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In-plant railroad engine scheduling involves routing and scheduling decisions for a hetero-geneous fleet of switching engines to serve a set of time-window- and capacity-constrained
transportation requests. Despite an ever-increasing competition, the current planning is
purely by pencil and paper. Our paper describes the mathematical and algorithmic devel-
opments for addressing in-plant railroad decision support for scheduling and routing. The
problem discussed in our work is related to the multiple-vehicle pickup and delivery prob-
lem. Exploiting the structure of admissible schedules of our particular railroad situation, we
introduce two formulations of the problem as mixed integer and set partitioning programs.
We propose solving the linear programming relaxation of the set partition model by column
generation. We focus on the pricing problem stated in the form of a constrained shortest path
problem, which is �� complete in the strong sense. A new exact label correcting algorithm
is developed that prunes the search space in a novel manner. Heuristically obtained integer
solutions of a practical quality are proposed as well. All the claims are demonstrated by
computational experiments on both artificial and real-life data. We discuss implementation
details as well.

Introduction
Large industrial plants in the chemical, automo-
bile, and steel industry often occupy entire quar-
ters of cities. Heavy freight must be transported
between widely spread terminals. To maintain a
timely around-the-clock production process, it is often
indispensable to operate a private industrial railroad.
With few exceptions (Charnes and Miller 1956), there
has been no extensive discussion of in-plant railroad
scheduling in the operations research literature. How-
ever, ongoing privatization and market deregulations
in the railroad sector require a better transportation
quality at reduced charges because truck transport
is the obvious competition. The need for an efficient
employment of existing resources, especially locomo-
tives, and the resulting demand for a computer-aided
scheduling system is widely recognized, motivating
the present research.

In-plant railroad operation is strictly customer ori-
ented, and not based on train schedules. Terminals
submit requests for empty freight cars and specific
materials. These requests are addressed by a fleet of
switching engines. The latter differ in their personal
and technical equipment and perform all coupling,
switching, weighing, and decoupling of trains; they
need fueling, maintenance, and repair. Engineers have
to have breaks, shift changeovers must take place, and
safety regulations must be observed. This incomplete
list gives an impression of the variety of tasks that are
to be scheduled, usually with respect to given time
windows. In the next section we describe the opera-
tional constraints in more detail. The goal is to maxi-
mize productivity of the engines.
Current planning tools merely help in gather-

ing and displaying information. The actual disposi-
tion, however, is done manually; the decision about
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how to schedule engines is completely up to the
dispatcher and his or her experience and motiva-
tion. Planning ahead is practically impossible during
peak workloads. Requests are scheduled on a first-
come, first-served basis. Clearly, a human judgment of
dependencies between interwoven decisions of such
complexity is by necessity local and incomplete. We
develop a mathematical model, and appropriate algo-
rithms for a provably good solution, providing an
active planning support for workaday operations.
Our paper is organized as follows. We formally

introduce the engine scheduling problem in §1. A mixed
integer and a binary set partitioning formulation,
respectively, are developed in §2. We solve the linear
programming relaxation of the latter model by col-
umn generation in §3. In §4, we focus on the pric-
ing problem, and propose an exact label correcting
algorithm as well as heuristic ideas. In §§5–7, we dis-
cuss how we obtain integer solutions by a price-and-
branch heuristic, comment on implementation details
of our column-generation code, and present compu-
tational experience drawn from practical instances.
In fact, besides solving comparably large pickup and
delivery problems, we demonstrate the ability of our
strategy to obtain practically satisfactory solutions.

1. Engine Scheduling Problem
Because we aim at an effortless consideration of
future extensions, our presentation in this section
slightly generalizes the actual practical situation. In
particular, our notion of transportation embodies more
than just movement of rail cars, but the entire variety
of tasks we only alluded to in the Introduction. For
a planning horizon of about two hours, we are given
a set � of n transportation requests to be served by
a set � of m available engines. The node set � of a
directed graph � = �� ��� contains origin and desti-
nation tracks r+ and r−, respectively, for each r ∈� as
well as start and end of service locations e+ and e−,
respectively, for each engine e ∈ �. Arcs �i� j� ∈ � are
weighted with a travel time tij ≥ 0 and cost cij ≥ 0, both
possibly infinity if the link does not exist. We men-
tion that nodes correspond to logical locations rather
than to physical ones. Each i ∈� is attributed the size
�i of the load to be picked up (�i > 0� or delivered

(�i < 0), and a service time si ≥ 0 to accommodate, for
example, preparatory work at a track. Service must
start within a time window �ai� bi�. Arrival in i ear-
lier than ai, for example, waiting, is allowed; �i = 0
is possible, but an engine’s tractive effort Le, e ∈ �,
must never be exceeded. Various objectives involving
time and/or cost are conceivable, and two examples
are given later in the paper.
Characteristic to multiple-vehicle pickup and deliv-

ery problems with time windows (m-PDPTW) (see the
comprehensive survey by Savelsbergh and Sol 1995)
are the assignment of engines to requests, decisions
about the visiting time for each location, the prece-
dence relation between origin and destination tracks,
which must both be visited by the same engine (pair-
ing), and the engine capacity constraint. However,
contrary to published work, we deal with railroad
traffic, and face the necessity that the sequence of
consecutively visited locations must be chosen so as
to avoid unnecessary switching operations: Railroad
yard managers insist that every admissible schedule
for an engine must have a very simple structure.
That is, the corresponding path in � is constructed
by sequentially visiting node sequences taken from
the set

�⊆⋃
i∈�
�i+�i−�∪ ⋃

i �=j∈�

{
�i+�j+�i−�j−�∪�i+�j+�j−�i−�}�

(1)

That is, the elements of �, which we term patterns,
only allow for direct delivery, and the simultaneous
service of two requests precisely in the manner stated.
We call the latter overlapping and embedding, for the
temporal relationship of involved requests (see Fig-
ure 1). It is important to see that these patterns
are part of the problem, not its simplification. They
reduce shunting movements and are easy to per-
form for engine drivers. Note, that (1) only constrains
the admissible sequence of locations, not the actual
visiting times or the assigned engine. In that sense,
the concept differs from those used, for example, in
the airline crew pairing literature. We require that �
only contain patterns that respect the engines’ trac-
tive efforts Le. Patterns must not be a priori time
window infeasible. Note that pairing and precedence
of pickup and delivery locations are observed by
definition. Given �, let us refer to paths Re ⊆ � ,

184 Transportation Science/Vol. 37, No. 2, May 2003



LÜBBECKE AND ZIMMERMANN
Engine Routing and Scheduling at Industrial In-Plant Railroads

i

i

i

j

i

j

i

j

j

i

+ +

++

+

–

–

–

–

–

Figure 1 Typical Situations for Direct Delivery, Overlapping, and Embedding Requests.

e ∈�, from e+ to e−, constructed as sequences of (node
disjoint) P ∈ � as � concatenations. A feasible � con-
catenation for engine e ∈ � is one which does not
violate any time windows and visits only requests
admissible on engine e. For an in-depth discussion
of this concept and further applications see Lübbecke
(2001a). We refer to Lübbecke (2001b) and Lübbecke
and Zimmermann (2002) for a much more detailed
discussion of the practical situation.
Given � and �, a feasible solution to the engine

scheduling problem (ESP) is a set �Re�e∈� of feasible �
concatenations such that their disjoint union visits all
nodes. That is,

⋃
e∈� Re=� . A potential objective func-

tion is to minimize the sum of arc weights along all
concatenations, for instance, their lengths. It is easy
to see that the multiple-traveling-salesman problem
with time windows reduces to ESP, which is therefore
�� complete in the strong sense (Lübbecke 2001b).
This holds even for finding a feasible solution only.

2. Models for Engine Scheduling
2.1. Mixed Integer Formulation
In order to gather insight into the problem’s structure,
we formulate a mixed integer program, related to the
m-PDPTW (Dumas et al. 1991, Sol 1994). It is mod-
ified for our special situation. Some additional nota-
tion and definitions are necessary. Given a pattern P =
�i1� i2� � � � � ik� ∈ �, ��P� ⊆ � denotes the arcs within
P , i.e., ��P�= ��i1� i2�� �i2� i3�� � � � � �ik−1� ik��. Moreover,
o�P�= i1 and d�P�= ik are used for the origin and the
destination, respectively, of the pattern P . In addition,
o��e−�� �= e− and d��e+�� �= e+. For any e ∈� we define

the service times se+ = se− = 0. For a pattern P ∈ �,
�P denotes its request incidence vector, the rth com-
ponent �rP , r ∈ �, which equals 1 if r+� r− ∈ P , and
0 otherwise. Finally, we denote the respective subset
of patterns for which engine e ∈ � is admissible by
�e ⊆�. We now introduce the variables:

zeP 1 if pattern P ∈�e is assigned to engine e ∈ �,
0 otherwise.

xeP1P2 1 if pattern P2 ∈�e is immediately served after
P1 ∈�e on e ∈ �, 0 otherwise.

Ti (nonnegative) arrival time in location i ∈ � of
the visiting engine.

Note that for the arrival times we need not specify
which engine arrives at a particular location because
this information is already covered by the z variables.
Table 1 shows the entire formulation (2) through (11),
denoted by (ESPMIP).
The given objective function (2) serves as a con-

venient example only. We aim at an earliest possi-
ble completion time for each engine. We ensure by
(3) that the selection of patterns indeed partitions �.
An engine must visit and leave precisely those pat-
terns assigned to it, which is guaranteed by (4). By
constraints (5) and (6) each � concatenation starts
and ends in the appropriate locations for the relevant
engine. Note that this formulation allows that engines
stay idle. The next two constraints take care of set-
ting the visiting times of each particular location, (7)
within a selected pattern and (8) between selected
patterns. Time windows for the start-of-service time
are respected due to (9). Finally, (10) and (11) define
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Table 1 The Mixed Integer Formulation (ESPMIP) for the Engine Scheduling Problem

minimize
∑
e∈�

Te− (2)

subject to
∑
e∈�

∑
P∈�e

�rP z
e
P = 1 ∀ r ∈� (3)∑

P �=P1∈�e∪�e+�

xe
P1P

= ∑
P �=P2∈�e∪�e−�

xe
PP2

= ze
P ∀e ∈ �
 P ∈�e (4)

∑
P∈�e∪�e−�

xe
�e+�P

= 1 ∀e ∈ � (5)∑
P∈�e∪�e+�

xe
P �e−� = 1 ∀e ∈ � (6)

ze
P = 1⇒ Ti +si + tij ≤ Tj ∀e ∈ �
 P ∈�e
 �i
 j� ∈ ��P � (7)
xe
P1P2

= 1⇒ Td�P1�+sd�P1�+ td�P1�o�P2� ≤ To�P2� ∀e ∈ �
 P1 �= P2 ∈�e ∪
⋃
e∈�

�e+
 e−� (8)

ai ≤ Ti ≤ bi ∀ i ∈ � (9)
ze
P ∈ �0
1� ∀e ∈ �
 P ∈�e (10)
xe
P1P2

∈ �0
1� ∀e ∈ �
 P1 �= P2 ∈�e ∪
⋃
e∈�

�e+
 e−� (11)

the domains of the binary variables. For i ∈ � we
assume 0≤ ai, therefore 0≤ Ti.
Although we give a different motivation, we for-

mally arrive at the model presented in the next
subsection by means of a Dantzig-Wolfe decompo-
sition. The nonlinear constraints (7) and (8), which
then appear in the subproblem, do not constitute
a complication because it is not solved as a lin-
ear program—the lower bound provided is poor
(Lübbecke 2001b)—but by dynamic programming.
We refer to Desaulniers et al. (1998) for a unified
and much more detailed presentation of solution
techniques.

2.2. Set Partitioning Formulation
Every feasible solution to the ESP canonically parti-
tions the set of requests. Because every request must
be covered by exactly one � concatenation, it is a nat-
ural idea to base decisions on entire concatenations,
resulting in a set partitioning formulation. Denote by
 e the set of all subsets R⊆� with the property that
a feasible � concatenation for engine e ∈ � visiting
exactly all r ∈ R exists. The elements of  e will be
called the admissible request sets for engine e ∈�. Asso-
ciate with each R ∈ e an incidence vector �R whose
rth component �rR equals 1 if r ∈ R and 0 otherwise.
Usually, given R ∈ �, there exist many different fea-
sible concatenations visiting exactly all r ∈ R. How-
ever, we do not lose any generality when we assign
to each �R the smallest possible cost coefficient ceR

with respect to the given cost evaluation of concate-
nations for engine e ∈�. Identical columns with larger
cost will not be part of an optimal selection. Thus,
we obtain a way to reconstruct a concatenation from
its incidence vector. Whether a particular R ⊆  e is
selected or not is represented by a binary variable !eR.
To summarize, this model reads as follows:

Min
∑
e∈�

∑
R∈ e

ceR!
e
R

subject to
∑
e∈�

∑
R∈ e

�rR!
e
R = 1� r ∈�

∑
R∈ e

!eR ≤ 1� e ∈ �

!eR ∈ �0�1�� e ∈ ��

R ∈ e�

(ESPSP)

In other words, choose for each engine e ∈� at most
one admissible request set R ∈  e such that the dis-
joint union of chosen sets precisely yields � at a min-
imum cost. This seemingly compact formulation has
some serious drawbacks. At first, note that determin-
ing the cost coefficient of a particular variable itself
is an �� complete combinatorial optimization prob-
lem because it amounts to solving a 1-ESP. Second,
although the model has very few constraints, in gen-
eral each  e is of exponential cardinality, resulting in
prohibitively many variables. Thus, even the solution
of the LP relaxation in a straightforward manner is
impracticable.
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3. Restricted Master Program
The tremendous number of variables of (ESPSP) leads
us to use the well established column generation
methodology. (See, for example, the surveys by Barn-
hart et al. 1998, Desaulniers et al. 1998, Desrosiers
et al. 1995, and Lübbecke 2001b). Given a subset  ′

e ⊆
 e of admissible request sets for each engine e ∈ �,
the restricted master program is

min
∑
e∈�

∑
R∈ ′

e

ceR!
e
R

subject to
∑
e∈�

∑
R∈ ′

e

�rR!
e
R = 1� r ∈�

∑
R∈ ′

e

!eR ≤ 1� e ∈ �

!eR ≥ 0� e ∈ ��R ∈ ′
e�

(RMP)

where the upper bound of one on the variables is
already implied by the partitioning constraints. Ini-
tially,  ′ �= ⋃

e∈� ′
e can be thought of being any, even

an empty, collection of admissible request sets that
permit a partition of �. An initialization is similar
in spirit to the first phase of the simplex method.
Associated with a primal optimal solution to (RMP)
is a dual optimal solution �u�v�T. The dual variables
ur , r ∈�, relate to the partitioning equalities and are
therefore not restricted in sign. The nonpositive dual
variables ve, e ∈ �, correspond to the convexity con-
straints. From the reduced cost coefficients ceR − uT ·
�R−ve, e ∈ �, R ∈ e we obtain the pricing problem

min

{
ceR−

∑
r∈R
ur −ve

∣∣∣ e ∈ ��R ∈ e
}
� (12)

which has to be solved in each iteration of the
column-generation process.

4. Pricing Problem
The pricing problem (12) can be decomposed into
subproblems, viz. one for each engine e ∈ �,

z$e �=min
{
ceR−

∑
r∈R
ur −ve

∣∣∣R ∈ e
}
� (13)

where the dual variable value ve corresponding to
e ∈ � constitutes an additive constant that does not

interfere with the minimization process. The mini-
mum mine∈� z$e determines a column to be adjoined to
the restricted master program. We call (13) the engine
scheduling pricing problem, or ESPP for short. It con-
sists of finding a shortest (request disjoint) � con-
catenation for one fixed engine with the additional
cost of −ur ∈ � incurred for each visited request r ∈
�. We occasionally use the notion of ESPP concatena-
tion. Note that in this constrained shortest path prob-
lem we are not required to visit all the requests, but
only a (possibly empty) subset. By reduction from
LONGEST PATH we establish strong �� complete-
ness of this problem (Lübbecke 2001b).

4.1. A Label Correcting Algorithm for ESPP
Given a set � of patterns, let us construct from � =
�� ��� the associated pattern graph �� = ������ by
�P1�P2�∈�� if and only if P1∩P2=∅. We can represent
request disjoint � concatenations as simple paths in
�� (the converse is not true), and we will implicitly
work on this graph. Arc weights are redefined as c̄ij �=
cij−ur if i= r+, and c̄ij �= cij otherwise, for all �i� j�∈�,
and transferred to the respective arcs in �� . Because
we solve a separate pricing problem for each engine
e ∈ �, the only relevant requests are those admissible
on engine e. These are denoted by �e ⊆�.
An important concept in the design of combinato-

rial shortest path algorithms is to maintain a set of
distance labels, one for each node. Starting at infin-
ity and being improved in the iterative course of the
algorithms, its value is at any time an upper bound
on the length of a shortest path from the source
e+ to node i, equaling the respective optimal length
upon termination (Ahuja et al. 1993). When we wish
to keep track of both time and cost, however, one-
dimensional labels do not suffice. (See Desrosiers et al.
1983.) Because two-dimensional labels can be ordered
only partially, a list of (nondominated) labels must be
maintained at each node.
With each delivery node i we associate states �R� i�

and labels �T ki �C
k
i �. These specify the kth ESPP con-

catenation that visits requests R ⊆ �e, and ends in
node i. The time start-of-service time is T ki at a total
reduced cost of Cki . The fundamental step of the
algorithm is the treatment of a label �T ki �C

k
i �, i.e., the
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construction of all feasible extensions of the corre-
sponding path, each by (usually) one additional arc
emenating from i, resulting in new paths and the
associated labels, respectively. Treating all the labels
at a state is called the treatment of this state. When-
ever new labels are generated at state �R� i�, these may
dominate others already present, thus offering possi-
ble improvement. Then, state �R� i� must be treated
(again) to propagate this improvement. The process
terminates as soon as no new labels are generated
at any state. Paths are extended by several nodes at
once, viz. patterns taken from �. The procedure is
similar to algorithms for the construction of (elemen-
tary) constrained shortest paths used, for example, in
the context of airline scheduling or urban transit prob-
lems; see Gegen et al. (2000). In contrast to these prob-
lems, however, we do not have a fixed schedule, but a
flexible one. That is, we must respect time windows.
At a state, we store labels in chronological order.

When time window infeasibility is detected while we
try to expand a label, no further labels at the current
state need to be treated—none will be feasible either.
States are treated in chronological order as well. Note
that label �T 1e+�C

1
e+� is initialized with C

1
e+ = −ve, the

dual variable value associated with engine e. Alterna-
tively, a fixed cost incurred by using this engine may
be added. We keep a list of states still to be treated. All
lists of labels appearing in the course of the algorithm
for the first time are initialized as empty sets. Request
disjointness of paths needs to be checked when a label
is treated. Note that we may use pattern families more
complicated than (1). We refer to Lübbecke (2001b) for
a more formal description of the algorithm. Upon ter-
mination, the output is the column-incidence vector
�R$ at cost

Ck
$

i + ∑
r∈R$
ur +ve� where

�R$� k$� ∈ argmin
�R�k�

{
Cki at state �R� i�

}
(14)

if Ck$i < 0 and otherwise is the information that no
more columns with negative reduced cost exist. In the
event that the pricing problem is required to return
multiple columns, cf. §6.1, we may evaluate (14) for
each delivery location i. Heuristically, this leads to a
certain diversity of the returned solutions. We do not

discuss an efficient label management, and only refer
to techniques introduced by Desrochers and Soumis
(1988a, b) and Desrosiers et al. (1983), which are appli-
cable. (See Lübbecke 2001b.)

4.2. Dual Variable-Based Label Elimination
Dominance among states is the classical means to
reduce the solution space of a dynamic program.
This depends on the implementation and requires a
good organization of the label space. Moreover, we
can only compare labels already constructed. Rather, it
would be preferable to have an anticipatory prevention
of unpromising labels. In branch-and-bound meth-
ods, a good performance essentially hinges on good
bounds. These two well-known implicit enumeration
strategies exhibit large similarities. (See, for example,
Ibaraki 1987.) The common framework motivates us
to investigate lower bounds in the context of reduc-
ing the number of labels in our dynamic program. To
this end, we apply a technique introduced recently by
Lübbecke (1999).
When solving ESPP, we are given a fixed engine

e ∈ �. With respect to (13), we implicitly explore  e,
the set of admissible request sets for engine e. During
the search, denote by  e ⊆  e the subset so far con-
sidered, i.e., R ∈  e, if and only if we have already
generated labels with finite cost for some state �R� ·�.
Furthermore, we denote by C inc the cost of a currently
cheapest label, referred to as the incumbent. Initially,
C inc = �. Let Rinc denote the associated admissible
request set. Note that C inc is the optimal value sought
by the procedure when � e =  e. Efforts to elimi-
nate labels aim at precluding as large a subset of
 e as possible from being searched, while guarantee-
ing that an optimal concatenation will be identified.
Because ESPP is a pricing problem, we are inter-
ested in negative values of C inc only, and it would
be helpful to know if the treatment of a given state
�R� i� can eventually lead to a state with negative
reduced cost labels at all. Even stronger is the ques-
tion whether any future treatment of (successor states
of) �R� i� exists that yields a better incumbent. A neg-
ative answer immediately enabled us to prune the
search, excluding �R� i� from further treatment, and
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therefore reducing the searched state and label space.
Clearly, as soon as

LB�R�≥min�0�C inc� (15)

holds for a lower bound LB�R� on the best possi-
ble reduced cost coefficient obtainable by treatment of
any label associated with states �R� ·�, we have such a
negative answer. Denote by �+

e the subset of requests
admissible on engine e with associated positive dual
variable value, for example, �+

e �= �r ∈ �e � ur > 0�.
Let R⊆�e be the admissible request set correspond-
ing to a particular state under consideration. The only
way to lessen the cost of the labels associated with
this state is to expand the corresponding concatena-
tions by requests in �+

e . Hence, a way of providing a
lower bound to be used in (15) is

LB�R� �=min
i∈R
Ck̂i −

∑
r∈�+

e \R
ur� (16)

where the k̂th label corresponds to the least cost label
at state �R� i�. In our computational results this crite-
rion proves particularly effective, cf. Table 2.

4.3. Heuristics
An exact algorithm for ESPP is indispensable when
a certificate of optimality is needed upon comple-
tion of the column-generation algorithm. However,
especially in the beginning, a pricing algorithm may
return any column with negative reduced cost coeffi-
cient. Heuristics are a way to do this fast. Here, we
consider heuristic variants of our algorithm. That is,
we waive optimality by restrictions on its solution
space. These variants are separately presented in turn,
but can be arbitrarily combined.
Premature Termination. An immediate modification

is to return the column corresponding to the first,
or more generally, to the kth constructed negative
reduced cost label, with a given parameter k ∈ �.
This parameter controls the trade-off between solu-
tion quality and computation time. Beyond being
very easy to implement, this idea is attractive for its
implicitly dynamic behavior. Without further algorith-
mic efforts, the method finally delivers an optimal
solution as well.

Table 2 Results for vps Instances

Instance LP opt IP obj %gap B&B CPU Total w/o (15)

vps10 1�000 1�0 0.00 0�01 0�05 0�10
vps11 1�000 1�0 0.00 0�00 0�05 0�24
vps12 1�000 1�0 0.00 0�00 0�05 0�25
vps13 1�000 1�0 0.00 0�00 0�06 0�31
vps14 9�000 9�0 0.00 0�00 0�05 0�24
vps15 8�000 8�0 0.00 0�01 0�10 0�65
vps16 8�000 8�0 0.00 0�03 0�12 0�55
vps17 8�500 9�0 0.00 0�07 0�20 1�29
vps18 8�500 9�0 0.00 0�04 0�14 1�30
vps19 8�000 8�0 0.00 0�05 0�23 1�61

� 5�400 5�5 0.00 0�02 0�10 0�65

vps20 8�000 8�0 0.00 0�33 0�63 2�09
vps21 8�000 8�0 0.00 0�16 0�44 5�94
vps22 8�000 8�0 0.00 0�03 0�17 3�76
vps23 8�000 8�0 0.00 0�10 0�32 9�36
vps24 12�000 12�0 0.00 0�27 2�25 11�88
vps25 8�000 8�0 0.00 0�08 1�31 19�60
vps26 8�000 8�0 0.00 0�07 2�25 58�30
vps27 16�000 16�0 0.00 0�09 5�80 65�41
vps28 20�000 20�0 0.00 0�12 11�25 73�18
vps29 19�000 19�0 0.00 0�16 10�33 145�25

� 11�500 11�5 0.00 0�14 3�48 39�47

vps30 19�000 19�0 0.00 0�20 15�32 388�20
vps31 18�000 18�0 0.00 0�31 26�50 512�95
vps32 16�750 17�0 0.00 0�84 25�25 1347�25
vps33 16�750 17�0 0.00 0�89 30�52 15224�63
vps34 16�750 17�0 0.00 1�31 96�29 54707�18
vps35 16�750 17�0 0.00 0�86 58�45 501309�84
vps36 15�000 15�0 0.00 0�88 124�10 †

vps37 22�500 24�0 4.34 4�41 1862�31 †

vps38 22�500 24�0 4.34 2�85 1321�49 †

vps39 22�500 27�0 17.39 16�32 2429�00 †

� 18�650 19�5 2.61 2�89 598�92

Note. Under heading “w/o (15)” we list the total computation time in CPU
seconds, when the lower bound criterion (15) is not used. The sign † means
that every reasonable time bound is exceeded, even for testing purposes.
(Here: one CPU week.)

Cost Coefficient Improvement. For every heuristically
generated column-incidence vector �R, the respective
cost coefficient ceR is not necessarily minimal. This
implies that the same column is potentially regener-
ated with smaller cost coefficient in a later column-
generation iteration. When �R� is not too large, say
�R� ≤ 4, it is advantageous to calculate the best possi-
ble ceR by determining an optimal ESPP concatenation
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for the fixed request set R, for example, by a simple
backtracking algorithm.
Pattern Graph Reduction. A heuristic reduction of

the number of nodes and arcs (Desrosiers et al. 1986,
Dumas et al. 1991) reduces the number of generated
labels. Moreover, when only direct delivery patterns
are considered, we reduce the number of nodes by
an order of magnitude. This latter heuristic usually
produces feasible solutions because it reflects the cur-
rent planning practice. For our instances, the speed
up is marginal, but solution quality drops. Similar to
Crainic and Rousseau (1987), we may alternatively
omit patterns involving r1� r2 ∈�e with

∑
�i� j�∈��P� cij−

ur1 −ur2 ≥ 0.
Alternative Treatment of States. Instead of consid-

ering states �R� i� in chronological order, a possible
treatment is in nondecreasing order of out-degree of
node i in the pattern graph. The rationale behind
this modification is that label elimination criteria are
most effective when applied early in the search, thus
pruning large portions of the tree in Figure 2. This is
the more likely the farther from the root the fanout
appears (Reingold et al. 1977). Alternatively, we may
order states �R� i� according to nonincreasing value
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Figure 2 Another Point of View of Extending Concatenations
Note. The marked concatenations are stored in the same state ��1
3
4�
4−�, thus allowing for an efficient elimination of a possibly dominated label.

of the dual variable associated with the request with
delivery location i. The motivation here is to construct
good incumbents early.
A different strategy aims at the heuristic elimina-

tion of all states with �R� ≤ ', where ' ∈ � is a preset
parameter. For instance, '= ����/���� is a reasonable
choice, when the request load on the engines is sup-
posed to be almost balanced, and in our case leads to
good results.

5. Price-and-Branch
In general, solving an LP relaxation by column gener-
ation need not yield an integral solution. Even worse,
the variables generated at LP optimality need not
allow for an integer feasible solution at all. Our com-
putational experiments indicate that our restricted
master programs happen to already be integer fea-
sible, and solution quality is fully acceptable. The
column-generation process is not invoked at any node
other than the root node of the branch-and-bound
tree. This policy may be termed price-and-branch by
analogy with the folklore notion cut-and-branch, where
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valid inequalities are adjoined to the LP at the root
node only.
Here again, we come across the phenomenon that

reality is not as bad as suggested by computational
complexity or, in other words, in practice the theoret-
ically worst case rarely occurs. This was observed in
many other practical settings as well where artificial
data were compared to “real-world” data. Although
not being a mathematically satisfactory explanation,
this is an encouragement to attack practical problems,
even in the presence of negative complexity results.
Of course, in a failsafe industrial implementation, one
could safeguard against infeasibilities by including a
branch-and-price code. However, this is beyond the
scope of this paper.

6. Implementation Details
In this section we describe in detail the implementa-
tion of our price-and-branch heuristic. Efficiency is of
primary importance when practical problem sizes are
to be addressed. It is our experience, in line with that
of other researchers, that generic column generation
offers a vast degree of freedom from an implemen-
tation standpoint. Most recently, a compendious col-
lection of implementation and acceleration techniques
was presented by Desaulniers et al. (2001). Although
sketchy, we believe that presently their review can
hardly be outmatched in terms of experience and
scope. It should be definitively considered before an
implementation.
The objective function we actually implemented is

the practically relevant minimization of the total dead
heading and waiting time. Then, the cost for a con-
catenation cannot simply be calculated by straightfor-
ward addition of arc weights.

6.1. Subproblem Solution and
Column Management

The pricing subproblem is the most frequently exe-
cuted essential component of a column-generation
code. Each call should therefore be as effective as
possible. Even though this statement seems obvious,
it deserves some recognition. Recall that it is nei-
ther mandatory to add a most profitable column to
the restricted master program, nor are we restricted

to adding only one column at a time. Not only the
heuristics we discussed, but also our exact label cor-
recting algorithm, exhibit a large degree of freedom
in their actual realization and combination. It is our
experience that the latter aspect outweighs the still
valid importance of an efficient implementation of
the respective components. The global guideline is to
call our exact pricing algorithm as seldom as possible.
Other authors share this point of view, but in our case
this is all the more important inasmuch as we have
to solve a node disjoint constrained shortest path prob-
lem, a requirement often absent in similar situations.

6.1.1. Column Pool. We stop as soon as the kth
negative reduced cost column is found, where k ∈ �
is parameter controlled. Still, negative cost columns
are produced that are not added to the restricted mas-
ter program. The efforts for generating them appear
to be in vain. Instead, we would store all columns
with reduced cost smaller than a threshold to a so-
called column pool. This concept has been successfully
applied in column-generation codes. (See, for exam-
ple, Sol 1994.) Before any other construction method is
invoked, we check whether the pool contains columns
that price out negatively. It may also be helpful to add
columns to the restricted master with a small positive
reduced cost. These may become active in later itera-
tions. However, such columns are only added when,
in the same iteration, at least one negative reduced
cost column is added from the column pool. Other-
wise, cycling could occur.
The pool is linearly searched, performing for each

entry (a) an update of reduced cost according to the
current dual variables, (b) the addition of the column
to the restricted master (and deletion from the pool),
if applicable, and (c) a deletion of the column from the
pool if it is too expensive. All thresholds are parame-
ter controlled. We neither limit the pool capacity nor
the number of columns to be added to the pool or
to the restricted master per iteration. The selection
of partial solutions is proposed by Savelsbergh and
Sol (1998), for example, a set of columns that cover
each request once at most and originate from differ-
ent engines. In our experiments this is unnecessary in
terms of integer feasibility. However, we try to keep a
pool of high quality. That is, when a column is pushed
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to the pool we check whether its reduced cost can be
improved (by a backtracking method).

6.1.2. Greedy Dual Variable/Minimal Time
Window Slack Heuristic. When the pool contains
no more suitable columns, we invoke a very simple
heuristic that greedily assigns direct delivery patterns
to the engine in question as long as it is time feasible.
Each decision should provide a good decrease of
the tentative column’s reduced cost coefficient but
maintain time window feasibility as long as possible.
That is, a compromise is sought between a large
positive dual variable value and the least detriment
of the degree of freedom for the remaining decisions.
Therefore, we choose the next request to be assigned
as a maximizer of the following ranking. Divide the
dual variable value associated to a request by the
maximal number of minutes the engine could be
delayed while still completing the request in time.
In other words, a critically small time window slack
amplifies the dual variable weight of a request. See
Lübbecke (2001b) for a more formal description.

6.1.3. Premature Termination of the Exact Label
Correcting Algorithm. When the above greedy
heuristic fails to provide a negative reduced cost col-
umn we invoke our prematurely terminating label
correcting algorithm. Note that this heuristic will
return a promising column if one exists. We proceed
in the treelike manner as indicated in Figure 2. When
no column is found for any engine, we turn off all still
active heuristics if any, thus finally calling an exact
pricing algorithm to add final improving columns and
to prove optimality.

6.1.4. Multiple Pricing. We cyclically price the
engines. During the first master iterations the heuris-
tics usually deliver a good column. Later on, more
and more often the label correcting algorithm is called
which simultaneously refills the column pool. After
each such pricing, the restricted master is reopti-
mized. The motivation for not pricing all engines
before reoptimization is to provide the respective pric-
ing problems with the most recent dual information,
which of course reflects results from prior pricing
problems. This is simply a heuristic to avoid genera-
tion of too many similar columns.

7. Computational Experience
All experiments were performed on a 700MHz Pen-
tium III PC with 1GByte core memory running
Linux 2.2. We use the CPLEX 7.0 callable library to
solve all linear and integer programs. Compilation
with the GNU C compiler gcc is invoked with −O3
optimization.

7.1. Available Data

7.1.1. VPS. Verkehrsbetriebe Peine-Salzgitter GmbH,
Germany, provided us with raw data that repre-
sent 100 actual requests from a morning shift of 8.5
hours. All requests originate from operating two blast
furnaces at a steel mill, including some additional
requests, such as engineer’s breaks. Two engines
are primarily dedicated to slag transport and four
engines to the transportation of molten iron. Only
21 tracks are involved, and distances are relatively
short. Creating instance vps100 from the raw data
necessitated considerable manual modifications that
have been done with approval by railroad officers.
In particular, no time windows are given but are
to be extracted from handwritten data sheets. From
the chronologically sorted instance vps100 we derive
a new instance vpsnn by considering the first nn
requests only. The practical background requires a
large fraction of requests to be directly delivered
because much surveillance activity is necessary for
safety reasons. A particularity of the data set is that
there are many requests compared to the length of the
planning horizon.

7.1.2. EKO. The raw data furnished by EKO Trans
GmbH, Eisenhüttenstadt, Germany, comes from a steel
mill again. This railroad is a smaller one and oper-
ates 10 engines altogether, each of which is assigned
a certain region and/or tasks. In total, we have 820
requests that are generated from a log file of rail
car movements on the entire industrial plant during
six consecutive days. The requests cover 273 tracks
spread all over the plant. No time window informa-
tion is available for this data set. Therefore, we pro-
duce time windows of a parameter controlled width,
centered at the actual start-of-service time. This yields
instances eko820a, b, and c with time window widths
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of 200, 250, and 300 minutes, respectively. For our cal-
culations we build groups of 25 requests, such that the
time windows span about one half of the respective
planning horizon. For many origin destination pairs,
the distance is estimated. Admittedly, the result can-
not be regarded as real-life data.
We also generate a set of extremely difficult

instances, where time windows are fairly wide and
most distances are very short. Then, many request sets
of almost identical cost are admissible. This results in
many columns being favorably added to the restricted
master program, only a tiny fraction of which are
actually needed. Instances eko80xa, b, and c each con-
tain requests 1–80 with time window widths of 100,
200, and 300 minutes, respectively.

7.1.3. Sol. We are kindly provided with several
randomly generated m-PDPTW instances from the lit-
erature (Savelsbergh and Sol 1998, Sol 1994). These
are used as raw data for our own experiments. Eight
problem classes of ten Euclidean instances each are
given. We have homogeneous fleets, and ���/2 vehi-
cles are available and admissible for each request.
Classes A, B, and DAR have time windows of one hour
length, and classes C and D of two hours length. Time
windows fulfill ar− −ar+ = tr+r− for all r ∈�. The last
time window closes after about 11 hours; however,
time windows that exceed the planning horizon of 600
minutes are truncated. Vehicle capacity is restricted to
accommodate at most three (classes A, C), four (classes
B, D), or five requests (classes DAR), respectively. We
do not truncate time windows; therefore we obtain
longer planning horizons. From the time window and
capacity data we derive for our instances the respec-
tive sets of admissible patterns in �. All other infor-
mation remains intact.

7.2. Evaluation of Results
Some observations are generally valid across all
instances. All final restricted master programs are
integer feasible when default options are used. Solu-
tion quality is practically satisfactory. It must be
mentioned that seemingly significant optimality gaps
translate to only minutes from optimum in practice.
We prematurely terminate our exact pricing when the
100th negative column is found. This enlarges the

amount of pooled (and potentially added) columns,
which in turn may allow for better integer solutions.
Seldom are more than 5,000 columns generated, usu-
ally significantly less. With increasing planning hori-
zons and wider time windows, problems become
much harder to solve. In comparison, small amounts
of time are spent in the final branch-and-bound phase.
In what regards numerical stability, we remark that
although all cost coefficients are integers, interme-
diate calculations involving dual variables do have
results in the reals. We observe tiny deviations of
about 10−15 from integral values, and round to the
nearest integer. The column headings in the tables dis-
playing our computational results have the following
meanings:

Instance name of the problem instance.
LP opt optimal objective function value of

the LP relaxation.
IP obj best feasible integer solution value

found.
%gap relative optimality gap in percent.
B&B CPU time in seconds spent in the

branch-and-bound phase.
CPU total total computation time in CPU

seconds.

7.2.1. VPS. The vps data set is of special rele-
vance to us because it reflects a typical practical sit-
uation. Table 2 demonstrates the excellent quality
of the lower bound provided by (ESPSP), and thus
the robustness of our price-and-branch approach. We
obtain integer optimal solutions for a considerable
number of requests within a few minutes. This cer-
tainly allows for interactivity with the dispatcher. Due
to small absolute cost coefficients, we inhibit the gen-
eration of labels with cost larger than 30.
We also use these calculations for an evaluation

of our lower bound label elimination criterion (15).
For growing problem size, we obtain speedups of
orders of magnitude. Using the same amount of time,
we are enabled to handle additional requests—with
considerably smaller memory requirement. The crite-
rion is especially effective in the end of the column-
generation process when it is particularly difficult
to find negative columns. Further observations are
that from a computational standpoint it is entirely
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impractical to always run our exact label correcting
algorithm until the end; starting with only an arti-
ficial basis is competitive to using a greedy heuris-
tic; however, the penalty cost for artificial variables
should be carefully chosen. Column elimination from
the restricted master program is not favorable, espe-
cially because this reduces our chances to obtain inte-
ger solutions, and only minor progress is made in
terms of the primal objective function, per master
iteration.

7.2.2. EKO. We evaluate the limitations of our
implementation with respect to time window width,
cf. Table 3. In practice, we usually have a mix of
requests that become available late compared to their
required completion time, and requests that have
extremely large time windows. Each group of 25

Table 3 Results for Instances eko820a, b, and c

Requests Width % LP opt IP obj %gap B&B CPU Total

1–100 200 47 524�146 637�750 16�63 2�61 53
250 49 414�958 431�000 5�29 1�77 690
300 54 358�930 375�500 5�93 2�72 5364

101–200 200 42 448�794 471�250 4�73 1�18 29
250 47 391�502 411�750 6�13 1�28 406
300 51 363�296 406�750 12�60 6�04 4749

201–300 200 40 630�983 733�000 11�50 1�24 15
250 45 525�646 560�750 10�34 3�10 144
300 49 477�812 563�250 13�33 3�12 1892

301–400 200 43 512�180 551�500 7�75 0�44 54
250 49 407�790 441�500 7�62 1�50 962
300 53 370�219 387�750 4�17 1�02 11378

401–500 200 45 641�833 804�000 19�18 0�55 4
250 50 429�229 499�500 14�34 3�47 11
300 55 366�050 441�250 17�63 3�66 50

501–600 200 39 473�078 500�250 6�17 0�99 674
250 45 411�723 433�000 6�38 4�20 2241
300 49 357�389 379�750 8�77 1�55 19176

601–700 200 48 387�087 400�250 3�90 0�49 1760
250 54 327�878 358�250 9�52 5�36 30590
300 59 274�975 283�250 2�96 16�68 226231

701–800 200 39 436�679 484�500 9�09 1�22 30
250 45 352�609 413�250 14�06 7�05 115
300 49 306�879 463�750 36�00 15�44 338

Note. Thirty-two groups of twenty-five requests each are formed. We report
the average figures for four groups, respectively, i.e., 100 consecutive
requests. Under headings “width” and “%” we list the respective time win-
dow width in absolute value and relative to the planning horizon, respectively.
Using a heuristic, these computation times can be dramatically sped up.

requests represents approximately one half of a shift.
When time windows get wider (and all other data
stays the same), the problems get significantly harder
to solve. Additional comparatively short distances
render our approach computationally impractical. It
must be pointed out, however, that these results are
obtained with default options active. For the most
difficult group of requests computationally, 676–700
(time window width 300 minutes) we produce an
integer solution with objective value of 356.0 (LP opti-
mum is 243.0) in 1,000 CPU seconds, when the gener-
ation of labels is heuristically limited. With sufficient
knowledge about the practical situation, such a limi-
tation can always be successfully applied.
When there are almost no preferences given with

respect to when a request should be served, combi-
natorial explosion strikes. Our algorithm is not able
to handle too large a fraction of such requests as
can be seen from Table 4. It appears that the dif-
ficulty with the hard instances eko80x lies in the
enormous amount of feasible solutions. This can be
deduced from a comparison of the number of gen-
erated columns and the number of columns actually
needed; the number of simplex iterations serves as
indicator here. Heuristically, as before, for the hardest
instance we obtain an integer solution with 13% gap
in only 400 CPU seconds in the column-generation
phase.

7.2.3. Sol. In Tables 5 and 6 we list results for
the data set taken from Sol (1994). On the general
PDPTW instances, we impose the additional con-
straint of allowing � concatenations only. Interest-
ingly enough, the resulting instances are feasible even
for the originally shorter planning horizon of 600 min-
utes. Moreover, for the original instances we know
the optimal total route durations (Sol 1994). The total
route duration deduced from our integer solutions
are, on average, at most 20% longer. In a sense, the
original situation is restricted in such a way that using
� concatenations is quite competitive, and solutions
are quickly computed.
It must be stated explicitly that our objective func-

tion also differs from Sol’s, in that we do not seek
a solution with a minimal number of used vehicles
because this is not favored by railroad management
(yet). Still, remarkably, often the optimal number also
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Table 4 Results for Hard Instances eko80x

Requests Width % LP opt IP obj %gap #columns #simplex B&B CPU Total

1–20 100 19 526�000 526�000 0.00 1873 669 0�42 4
200 32 483�000 483�000 0.00 1838 834 0�47 30
300 41 458�000 458�000 0.00 1586 680 0�33 54

21–40 100 39 76�000 76�000 0.00 3612 2051 3�70 2715
200 56 71�000 71�000 0.00 5968 2569 0�58 15056
300 66 71�000 71�000 0.00 138559 1752 31�63 12271

41–60 100 34 87�000 87�000 0.00 2714 1880 2�26 1981
200 51 87�000 87�000 0.00 61677 1963 10�93 18815
300 61 87�000 87�000 0.00 83799 2173 16�59 19441

61–80 100 48 100�000 100�000 0.00 486097 4168 54�64 66658
200 65 100�000 † 1343598 5813 199�84 274694
300 73 †

Note. We report results for groups of only 20 requests. Under headings “#columns” and “#simplex,” respectively,
we report the total number of columns adjoined to the RMP and the total number of simplex iterations needed to
reoptimize the RMP. We are unable to obtain solutions for the last group, when time windows get wider, cf. the
sign †. For these two problems the pattern graph has a density of 95%. However, for the last instance, premature
termination of the column-generation phase after 400 CPU seconds leads to an integer solution with objective
function value of 113!

is used in our solutions, and we seldom only use one
vehicle in excess. We must observe, however, that our
engines are allowed to exceed the original planning
horizon. Hence, it happens, that the solution we cal-
culate is better than the optimum stated by Sol (1994).
For the DAR50 instances, cf. Table 6, we also use fewer
vehicles than are optimal in the original situation.
This is again a consequence of our enlarged planning
horizon. With larger time windows and larger vehicle
capacity (class D) solution times slightly increase and
solution quality drops.

8. Remarks
Unfortunately, we are not able to compare our
objective function values with those obtained in the
real-life setting because engine assignments or actual
service completion times are not recorded. Time win-
dow information is especially lacking. This is also
due to the fact that our definition of a transporta-
tion request is broader and more flexible than the one
used in practice. Although they appear to be small,
the instances we are able to solve correspond to a
planning horizon of more than two hours. According
to railroad officers it is hardly sensible to plan further

ahead because of the increasing uncertainty of future
requests.
Our computational bottleneck is the exact pricing

algorithm, and the practical implementation of the
method hinges on a reasonably small cardinality of �.
The use of more elaborate data structures for the label
management, and the further development of heuris-
tics for reducing the underlying network would cer-
tainly bring further speedup. This is not part of our
study. Still, we are able to state computational feasi-
bility of our approach; everyday computability is to
be established in a next step. We refer to Lübbecke
and Zimmermann (2002) for supplementary reading
on how to implement our work in practice. We would
like to remark that the ESP’s generic structure under-
lies several other logistics problems, see Lübbecke
(2001a).
We avoided the additional effort of implementing

a branch-and-price algorithm. This is well justified by
our always obtaining (even optimal) integer solutions.
From a practical, as well as from a theoretical per-
spective, it would be interesting to evaluate stochas-
tic influences of engine availability and appearance of
requests. There is also practically no knowledge about
the so-called online version of our problem—certainly
a research avenue for the years to come.
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Table 5 Results for Small Instances by Sol (1994)

Instance LP opt IP obj %gap #eng/#opt CPU Total B&B

A30_1 1786�875 1836�000 2.74 10/10 2�00 1�04
A30_2 1981�000 1981�000 0.00 11/11 0�87 0�03
A30_3 3226�750 3409�000 5.63 14/13 5�41 4�88
A30_4 1794�000 1819�000 1.39 11/11 1�06 0�49
A30_5 2025�000 2072�000 2.32 11/11 1�45 0�88
A30_6 1837�000 1878�000 2.23 11/11 0�73 0�22
A30_7 1727�500 1734�000 0.34 10/10 0�77 0�14
A30_8 2350�000 2350�000 0.00 11/11 0�64 0�03
A30_9 2501�000 2501�000 0.00 11/11 0�68 0�11
A30_10 2594�000 2594�000 0.00 11/11 0�70 0�12

� 2182�312 2217�400 1.46 11.1/11.0 1�43 0�79

B30_1 3024�000 3024�000 0.00 12/12 0�68 0�11
B30_2 1849�000 1891�000 2.27 9/9 1�49 0�51
B30_3 2503�000 2503�000 0.00 12/12 0�62 0�03
B30_4 2094�000 2094�000 0.00 10/10 1�06 0�05
B30_5 2072�500 2082�000 0.43 9/9 0�91 0�12
B30_6 2100�000 2100�000 0.00 10/10 0�63 0�03
B30_7 1980�200 2018�000 1.86 10/10 0�97 0�21
B30_8 2978�000 2978�000 0.00 13/13 0�44 0�05
B30_9 2968�000 2968�000 0.00 14/14 0�60 0�02
B30_10 2264�000 2264�000 0.00 11/11 0�89 0�15

� 2383�270 2392�200 0.45 11.0/11.0 0�82 0�12

C30_1 1490�000 1490�000 0.00 8/8 1�08 0�03
C30_2 1528�000 1528�000 0.00 8/8 1�22 0�02
C30_3 1865�000 1888�000 1.23 8/8 3�33 0�40
C30_4 1215�100 1276�000 4.93 8/7 3�43 1�24
C30_5 1648�000 1648�000 0.00 8/8 1�60 0�05
C30_6 1985�000 2083�000 4.93 9/9 3�41 2�25
C30_7 1663�667 1675�000 0.66 8/8 1�81 0�17
C30_8 1830�250 1866�000 1.91 9/9 2�62 1�30
C30_9 1337�391 1414�000 5.68 8/8 2�60 1�17
C30_10 1676�833 1692�000 0.89 8/8 3�05 0�91

� 1623�924 1656�000 2.02 8.2/8.1 2�41 0�75

D30_1 1539�000 1539�000 0.00 9/9 2�04 0�13
D30_2 974�000 974�000 0.00 7/7 7�38 0�05
D30_3 1357�500 1393�000 2.57 9/8 2�25 0�78
D30_4 1426�659 1494�000 4.69 9/8 2�53 1�00
D30_5 1359�452 1405�000 3.30 8/8 2�16 0�75
D30_6 1615�000 1681�000 4.08 8/8 3�71 2�53
D30_7 1109�288 1149�000 3.51 9/8 3�22 1�41
D30_8 1614�714 1687�000 4.45 8/7 2�13 0�54
D30_9 1340�636 1434�000 6.93 8/8 8�65 6�65
D30_10 1582�200 1719�000 8.59 8/7 18�60 17�12

� 1391�844 1447�500 3.81 8.3/7.8 5�26 3�09

Note. Under heading “#eng/#opt” we display the number of engines we use
in our solutions versus the respective optimal number.

Table 6 Results for Larger and Less Restricted Instances by Sol (1994)

Instance LP opt IP obj %gap #eng/#opt CPU Total B&B

A50_1 2993�000 2993�000 0.00 17/17 7�82 0�49
A50_2 3767�333 3946�000 4.72 17/17 65�32 60�46
A50_3 3367�000 3367�000 0.00 16/16 5�08 0�18
A50_4 2801�000 2801�000 0.00 14/14 7�52 0�06
A50_5 2554�000 2554�000 0.00 20/20 3�69 0�07
A50_6 2855�000 2855�000 0.00 15/15 9�19 1�47
A50_7 2892�857 2931�000 1.31 17/17 7�61 2�54
A50_8 2849�200 2872�000 0.77 15/15 9�71 2�08
A50_9 2690�667 2753�000 2.30 14/14 16�10 2�91
A50_10 2660�000 2660�000 0.00 15/15 4�72 0�07

� 2943�005 2973�200 0.91 16.0/16.0 13�67 7�03

B50_1 2686�167 2720�000 1.22 14/14 28�60 20�79
B50_2 3514�500 3608�000 2.64 17/17 43�87 38�75
B50_3 2036�000 2069�000 1.62 15/13 6�94 0�92
B50_4 2675�667 2712�000 1.34 14/14 6�22 1�59
B50_5 2972�680 3014�000 1.37 16/16 6�10 2�24
B50_6 3107�333 3115�000 0.22 15/15 7�74 1�35
B50_7 3087�000 3088�000 0.03 16/16 9�46 1�88
B50_8 3790�000 3790�000 0.00 18/18 4�38 0�35
B50_9 2499�000 2499�000 0.00 15/15 10�38 0�16
B50_10 2969�833 2971�000 0.03 16/15 10�39 0�58

� 2933�818 2958�600 0.84 15.6/15.3 13�40 6�86

DAR30_1 1357�250 1391�000 2.43 8/8 2�02 0�75
DAR30_2 1932�000 1932�000 0.00 10/10 0�70 0�09
DAR30_3 1342�000 1349�000 0.52 11/10 0�86 0�13
DAR30_4 1159�500 1249�000 7.67 9/9 2�89 1�75
DAR30_5 1667�400 1672�000 0.23 8/8 0�77 0�17
DAR30_6 2354�000 2418�000 2.71 11/11 31�85 31�21
DAR30_7 1355�500 1377�000 1.54 8/8 1�22 0�19
DAR30_8 1273�750 1291�000 1.33 10/9 0�71 0�17
DAR30_9 1856�250 1861�000 0.21 9/9 1�08 0�18
DAR30_10 1662�500 1667�000 0.24 8/8 1�50 0�13

� 1596�015 1620�700 1.68 9.2/9.0 4�36 3�47

DAR50_1 1968�000 2069�000 5.13 15/12 49�42 44�59
DAR50_2 2555�389 2687�000 5.12 15/13 289�67 284�55
DAR50_3 1848�500 1907�000 3.13 12/14 25�04 15�74
DAR50_4 2190�091 2229�000 1.73 13/14 13�50 5�62
DAR50_5 1803�000 1900�000 5.37 13/13 46�68 36�95
DAR50_6 1943�929 2001�000 2.93 13/14 12�19 2�22
DAR50_7 2275�750 2304�000 1.23 14/13 9�72 2�70
DAR50_8 2056�000 2164�000 5.25 13/12 80�81 69�95
DAR50_9 3014�464 3141�000 4.17 14/12 21�81 14�38
DAR50_10 1799�833 1853�000 2.94 11/13 29�95 5�68

� 2145�495 2225�500 3.70 13.3/13.0 57�87 48�23

196 Transportation Science/Vol. 37, No. 2, May 2003



LÜBBECKE AND ZIMMERMANN
Engine Routing and Scheduling at Industrial In-Plant Railroads

Acknowledgments
This research was funded by the German Federal Ministry of Edu-
cation and Research (BMBF) under Grant Number 03-ZI7BR2-1.
The authors are grateful to EKO Trans GmbH, Verkehrsbetriebe
Peine-Salzgitter GmbH, and Marc Sol for providing them with data
sets. They thank Jacques Desrosiers for his careful reading of earlier
drafts of this paper and for many fruitful discussions and guid-
ance, which lead to a more focused presentation. The authors also
appreciate a quick English lesson from Moshe Dror.

References
Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows:

Theory, Algorithms and Applications. Prentice-Hall, Englewood
Cliffs, NJ.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
P. H. Vance. 1998. Branch-and-price: Column generation for
solving huge integer programs. Oper. Res. 46 316–329.

Charnes A., M. H. Miller. 1956. A model for the optimal program-
ming of railway freight train movements. Management Sci. 3
74–92.

Crainic T. G., J.-M. Rousseau. 1987. The column generation
principle and the airline crew pairing problem. INFOR 25
136–151.

Desaulniers, G., J. Desrosiers, M. M. Solomon. 2001. Accelerat-
ing strategies in column generation methods for vehicle rout-
ing and crew scheduling problems. C. C. Ribeiro, P. Hansen,
eds. Essays and Surveys in Metaheuristics. Kluwer, Boston, MA,
309–324.
, , I. Ioachim, M. M. Solomon, F. Soumis, D. Villeneuve.
1998. A unified framework for deterministic time constrained
vehicle routing and crew scheduling problems. T. G. Crainic,
G. Laporte, eds. Fleet Management and Logistics. Kluwer, Boston,
MA, 57–93.

Desrochers M., F. Soumis. 1988a. A generalized permanent labelling
algorithm for the shortest path problem with time windows.
INFOR 26 191–212.
, . 1988b. A reoptimization algorithm for the shortest
path problem with time windows. European J. Oper. Res. 35
242–254.

Desrosiers J., Y. Dumas. 1988. The shortest path problem for the
construction of vehicle routes with pick-up, delivery and time

constraints. Adv. Optimization and Control, Lecture Notes in
Econom. Math. Systems 302 144–157.
, , F. Soumis. 1986. A dynamic programming solution
of the large-scale single-vehicle dial-a-ride problem with time
windows. Amer. J. Math. Management Sci. 6 301–326.
, P. Pelletier, F. Soumis. 1983. Plus court chemin avec con-
traintes d’horaires. RAIRO Recherche Opér. 17 357–377.
, Y. Dumas, M. M. Solomon, F. Soumis. 1995. Time constrained
routing and scheduling. M. O. Ball, T. L. Magnanti, C. L.
Monma, G. L. Nemhauser, eds. Network Routing, Handbooks
in Operations Research and Management Science, Vol. 8. North-
Holland, Amsterdam, The Netherlands, 35–139.

Dumas, Y., J. Desrosiers, F. Soumis. 1991. The pickup and delivery
problem with time windows. Eur. J. Oper. Res. 54 7–22.

Gegen, C., P. Dejax, M. Dror, D. Feillet, M. Gendreau. 2000. An
exact algorithm for the elementary shortest path problem
with resource constraints. Technical Report CRT-2000-15, C.R.T.
Montréal, Canada.

Ibaraki, T. 1987. Enumerative Approaches to Combinatorial Optimiza-
tion, Annals of Operations Research, Vol. 10–11. Baltzer.

Lübbecke, M. E. 1999. Dual variable based fathoming in dynamic
programs used for column generation. Technical report, Dept.
Mathematical Optimization, Braunschweig University of Tech-
nology. Submitted.
. 2001a. Combinatorial restrictions on pickup and delivery
paths. Technical report, Dept. Mathematical Optimization,
Braunschweig University of Technology. Submitted.
. 2001b. Engine scheduling by column generation. Ph.D. thesis,
Braunschweig University of Technology.
, U. T. Zimmermann. 2003. Computer aided scheduling of
switching engines. W. Jöger, H.-J. Krebs, eds. Mathematics—Key
Technology for the Future: Joint Projects Between Universities and
Industry. Springer, Berlin, Germany, 690–703.

Reingold, E. M., J. Nievergelt, N. Deo. 1977. Combinatorial
Algorithms—Theory and Practice. Prentice-Hall, Englewood
Cliffs, NJ.

Savelsbergh M. W. P., M. Sol. 1995. The general pickup and delivery
problem. Trans. Sci. 29 17–29.
, . 1998. DRIVE: Dynamic routing of independent vehicles.
Oper. Res. 46 474–490.

Sol, M. 1994. Column generation techniques for pickup and delivery
problems. Ph.D. thesis, Eindhoven University of Technology.

Received: January 2002; accepted: February 2002.

Transportation Science/Vol. 37, No. 2, May 2003 197


