
On Minimum k-Modal Partitions of
Permutations

Gabriele Di Stefano1, Stefan Krause2,
Marco E. Lübbecke3, and Uwe T. Zimmermann2

1 Dipartimento di Ingegneria Elettrica, Universita dell’Aquila,
Monteluco di Roio, I-67040, L’Aquila

gabriele@ing.univaq.it
2 Institut für Mathematische Optimierung, Technische Universität Braunschweig,

Pockelsstraße 14, D-38106, Braunschweig
{stefan.krause, u.zimmermann}@tu-bs.de

3 Technische Universität Berlin, Institut für Mathematik, Sekr. MA 6-1,
Straße des 17. Juni 136, D-10623, Berlin

m.luebbecke@math.tu-berlin.de

Abstract. Partitioning a permutation into a minimum number of
monotone subsequences is NP-hard. We extend this complexity result to
minimum partitioning into k-modal subsequences, that is, subsequences
having at most k internal extrema. Based on a network flow interpre-
tation we formulate both, the monotone and the k-modal version, as
mixed integer programs. This is the first proposal to obtain provably
optimal partitions of permutations. From these models we derive an LP
rounding algorithm which is a 2-approximation for minimum monotone
partitions and a (k + 1)-approximation for minimum (upper) k-modal
partitions in general; this is the first approximation algorithm for
this problem. In computational experiments we see that the rounding
algorithm performs even better in practice. For the associated online
problem, in which the permutation becomes known to an algorithm
sequentially, we derive a logarithmic lower bound on the competitive
ratio for minimum monotone partitions, and we analyze two (bin
packing) online algorithms. These findings immediately apply to online
cocoloring of permutation graphs; they are the first results concerning
online algorithms for this graph theoretical interpretation.

Keywords: Mixed integer program; approximation algorithm; LP
rounding; online algorithm; NP-hardness; monotone sequence; k-modal
sequence; cocoloring.

MSC (2000): 90C11, 90C27, 05A05, 68Q25.

1 Introduction

Given a sequence S of distinct integers, we seek a partition into a minimum
number of subsequences (not necessarily consecutive elements in S) with partic-
ular monotony properties. Research in this direction dates back to the famous

J.R. Correa, A. Hevia, and M. Kiwi (Eds.): LATIN 2006, LNCS 3887, pp. 374–385, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Minimum k-Modal Partitions of Permutations 375

Erdős/Szekeres theorem of 1935 stating that every sequence of n distinct reals
contains a monotone subsequence of length �

√
n�, see the review [11]. Greedily

extracting longest monotone subsequences in an iterative way yields a partition
into at most 2�√n� monotone subsequences in O(n1.5), see [2]. However, finding
a minimum size partition into monotone subsequences is NP-hard [12]. For fixed
k and l (not part of the input), a partition into exactly k increasing and l decreas-
ing subsequences can be computed in O(nk+l), see [4]. A minimum monotone
partition can be approximated within a factor of 1.71 in O(n2.5), see [8].

A natural generalization asks for partitions into k-modal subsequences; that
are sequences having at most k internal local extrema. In particular for 1-modal,
or unimodal, subsequences Chung [5] proves that any permutation of length n
contains such a subsequence of length �

√
3(n − 1/4)−1/2�. Chung also mentions

the guaranteed length of �
√

2n + 1/4 − 1/2� for contained upper unimodal sub-
sequences, i.e., subsequences with no internal minimum. She refers to a simple
proof obtained by Steele and Chvátal (among others, unpublished, but see [6]
for a proof). For the guaranteed length of contained k-modal subsequences,
Chung [5] gives the upper bound

√
(2k + 1)n. Steele [10] proves that the av-

erage length of k-modal subsequences of a permutation of size n asymptotically
grows as 2

√
(k + 1)n. Based on these bounds, one can derive results on the size

of the partitions generated by recursively extracting a respective longest subse-
quence. In particular, this greedy approach yields an upper unimodal partition
of size O(

√
n) in O(n2.5) time [6]. Even though a more general discussion is

possible, we only consider k-modal sequences where the first internal extremum
is a maximum, i.e., a generalization of upper unimodal sequences.

Our Contribution. We show that partitioning a permutation into a minimum
number of k-modal (in particular: unimodal) subsequences is NP-hard. On the
positive side, we propose a linear programming (LP) rounding algorithm which
is the first approximation algorithm for this problem: Its approximation factor is
k+1 for upper k-modal partitions. In fact, an easy observation allows us to derive
a 1.71(k + 1)-approximation first. Not only because of the practical motivation
described below, we are interested in actually computing optimum partitions.
To this end we introduce mixed integer programming (MIP) formulations which
can be easily extended to respect a variety of practical side constraints. We
further give the first negative and (weakly) positive results concerning online
algorithms for minimum monotone partitions. These findings immediately apply
to cocoloring of permutation graphs, for which no online algorithms were known
either.

Motivation and Application. In railroad shunting yards incoming freight trains
are split up and re-arranged according to their destinations. In stations and
depots passenger trains and trams are parked overnight or during low traffic
hours. In either case we are given an ordering of arriving units, and we have
to decide for each unit on which track it will be stored [3, 6, 13]. Our choice is
limited by the fixed number of available tracks and by the mode tracks may be
accessed: Entrance and exit may be on one or on both ends. The parked units

376 G. Di Stefano et al.

have to leave each track one by one without additional reordering. Our task is
to choose a track for each unit, and the goal is to use as few tracks as possible.

The relation to our problems is that units on each track represent a subse-
quence of the incoming sequence of units. The different entry/exit combinations
lead in particular to monotone and unimodal subsequences [6]. This relation may
seem to be artificial, and we concede that the purpose of this paper primarily is
to study the more theoretical background; however, the MIP models we propose
can be tailored to fully capture the “real-world” situation, see our conclusions.

2 Preliminaries

Our results hold for any sequence S = [s1, s2, . . . , sn] of n distinct reals, but we
assume S to be a permutation of the first n integers. A subsequence σ of S is a
sequence σ = [si1 , si2 , . . . , sim] with 1 ≤ ij < ih ≤ n for all j < h. A sequence is
called increasing if si < sj for i < j. It is called decreasing if si > sj for i < j.
These two cases are also subsumed under monotone. An internal extremum of S
is an index i with 2 ≤ i ≤ n − 1 and si−1 < si, si+1 < si or si−1 > si, si+1 > si.
A sequence is k-modal if is has at most k internal extrema; in particular in this
paper, usually the first extremum should be a maximum, i.e., the first sequence
is increasing (then we speak of upper k-modal). Particularly well known is the
case of 1-modal (i.e., unimodal) sequences.

We use an intuitive set notation and language to work with sequences; e.g.,
when referring to all the elements contained in two sequences we speak of their
union. A partition of S of size m is a collection P of m disjoint subsequences
of S, the union of which is precisely S. For a given S we are interested in
finding a partition P of minimum size. The type of subsequences allowed in
P gives the name of the resulting minimization problem, that is, (monotone),
(unimodal), or (upper k-modal). A cover of S is a collection of subsequences, the
union of which contains each element in S at least once. Eliminating multiply
covered elements, one can turn a cover into a partition without increasing the
number of subsequences. This is why our problems are also known as covering a
permutation [12].

Related Concepts. The easiest of our partitions are well studied in a graph theo-
retical context. The permutation graph G = (S, E) associated with a permutation
S has an edge (si, sj) if and only if si > sj and i < j. An increasing subsequence
in S corresponds to an independent set in G, and a decreasing subsequence in
S corresponds to a clique in G.

A partition of the vertices of a graph into independent sets is called a color-
ing. A minimum partition of a permutation graph into either independent sets
or cliques can be given in O(n log n) (see e.g., [9]). Cocoloring a graph asks for
partitioning its vertex set into a minimum number of parts in which each part is
either an independent set or a clique (so the partition may contain a mixture of
both). Thus, in problem (monotone) we compute an optimal cocoloring of a per-
mutation graph. Problem (k-modal) can be interpreted as a particular coloring
problem on hypergraphs [6].

On Minimum k-Modal Partitions of Permutations 377

3 Complexity

In this extended abstract we present all statements for (upper k-modal), but
for the sake of brevity proofs are given only for (upper unimodal). Restricting
attention to this case essentially captures the necessary ideas needed for the
generalization; all details are in the full paper.

Theorem 1. Problem (k-modal) is strongly NP-hard.

m decreasing starters

� increasing
starters

Fig. 1. Point map of the construction used in the proof of Theorem 1; m = 4, � = 3

Proof. Clearly, (upper unimodal) is in NP ; we will drop the attribute upper in the
remainder. We use a reduction from (monotone) which is strongly NP-hard [12].
In fact, one can solve (monotone) by solving a series of p restricted problems of
partitioning S into at most � = 1, . . . , p increasing and at most m = p − �
decreasing subsequences. We reduce to this restricted version.

We represent elements and subsequences as points and lines. Having arranged
the points corresponding to the elements of a given permutation S, we construct
an extended arrangement of points which can be covered by p unimodal lines
if and only if the original set of points can be covered by � increasing and m
decreasing lines. In fact, there always is an optimal solution to our construction
which uses monotone lines only. We briefly use the notion bounding rectangle

378 G. Di Stefano et al.

for an axis-parallel rectangle containing the points corresponding to the given
permutation, and no other points of our construction.

Above and to the left of the bounding rectangle we introduce m sets of points
called the decreasing starters. Each of them contains 2p points which form a
strictly decreasing line. The decreasing starters themselves are arranged in a
chain going upwards and rightwards such that their respective ranges of x- and
y-coordinates are disjoint. Above them and to the right of the bounding rec-
tangle we introduce � sets of points called the increasing starters. Each of them
contains 2p points which form a strictly increasing line. The increasing starters
themselves are arranged in a chain going downwards and rightwards such that
their respective ranges of x- and y-coordinates are disjoint. Since p ≤ n, this
construction is polynomial.

If there is a cover of the given permutation’s points with m decreasing and �
increasing lines, then these lines can be extended to p = �+m unimodal, in fact
monotone, lines as indicated in the figure such that all starters are covered.

On the other hand, assume that we are given a cover of p unimodal lines for
the extended point set. The decreasing starters have to be covered by m distinct
decreasing lines, and the increasing starters have to be covered by � distinct
increasing lines. Actually, since the increasing starters are above the decreasing
starters, the arrangement enforces that all of these p = � + m lines have to
be distinct. These can pass through the bounding rectangle, and we obtain the
claimed solution to the original problem. ��

4 Exact Approaches: Mixed Integer Programs

In this section we develop mixed integer programs (MIPs) for computing optimal
partitions (see e.g., [9] for background on linear and integer programming). We
first solve the problem of partitioning into increasing subsequences via a linear
program (LP) which in fact is a minimum cost flow model. We embark on this
expensive approach because we can extend this model to monotone and k-modal
covers by means of additional binary variables. We describe the construction of
the respective directed graphs from which the MIP models can be easily derived.
When we speak of inserting a directed edge e = (i, j), we imply inserting the
tail node i of e, and the head node j of e, if they are not already present. Unless
otherwise stated, there are no capacity bounds on edges except non-negativity.
We denote the source of the respective graph by s and denote the sink by t.

A Network Flow Linear Program. We construct a directed graph as follows.
Corresponding to element si, i = 1, . . . , n, we introduce an edge ei with a lower
capacity bound of 1 and zero cost. We connect the source s to the tail of each
ei with unit cost edges. The head of each ei is connected to the sink t with zero
cost edges. Additionally, we insert a zero cost edge going from the head of ei

to the tail of ej if and only if i < j and si < sj (that is, we model increasing
subsequences; the decreasing case is similar).

We seek a minimum cost flow from s to t. Since our graph is acyclic, an optimal
flow can be decomposed into s-t-paths [1]. By construction, each of these paths

On Minimum k-Modal Partitions of Permutations 379

uses exactly one edge incident to s, and the objective value is the number of
paths. Each path uses a subset of the edges ei. Our construction ensures that
the sequence of the elements si corresponding to the edges ei in each path is an
increasing subsequence of S. Since the lower bound on the edges ei is 1, all these
edges must be contained in some s-t-path; the subsequences of S corresponding
to the paths form a minimum partition into increasing subsequences.

ts

e1 e2 e3 e4 e5

3 1 5 2 4

Fig. 2. The graph for the network flow model in the increasing case, S = [3, 1, 5, 2, 4]

A Flow Based MIP for Monotone Partitions. One can easily find a minimum
monotone cover if we fix for each element whether it occurs in an increasing or in
a decreasing subsequence: This results in two independent instances. We use this
fact to model the monotone case. We use two complementary copies of the above
network flow model, one part corresponding to increasing subsequences, and one
complemented part for decreasing subsequences. For each ei in the increasing
part there is a corresponding copy e′i in the decreasing part. The increasing part
remains as before, and in the decreasing part there is an edge going from the
head of e′i to the tail of e′j if and only if i < j and si > sj . The two parts share
the source s and the sink t. We introduce binary variables xi and x′

i and set
the lower bound on the edges ei to xi and of e′i to x′

i in the increasing and the
decreasing part, respectively, where we require that xi + x′

i = 1.
Again, an optimal flow decomposes into s-t-paths; these correspond to

monotone subsequences of S, and the objective function value gives the number
of paths. Since exactly one of ei or e′i has a lower bound of 1 these subsequences
form a minimum monotone cover.

ts

e1 e2 e3 e4 e5

3 1 5 2 4

e′1 e′2 e′3 e′4e′5
“decreasing”

“increasing”

Fig. 3. The graph for the network flow based MIP model in the monotone case, S =
[3, 1, 5, 2, 4]

380 G. Di Stefano et al.

A Flow Based MIP for (Upper) Unimodal Partitions. For the unimodal case,
we start with the graph constructed for the monotone case. From the increasing
part we omit the edges incident to t. From the decreasing part we omit the edges
incident to s. For each i we add an edge connecting the head of ei to the head
of e′i. Again, ei and e′i each get a lower bound of xi and x′

i, respectively, where
xi and x′

i are binary variables with xi + x′
i = 1.

In this graph an s-t-path uses exactly one edge incident to s, at least one
edge ei in the increasing part (corresponding to an increasing subsequence) and
possibly some edges e′i in the decreasing part (corresponding to a decreasing
subsequence). Together, a path represents an upper unimodal subsequence. The
variables xi and x′

i control whether si occurs in the increasing part of such a
sequence (including its maximum) or in its decreasing part. Note that also de-
generate cases are considered, that is, monotone sequences are possible parts of a
solution. The binary variables ensure that each si occurs in at least one unimodal
sequence, therefore an optimal solution to this MIP gives a minimum unimodal
cover. This construction generalizes to (upper k-modal) via the construction of
an extended network of k + 1 layers.

e1 e2 e3 e4 e5

e′1 e′2 e′3 e′5

3 1 5 2 4

“decreasing”

“increasing”

ts

e′4

Fig. 4. The graph for the network flow based MIP model in the upper unimodal case,
S = [3, 1, 5, 2, 4], “upper unimodal” meaning—as always in this extended abstract—at
most one internal maximum

5 Approximation Algorithms

Fomin, Kratsch, and Novelli [8] give a factor 1.71 approximation algorithm for
finding a minimum partition of a partially ordered set into chains and antichains.
In particular, this is a 1.71 approximation algorithm for the (monotone) problem.
It is an open question whether there exists a polynomial time approximation
scheme (PTAS). We derive a 1.71(k+1)-approximation algorithm for (k-modal).

Lemma 1. An α-approximate solution for (monotone) is a (k+1)α-approximate
solution for (k-modal). An α-approximate solution for (k-modal) can be converted
to a (k + 1)α-approximate solution for (monotone).

Proof. Denote by zα
mon and by zα

k the size of an α-approximate partition for
(monotone) and for (k-modal), respectively. Since any k-modal sequence can be

On Minimum k-Modal Partitions of Permutations 381

split into at most k +1 monotone subsequences, the optimal partition sizes zmon
and zk relate as zmon ≤ (k + 1) · zk. This gives

zα
mon ≤ α · zmon ≤ (k + 1) · α · zk,

proving the first part of the lemma. Any monotone sequence is k-modal, and
therefore zk ≤ zmon. Together with the above mentioned splitting of a k-modal
sequence we immediately obtain

(k + 1) · zα
k ≤ (k + 1) · α · zk ≤ (k + 1) · α · zmon,

which proves the second part. ��

Using our network flow MIP models from the preceeding section, we are able to
improve on this factor. We obtain a (k + 1)-approximation algorithm for (upper
k-modal). We state the result and the proof for (monotone) only.

Algorithm LP Rounding for (monotone)
Solve the LP relaxation of the MIP model for (monotone). For each el-
ement i = 1, . . . , n, fix xi = 0 if xi < 0.5, and fix xi = 1 if xi ≥ 0.5.
Solve the resulting “fixed” LP again, and output the subsequences of S
corresponding to the s-t-paths in an optimal solution.

Lemma 2. LP Rounding is a 2-approximation algorithm for (monotone).

Proof. For each i = 1, . . . , n, if we fix xi = 1 we increase the lower bound on
ei from at least 0.5 to 1.0. If we fix xi = 0, this implies to fix x′

i = 1, and we
increase the lower bound on e′i from at least 0.5 to 1.0. The respective lower
bound is at most doubled.

Denote by z the objective function value of an optimal solution x to the linear
programming relaxation. Doubling the flow value of every s-t-flow in x gives a
feasible solution to the fixed problem with objective function value at most 2z.
This is an upper bound for the optimal flow’s objective function value in the
fixed problem, yielding the claimed approximation factor.

This result generalizes to (upper k-modal) since we have k + 1 variables per
element, so at least one has fractional value at least 1/(k + 1). Polynomial time
solvability of linear programs follows from the ellipsoid method [9]. ��

We note that the integrality gap of our MIP model for (monotone) is at least
3
2 as is shown e.g., by the sequence [6, 2, 1, 4, 3, 5]: The optimal LP value is 2.0,
the optimal integral objective is 3.0. From our computational experience we
conjecture that the correct gap is smaller than 2, and that the analysis of the
performance of LP Rounding can be improved.

6 Online Algorithms

Not only in view of our practical motivation it is natural to ask for the online
version of our problems in which the permutation becomes known sequentially.

382 G. Di Stefano et al.

We have to assign elements to subsequences without looking at the remaining
elements of the permutation, see e.g., [7] for background on online algorithms.
For partitions into increasing subsequences the (optimal) greedy algorithm is
in fact an online algorithm [6]. Already for (monotone) the situation is much
worse.

Theorem 2. There is no constant factor competitive online algorithm for
(monotone).

Proof. Consider any online algorithm A. Depending on the decisions made by
A we construct a sequence S with n = 2h − 1 elements. We start with the range
of numbers a = 1 to b = n. The first element of S is (a + b)/2 = 2h−1, and A
has to open a subsequence. We arbitrarily set a = 2h−1 + 1 or b = 2h−1 − 1, and
serve (a + b)/2 as second element. In general, A has three options (of which in
fact only two are actually possible). We describe this for the second iteration.
First note that a decision to append to an existing subsequence decides upon
whether that sequence is increasing or decreasing.

If A decides to append in an increasing way we set b = 2h−1 − 1. If A decides
to append in a decreasing way we set a = 2h−1 + 1. In either case we have
a connected range of 2h−1 − 1 numbers none of which can be appended to an
already existing subsequence. If a new subsequence is opened we adapt either
a or b arbitrarily as above. We iterate with the new values of a and b, and it
follows by induction that A generates at least h/2 subsequences for the first h
elements of S (since each subsequence contains at most two elements).

Let a1, . . . , ah and b1, . . . , bh be the values of a and b throughout the first h
iterations described above. The ith element of S is either ai+1 − 1 or bi+1 + 1.
Since the sequences ai, . . . , ah and b1, . . . , bh are increasing and decreasing, re-
spectively, the first h elements of S can be covered by an increasing subsequence
of a1 − 1, . . . , ah − 1 and by a decreasing subsequence of b1 + 1, . . . , bh + 1.

If the remaining elements of S are arranged in an increasing way the opti-
mal solution contains 3 subsequences. However, the solution determined by A
contains at least h subsequences. Therefore, A is log2(n + 1)/6-competitive at
best. ��

Since we are not aware of any previous results on online algorithms for cocoloring,
it is interesting in its own right to restate this result in graph theoretical terms.

Restatement of Theorem 2. The problem of cocoloring a permutation graph
does not allow an online algorithm with constant competitive ratio.

We next discuss the performance of two online algorithms for (monotone) and
(unimodal). Both are reminiscent of simple bin packing online algorithms.

Online algorithm Next Fit
Keep adding elements to one and the same subsequence as long as
monotony (unimodularity) is not violated. Then start a new subsequence
and leave the previous ones unchanged.

On Minimum k-Modal Partitions of Permutations 383

Lemma 3. Next Fit is n/4-competitive for (monotone) and (unimodal).

Proof. Any two elements of the input sequence S form a monotone (unimodal)
subsequence. Thus, we have n/2 as a trivial upper bound for the number of
subsequences determined by Next Fit. If S itself is monotone (unimodal) the
algorithm finds the optimal solution. Otherwise, the optimal solution consists
of at least two subsequences giving a competitive ratio of n/4. To see that this
bound is tight consider the sequence S = [n, 1, n − 1, 2, . . .]. In the monotone
and the unimodal case Next Fit will determine a solution consisting of n/2
subsequences with two elements each. The optimal solution consists of two se-
quences in both cases. Therefore, Next Fit is exactly n/4-competitive. ��

Next we make use of the fact that we know the set of pending elements, which are
the numbers in 1, . . . , n we have not yet seen in the input sequence. Interestingly,
this does not help the competitive ratio.

Online algorithm Best Fit
We start with n increasing and n decreasing subsequences with an initial
dummy element of 0 and n+1, respectively, that will be removed when the
respective first element is added. An iteration is as follows. Let s be the
current element of the input sequence and let ti be the last element of the
ith subsequence. Select an index i such that s can feasibly be added to the
ith subsequence and such that the number of pending elements that are
between s and ti is minimum. Resolve ties arbitrarily but prefer already
started subsequences. In the end, throw away all unused subsequences.

Lemma 4. Best Fit is n/4-competitive for (monotone) and (unimodal).

Proof. If the input permutation is itself feasible, Best Fit is optimal. Other-
wise, by definition, it generates at most n/2 feasible subsequences and is thus
at least n/4-competitive. To see that the upper bound is tight, we consider the
permutation S = [2, 1, 4, 3, . . . , 2k, 2k − 1, . . .]. The algorithm generates decreas-
ing two-element subsequences [2k, 2k − 1] for all k, but the optimal partition
contains only the two increasing subsequences [2, 4, . . .], [1, 3, . . .]. ��

7 Conclusions

We studied partitions of permutations into subsequences with particular mono-
tony properties. The theoretical hardness legitimates applying computationally
expensive algorithms like solving (probably large scale) mixed integer programs.
These, in addition to their practical usefulness, yield (small) constant factor
approximation algorithms via LP rounding.

In the full paper we computationally evaluate our proposals for random per-
mutations. As a brief summary at this point, permutations of more than 100
elements can be partitioned optimally within a few seconds or minutes by solv-
ing our MIPs. The greedy algorithm, which iteratively extracts a longest sub-
sequence of the requested type, runs in a split second and yields an acceptable

384 G. Di Stefano et al.

solution quality on the average and also in the (empirical) worst case. The qual-
ity of solutions obtained with the LP Rounding algorithm significantly stays
below the theoretically guaranteed approximation factor. However, the simple
Next Fit online algorithm also empirically performs as poorly as predicted by
the competitive analysis, whereas the Best Fit online algorithm gives somewhat
better results on average, as was to be expected.

There are several extensions motivated from practice which we did not ex-
plicitly consider in this more theoretical study, but which can be easily incor-
porated in our models. One such extension is a bounded track length, that is,
subsequences must not contain more than a fixed number of elements. Solutions
to our network flow based models become resource constrained shortest paths
in this case which may be of independent theoretical interest. In particular, we
have developed a set covering model which is most flexible in terms of (practical)
extendibility. It is able to capture more “dirty” side constraints which do not
directly fit into the context of this extended abstract.

There remain several open questions, spawned by our work:

– What is the exact approximability status of (monotone) and (k-modal), in
particular, does there exist a PTAS? Can our LP techniques lead to an
improvement over the 1.71 approximation for (monotone)? Such a result
would be quite fascinating since the known algorithm [8] already elegantly
exploits the combinatorial nature of the problem.

– Considering the competitiveness lower bound of Theorem 2 one would be in-
terested in an online algorithm matching this bound. Which competitiveness
ratio is possible when look-ahead is allowed?

– The crucial property we use in the construction of the graphs underlying
our MIP models, and which ensures that paths correspond to increasing
or decreasing subsequences, is the transitivity of the ordering of elements.
We would have liked to generalize our positive results for permutations to
partially ordered sets (corresponding to comparability graphs). However, in
general, this property is lost for the complement of a comparability graph. Is
there a network flow based model similar to ours which allows LP rounding,
thus yielding a constant factor approximation?

Acknowledgment. We would like to thank Laura Heinrich-Litan for pointing us
to the literature on cocoloring.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1993.

2. R. Bar-Yehuda and S. Fogel. Partitioning a sequence into few monotone subse-
quences. Acta Inform., 35(5):421–440, 1998.

3. U. Blasum, M.R. Bussieck, W. Hochstättler, C. Moll, H.-H. Scheel, and T. Winter.
Scheduling trams in the morning. Math. Methods Oper. Res., 49(1):137–148, 1999.

On Minimum k-Modal Partitions of Permutations 385

4. A. Brandstädt and D. Kratsch. On partitions of permutations into increasing and
decreasing subsequences. Elektron. Informationsverarb. Kybernet., 22(5/6):263–
273, 1986.

5. F.R.K. Chung. On unimodal subsequences. J. Combin. Theory Ser. A, 29:267–279,
1980.

6. G. Di Stefano and M.L. Koči. A graph theoretical approach to the shunting prob-
lem. Electr. Notes Theor. Comput. Sci., 92:16–33, 2004.

7. A. Fiat and G.J. Woeginger. Online Algorithms—The State of the Art, volume
1442 of Lecture Notes in Computer Science. Springer, 1998.

8. F.V. Fomin, D. Kratsch, and J.-C. Novelli. Approximating minimum cocolourings.
Inform. Process. Lett., 84(5):285–290, 2002.

9. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin, 2003.

10. J.M. Steele. Long unimodal subsequences: A problem of F.R.K. Chung. Discrete
Math., 33:223–225, 1981.

11. J.M. Steele. Variations on the monotone subsequence theme of Erdős and Szekeres.
In D. Aldous, P. Diaconis, J. Spencer, and J.M. Steele, editors, Discrete Probability
and Algorithms, pages 111–131. Springer-Verlag, New-York, 1995.

12. K. Wagner. Monotonic coverings of finite sets. Elektron. Informationsverarb. Ky-
bernet., 20(12):633–639, 1984.

13. T. Winter and U.T. Zimmermann. Real-time dispatch of trams in storage yards.
Ann. Oper. Res., 96:287–315, 2000.

	Introduction
	Preliminaries
	Complexity
	Exact Approaches: Mixed Integer Programs
	Approximation Algorithms
	Online Algorithms
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

