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The cut packing problem in an undirected graph is to find a largest cardinality collection of pairwise edge-
disjoint cuts. We provide the first experimental study of this NP-hard problem that is interesting from a
pure theorist’s viewpoint as well as from the standpoint of scientific applications (e.g., in bioinformatics and
network reliability). So far it could not be solved exactly. We propose a branch-price-and-cut algorithm to
optimally solve instances from various graph classes, random and from the literature, with up to several
hundred vertices. In particular, we investigate how complexity results match computational experience and
how combinatorial properties help improve the algorithm’s performance.
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1. INTRODUCTION

Given an undirected graph G = (V, E) with n = |V | vertices and m = |E| edges, every
S ⊆ V induces a cut δ(S) = {i j ∈ E | i ∈ S, j /∈ S}. We call S and V \S the shores of
cut δ(S). We assume G to be connected and S a nontrivial subset; thus, δ(S) �= ∅. Two
cuts δ1 ⊆ E and δ2 ⊆ E are disjoint if δ1 ∩ δ2 = ∅. A cut packing is a set of pairwise
disjoint cuts and the cut packing problem is to find a cut packing of largest cardinality.
The maximum is called the cut packing number γ (G).

In combinatorial optimization, cut packing is known for its role in duality theo-
rems [Fulkerson 1971; Robacker 1956]. It is NP-hard in general [Colbourn 1987] and
even in planar graphs [Caprara et al. 2003]. However, it is polynomial time solv-
able in chordal or bipartite graphs [Colbourn 1987] or when packing s-t cuts [Col-
bourn 1988; Robacker 1956]. Interestingly, packing directed cuts in digraphs is poly-
nomial time solvable as well [Lucchesi and Younger 1978]. Cut packing is closely
related to other combinatorial optimization problems like cycle packing [Caprara et al.
2003] and independent set [Colbourn 1987]: an independent set I ⊆ V immediately
translates to a (particular) cut packing {δ({v}) : v ∈ I}. The latter provides a strong
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1.2:2 M. Bergner et al.

inapproximability result [Caprara et al. 2004]: for the stability number α(G) (the cardi-
nality of a maximum independent set in G), it holds that α(G) ≤ γ (G) ≤ 2α(G)−1. Again,
special graph classes allow better approximation guarantees [Caprara et al. 2004]. The
parameterized version of the cut packing problem is W[1]-hard by a reduction from a
parameterized independent set; see Section 2.3 of this article. Cut packing and vari-
ants have applications in bioinformatics [Caprara et al. 2004] and network reliability
[Colbourn 1987]. Colbourn [1988] mentions that the NP-hardness of several edge pack-
ing problems “limits their applicability” for obtaining bounds for network reliability. We
mitigate this argument by presenting an exact integer-programming-based approach
to solve the cut packing problem for arbitrary graphs optimally.

Our Contribution. We are not aware of any experimental results, neither exact nor
approximate, for cut packing; thus, we provide the first computational study of the
problem. We propose a branch-price-and-cut algorithm to optimally solve instances
from various graph classes, random and from the literature, with up to several hun-
dred vertices. This success mainly builds on an easily computable combinatorial upper
bound. In particular, we investigate how theoretical complexity and approximability
results match with computational experience.

2. FORMULATIONS AND PROPERTIES

2.1. Compact Formulation

There are several known integer linear programming formulations for finding a single
cut (of minimum capacity) in a graph, where the integer feasible solutions correspond
to cuts in a graph. As trivially γ (G) ≤ n − 1, we replicate the constraints of such a
formulation, one set for each potential cut in a packing, indexed by c = 1, . . . , n − 1.
A cut δc = {i j ∈ E | i ∈ Sc, j /∈ Sc} induced by Sc is represented by binary variables
uc

i , i ∈ V , taking value 0 when i ∈ Sc and value 1 when i /∈ Sc. With V = {1, . . . , n},
we normalize vertex 1 ∈ Sc, c = 1, . . . , n − 1, mildly reducing symmetry. Note that
δ(Sc) = δ(V \Sc). The binary variables yc

ij , i j ∈ E, take value 1 if and only if i j ∈ δc,
and the binary variables zc are used to count the cuts in the packing. The cut packing
problem can be formulated as

max
n−1∑
c=1

zc

s.t. uc
i − uc

j + yc
ij ≥ 0 ∀i j ∈ E, ∀c ∈ {1, . . . , n − 1} (1)

uc
j − uc

i + yc
ij ≥ 0 ∀i j ∈ E, ∀c ∈ {1, . . . , n − 1} (2)

yc
ij − uc

i − uc
j ≤ 0 ∀i j ∈ E, ∀c ∈ {1, . . . , n − 1} (3)

uc
i + uc

j + yc
ij ≤ 2 ∀i j ∈ E, ∀c ∈ {1, . . . , n − 1} (4)

uc
1 = 0 ∀c ∈ {1, . . . , n − 1} (5)

zc ≤
∑
i j∈E

yc
ij ∀c ∈ {1, . . . , n − 1} (6)

n−1∑
c=1

yc
ij ≤ 1 ∀i j ∈ E (7)

zc, uc
i , yc

ij ∈ {0, 1} ∀i j ∈ E, ∀c ∈ {1, . . . , n − 1}, ∀i ∈ V .

The metric inequalities in Equations (1) through (4) ensure compatibility between u
and y variables for the cth potential cut. Equations (1) and (2) guarantee that if two
vertices are on different shores, the edge between them has to be in the cut. On the
other hand, Equations (3) and (4) ensure that the edge between vertices on the same
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shore will not be in the cut. Equation (5) puts vertex 1 in Sc. Equation (6) states that
a cut can be counted only if there are edges assigned to it. Together with Equation (3),
we have that V \Sc �= ∅. The packing constraint in Equation (7) ensures that each edge
is contained in at most one cut.

2.2. Extended Formulation

Let D denote the set of all nonempty cuts in G. A natural formulation is based on
variables xδ ∈ {0, 1}, representing whether δ ∈ D is part of a cut packing or not.

max
∑
δ∈D

xδ

s.t.
∑
δ∈D:
i j∈δ

xδ ≤ 1 ∀i j ∈ E (8)

xδ ∈ {0, 1} ∀i j ∈ E, ∀δ ∈ D.

This model was presented already in Caprara et al. [2004]. We remark that it formally
results from a Dantzig-Wolfe reformulation of our compact formulation by keeping
Equation (7) in the master problem and reformulating Equations (1) through (6) into
m identical subproblems, which are then aggregated into a single subproblem, thereby
completely eliminating the symmetry from the compact formulation.

2.3. Complexity

As previously mentioned, the cut packing problem is NP-hard in general [Colbourn
1987]. Additionally, we will specify the parameterized complexity of the parameterized
version k-CUT PACKING of the cut packing problem. Given a graph G = (V, E) and a
parameter k ∈ N, the k-CUT PACKING problem is to determine whether there exists a
cut packing in G of cardinality greater than or equal to k. The parameterized complexity
reveals whether it is likely that there exists a fixed-parameter tractable algorithm for
k-CUT PACKING, that is, an algorithm that solves k-CUT PACKING with running
time O( f (k) · p(|V | + |E|)), where f : N → N is an arbitrary computable function and
p : N → N a polynomial function. The parameterized complexity class FPT consists
of all fixed-parameter tractable problems. Additionally, Downey and Fellows [1995]
introduced a hierarchy of complexity classes for parameterized problems, called W-
hierarchy. We will prove that k-CUT PACKING is W[1]-hard by a reduction from the
parameterized version k-INDEPENDENT SET of the independent set problem, which
is known to be W [1]-hard [Downey and Fellows 1995].

COROLLARY 2.1. The parameterized version k-CUT PACKING of the cut packing prob-
lem is W[1]-hard.

PROOF. This follows immediately from Colbourn [1987] using the same construction
as in the NP-hardness proof of the cut packing problem.

It is widely believed that W[1]-hard problems are not fixed-parameter tractable
[Downey and Fellows 1999; Flum and Grohe 2006]. Hence, the W[1]-hardness of the
parameterized version of the cut packing problem motivates even further the study of
practical algorithms for the cut packing problem.

3. ALGORITHMIC INGREDIENTS

3.1. Big Picture

In this section, we describe the components of a full branch-price-and-cut algo-
rithm to solve the extended formulation to integer optimality. The general scheme
is that of linear programming (LP) based branch-and-bound. In each node of the
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branch-and-bound tree, the LP relaxation needs to be solved first. As the number
of cuts in a graph is exponential in the size of the graph, we have to solve the LP
relaxation of the formulation in Equation (8) by column generation. In this context,
the LP relaxation of the formulation in Equation (8) is called the master problem (MP).
In column generation, one starts with a small set of variables of the master problem,
yielding a restricted master problem (RMP). We alternately solve the RMP (a linear
program!) to optimality and add variables having positive reduced cost. Computing
the reduced cost of a variable involves a dual (optimal) solution to the RMP, which
we simultaneously obtain when solving the RMP. As a coefficient column of Equation
(8) represents a cut in G, we interchangeably speak of adding variables, or columns,
or cuts to the RMP. In order to find a positive reduced cost variable (or to prove that
none exists), we solve an auxiliary optimization problem called the pricing problem
(Section 3.2). If no more positive reduced cost variables are found, the master problem
and hence the LP relaxation of the formulation in Equation (8) is optimally solved.

A potential strengthening of the LP relaxation is to separate cutting planes after the
column generation process (Section 3.4). If a cutting plane cuts off the current solution
of the RMP, we add it. The enlarged RMP (by one row) is resolved by column generation
again. Since each cutting plane (after all, an additional constraint) introduces a new
dual variable, there is an impact on the calculation of the reduced cost. We adapt the
pricing problem to accommodate the new dual information. We repeat this process until
we find no more cutting planes or some upper bound on the number of added cutting
planes is reached. The column generation procedure combined with the separation of
cutting planes is depicted in Figure 1.

In order to solve the extended formulation to integer optimality, we embed this
procedure in a branch-and-bound tree, where we use specialized branching rules (Sec-
tion 3.3). The obtained algorithm is called branch-price-and-cut. Note that in branch-
price-and-cut algorithms, the LP relaxation in every node of the branch-and-bound
tree is solved with column generation. Since only one RMP is maintained, columns
generated in one node are available in all nodes. In many cases, cutting planes are sep-
arated only in the root node. We refer to Desrosiers and Lübbecke [2011] for a thorough
introduction to branch-price-and-cut algorithms.

3.2. Solving the Pricing Problem

In order to find a variable/column/cut of positive reduced cost, or to conclude that none
exists, we seek a maximum reduced cost cut. Let π = (πi j)i j∈E denote the current dual
solution corresponding to Equation (8) in the RMP. Note that we have a constraint
per edge in the extended formulation and hence, each dual variable πi j corresponds
to an edge i j ∈ E. The reduced cost of a variable xδ is computed as 1 − ∑

i j∈δ πi j and
is nonpositive for all δ ∈ D at optimality of the master problem. The pricing problem
thus amounts to solving maxδ∈D(1 − πT yδ) = 1 − minδ∈D(πT yδ), where yδ = (yδ

i j)i j∈E is
a binary vector indicating whether a given edge i j ∈ E belongs to cut δ ∈ D.

At the root node, dual variables πi j are nonnegative, and solving the pricing problem
amounts to solving a minimum cut problem (with nonnegative edge weights). This en-
ables us to benefit from the broad range of state-of-the-art minimum cut algorithms. We
use the Stoer-Wagner algorithm introduced in Stoer and Wagner [1997] and then gen-
eralized to hypergraphs in Klimmek and Wagner [1996]. After having taken branching
decisions (see later), dual variables πi j are no longer restricted in sign, and we face a
min-cut problem with arbitrary edge weights. This problem is equivalent to a maxi-
mum cut problem with arbitrary edge weights, which is obtained by multiplying the
edge weights by −1. The maximum cut problem with arbitrary edge weights is NP-
hard and thus we model and solve the min-cut problem with arbitrary edge weights
as a binary program. We have seen such a model already when stating the compact
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Fig. 1. Flow chart of column generation combined with separation of cutting planes.

formulation in Equations (1) through (7) for cut packing. When computing just one cut,
there is no need for Equation (7) or for an index c; moreover, we replace the objective
function by the reduced cost function for the potential cut. Hence, the pricing problem
can be written as

1 − min
∑
i j∈E

πi j yij

s.t. ui − uj + yij ≥ 0 ∀i j ∈ E (9)
uj − ui + yij ≥ 0 ∀i j ∈ E (10)
yij − ui − uj ≤ 0 ∀i j ∈ E (11)
ui + uj + yij ≤ 2 ∀i j ∈ E (12)

u1 = 0 (13)

1 ≤
∑
i j∈E

yij (14)

ui, yij ∈ {0, 1} ∀i j ∈ E, ∀i ∈ V,

where π = (πi j)i j∈E denotes the current dual solution corresponding to Equation (8).
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We will call a shore S of a cut δ(S) connected if the subgraph of G induced by S is
connected. Suppose that one of the shores S and V \S of a cut δ(S) with positive reduced
cost resulting from the pricing problem is not connected. Without loss of generality, we
can assume that S is not connected and let S1, . . . , SK with K ≥ 2 be the connected
components of S. The induced cuts δ(S1), . . . , δ(SK) are pairwise disjoint and satisfy
δ(S) = δ(S1) ∪ . . . ∪ δ(SK). Because at least one cut δ(Sk) with k ∈ {1, . . . , K} will have
positive reduced cost, we add cuts δ(Sk), k ∈ {1, . . . , K} with positive reduced cost instead
of cut δ(S) to the restricted master problem.

Furthermore, the cut δ(S) will not be part of any optimal solution to the LP re-
laxation of the formulation in Equation (8), since we could replace δ(S) by the cuts
δ(S1), . . . , δ(SK), which leads to a solution with greater objective value.

Desrochers et al. [1992] remark that pricing disjoint columns helps with arriving
at integral solutions. In order to find such a set of disjoint columns, we use a greedy
heuristic during pricing, where we compute a cut δ1 of maximum reduced cost, fix all
variables corresponding to edges i j ∈ δ1 to 0, and resolve the pricing problem, creating
a new cut δ2, disjoint to δ1. We again fix the edges from δ2 and iterate until no cut δk+1
can be found. The heuristic cut packing with objective function value k is {δ1, . . . , δk}.

As the pricing problem further down in the branch-and-bound tree resembles a
max-cut problem, we employ further heuristics to price out favorable columns based
on max-cut heuristics [Sahni and Gonzalez 1976] inspired by the formulation of the
problem. Columns that are not immediately added to the restricted master problem are
collected in a column pool, which is searched for positive reduced cost columns before
calling any pricing algorithm.

3.3. Branching

In case the obtained optimal solution to the restricted master problem (which is a
linear program) is fractional, we need to employ branching schemes in order to find
an optimal integral solution. For the purposes of this section, we modify our extended
formulation to become a set partitioning problem by introducing a binary slack variable
x̄i j for edge i j ∈ E in Equation (8):

∑
δ�i j xδ + x̄i j = 1. An interpretation of this variable

is that it attains value 1 if and only if edge i j is not contained in any cut in the cut
packing. We employ two different branching rules: first we try to branch on aggregated
original y0

i j variables, which are defined as y0
i j = ∑m

c=1 yc
ij , and if that is not possible, we

will use Ryan-Foster branching [Ryan and Foster 1976] to branch on pairs of edges.
In the first case, given an LP solution x� of the master problem, we calculate the

value of variables y0
i j for each edge i j ∈ E as y0

i j = ∑
δ:i j∈δ x�

δ = 1 − x̄�
i j . If y0

i j is fractional
for some edge i j ∈ E, we create two branches by setting the slack variables x̄i j = 1
in one and x̄i j = 0 in the other branch, enforcing that either no cut or exactly one
cut contains edge i j. The first case can be respected directly in the pricing by setting
yij = 0.

In the second case, the dual variables πi j corresponding to edge i j can be negative,
which we cannot respect in a standard min-cut algorithm. This justifies solving the
pricing problem using a binary program instead of using a classical combinatorial min-
cut algorithm throughout the branch-and-price tree because of mixed negative and
positive edge weights.

In case y0
i j = 1−x̄i j is integral for all edges i j ∈ E, we branch on pairs of edges i j and k�,

analogous to Ryan-Foster branching [Ryan and Foster 1976]. The branching decisions
are either x̄i j = x̄k� (this is called the same branch) or x̄i j + x̄k� ≥ 1 (the diff branch).
In the same branch, either the two edges must appear together in a cut or neither of
the edges must be part of a cut. In the diff branch, both edges are not allowed to be
in the same cut. These conditions can easily be respected in the binary programming
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A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 1.2:7

Fig. 2. Sketch of graph G′ = (V ′, E′) that is obtained from Graph G = (V, E) with V = {v1, . . . , vn}. Besides
the edges on a path from s to t, edges {s, u} ∈ E′ and {s, w} ∈ E′ with {u, w} ∈ E are forbidden edge pairs. This
is exemplarily depicted for the edge {v1, v3} ∈ E of graph G.

formulation of the pricing problem. Theoretically, we could respect these branching
decisions in a combinatorial algorithm by constructing two reduced graphs for the
same branching decision by contracting edges ik and j� (and i� and jk, respectively).
Unfortunately, this is only feasible for a rather small number of pairs and does not
scale in the case of a large number of consecutive branching decisions.

Solving the pricing problem with an arbitrary number of diff constraints is an NP-
hard problem on its own: given a graph G, a weight function c : E → Q+, and a set
of edge pairs P ⊆ E × E, we want to find a minimum cut with the constraint that at
most one edge from each pair p ∈ P is active in the cut. We will prove that the decision
version MINCUT-CONFLICTS of this problem is NP-complete by a reduction from the
decision version INDEPENDENT SET of the independent set problem.

THEOREM 3.1. The decision problem MINCUT-CONFLICTS is NP-complete.

PROOF. It is easy to see that MINCUT-CONFLICTS is in NP.
Let G = (V, E) and k ∈ N be an instance of the decision problem INDEPENDENT

SET, where V is the vertex set and E the edge set of the graph G. We construct an
instance of MINCUT-CONFLICTS with graph G′ = (V ′, E′), parameter k′ ∈ N, weight
function c, and set of forbidden edge pairs P as follows: let V ′ = V ∪ {s, t} be the vertex
set, where s and t are new vertices, and let E′ = {{s, v} : v ∈ V } ∪ {{v, t} : v ∈ V } be the
edge set of the graph G′ = (V ′, E′). Furthermore, we define the edge weights c({s, v}) = 1
and c({v, t}) = 0 for all initial vertices v ∈ V as well as the set of forbidden edge pairs
as P = {({s, v}, {v, t}) : v ∈ V } ∪ {({u, t}, {v, t}) : {u, v} ∈ E}. The parameter k′ is defined
as k′ = |V | − k. A sketch of the graph G′ is depicted in Figure 2.

We will prove that there exists a cut with weight lower than or equal to k′ in G′ if and
only if there exists an independent set of cardinality greater than or equal to k in G.

Suppose I ⊆ V is an independent in G with |I| ≥ k. Then, we define the set S =
I ∪ {s}, which induces the cut δ(S) = {{v, t} : v ∈ I} ∪ {{s, v} : v �∈ I} in G′ with weight
c(δ(S)) = |V | − |I| ≤ |V | − k = k′.

Now suppose ∅ � S � V induces a cut δ(S) ⊆ E in G′ with weight c(δ(S)) ≤ k′.
We define the independent set I = {v : {v, t} ∈ δ(S)} in G with cardinality |I| =
|V | − c(δ(S)) ≥ k.

As we have seen previously, the set ∅ � S � V inducing a cut δ(S) with positive
reduced cost 1 − ∑

i j∈δ πi j might not be connected (if S is connected but V \S is not, we
exchange the roles of S and V \S). If same branching decisions have been added, the
special handling of these cuts is not applicable. Assume that the branching decision
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1.2:8 M. Bergner et al.

Fig. 3. A clique K = (VK, EK) with VK = {v1, . . . , v5} together with cuts δ({v2}) and δ({v5}). The edge
{v2, v5} ∈ EK belongs to both cuts δ({v2}) and δ({v5}).

forces edges e = i j and f = k� to be either in one cut or in no cut. Then the pricing
problem could create a cut δ(S) with positive reduced cost and both edges in the cut.
Suppose S1 and S2 are the connected components of S and i ∈ S1, k ∈ S2 holds. In this
case, we cannot split up the cut δ(S) into individual cuts δ(S1) and δ(S2) as e ∈ δ(S1)
and f �∈ δ(S1) as well as f ∈ δ(S1) and e /∈ δ(S2) hold. Hence, both cuts δ(S1) and δ(S2)
individually do not respect the branching decision, whereas the cut δ(S) does. If we
encounter this case, we will add the cut δ(S) to the master problem, knowing that it
will not be part of any optimal integral solution. Besides potentially slowing down the
solution process, this will cause no further harm.

3.4. Cutting Planes

The optimality gap between an optimal solution to the LP relaxation of the extended
formulation and an optimal integral solution can be arbitrarily bad: suppose we solve
the cut packing problem on a clique K = (VK, EK) with n vertices, that is, EK = {{u, v} ⊆
V : u �= v}. The cardinality of an optimal cut packing for a clique K is 1, because any
two cuts in K are never disjoint, which is exemplarily depicted in Figure 3. However,
the optimal LP solution value will be n

2 , with cuts separating each vertex from the
remainder of the clique. The master variables corresponding to cuts δ({v}) for v ∈ VK

all take the value 1
2 . To improve the LP bound, we thus separate clique inequalities of

the form ∑
δ:δ∩EK �=∅

xδ ≤ 1 (15)

for a clique K = (VK, EK) in the root node. Cliques are found using a maximum weighted
clique heuristic based on an algorithm by Borndörfer and Kormos [1997].

For the column generation algorithm, when adding cutting planes to the master
problem, new dual variables are introduced that need to be respected in the pricing
problem. Let K be the set of corresponding cliques and let the nonnegative dual variable
of these cutting planes be μK ≥ 0, one for each clique K ∈ K. Given a graph G = (V, E)
and a set of cliques K, we construct a hypergraph H = (V, F) where original edges
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are copied and all cliques are converted to hyperedges. Let V (K) denote the vertices of
clique K = (VK, EK), that is, V (K) = VK. Formally, F = E∪{V (K) : K ∈ K} and the dual
values from the clique inequalities are transferred to the corresponding hyperedges.

In the root node, we use the hypergraph extension of the Stoer-Wagner algorithm to
solve the minimum cut problem. When using the binary program to solve the pricing
problem, we add variables zK for each clique K ∈ K along with constraints

yij ≤ zK ∀i j ∈ EK, ∀K ∈ K.

The reduced cost for a cut changes to

1 −
⎛
⎝∑

i j∈E

πi j yij +
∑
K∈K

μKzK

⎞
⎠ ,

and the pricing problem’s objective function becomes

1 − min
∑
i j∈E

πi j yij +
∑
K∈K

μKzK.

Let us demonstrate that it is as easy to draw from the wealth of other classes of valid
inequalities and incorporate them in our approach. As an example, we consider the
well-known odd-cycle inequalities: for a given cycle C = (VC, EC) with an odd number
of vertices |VC | (equivalently odd |EC |), the odd-cycle inequality takes the form∑

δ:δ∩EC �=∅

|δ ∩ EC |
2

· xδ ≤ |EC | − 1
2

.

Notice that the value |δ∩EC |
2 is an integer for all cuts δ and cycles C.

As before, we need to respect the dual variables introduced when separating odd-
cycle inequalities. Let C be the set of corresponding odd cycles and let μC ≥ 0 be the
nonnegative dual variables of these cutting planes, one for each odd cycle C ∈ C. In
order to respect the dual variables for the added odd-cycle inequalities, the reduced
cost for a cut changes to

1 −
⎛
⎝∑

i j∈E

πi j yij +
∑
C∈C

∑
i j∈EC

1
2

μC yij

⎞
⎠ ,

and the pricing problem objective becomes

1 − min
∑
i j∈E

πi j yij +
∑
C∈C

∑
i j∈EC

1
2

μC yij

= 1 − min
∑
i j∈E

⎛
⎜⎜⎝πi j +

∑
C∈C:
i j∈EC

1
2

μC

⎞
⎟⎟⎠ yij .

Notice that only the objective function of the pricing problem changes and no additional
variables or constraints are needed. Therefore, we can still apply a combinatorial
algorithm (at the root node) to solve the pricing problem to optimality.

Rebennack et al. [2011] separated different types of cutting planes for the indepen-
dent set problem including clique and odd-cycle inequalities. In their computational
tests, they observed that most of the separated odd-cycle inequalities correspond to
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1.2:10 M. Bergner et al.

cycles of length three or, in other words, cliques of size three (that were then lifted to
maximal cliques). This is one of the reasons the impact of odd-cycle inequalities in re-
ducing the LP bound is not that important in comparison to clique inequalities. Because
the cut packing problem is closely related to the independent set problem, we expect
similar results concerning the odd-cycle inequalities for the cut packing problem and
decided to not separate odd-cycle inequalities in our branch-price-and-cut algorithm
at all.

3.5. Combinatorial Dual Bounds

In order to further strengthen the dual bound, we make use of a combinatorial upper
bound that is similar to a combinatorial upper bound proposed by Caprara et al. [2004].
An edge clique cover Q is a set of cliques with

⋃
K∈Q E(K) = E, where E(K) is the set

of edges of clique K. We observe that the edges of a clique can be crossed by at most
one cut in any cut packing. Thus, the cut packing number γ (G) is bounded from above
by the number of cliques in an edge clique cover of minimum cardinality. Determining
this minimum number is itself an NP-hard problem [Kou et al. 1978]. We solve the
minimum edge clique covering problem approximately using the algorithm of Gramm
et al. [2006] in order to obtain a valid upper bound. In addition, we compute an edge
clique cover at the outset of the overall algorithm and add all induced clique inequalities
to the master problem before starting column generation.

3.6. Primal Heuristics

Besides using the generic heuristics included in branch-price-and-cut frameworks, we
try to find good cut packings by using a (noncrossing) maximum s-t path cut packing
heuristic [Colbourn 1987], which we call maxpath. Furthermore, we use an approx-
imation algorithm for the independent set problem [Halldórsson and Radhakrishnan
1997] for degree bounded graphs by sorting the vertices according to nondecreasing
degree and sequentially adding the next available vertex to the independent set. The
resulting independent set I ⊆ V is transferred to the cut packing S = {δ({v}) : v ∈ I}.
In order to assess the quality of the heuristic, we calculate a maximum independent
set exactly by solving the textbook binary program formulation

max

{∑
i∈V

xi : xi + xj ≤ 1 ∀i j ∈ E, xi ∈ {0, 1} ∀i ∈ V

}
.

4. COMPUTATIONAL SETUP AND RESULTS

We implemented our branch-price-and-cut algorithm in SCIP 3.0.1 [Achterberg
2009] with CPLEX 12.4.0.1 as the LP solver. The maximum weighted clique heuris-
tic [Borndörfer and Kormos 1997] that we use to separate clique inequalities is readily
available in SCIP. All computations were performed on Intel Core i7-2600 CPUs with
16GB of RAM on openSUSE 12.1 workstations running Linux kernel 3.1.10. The de-
fault time limit is 3,600 seconds unless stated otherwise.

We applied our approach to instances from the 10th DIMACS implementation chal-
lenge [Bader et al. 2013]. We expect difficult graph partitioning problems to be hard
for the cut packing problem too, as in both settings the vertex set is partitioned in
some way. In addition, we collected coloring instances from Trick [1993] and inves-
tigate the the performance of our algorithm on these instances, because each color
class in a coloring constitutes an independent set, to which a cut packing is intimately
related.
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Fig. 4. Relative gap between primal and dual bounds at the root node for the compact and extended
formulations for random graphs of type graph-n-m (left) and a performance profile for all the different
formulations and settings (right) showing in how many instances (y-axis in percent) an algorithm is at most
log2(x) times slower (factor on the x-axis).

We further generated smaller random graphs using several graph generators such
as Rudy by Rinaldi [1998], Randgraph by Pettie and Ramachandran [2006], and
NetworkX 1.7 by Hagberg et al. [2008]. Moreover, we used the MUSKETEER graph genera-
tor [Gutfraind et al. 2012] to obtain a set of graphs that are similar to the graphs from
the literature. We used the random seed value 1 for the generation of random graphs
unless stated otherwise. In total, our test set comprises around 100 instances.

4.1. Compact Versus Extended Formulation

In Figure 4, we compare the integrality gaps and the running times of the compact
and the extended formulations on a small test set generated with the Randgraph
graph generator. A generated graph graph-n-d consists of a random tree on n vertices
plus max{0, d% · n·(n−1)

2 − n + 1} additional randomly selected edges. In Figure 4, the
all plot reflects the implementation with all presented features; in basic, only the
bare column generation implementation is visualized. The bare column generation
implementation uses the binary programming formulation for the pricing problem and
the presented branching scheme. Furthermore, we solved the compact formulation
with the branch-and-cut solver SCIP 3.0.1 [Achterberg 2009] (compact-scip plot) and
the generic branch-price-and-cut solver GCG 2.0.1 [Gamrath and Lübbecke 2010]
(compact-gcg plot). Note that GCG derives the extended formulation by reformulating
the compact formulation using the Dantzig-Wolfe reformulation and solves the
extended formulation with branch-price-and-cut.

When looking at the time needed to solve the instances to optimality, the extended
formulation outperforms the compact one on almost every instance, which is depicted in
the performance profile in Figure 4. Furthermore, our basic implementation performs
better than the generic branch-price-and-cut solver GCG. We remark that GCG solves
the same pricing problem and uses additional features tailored for the branch-price-
and-cut algorithm, but applies other branching rules. The difference in solution time
increases further if all presented features (except for odd-cycle cuts, which are not
implemented) are added. In particular, SCIP was only able to solve three out of 12
instances to optimality, whereas GCG solved five of 12 instances to optimality. The
basic implementation solving the extended formulation, however, solved eight out of
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Table I. Number of Solved Instances and Mean of Solution Times for the Extended Formulation for Cut Packing
on Random General, Bipartite, and Chordal Graphs (All Reported Times in s Are Shifted Geometrical Means)

Nodes
10 20 40 80 160 320

Type Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time Mean Time
random 4/4 0.0 4/4 0.0 4/4 25.2 0/4 3600 0/4 3600 0/4 3600 224.3
bipartite 4/4 0.0 4/4 0.0 4/4 0.1 4/4 1.0 4/4 20.8 4/4 527.8 13.9
chordal 4/4 0.0 4/4 0.0 4/4 0.1 4/4 1.3 4/4 9.3 1.7

12 instances, and with all features enabled, all instances can be solved to optimality
within the time limit.

If we look at the integrality gaps at the root node, we see in Figure 4 that the gap
obtained by the extended formulation is remarkably better than the gap obtained by
the compact formulation. The bound improvement translates to a better pruning of
branch-and-price nodes, and the removal of the symmetry by aggregation leads to
fewer branching decisions, which explains the huge difference in solution time.

4.2. Different Graph Classes

It is known that the cut packing problem can be solved in polynomial time on bipartite
and chordal graphs. In order to investigate whether this complexity improvement
translates to faster solution times also for our (exponential time) algorithm, we evaluate
the performance of the extended formulation on these instance types using random
instances generated with NetworkX 1.7. We generated connected bipartite graphs and
connected chordal graphs. The latter were generated from a random graph on nvertices,
in which every edge occurs with probability d%. To this graph, chords were iteratively
added until the graph became chordal by using NetworkX to search for chordless cycles
of size larger than 3. The chord was added randomly. We generated graphs with 10,
20, 40, 80, 160, and 320 vertices and edge densities of 10%, 20%, 40%, and 80%. We
only generated chordal graphs with up to 160 vertices as using NetworkX to find all
chordless cycles in larger graphs was too expensive. The results are summarized in
Table I.

We notice that the column generation procedure runs significantly faster on the graph
classes where the problem is solvable in polynomial time. We are able to solve the cut
packing problem to optimality in all generated bipartite and chordal graphs with up to
320 vertices (160 vertices, respectively), in contrast to general random graphs where
we fail to solve instances larger than 40 vertices.

To evaluate the performance of our implementation on real-world data, we selected
those real-world instances from the the 10th DIMACS implementation challenge with
500 vertices or fewer and all coloring instances from Trick [1993] with fewer than 5,000
edges. We also tried to solve the problem on instances with hidden optimal solutions
for classical graph problems [Xu 2010], but we were not able to successfully solve the
root node of any of the instances within the 1-hour time limit.

To compare the performance in these graphs to random graphs, we generated both
a random graph and a similar graph for each real-world graph from the the 10th
DIMACS implementation challenge. These graphs have the same number of vertices
and edges. The random graphs were generated with Randgraph; a connected graph
rand-n-m consists of n vertices and m edges. In order to create similar graphs, we
used MUSKETEER. The new graphs, forced to be connected, are denoted by suffix -m. The
results on these graphs are compared in Table II.

We observe that our algorithm solved five out of nine real-world instances to opti-
mality, but only one out of nine of the corresponding random graphs. In contrast, the
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Table II. Branch-and-Bound Nodes and Solution Time (or Relative Gap Achieved Within Time Limit)
for Real-World DIMACS Partitioning Benchmark Graphs

Name Nodes Time/Gap Name Nodes Time/Gap Name Nodes Time/Gap
karate 1 0.1 karate-m 1 0.1 rand-34-78 25 7.5
dolphins 51 317.4 dolphins-m 1 1.5 rand-62-159 >188 8.0%
lesmis 3 2.3 lesmis-m 8 21.4 rand-77-254 >77 19.2%
polbooks 4 95.9 polbooks-m 1 36.3 rand-105-441 >74 17.6%
adjnoun >102 5.6% adjnoun-m >46 8.5% rand-112-225 >304 5.2%
football >29 9.5% football-m 9 2327.9 rand-115-613 >57 32.3%
jazz 1 380.4 jazz-m >1 27.25% rand-198-2742 >1 102.9%
celegansneural >1 4195.0% celegansneural-m >1 1161.3% rand-297-2148 >1 3612.2%
celegans_meta >1 866.7% celegans_meta-m >1 1646.8% rand-453-2025 >1 4038.6%

graphs edited by MUSKETEER are more similar to the original graphs, and indeed, our
algorithm performs better on those than on arbitrary random graphs.

Overall, it seems that our algorithm is effective on small real-world problems and
on those graph classes where the problem is easy. On the other hand, random graphs
seem to be a challenge, even when they are reasonably sparse (10% of overall edges).

4.3. Influence of Particular Implementation Parts

In addition to the basic column generation algorithm, we presented a few enhancements
with the purpose of saving computation time. From our experiments, the clique cover,
clique separator, and combinatorial pricing algorithm seem to have the largest impact
on the performance and we will restrict attention to those only. We plot performance
profiles in Figure 5.

It becomes evident that disabling the initial clique cover heuristic including the
resulting clique inequalities causes the largest performance drop. The clique separator
can partially catch this drop by separating the clique inequalities at runtime, but if
both the clique separator and the clique cover heuristic are disabled, the performance
decrease is significant. A similar improvement can be noticed if these features are
added to a vanilla column generation procedure. In our case, the combinatorial pricing
is a nice add-on but nonetheless has not that much influence on the solution time as
expected.

4.4. Relation to Independent Set

Motivated by the close connection to the maximum independent set (MIS) problem, we
want to study the relationship between an MIS and an optimal cut packing on selected
instances. For a given graph, we compare the solution values of a greedy algorithm
to approximate the cardinality of an MIS, the cardinality α(G) of an optimal MIS
computed via an integer program, to the values of the maximum s-t path heuristic and
γ (G). If an instance has not been solved to optimality, only the best-known dual bound
on the cut packing number γ (G) is shown. This can be seen in Figure 6.

We notice that the value of the solution found by the s-t maximal path heuristic is
often much worse than any of the other algorithms. The solution found by the MIS
heuristic is better but is usually much worse than an optimal solution. In contrast,
α(G) is mostly identical to γ (G). This comes as a surprise as there is a theoretical gap
of a factor of 2 that we do not observe in the instances in our experiments. We are
aware of the fact that the gap will be closer to 2 when considering sparser graphs and
in particular paths and trees.

5. SUMMARY AND CONCLUSIONS

We presented an exact algorithm for the cut packing problem in undirected graphs
and assessed its performance on about 100 random and benchmark graphs from the
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Fig. 5. Performance profiles for clique cover, clique separator, and combinatorial algorithm showing in how
many randomly generated instances (y-axis in percent) a given setting is at most log2(x) times slower (factor
on the x-axis). The plot on the upper left states the influence of disabling each part of the algorithm; on the
upper right the influence of enabling each part on a basic implementation is shown. The plot on the bottom
presents the performance of a concurrent deactivation.

literature. The current size limits of our approach are up to 80 vertices on random
graphs, up to 500 vertices on graph partitioning benchmark graphs, and up to 5,000
edges on vertex coloring benchmark graphs. Our algorithm performs much better on
instances where the cut packing problem is solvable in polynomial time. Our exper-
iments revealed that γ (G) is typically much closer (and often even identical) to α(G)
than to the theoretically possible 2α(G) − 1.

We have made algorithmic use of the combinatorial structure of the problem: we
used min-cut algorithms for the pricing problem; we computed a combinatorial dual
bound for tightening the relaxation; and we exploited the problem’s close relation to
the independent set problem, for example, for designing primal heuristics. We com-
pared our efforts to using a generic approach via the branch-price-and-cut solver GCG.
We conclude that at the current state of the art, it still considerably pays to consider a
problem-specific implementation, even though generic solvers may become competitive
soon. Future computational research on cut packing should clarify whether it pays to
work on (integer programming formulations for) better clique edge covers for stronger
dual bounds, and whether different integer linear or semidefinite programming formu-
lations for min-cut can speed up solving the pricing problem.
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Fig. 6. Objective function values of maxpath heuristic, greedy and exact MIS, optimal cut packing or dual
bound for random graphs (top left); DIMACS partitioning benchmark graphs (top right); and coloring graphs
(bottom).
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