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a b s t r a c t

Given a linear program (LP) with m constraints and n lower and upper bounded variables, any solution
x0 to LP can be represented as a nonnegative combination of at most m + n so-called weighted paths
and weighted cycles, among which at most nweighted cycles. This fundamental decomposition theorem
leads us to derive, on the residual problem LP(x0), two alternative optimality conditions for linear
programming, and eventually, a class of primal algorithms that rely on an Augmenting Weighted Cycle
Theorem.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Network flow problems can be formulated either by defining
flows on arcs or, equivalently, flows on paths and cycles, see Ahuja
et al. [1]. A feasible solution established in terms of path and cycle
flow determines arc flows uniquely. The converse result, that is the
existence of a decomposition as a path and cycle flow equivalent
to a feasible arc-flow solution x0, is also shown to be true by the
Flow Decomposition Theorem, although the decomposition might
not be unique. This result can be refined for circulation problems,
establishing that a feasible circulation can be represented along
cycles only. Originally developed by Ford and Fulkerson [4] for
the maximum flow problem, the flow decomposition theory
intervenes in various situations, notably on the residual network.
It is used to prove, among many other results, the Augmenting
Cycle Theorem and the Negative Cycle Optimality Theorem. The
first allows to build one solution from another by a sequence
of cycles. The second states that arc-flow solution x0 is optimal
if and only if the residual network contains no negative cost
cycle therefore providing optimality characterization for network
flow problems. The Flow Decomposition Theorem is a fundamental
theorem as it is an essential tool in the complexity analysis of
several strongly polynomial algorithms such as theminimummean
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cycle-canceling algorithm, see Goldberg and Tarjan [6], Radzik and
Goldberg [8], and Gauthier et al. [5] for an improved complexity
result. This paper generalizes these network flow theorems to
linear programming.

The presentation adopts the organization of the introduction as
follows. In Section 2, we first present a proof of the Flow Decom-
position Theorem on networks based on linear programming argu-
ments rather than the classical constructive ones. This provides an
inspiration for the general case of linear programming. Section 3
establishes our main result based on a specific application of the
Dantzig–Wolfe decomposition principle. This is followed in Sec-
tion 4 by the proof of an Augmenting Weighted Cycle Theorem used
to derive in Section 5 two alternative optimality conditions for lin-
ear programs that are based on the properties of a residual linear
problem. We open a discussion in Section 6 which addresses the
adaptation to linear programs of theminimummean cycle-canceling
algorithm and the design of a column generation based algorithm.
Notation. Vectors and matrices are written in bold face characters.
We denote by 0 or 1 a vector with all zero or one entries of
appropriate contextual dimensions.

2. A decomposition theorem for network flow problems

Consider the capacitated minimum cost flow problem (CMCF)
on a directed graph G = (N, A), where N is the set of nodes
associated with an assumed balanced set bi, i ∈ N , of supply or
demand defined respectively by a positive or negative value such
that


i∈N bi = 0, A is the set of arcs of cost c := [cij](i,j)∈A, and
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x := [xij](i,j)∈A is the vector of lower and upper bounded flow
variables. An arc-flow formulation of CMCF, where dual variables
πi, i ∈ N , appear in brackets, is given by

z⋆
CMCF := min


(i,j)∈A

cijxij

s.t.


j:(i,j)∈A

xij −


j:(j,i)∈A

xji = bi, [πi] ∀i ∈ N

ℓij ≤ xij ≤ uij, ∀(i, j) ∈ A.

(1)

When right-hand side b := [bi]i∈N is the null vector, formula-
tion (1) is called a circulation problem. The Flow Decomposition The-
orem for network solutions is as follows.

Theorem 1 ([1, Theorem 3.5 and Proposition 3.6]). Any feasible
solution x0 to CMCF (1) can be represented as a combination of
directed path and cycle flows – though not necessarily uniquely –with
the following properties:

(a) Every path with positive flow connects a supply node to a demand
node.

(b) Atmost |A|+|N| paths and cycles have positive flow amongwhich
at most |A| cycles.

(c) A circulation x0 is restricted to at most |A| cycles.

Proof. The proof of the above theorem traditionally relies on a
constructive argument. We propose an alternative one based on
the application of the Dantzig–Wolfe decomposition principle [2].
The network problem is first converted into a circulation problem,
partitioning the set of nodes N in three subsets: supply nodes in
S := {i ∈ N | bi > 0}, demand nodes in D := {i ∈ N | bi < 0}, and
transshipment nodes inN\{S∪D} forwhich bi = 0, i ∈ N . Supple-
mentary nodes s and t are added to N for a convenient represen-
tation of the circulation problem together with zero-cost arc sets
{(s, i) | i ∈ S}, {(i, t) | i ∈ D}, and arc (t, s). Supply and demand re-
quirements are transferred on the corresponding arcs, that is, ℓsi =

usi = bi, i ∈ S, and ℓit = uit = −bi, i ∈ D. Let G+
= (N+, A+) be

the new network on which is defined the circulation problem.
Flow conservation equations for nodes in N+ together with the

nonnegativity requirements on arcs in A+ portray a circulation
problemwith no upper bounds. These define the domain SP of the
Dantzig–Wolfe subproblem whereas lower and upper bound con-
straints remain in the master problem. By the Minkowski–Weyl’s
theorem (see [9,3]), there is a vertex-representation for the domain
SP . The latter actually forms a cone that can be described in terms
of a single extreme point (the null flow vector) and a finite num-
ber of extreme rays, see Lübbecke and Desrosiers [7] for additional
representation applications.

These extreme rays are translated to the original network upon
which is done the unit flow interpretation in terms of paths and
cycles. For an extreme ray with xts = 1, we face an external cycle
inG+, that is, a pathwithinG from a supply node to a demand node,
while an extreme ray with xts = 0 implies an internal cycle in G+,
that is, a cyclewithin G. Furthermore, the extreme ray solutions to
SP naturally satisfy the flow conservation constraints and there-
fore respect the directed nature of G. Paths and cycles are therefore
understood to be directed even thoughweomit the precision in the
spirit of concision.

Let P and C be respectively the sets of paths and cy-
cles in G. The null extreme point at no cost can be removed
from the Dantzig–Wolfe reformulation as it has no contribution
in the constraint set of the master problem. Any nonnull solution
[x, xS, xD, xts]ᵀ to SP can therefore be written as a nonnegative
combination of the extreme rays only, that is, in terms of the sup-
ply–demand paths [xp, xSp, xDp, 1]ᵀ, p ∈ P , and internal cycles
[xc, 0, 0, 0]ᵀ, c ∈ C: x
xS
xD
xts

 =


p∈P

 xp
xSp
xDp
1

 θp +


c∈C

xc
0
0
0

 φc,

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C. (2)

Define cp = cᵀxp, p ∈ P , as the cost of a path and cc = cᵀxc,
c ∈ C, as the cost of a cycle. The Dantzig–Wolfe master problem,
an alternative formulation of CMCF (1) written in terms of nonneg-
ative path and cycle θ, φ-variables, is given as

z⋆
CMCF := min


p∈P

cpθp +


c∈C

ccφc

s.t. l ≤


p∈P

xpθp +


c∈C

xcφc ≤ u
p∈P

xSpθp = bS
p∈P

xDpθp = −bD

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C.

(3)

The rest of the proof relies on the dimension of any basis repre-
senting a feasible solution x0 to (1). The latter can be expressed in
terms of the change of variables in (2) and satisfies the system of
equality constraints in (3):
p∈P

xpθp +


c∈C

xcφc = x0
p∈P

xSpθp = bS
p∈P

xDpθp = −bD

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C.

(4)

Since any basic solution to (4) involves at most |A| + |S| + |D|

nonnegative θ, φ-variables, there exists a representation for x0
that uses at most |A| + |N| path and cycle variables, among which
atmost |A| cycles (φ-variables). In the case of a circulation problem
for which b = 0, there are no paths involved (no θ-variables) and
x0 can be written as a combination of at most |A| cycles. �

3. A decomposition theorem for linear programs

In this section, we generalize Theorem 1 to the feasible
solutions of a linear program (LP). Although it is usually frowned
upon,wewarn the reader thatwe reuse someof the samenotations
previously seen in networks. While the semantics are a little bit
distorted, we wish to retain the ideas attached to them. The proof
again relies on a specific Dantzig–Wolfe decomposition. Consider
the following LP formulation with lower and upper bounded
variables:

z⋆
:= min cᵀx

s.t. Ax = b, [π]

l ≤ x ≤ u,
(5)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm
× Rn, and m ≤ n.

Without loss of generality, we also assume that right-hand side
vector b ≥ 0. If b = 0, we face a homogeneous system of
constraints. The vector of dual variables π ∈ Rm associated
with the equality constraints appears within brackets. In order
to perform our specific decomposition, we introduce a vector of
nonnegative variables v ∈ Rm and rewrite LP (5), splitting the
constraints in two subsets:
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z⋆
:= min cᵀx

s.t. l ≤ x ≤ u
v = b
Ax − v = 0
x ≥ 0, v ≥ 0.

(6)

Let the subproblem domain be the cone defined by SP := {x ≥

0, v ≥ 0 | Ax − v = 0} whereas objective function as well as con-
straint sets l ≤ x ≤ u and v = b remain in the master problem.
With Minkowski–Weyl’s theorem in mind, take a look at the pos-
sible solution types of SP . On the one hand, it comprises a single
extreme point, the null solution at zero cost. On the other hand, the
extreme rays, indexed by r ∈ R, are of two types:


xr
vr


, r ∈ R, with

either vr ≠ 0 or vr = 0. Discarding the null extreme point from the
Dantzig–Wolfe reformulation as it does not contribute to any con-
straints of the master problem nor to its objective function, index
set R is exhaustively partitioned in twomutually exclusive subsets
according to the value of vr : P := {r ∈ R | vr ≠ 0} and C :=

{r ∈ R | vr = 0}. Any nonnull solution

x
v


∈ SP can therefore

be solely expressed as a nonnegative combination of the extreme
rays of SP :
x
v


=


p∈P


xp
vp


θp +


c∈C


xc
0


φc,

θp ≥ 0, ∀p ∈ P , φc ≥ 0, ∀c ∈ C. (7)

Recall that the interpretation of network paths and cycles is
done with respect to the original network. In the LP case, we chose
a less intrusive transformation for which the content of v in the
solutions of SP still grants meaning to the concept of paths and
cycles. Indeed, when v = 0, the homogeneous system Ax = 0 is
verified whilst v ≠ 0 implies an impact on the right-hand side b.
The directed notion is of course once again implicit to the nature
of the solutions found in SP .

A more subtle concept to pass is the unit in which is measured
these paths and cycles. The essence of an extreme ray is to be
malleable by itsmultiplier. Unfortunately, this does not translate as
well in LP as it does in networks. Indeed, a solution to SP found for
network problems can always be scaled back to a unit flow cycle. In
LP , the positive variables contained in an extreme ray can display
different values. It is thus impossible to get rid of the scaling effect.
As such, let an extreme ray


xp
vp


, p ∈ P , be called a weighted path

and an extreme ray

xc
0


, c ∈ C, be called aweighted cycle. The cost

of these objects is thusmeasured in accordancewith that scale and
not against an arbitrary unit measure. Define cr = cᵀxr as the cost
of an extreme ray, r ∈ R = P ∪ C. Substituting for x and v in (6),
the Dantzig–Wolfe master problem (MP), a reformulation of the
original LP (5), becomes

z⋆
:= min


p∈P

cpθp +


c∈C

ccφc

s.t. l ≤


p∈P

xpθp +


c∈C

xcφc ≤ u
p∈P

vpθp = b

θp ≥ 0, p ∈ P , φc ≥ 0, c ∈ C.

(8)

Let x0 be a feasible solution to LP (5), that is, Ax0 = b, l ≤ x0
≤ u. Therefore, x0 must satisfy the following system derived from
the change of variables (7) and the equality constraints in (8):
Fig. 1. A change of variables.
p∈P

xpθp +


c∈C

xcφc = x0
p∈P

vpθp = b

θp ≥ 0, p ∈ P , φc ≥ 0, c ∈ C.

(9)

This linear system of equations comprises m + n constraints
for which any basic solution involves at most m + n positive
variables, among which at most n variables φc, c ∈ C. The
above discussion on the Dantzig–Wolfe reformulation of LP (5)
constitutes the proof of our fundamental decomposition theorem
for linear programming.

Theorem 2. Any feasible solution x0 to LP (5) can be represented as
a nonnegative combination of weighted paths and cycles – though not
necessarily uniquely – with the following properties with respect to
the Dantzig–Wolfe master problem reformulation (8) of LP:

(a) Every selected weighted path

xp
vp


, p ∈ P , contributes to the

right-hand side vector b.
(b) Atmost m+nweighted paths and cycles are selected amongwhich

at most n cycles

xc
0


, c ∈ C.

(c) For a homogeneous system (b=0), the representation is restricted
to at most n weighted cycles.

4. An augmenting weighted cycle theorem

For network problems, Theorem 1 serves to prove the
Augmenting Cycle Theorem ([1] Theorem 3.7) formulated in terms
of residual networks. In this section, we provide the counterpart
for linear programs. Let us first start by the definition of the linear
programming residual problem.

Let x0 be any feasible solution to (5), that is, a vector x0 ∈ [l,u]

satisfying Ax0 = b. The cost of this solution is denoted z0 = cᵀx0.
Perform the following change of variables (see Fig. 1):

x := x0 + (y⃗ − ⃗y), y⃗ᵀ
⃗y = 0, y⃗, ⃗y ≥ 0. (10)

We define the residual problem LP(x0) with respect to a given
solution x0 as follows. Each variable xj, j ∈ {1, . . . , n}, in the
original LP is replaced by two variables: y⃗j ≥ 0 represents the
possible increase of xj relatively to x0j while ⃗yj ≥ 0 represents its
possible decrease; moreover, only one can be used with a positive
value (y⃗j ⃗yj = 0). Variable y⃗j ≤ r⃗ 0

j := uj − x0j whereas ⃗yj ≤ ⃗r0j :=

x0j − ℓj. Equivalent to LP (5), a formulation for LP(x0) is as follows:

z⋆
:= z0 + min cᵀ(y⃗ − ⃗y)

s.t. A(y⃗ − ⃗y) = 0, [π]

0 ≤ y⃗ ≤ r⃗ 0

0 ≤ ⃗y ≤ ⃗r 0
.

(11)

Consider now another feasible solution x to (5). Regardless of
the number of iterations to reach it, Theorem 3 states that it is
possible to move from x0 to the former in at most n weighted
cycles.
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Theorem 3. Let x0 and x be two feasible solutions to LP (5). Then,
x equals x0 plus the value on at most n weighted cycles in LP(x0).
Furthermore, the cost of x equals the cost of x0 plus the cost on these
weighted cycles.

Proof. There exists a correspondence between solution x on the
original problem LP (5) and a solution (y⃗ − ⃗y) on the residual
problem LP(x0). This is given by the change of variables in (10).
If xj ≥ x0j , we set y⃗j = xj −x0j and ⃗yj = 0; otherwise ⃗yj = −(xj −x0j )
and y⃗j = 0. As x0 and x are feasible, Ax = Ax0 = b, therefore
(y⃗ − ⃗y) satisfies

(y⃗ − ⃗y) = x − x0

A(y⃗ − ⃗y) = 0
y⃗, ⃗y ≥ 0.

(12)

By the Decomposition Theorem 2, the homogeneous system
{y⃗, ⃗y ≥ 0 | A(y⃗ − ⃗y) = 0} at x0 can be decomposed into weighted
cycles only, indexed by c ∈ C(x0). Hence,
c∈C(x0)

(y⃗c − ⃗yc)φc = x − x0, φc ≥ 0, ∀c ∈ C(x0). (13)

Therefore, any basic solution to (13) comprises at most n positive
cycle-variables, proving the first part of the statement. Regarding
the second part, we have cᵀx = cᵀx0+


c∈C(x0) c

ᵀ(y⃗c − ⃗yc)φc from
which we derive the requested result by restricting the cycle cost
to the selected weighted cycles in a basic solution of (13). �

5. Primal and dual optimality conditions on LP(x0)

Let A = [aj]j∈{1,...,n}. The reduced cost of xj in LP (5) is
defined as c̄j = cj − πᵀaj. In addition to the complementary
slackness optimality conditions on LP based on the reduced cost
of the x-variables (see [9]), we provide two alternative conditions
characterizing optimality for linear programs. These are based on
the above Augmenting Weighted Cycle Theorem 3 which is itself
derived from the Decomposition Theorem 2.

Theorem 4. A feasible solution x0 to LP (5) is optimal if and only if
the following equivalent conditions are satisfied:

(a) LP(x0) contains no weighted cycle of negative cost.
(b) ∃π such that the reduced cost of every variable of LP(x0) is

nonnegative.
(c) ∃π such that ∀j ∈ {1, . . . , n} :

x0j = ℓj if c̄j > 0, x0j = uj if c̄j < 0, c̄j = 0 if ℓj < x0j < uj.

Proof. Firstly, we prove that conditions (a) and (b) on the residual
problem LP(x0) are equivalent by providing linear programming
models for these. Secondly, we show that the primal condition
(a) characterizes linear programming optimality. Complementary
slackness ones in (c) are only stated for the completeness of the
presentation. It should however be clear that the necessary and
sufficient quality of (a) and (b) make them equivalent to (c).

Assume a feasible solution x0 of cost z0 from which are derived
the residual upper bound vectors r⃗ 0 and ⃗r0. Recall that π ∈ Rm

denote the dual vector associated with the homogeneous linear
system in LP(x0) (11). Fixing to zero all y-variables with null
residual upper bounds, we formulate a problem for finding µ ≤ 0,
the smallest reduced cost:
max µ

s.t. µ ≤ (cj − πᵀaj), [y⃗j] ∀j ∈ {1, . . . , n} | r⃗ 0
j > 0

µ ≤ −(cj − πᵀaj), [ ⃗yj] ∀j ∈ {1, . . . , n} | ⃗r0j > 0
µ ≤ 0.

(14)

We underscore that vector π is also optimized in (14). When
µ = 0, every variable in LP(x0) has a nonnegative reduced cost
and condition (b) is satisfied. Let the y-variables in brackets be the
dual variables associated with the inequality constraints. The dual
formulation of (14) is

min cᵀ(y⃗ − ⃗y)
s.t. A(y⃗ − ⃗y) = 0, [π]

1ᵀy⃗ + 1ᵀ
⃗y ≤ 1, [µ]

y⃗, ⃗y ≥ 0,
y⃗j = 0, ∀j ∈ {1, . . . , n} | r⃗ 0

j = 0
⃗yj = 0, ∀j ∈ {1, . . . , n} | ⃗r0j = 0.

(15)

Therefore, finding an improving direction (y⃗ 0
− ⃗y0) ∈ Rn

from x0, a so-called weighted cycle of negative cost, consists in
solving the above pricing problem. These two formulations form a
primal–dual pair for the pricing step. The primal one (15) searches
for an optimal weighted cycle (y⃗ 0

− ⃗y0) of negative cost, if any. Its
dual version (14) computes the smallest reduced costµ0 on LP(x0)
by an optimization of the dual vector π. By duality, cᵀ(y⃗ 0

− ⃗y0) =

µ0, hence LP(x0) contains noweighted cycle of negative cost if and
only if ∃π0 such that µ0

= 0, that is, the reduced cost of every
variable of LP(x0) is nonnegative. This concludes the equivalence
between (a) and (b).

In order to prove (a), suppose x0 is feasible and LP(x0) contains
a weighted cycle (y⃗ 0

− ⃗y0) of negative cost µ0. In that case, x0 can
be improved according to the change of variables in (10), that is,
x1 := x0 +ρ0 (y⃗ 0

− ⃗y0) and z1 := z0 +ρ0 µ0, where themaximum
step size ρ0 > 0 is limited in the residual problem LP(x0) (11) by
ρ y⃗ 0

≤ r⃗ 0 and ρ ⃗y0 ≤ ⃗r0. Hence, x0 cannot be optimal.
To show the converse, assume x0 is feasible and LP(x0) contains

no weighted cycle of negative cost. Let x⋆
≠ x0 be an optimal

solution. Theorem 3 shows that the difference vector x⋆
− x0 can

be decomposed into at most n augmenting weighted cycles in
LP(x0), where the total cost on these cycles equals cᵀx⋆

− cᵀx0 =
c∈C(x0) c

ᵀ(y⃗c − ⃗yc)φc ≥ 0, the costs of all the cycles in LP(x0)
being nonnegative. Since vector x⋆ is optimal, we also have cᵀx⋆

−

cᵀx0 ≤ 0 meaning that cᵀx⋆
= cᵀx0. Ultimately, x0 must also be

optimal thus completing the proof of the theorem. �

6. Discussion

In this section, we present two lines of research stemming
from Theorems 2–4 and the residual problem LP(x0). Keep in
mind that these results are extensions of widely used pieces
of theory all of which necessary to ascertain the validity of
some network flow algorithms. The first direction of research
is reminiscent of the minimum mean cycle-canceling algorithm
(MMCC) of Goldberg and Tarjan [6] and aims to generalize the
latter to linear programming. The goal is thus to determine
analogous results using the linear programming counterparts
defined herein. Some ideas and difficulties ahead are exposed in
Section 6.1.

The second direction of research refers to Theorem 3 which
shows that all weighted cycles required to reach an optimal
solution x⋆ exist on LP(x0). We argue that an algorithmic process
could be explicitly constructed around this observation. The idea
presented in Section 6.2 is to insert the process in a column
generation scheme and rely on the Dantzig–Wolfe decomposition
provided in (7)–(8).

6.1. Adaptation of MMCC to linear programs

As simple as the statement may be, the Decomposition Theo-
rem 1 acts as a cornerstone to numerous results in network flows.
It is in particular the core idea behind the mechanics of the min-
imum mean cycle-canceling algorithm of Goldberg and Tarjan [6].
Given a feasible solution x0, the algorithm moves to solution x1
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by using a cycle of minimum mean cost on the residual network
G(x0). The solution process therefore traverses a series of resid-
ual networks G(xk), k ≥ 0, eventually reaching one that contains
no negative cost cycle. The mechanics of the algorithm limits the
search to cycles because of the Augmenting Cycle Theorem while
the Negative Cycle Optimality Theorem further limits this search
to negative cost cycles only.

In theory, it seems like the iterative process of MMCC can
be adapted to linear programming in a relatively straightforward
manner using the residual problems LP(xk), k ≥ 0. At iteration
k, one has on hand a feasible solution xk from which are derived
the residual upper bound vectors r⃗ k and ⃗rk. Fixing to zero all y-
variables in LP(xk) with null residual upper bounds, one searches
in (15) for a weighted cycle (y⃗ k

− ⃗yk) of minimum negative
cost according to Theorem 4 until optimality is reached. We have
already mentioned the subtlety of the interpretation of the LP
weighted cycle. Once again, notice the construction of the sentence
opposed to that of MMCC: in both cases the cost is weighted and
measured against the convexity constraint but the weights are
lifted from the cycle definition in networks. If such a weighted
cycle is found in (15), the current solution can be improved, that
is, xk+1

:= xk +ρk(y⃗ k
− ⃗yk), zk+1

:= zk +ρkcᵀ(y⃗ k
− ⃗yk), where the

maximum step size ρk > 0 is limited by ρ y⃗ k
≤ r⃗ k and ρ ⃗yk ≤ ⃗rk.

Although it remains to be proven, the fact that the objective
function is modified at every iteration bodes well the convergence.
Furthermore, whether the theoretical complexity of such a process
can be established using the same line of arguments as seen in
MMCC is an interesting question which deserves an analysis. This
analysis revolves around the behavior of the minimum reduced
costµ. Themeasure of the sporadic jumps that can be shownon the
latter poses several challenges in the LP adaptation, most notably
by the scaling impact of the convexity constraint. The quest for
polynomial properties, even on part of the algorithm, is set forth.

6.2. On the solution ofMP(x0) by column generation

One of the most successful ideas of column generation is to
harvest a lot of information from the subproblem even though
some of it might turn out irrelevant (see [7]). From this principle,
we venture the idea that the Dantzig–Wolfe framework allows for
another algorithmic process that might share several features of
MMCC. The idea is to build the decomposition only once and refine
its parameters within a master/subproblem paradigm. The idea
actually comes forth quite naturally when one ponders at strategic
ways to implement the previous algorithm.

Let x0 be a feasible solution to LP (5) and apply a Dantzig–Wolfe
decomposition on LP(x0) (11) while keeping only the (positive)
residual upper bound constraints in the master problem MP(x0).
Therefore, the domain of the pricing subproblem defined in (15)
is the cone for which we added a convexity constraint. Let C(x0)
denote the set of its weighted cycles. Formulation of MP(x0), with
dual vectors ω⃗ and ⃗ω in brackets, is

z⋆
:= z0 + min


c∈C(x0)

cᵀ(y⃗c − ⃗yc)φc

s.t.


c∈C(x0)

y⃗cφc ≤ r⃗ 0, [ω⃗]
c∈C(x0)

⃗ycφc ≤ ⃗r0, [ ⃗ω]

φc ≥ 0, ∀c ∈ C(x0).

(16)

Given any feasible solution x0 to LP (5), we see the optimal solution
x⋆ using a combination of extreme rays derived on the residual
problem LP(x0) (the cone located at x0 is a convex set). This means
thatwe can stay at that solution point x0 rather thanmove at every
iteration, as in Simplex type algorithms or even MMCC algorithm.
In other words, extreme ray vectors are brought into MP(x0) until
optimality is reached.

Note that the algorithmic adaptation of MMCC to LP in
Section 6.1 does not solve MP(x0) (16). It rather performs a single
iteration of the Dantzig–Wolfe decomposition on LP(x0). Indeed
at any iteration k, it brings into MP(xk) a single weighted cycle
(y⃗ k

− ⃗yk) = (y⃗c − ⃗yc), c ∈ C(xk), of cost µk, then computes
φc = ρk and zk+1

= zk + ρkµk. The solution moves to xk+1
=

xk+ρk(y⃗ k
− ⃗yk) andone reiterates by reapplying thedecomposition

procedure on LP(xk+1). Full decomposition at x0 would use dual
vectors ω⃗ and ⃗ω in MP(x0) to select by column generation the
rays to fill in the master problem. The pricing problem (15) which
finds weighted cycles of minimum reduced cost has its objective
function min(c − ω⃗)ᵀy⃗ − (c − ⃗ω)ᵀ ⃗y updated over the column
generation iterations.

6.3. Final remarks

Although the MMCC algorithm can be stated within a para-
graph, it ismore difficult to capture the depth of its actual ramifica-
tions. Case in point, Radzik and Goldberg [8] and Gauthier et al. [5]
improve upon the original complexity analysis of this algorithm
several years apart. These improvements stem on the one hand
frommathematical arguments and on the other hand from theway
operations are conducted within the resolution process. The room
for improvement of the seminal work gives hope that alternative
ways of thinkingmay result in more efficient implementations. In-
deed, careful design choices can bemade to improve a white paper
algorithm thus showing that even tight complexities must be in-
terpreted with care.

In this spirit, the study combination of the complexity analysis
for LPs alongwith the columngeneration dimensionmight instil an
emulation environment for these two lines of research. The adap-
tation of the three networks based theorems provided herein are
essential components of the analysis that lies ahead. As final re-
marks, we think the linear programming proof of the decomposi-
tion theorem for networks is an interesting result in itself. Also, the
two alternative necessary and sufficient optimality conditions for
linear programs drive the interest of the two proposed algorithms.
The first works in the original space of the linear programwhereas
the second works in the vertex space where the variables have a
richer content. While the first guarantees degeneracy immunity,
the second makes no such promises.
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