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Abstract

In this note, we aim at reducing the state space of dynamic programming algorithms used as column generators in

solving the linear programming relaxation of set partitioning problems arising from practical applications. We propose

a simple generic lower bounding criterion based on the respective dual optimal solution of the restricted master

program.
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1. Motivation

Column generation is a well-established method
to solve large-scale (integer) linear programs, see

e.g., [3,5,8]. In recent years we have seen the

optimal solution of problems with millions of

variables in various practical application areas.

Often, a natural modeling approach is a formula-

tion as a set partitioning style program. Classical

examples are airline crew pairing [2] and vehicle

routing [5]. Here, the pricing problem, i.e., the task
to compute a favorable column to enter the basis

or to prove that none such exists, commonly

constitutes an NP-complete combinatorial opti-

mization problem; dynamic programming algo-
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rithms have been proposed for exact solutions, see

e.g., [2,4–6,9]. This note provides a simple means

to reduce the state space of these algorithms,
rediscovering the fathoming technique in dynamic

programming [1,10,12].
2. Dynamic programs as column generators

Stressing their practical relevance [3], we con-

fine ourselves to linear programming (LP) relax-

ations of set partitioning problems. That is, we

minimize cT x subject to Ax ¼ 1, xP 0, where

A 2 f0; 1gm�n
, and n is typically very large. We

assume cP 0. The columns of A encode a set S of
admissible subsets of an m-set S via aij ¼ 1 iff

i 2 j 2 S � 2S, i ¼ 1; . . . ;m. Usually n ¼ jSj � 2m,

and set membership in S is defined by a set C of

problem specific constraints. An example: a set S
of m customers has to be visited, each exactly once,
ed.
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by a fleet of vehicles. Rules C ensure e.g., that time
windows, vehicle capacities, and precedence rela-

tions among customers are respected. This results

in the set S of (incidence vectors of) feasible vehicle

routes, and associated costs cj, j 2 S.
The generic column generation scheme starts off

with a small subset of S, the associated variables

constitute the initial restricted master program

(RMP). Adjoining negative reduced cost columns,
and re-optimization of the RMP alternately pro-

ceed. Modern implementations usually use prob-

lem specific heuristics for solving the pricing

problem, cf. [3,4], but this is not followed up here.

Instead, we concentrate on an exact algorithm

which has to be executed at some point in time,

at least when one wishes to prove optimality of

the RMP.
Let x and u denote the primal and dual optimal

solutions, respectively, associated with the current

RMP. Then, the pricing problem amounts to

determining

z :¼ min cj

(
�
X
i2j

ui j j 2 S

)
: ð1Þ

If zP 0, no reduced cost coefficient is negative,

and x, embedded in Rn, optimally solves the ori-
ginal LP as well. Otherwise, when the minimum in

(1) is attained for index j0 2 S, column aj0 is ad-

joined to the RMP. Implicit enumeration of S can

be accomplished by a dynamic program, which

starts from R ¼ ;, and successively appends ele-

ments from S, the most recent of which is denoted

by k. The current stage of the algorithm is repre-

sented by state ðR; kÞ with R � S, k 2 R. A tran-

sition from ðR; kÞ to ðR0; k0Þ is feasible iff ðR0; k0Þ is
compliant to a set of constraints C, which usually

depend on ðR; kÞ. In the simplest case, each state is

associated with its reduced cost cðR; kÞ. Note the

assumption of additive costs along transitions. For

every R generated during the process there exists a

superset R � R with R 2 S. These so-called final

states––which represent the feasible solutions for
the pricing problem––are finally considered by the

dynamic program, at least implicitly. The mini-

mum reduced cost feasible solution among these

determines z in (1).
3. Dual variable based fathoming

Besides classical dominance relations among

states, lower bounds can be exploited to reduce the

state space of dynamic programs [1,10,12]. Con-

sider a particular state ðR; kÞ during the assumed

dynamic programming pricing algorithm. Denote

by z the cost of a currently cheapest final state––
referred to as the incumbent, initialized with a

known upper bound, possibly infinity. Candidates

for extension of R come from (but because of C
need not be identical to) S n R. Now only final

states having negative cost are interesting. There-

fore, if LBðR; kÞP minf0; zg holds for a lower

bound LBðR; kÞ on the best possible reduced cost

coefficient obtainable by (subsequent) transitions
of state ðR; kÞ, we prune the search, which we call

fathoming of the current state. In the following we

present such a simple bound.

The idea is to relax constraints in C imposed on

the extension of R. An immediate choice would be

a total relaxation, i.e., disregarding C altogether.

Denote by Sþ ¼ fi 2 S j ui > 0g. No state de-

rived from ðR; kÞ can have cost smaller than

LBðR; kÞ ¼ cðR; kÞ �
X

i2SþnR
ui; ð2Þ

which––although straightforward––has not been
generally stated, to the best of our knowledge. In

general, this lower bound is possibly weak, but can

be refined as follows. Not relaxing all C, and

utilizing some structural information on elements

in S one might be able to restrict Sþ to a more

meaningful set to be substituted in (2). For in-

stance, upper bounds on maxj2S jjj can be applied

to strengthen LBðR; kÞ. In practical applications,
such information is often available, e.g., the max-

imal number of customers on a vehicle tour. An-

other likely situation is to have i1; i2 2 Sþ such

that there is no j0 2 S with R [ fi1; i2g � j0, that is,
two incompatible elements, implied by C, e.g., due
to conflicting time windows. We would eliminate

from Sþ one which attains minfui1 ; ui2g. This can
be generalized to more than two elements [7], still,
the tradeoff between such efforts and computa-

tional gains should be kept in mind. If known, the

minimal cost incurred by transitions from the
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current to a final state can be added to LBðR; kÞ,
e.g., the cost for a vehicle to return to a depot.

Suppose we fathom a state ðR; kÞ when

c � LBðR; kÞP minf0; zg with 06 c6 1. We al-

ready discussed the case c ¼ 1. For c ¼ 0, the

inequality becomes redundant; all states would be

eliminated. Assume that LBðR; kÞ6 0, for other-

wise the multiplication by c would have no effect
on the criterion. Then, for 0 < c < 1, we have

c � LBðR; kÞ > LBðR; kÞ; more states than before

are fathomed. In other words, an incumbent pos-

sibly with z > z will be considered optimal. Note,

that ðz� zÞ=z < 1 always holds for any incumbent

with 0 > zP z. That is, as long as some negative

reduced cost column is computed, we have a trivial

upper bound on the relative error incurred for any
pricing heuristic. Most notably, in this case the

heuristic just described allows for a better

approximation guarantee.

Lemma 1. Let z6 z < 0. When LBðR; kÞ is replaced
by c � LBðR; kÞ with 0 < c6 1, then ðz� zÞ=z6
1� c.

Proof. The modified lower bound is more effective

only if LBðR; kÞ < z6 c � LBðR; kÞ for some state

ðR; kÞ. When such an additional elimination takes

place, we obtain for the incumbent

z� z6 c � LBðR; kÞ � z

() z� z
z

P c � LBðR; kÞ
z

� 1P c � 1� 1:

The last inequality follows from LBðR; kÞ6
z < 0, which holds by definition of the lower

bound. Constraining z to be non-positive imme-
diately yields the claim. h

The case zP 0 is uninteresting; the assumed

dynamic program truly returns that no negative

reduced cost columns exist.

Let us finally remark that a variant of (2) is

suited for preprocessing the data prior to solving a

pricing problem. Again, we assume non-negative
cost coefficients. If up < 0 and

P
i2Sþ

ui þ up 6 0,

then the element in S corresponding to p cannot

be promisingly incorporated in any feasible solu-

tion to the pricing problem, and therefore can be

discarded throughout the calculation.
4. Concluding remarks

Our fathoming criterion also applies in the

common presence of convexity constraints in the

LP. When the cost structure is such that

j1 � j2 � S ) cj1 6 cj2 , considering the set cov-

ering relaxation AxP 1 is no loss of optimality.

The assumption A 2 f0; 1gm�n
may be temporarily

relaxed for computational ease. The non-binary

columns encode the repeated appearance of ele-

ments in a set S. In this case, (2) is no longer a

lower bound. Independently of our work a similar

bound has been proposed [11], however, in a

pricing algorithm of branch-and-bound style,

where the use of bounds is essential to the

method.
Traditionally used dominance rules in dynamic

programming require an efficiently manageable

global overview of states, and only allow for dis-

carding states which are already generated. Op-

posed to that, the benefit and advantage of our

criterion is its ability to be checked locally in the

sense that only knowledge about the current state

is necessary. Future state transitions may be
avoided in the first place. Computational experi-

ments with (2), conducted in the context of a lo-

comotive scheduling problem at in-plant railroads

[9], indicate considerable state space reductions

of more than 90%.
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