103
Avg. 118 396 1 967455 36 918 101 460 88 321 1 264 1 7 1 32

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–4948

http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref1
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref1
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref1
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref2
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref2
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref2
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref3
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref3
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref4
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref4
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref4
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref4
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref5
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref5
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref6
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref6
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref7
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref8
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref8
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0005
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0005
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0005
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref10
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref10
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref10
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref11
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref11
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref11
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref12
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref12
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref13
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref13
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref13
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref14
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref14
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref15
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref15
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref16
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref16
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref17
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref17

notes in computer science, vol. 5038. Berlin, Heidelberg: Springer; 2008.
p. 235–48.

[18] Lach G, Lübbecke M. Curriculum based course timetabling: new solutions to
udine benchmark instances. Annals of Operations Research 2012;194:255–72.

[19] Lawrie NL. An integer linear programming model of a school timetabling
problem. The Computer Journal 1969;12(4):307–16.

[20] Lovász L, Plummer MD. Matching theory. AMS Chelsea Publishing; 2009.
[21] MirHassani S. A computational approach to enhancing course timetabling

with integer programming. Applied Mathematics and Computation 2006;175
(1):814–22.

[22] Mittelman H. Benchmarks for optimization software. 〈http://plato.asu.edu/
bench.html〉; August 2013. [Retrieved 20/8-2013].

[23] Papoutsis K, Valouxis C, Housos E. A column generation approach for the
timetabling problem of greek high schools. The Journal of the Operational
Research Society 2003;54(3):230–8.

[24] Pillay N. A survey of school timetabling research. Annals of Operations
Research 2013(February):.

[25] Post G, Ahmadi S, Daskalaki S, Kingston J, Kyngas J, Nurmi C, et al. An xml
format for benchmarks in high school timetabling. Annals of Operations
Research 2012;194:385–97.

[26] Post G, Gaspero LD, Kingston JH, McCollum B, Schaerf A. The third interna-
tional timetabling competition. In: Proceedings of the ninth international
conference on the practice and theory of automated timetabling (PATAT 2012).
Son, Norway; August 2012.

[27] Qualizza A, Serafini P. A column generation scheme for faculty timetabling.
In: Burke E, Trick M, editors. Practice and theory of automated timetabling V,
lecture notes in computer science, vol. 3616. Berlin, Heidelberg: Springer;
2005. p. 161–73.

[28] Santos H, Uchoa E, Ochi L, Maculan N. Strong bounds with cut and column
generation for class-teacher timetabling. Annals of Operations Research
2012;194(April (1)):399–412.

[29] Schaerf A. A survey of automated timetabling. Artificial Intelligence Review
1999;13:87–127.

[30] Schrijver A. Combinatorial optimizationpolyhedra and efficiency, algorithms
and combinatorics. Springer; 2003.

[31] Sørensen M, Stidsen T. Comparing solution approaches for a complete model
of high school timetabling. Technical report. 5.2013, DTU Management
Engineering. Technical University of Denmark; March 2013.

M. Sørensen, F.H.W. Dahms / Computers & Operations Research 43 (2014) 36–49 49

http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref17
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref17
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref18
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref18
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref19
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref19
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref20
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref21
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref21
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref21
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref23
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref23
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref23
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref24
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref24
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref25
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref25
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref25
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0015
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0015
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0015
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0015
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref27
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref27
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref27
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref27
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref28
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref28
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref28
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref29
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref29
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref30
http://refhub.elsevier.com/S0305-0548(13)00245-1/sbref30
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0020
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0020
http://refhub.elsevier.com/S0305-0548(13)00245-1/othref0020

	A Two-Stage Decomposition of High School Timetabling applied to cases in Denmark
	Introduction
	Related work
	An integer programming model for high school timetabling
	Two-Stage Decomposition of the integer programming model
	Extending Stage I with room allocation
	An exact approach using Egerváry's theorem
	Generating Hall's inequalities

	Lectio high school timetabling problem
	Stage I
	Stage II

	Computational results
	Conclusion
	References

