
Nested Column Generation Applied to the Crude Oil Tanker Routing and
Scheduling Problem with Split Pickup and Split Delivery

Frank Hennig,1 Bjørn Nygreen,1 Marco E. Lübbecke2

1 Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway

2 Chair of Operations Research, RWTH Aachen University, D-52072 Aachen, Germany

Received 25 January 2010; revised 11 March 2012; accepted 12 March 2012
DOI 10.1002/nav.21489

Published online 13 April 2012 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: The split pickup split delivery crude oil tanker routing and scheduling problem is a difficult combinatorial optimization
problem, both theoretically and practically. However, because of the large expenses in crude oil shipping it is attractive to make use
of optimization that exploits as many degrees of freedom as possible to save transportation cost. We propose a nested column gener-
ation algorithm for this particular split pickup split delivery problem which bears several complexities such as a heterogeneous fleet,
multiple commodities, many-to-many relations for pickup and delivery of each commodity, sequence dependent vehicle capacities,
and cargo quantity dependent pickup and delivery times. Our approach builds on a branch-and-price algorithm in which the column
generation subproblems are solved by branch-and-price themselves. We describe our implementation in the branch-cut-and-price
framework SCIP and give computational results for realistic test instances. The high quality schedules we obtain for these instances
improve on those in previous studies. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 298–310, 2012

Keywords: maritime transportation; crude oil; split pickup; split delivery; routing and scheduling; branch-and-price; nested
column generation

1. INTRODUCTION

In this study, we propose an exact solution approach to a
real-world maritime transportation problem called the “crude
oil tanker routing and scheduling problem.” This is a par-
ticularly rich split pickup split delivery problem with time
windows and capacity constraints and has been introduced
in [10].

Maritime crude oil transportation is a major international
transportation mode. In 2010 the crude oil tanker tonnage
represented 34% of the total world fleet capacity. The total
volume of oil shipped amounted to 2.75 billion tons [17].
A typical vessel engaged in long range, large volume crude
oil transportation is the very large crude oil carrier (VLCC).
These ships have a length of about 330 meters, a breadth
of 60 meters, and can transport 300,000 tons of crude oil at
once. Each day by which the duration of a given transporta-
tion task may be shortened would save about 50,000 USD at
today’s fuel price of around 650 USD/ton. A port visit avoided
through good routing and scheduling could reduce total cost
by 100,000 USD [15]. Through more efficient transportation

Correspondence to: F. Hennig (frank.hennig@iot.ntnu.no)

fleet utilization increases, more cargo can be transported and
less harmful emissions per ton mile have to be accepted.

In the type of vehicle routing problem (VRP) considered,
vehicles are ships and locations to be serviced are ports. In
contrast to the type of VRP, where vehicles operate from a
depot and do either pickup or delivery, in maritime crude oil
transportation the usually heterogeneous ships start at their
present location, pick up and deliver along their route and are
not scheduled for a certain destination. Port visits for loading
or discharging are time constrained and physical and regu-
latory circumstances set different limits for ship capacity on
different sailing legs. The cargo to be transported is liquid
bulk of varying quality or type. Same qualities or types are
supplied and demanded in different locations so that a cargo
cannot be specified with is origin and destination alone. Also
a given transportation task is not necessarily associated with
a given shipment volume. Ships may load the quantities they
are suited for and that match an efficient routing. This involves
the possibility of splitting supplied and demanded quantities
in arbitrary ways.

The contribution of our article is twofold. First, we present
an accurate model for a logistics problem of major practi-
cal importance and develop a solution approach to obtain

© 2012 Wiley Periodicals, Inc.

Hennig, Nygreen, and Lübbecke: Split Pickup and Split Delivery 299

industrially relevant solutions. Second, and probably more
important, we propose a general methodology to exactly
solve split pickup split delivery problems (SPSDP). The split-
ting of a customer’s demand between several vehicles of a
given fleet is a natural attempt to realize the full optimiza-
tion potential. This is accounted for in the vehicle routing
literature by studying the split delivery vehicle routing prob-
lem (SDVRP), for which a few exact methods were pro-
posed [3, 5, 6, 9, 12, 13, 18]. The literature on split pickup
split delivery problems is even scarcer. We are aware of only
two related papers [14, 16], however, both fail to provide a
solution approach for our problem. One [14] does not pro-
vide us with a state-of-the-art solution approach. The other
one [16] covers only splits for explicitly paired pickups and
deliveries in a much less complex environment.

Given the limited knowledge on combined split pickup
with split delivery, we build on the two recent papers by
Desaulniers [6] and Ceselli et al. [5] who propose branch-
and-price algorithms for the split delivery vehicle routing
problem. These authors exploit one crucial property of the
split delivery VRP: There is at most one customer per vehi-
cle route for which only a fraction of the demand is served.
Whereas this is no longer true for pickup and delivery prob-
lems which permit splitting in both the pickup and delivery
locations, we are able to generalize the rationale behind the
approach in [5, 6].

Our approach is based on integer programming, and we
will make heavy use of branch-and-price [2, 8], a methodol-
ogy we assume the reader to be reasonably familiar with. In
particular, we apply a nested column generation approach, a
term used in [19] and others to describe a column genera-
tion algorithm in which the subproblem is solved by column
generation itself. In this spirit, we solve a column genera-
tion master problem that comprises all ships in the fleet and
solve subproblems, one for each ship, again using column
generation. Throughout this article, we will call the restricted
all-ship master problem level 1 RMP and the restricted single-
ship master problems level 2 RMP. The term subproblem is
used to refer to the level 2 RMP route generation subproblem
solved by dynamic programming.

The article is structured as follows: In Section 2, we
describe the mathematical model thereby introduce some
notation. Section 3 motivates and describes the nested col-
umn generation concept and problem decomposition. The
computational algorithm and its implementation in the SCIP
framework is explained in Section 4. Computational results
are shown and discussed in Section 5. Finally, we draw
conclusions and suggest further research in Section 6.

2. MODEL DESCRIPTION

A heterogeneous fleet V of vessels or ships has to distrib-
ute crude oil between a set of ports. Each port supplies and/or

demands one or several types of crude oil, so-called grades C.
Each supply/demand has to be picked up or delivered within
a certain time window. There may be several distinct time
windows to be serviced per port. Denote the set of all time
windows of all ports by N . For each ship v ∈ V , the set Nv

comprises N , and in addition a time window at the initial and
at the final location of v, respectively. Formally, the routing
of v ∈ V takes place on a directed graph G = (Nv , A) with
arc set A.

Each time window i ∈ N calls either for a pickup or a
delivery, and is associated with a (supply or demand) quan-
tity Qi of a particular crude grade c ∈ C and a time interval
[T i , T i] in which service has to start. We will say that a ship
visits a time window, meaning that it visits the associated
port within this time window. Supply and demand quanti-
ties are specified in weight units and may exceed the ship’s
capacity. There can be several combinations of pickup time
windows to supply a given delivery time window and vice
versa. Pickup and delivery ports are concentrated in cer-
tain pickup or delivery regions, respectively. Large distances
between pickup and delivery regions lead to ship routes hav-
ing what is called a “voyage” structure: On a voyage a ship
may visit one or several pickup regions followed by one or
several delivery regions. It is unrealistic that a ship carries
cargo from a delivery region back to any pickup region. A ship
may undertake several voyages during the planning period,
voyage length permitting. The number of time windows a
ship services in a region is limited by practical considerations.
Therefore the maximum number of different grades simul-
taneously onboard is limited as well. Because pickup and
delivery times may amount to several days for large tanker
ships, the quantities picked up and delivered may influence
the time feasibility of a route. For time feasibility, it is suffi-
cient that a ship arrives at time window i no later than closing
time T i . A maximum waiting time between arrival at time
window i and the time window’s opening time T i may be
desired. Sailing times T S

ijv for ship v on arcs (i, j) ∈ A are
assumed to be deterministic. Ships have a volume capacity
based on cargo tank size and a weight capacity due to sea-
worthiness conditions. The crude grade specific density Dc,
c ∈ C, allows a conversion between weight quantities and
volumes. The ship capacity may change during the execution
of a route due to external factors like, for example, limited
water depth and port regulations. An arc (i, j) may impose a
stricter weight capacity limit Wijv , a stricter volume capac-
ity limit V ijv , or both, for ship v. Hence, pickup and delivery
quantities can be influenced by the order in which differ-
ent time windows are visited. Set AW

v contains all arcs that
impose a weight limit on ship v; set AV

v contains all arcs
with a volume limit for v. Arcs may be in both sets. A ship
is allowed to serve any fraction of a time window quantity.
Time for service can be calculated based on the per weight
unit time consumption T

Q
i . Minimum pickup quantities may

apply.

Naval Research Logistics DOI 10.1002/nav

300 Naval Research Logistics, Vol. 59 (2012)

3. NESTED DECOMPOSITION

3.1. Motivation

Recently, Desaulniers [6] and Ceselli et al. [5] very suc-
cessfully applied branch-and-price algorithms to the SDVRP.
They both formulate master problems where each variable
corresponds to a combination of a feasible route and a cargo
pattern, where the latter represents compatible quantities of
demand served for each customer on the route. Building on
well-known properties of the SDVRP, they make use of the
fact that it is sufficient to consider only cargo patterns where
the demand of at most one customer (the split customer) is
served fractionally, and all other customers are served either
fully or not at all (an analogy holds for the fractional knapsack
problem as well). In the language of Dantzig-Wolfe decom-
postion this means that an extreme point of the polyhedron
describing feasible cargo patterns has at most one fractional
component. We refer to the quantities associated with these
extreme points as extreme cargo patterns. Given a route and
a split customer, only two of these patterns are necessary
to convex combine all possible fractional quantities in the
master problem. This knowledge is instrumental in design-
ing an algorithm for the pricing problem which becomes an
elementary shortest path problem (ESPP) where the number
of split customers is limited to one. In fact, this adds a helpful
“knapsack flavor” to the pricing problem.

The situation is a bit more complicated for the SPSDVRP.
The slightly more general statement is still true that in an
extreme cargo pattern there is at most one pickup location
and at most one delivery location for which the demand is
served fractionally. Principally, the label setting algorithm for
the ESPP in [6] should not be too difficult to adapt respecting
this limitation to two split customers. In contrast, dominance
between labels, that is, early elimination of unpromising par-
tial routes is already more complicated. This is because it
relies on being able to compare transported quantities en
route, and two split locations give more freedom and thus
a weaker dominance. In addition, we consider a multicom-
modity problem, that is, we may have a split pickup and
split delivery location for each commodity. As in the ordi-
nary pickup and delivery problem, we may find ourselves in
the situation that we cannot decide on feasibility of a route
before we see it in total, and this may happen even more fre-
quently with several commodities. This already leads us to
not modifying the existing label setting algorithm because
it is unlikely that we are able to handle the combinatorial
explosion. Even if we had some hope that a combinatorial
algorithm would be the right choice, the weight and volume
constraints on arcs, particular to the COTRASP, finally bury
this. Not only feasibility poses problems, the profits for serv-
ing a particular time window can depend on the entire route.
There are situations in which it is neither most profitable
to go to the volume nor to the weight limit of a particular

commodity, see Fig. 1 for an example. Then, reduced costs
depend on the amounts loaded and unloaded further on the
route, and cannot be computed locally. This, in fact, destroys
the “fractional knapsack character” of the pricing problem as
exploited in [5, 6]. Needless to say at this point, that loaded
and unloaded quantities have an influence on service times
and thus on time window feasibility later on the route. These
complications together render dominance effectively useless
and a label-setting dynamic program is unlikely to be effi-
cient. This is consistent with observations in [4] in a similar
situation.

To overcome these difficulties we decided to decouple the
routing from the service, that is, we first construct an entire
route and then find corresponding quantities to be served at
each customer. We retain the key observation by Desaulniers
[6] and Ceselli et al. [5] to use extreme cargo patterns, but we
need to obtain them with the help of a mixed integer program
(MIP). Whereas in the SDVRP a convex combination of only
two extreme patterns is sufficient for a given route and a split
customer, we may need many more extreme patterns in our
SPSDVRP. Candidates are all the extreme points of a polyhe-
dron describing the feasible quantities, and these are far too
many to explicitly list. Describing feasible cargo patterns via
a polyhedron allows us to formulate even complicated side
constraints; but we need to use column generation to generate
the extreme cargo patterns for a given route. On the posi-
tive side, we can use a straightforward implementation of an
ESPP algorithm for routing. In that sense, the decomposition
also leads to simplicity and manageability of our approach
in the first place, plus it adds a lot more flexibility. As said,
on the downside, the overall algorithmic structure gets a little
more complicated because we will nest two column genera-
tion algorithms. It should be noted that the approach is exact
in principle, even though we will use it as a heuristic. The
details are given in the following subsection.

3.2. Concept: Three Levels

The algorithm for solving the COTRASP model is based
on a decomposition into three levels: On the bottom level
we have a route generation subproblem for each single ship.
An intermediate level master problem computes (usually sev-
eral) cargo patterns for each route. Route and cargo patterns
together form what we call cargo routes, and the cargo routes
from different ships are coordinated on the top level master
problem. From top to bottom we number the levels 1 through
3. Although the feasibility of routes, schedules and cargo pat-
terns is ensured on levels 2 and 3, the correct time window
quantity split is decided on level 1 via a convex combination
of cargo patterns. The restricted master problems at levels 1
and 2 are called RMP 1 and RMP 2, respectively. The follow-
ing three subsections describe the three levels in more detail.
More background on the underlying practical problem can
be found in [10].

Naval Research Logistics DOI 10.1002/nav

Hennig, Nygreen, and Lübbecke: Split Pickup and Split Delivery 301

Figure 1. Two products, A and B, are transported from 1 to 3. There are weight and volume constraints on arc (2,3). With a density of
2t/m3, product A is much denser than product B with density 0.5t/m3. Product B is more profitable regarding weight and one might expect
to load as much as possible of product B. An optimal allocation, however, loads only 10t of B and 70t of A (see figure on right). [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

3.3. Level 1 RMP

Each variable (column) of the RMP 1 belongs to a ship v

and represents the two parts of a cargo route, the route itself
and a route specific cargo pattern. The set of ship v’s possible
routes is denoted by Rv . R∗

v = Rv ∪{0} comprises a dummy
route 0 which represents that no route is assigned to v. The
set of cargo patterns on route r ∈ Rv is denoted by Pvr . A
cargo pattern k ∈ Pvr consists of feasible quantities QP

ivrk

for pickup or delivery in time window i. Binary variable λvr

equals 1, if ship v sails route r (possibly the dummy route),
and 0 otherwise. If ship v sails route r , precisely the (extreme)
cargo patterns k ∈ Pvr are convex combined to yield the
actual pickup and delivery quantities on route r . Continuous
variables µvrk represent this convex combination.

The total cost of ship operation includes route cost and the
costs for picking up and delivering cargo. The constant Cvrk

denotes the cost for ship v on route r including service costs
caused by cargo pattern k. Let Mi be the minimum number of
visits at a time window. Mi can be derived from the total time
window amount Qi and the ship capacities. Let AN

ivr equal
1 if ship v visits time window i on route r , and 0 otherwise.
The integer variable z reports the number of nonused ships.

The model can be written as follows:

min
∑

v∈V

∑

r∈Rv

∑

k∈Pvr

Cvrkµvrk , (1)

∑

v∈V

∑

r∈Rv

∑

k∈Pvr

QP
ivrkµvrk = Qi ∀i ∈ N , (2)

λvr −
∑

k∈Pvr

µvrk = 0 ∀v ∈ V , r ∈ Rv , (3)

∑

r∈R∗
v

λvr = 1 ∀v ∈ V , (4)

∑

v∈V

∑

r∈Rv

AN
ivrλvr ≥ Mi ∀i ∈ N , (5)

∑

v∈V
λv0 − z = 0 (6)

µvrk ≥ 0 ∀v ∈ V , r ∈ Rv , k ∈ Pvr , (7)

λvr ∈ {0, 1} ∀v ∈ V , r ∈ R∗
v , (8)

z ∈ Z+. (9)

Objective function (1) minimizes the total cost of sailing
and service. Constraint (2) ensures that in each time window
the sum of all pickups or deliveries made by all ships visit-
ing the time window equals the total time window quantity.
The convex combination of (extreme) cargo patterns for each
route hereby allows the selection of any pickup or delivery
amount feasible on the route. Constraint (3) couples feasible
cargo patterns for a particular route and the route itself: Cargo
patterns can be convex combined only when their associated
route is used. Each ship is allowed to sail at most one route,
see constraint (4). Constraint (5) can be used to set a min-
imum number of visits for each time window. It is used to
strengthen the formulation. Constraints (6) and (9) serve the
technical purpose to branch on the number z of unused ships
(see Section 4.1). Constraints (7) and (8) enforce the correct
domains.

Each time a new route is added to the above formulation, a
constraint (3) needs to be added as well. This is particularly
unfortunate because one can expect the number of routes to
grow rapidly. As branching on the binary master variables is
not advisable, we substitute for λvr in constraints (4) and (5)
according to constraint (3), relax constraint (8), and drop (3).
Constraints (4) and (5) then take the following form:

∑

r∈Rv

∑

k∈Pvr

µvrk + λv0 = 1 ∀v ∈ V , (4′)

∑

v∈V

∑

r∈Rv

∑

k∈Pvr

AN
ivrµvrk ≥ Mi ∀i ∈ N . (5′)

Branching is performed on the original problem variables for
arcs and nodes of the underlying network. See Section 4.1
for further discussion.

Naval Research Logistics DOI 10.1002/nav

302 Naval Research Logistics, Vol. 59 (2012)

3.4. Level 2 RMP

Each RMP 2, one for each ship v, is a column generator
for RMP 1 that provides variables µvrk . Thus, its objective
function is the RMP 1 reduced cost of µvrk variables. Each
RMP 2 accommodates binary routing variables λvr with the
same meaning as in RMP 1. The set Sv of feasible routes at
level 2 is a superset of Rv because the feasible quantity split
is decided only at level 1. Set S∗

v = Sv ∪ {0} again contains a
dummy route. Continuous variables qiv represent how much
weight is picked up or delivered by ship v in time window i. A
µ-column itself is derived from a selected optimal ship route
(binary variable λvr) and optimal pickup/delivery quantities
(continuous variables qiv).

Parameter δic = 1 signals that time window i supplies or
demands grade c. For all other grades δic = 0. Parameter Ii

indicates the type of time window i, where Ii = 1 means a
pickup and Ii = −1 means a delivery. Continuous variables
lijcv track the weight of grade c onboard ship v on arc (i, j).
Parameter Aijvr equals 1 when route r for ship v contains
arc (i, j), and 0 otherwise. Continuous variables tiv represent
the start-of-service time of ship v at time window i. Only one
time variable per time window is needed because we assume
that a time window can be visited only once by a particular
ship (see Section 3.5).

To compute the level 1 reduced cost at RMP 2, dual infor-
mation has to be transferred from the first to the second
level. Relevant dual information concerns the route and cargo
pattern variables λv0 and µvrk:

αi ∈ R for constraint (2),
βv ∈ R for constraint (4′),
γi ∈ R+ for constraint (5′), and
η ∈ R for constraint (6).

Dual variables βv and η are constant per ship v. The cost
of route r for ship v is denoted by CE

vr , and is computed from
arc costs and dual variables γi . The cost per weight unit for
pickup and delivery in time window i is denoted by C

Q
iv which

needs to be corrected by the dual variable αi . An RMP 2 reads

min
∑

r∈Sv

CE
vrλvr

+
∑

i∈N

(
C

Q
iv − αi

)
qiv − βv − η, (10)

qiv ≤ Qi ∀i ∈ N , (11)
∑

c∈C
lijcv − Wijv

∑

r∈Sv

Aijvrλvr ≤ 0 ∀(i, j) ∈ AW
v , (12)

∑

c∈C

lijcv

Dc

− V ijv

∑

r∈Sv

Aijvrλvr ≤ 0 ∀(i, j) ∈ AV
v , (13)

∑

j∈N
lj icv + Iiδicqiv −

∑

j∈N
lijcv = 0 ∀i ∈ N , c ∈ C, (14)

∑

r∈S∗
v

Aijvrλvr

(
tiv + T

Q
i qiv

+ T S
ijv − tjv

) ≤ 0 ∀(i, j) ∈ A, (15)

T i ≤ tiv ≤ T i ∀i ∈ Nv , (16)
∑

r∈S∗
v

λvr = 1 , (17)

lijcv ≥ 0 ∀(i, j) ∈ A, c ∈ C,
(18)

tiv ≥ 0 i ∈ Nv , (19)

qiv ≥ 0 ∀i ∈ N , (20)

λvr ∈ {0, 1} ∀r ∈ S∗
v . (21)

Objective function (10) minimizes the total reduced cost.
Typically, a single ship services only a subset of time windows
and may service only a fraction of a time window quantity.
Constraint (11) therefore limits only the maximum pickup
and delivery amount in each time window. Constraints (12)
and (13) limit the maximum available capacity on used arcs.
If an arc is not in use, the load onboard a ship on the arc
is kept at zero. Constraint (14) is a flow conservation of
loads on arcs. Scheduling constraints (15) and (16) ensure
pickup and delivery amounts dependent on port stay times.
Constraint (15) allows a ship to start service at arc destina-
tion only after arrival at arc destination. Service times in an
arc’s origin time window are respected in the arc traversal
time. Note that (15) is a nonlinear constraint which can be
re-formulated in a standard way using a “big M” mechanism:
tiv +T

Q
i qiv +T S

ijv ≤ tjv +M(1−∑
r∈S∗

v
Aijvrλvr), where M

is the largest possible duration between any possible arrival
and any possible departure of ship v at ports associated with i

and j . Start-of-service has to take place within the time win-
dow specified in constraint (16). Waiting time between arrival
at a time window and time window opening cannot be lim-
ited by the above model. However, approximate limits can be
applied during route generation in the subproblem. At most
one route can be selected per ship, as ensured by constraint
(17). Variable domain constraints (18) to (21) complete the
model.

3.5. Subproblem at Level 3

At the lowest level is the column generation subproblem
for the RMP 2 problems. That is, the subproblem furnishes
routes, represented by sequences of time windows. It is a
rather standard elementary shortest path problem with time
windows (ESPPTW). A problem definition and discussion of
solution algorithms based on dynamic programming can be
found in [7] and in the survey [11]. The objective function is
the RMP 2 reduced cost for the λvr variables that are gener-
ated. It comprises real costs for ship operation and port visits,

Naval Research Logistics DOI 10.1002/nav

Hennig, Nygreen, and Lübbecke: Split Pickup and Split Delivery 303

and RMP 2 dual variables associated with constraints (12),
(13), (15), and (17).

Due to the large distance between pickup and delivery
regions it is not time feasible for a single ship to visit a time
window on several occasions on consecutive voyages. Even
visiting a time window more than once during a single voyage
is considered unrealistic even though it could be beneficial.
The so-called resource extension functions of the subprob-
lem extend the routing cost and time, and information about
grades onboard. Cost is a nonmonotonic resource whereas
time is a strictly increasing resource. Time is extended based
on deterministic sailing times and smallest possible service
times required in real operations. Because pickup and deliv-
ery quantities determine the actual service time, the time
window arrival times calculated this way are only approxi-
mate. Because routes with extraordinary waiting times are not
judged reasonable in shipping, we enforce maximum wait-
ing time limits for the duration between arrival at a port and
start of service (even though theoretically, this may discard
optimal routes). Again, the time limit can only be approxi-
mate. Grade information has to be tracked on partial paths.
An extension of a path to a delivery time window is infeasible
if a demanded grade is not available in already visited pickup
time windows. Similarly, a path cannot be extended from a
delivery time window to a pickup time window, that is, to the
beginning of the next voyage, if for a grade picked up on the
present voyage there is no matching delivery time window
on that voyage.

Label dominance is based on cost, time, visited time win-
dows, and grade information. A label L1 containing all neces-
sary information about a partial path can dominate a label L2

at the same node, if total cost of L1 is no larger than the cost
of L2, start of service at the node for L1 is no later than for L2,
the path of L1 visits a subset of nodes visited on the path of
L2, and L1 and L2 have identical sets for pickup grades and
delivery grades. Barring grade compatibility, the described
dominance is the same as for the (E)SPPTW.

The main idea of dominance is that all extensions for label
L2 are also feasible for labelL1. In additionL1 may have more
possible extensions. Let us consider a single voyage: for the
considered pickup and delivery problem with multiple prod-
ucts the visited pickup time windows in a pickup sequence
determine which delivery time windows are allowed to be
visited and which sort of delivery time windows have to be
visited. If, for example, a pickup time window supplying
grade A is visited, then all delivery time windows demanding
grade A are eligible for a visit. In fact, at least one delivery
time window demanding grade A has to be visited. If for
instance L1 visits a subset of pickup time windows visited by
L2 and can only pick up grades A and B in these time win-
dows instead of A, B, and C available in L2, extensions of
L1 visiting delivery time windows with the demanded grade
C are not allowed. Hence, L1 cannot be extended in the same

way as L2. If pickup grades are identical, but delivery grades
are not, L1 has to visit a certain sort of delivery time window
that L2 already has visited. Also in this case dominance is
not possible.

We omit the rather standard mathematical formulation of
the subproblem and the technical description of the dynamic
program in this article. In our implementation, we use the
resource constrained shortest path algorithm provided by the
boost C++ graph libraries (www.boost.org).

4. COMPUTATIONAL ALGORITHM

The nested column generation algorithm has been imple-
mented in C++ using the noncommercial branch-cut-and-
price framework SCIP (scip.zib.de) developed by Achter-
berg [1]. SCIP can be used as a standalone mixed integer
programming solver as well and provides a widely extensi-
ble state-of-the-art tree management. Column generation is
directly supported via SCIP’s plugin-based architecture, and
nested column generation is no problem either, even though
several useful functionalities concerning branch-and-price
need to be (and can be) added for the problem at hand. Even
though there may be a small overhead, for a proof-of-concept
SCIP is a very reasonable choice.

In Section 4.1, we describe our efforts to handle our type
of branching in SCIP. After explaining the initial algorithm
setup in Section 4.2, we describe the level 1 pricing strategy
in Section 4.3. For the latter, a pattern generation heuristic is
applied that is sketched in Section 4.4. Finally, Section 4.5
mentions a few actions taken to accelerate the algorithm.

4.1. Branching

It is well known that branching (in either master prob-
lem) should not be done on the route variables directly
because the down-branch is ineffective and difficult to han-
dle in the subproblems. Moreover, this would lead to an
unbalanced branch-and-bound tree. Instead, we branch on
fractional flows on arcs and nodes, the so-called “original
variables,” calculated as follows:

xijv =
∑

r∈Rv

Aijvr

∑

k∈Pvr

µvrk ∀v ∈ V , (i, j) ∈ A, (22)

yiv =
∑

r∈Rv

AN
ivr

∑

k∈Pvr

µvrk ∀v ∈ V , i ∈ N . (23)

Parameter AN
ivr equals 1 if ship v on route r visits time win-

dow i, and 0 otherwise. We impose integrality on variables
xijv ∈ {0, 1} for arcs (i, j) and yiv ∈ {0, 1} for nodes i for each
ship. We can therefore directly use various variable selection
and branching strategies build-in in SCIP. These additional
constraints, together with their dual variables, are omitted in

Naval Research Logistics DOI 10.1002/nav

304 Naval Research Logistics, Vol. 59 (2012)

Section 3.4 for reasons of clarity. Note that branching an xijv

or yiv to zero eliminates the corresponding already gener-
ated µvrk variables from the restricted master problem. The
inclusion of the additional dual variables ζijv for constraint
(22) and ξiv for constraint (23) in the RMP 2 objective func-
tion is straight-forward. Branching in the RMP 2 is done
analogously. There, the arc and node constraints take the
same form as constraints (22) and (23) but λvr replaces term∑

k∈Pvr
µvrk .

4.2. Algorithm Setup

The initial setup consists of an “empty” RMP 1, one
“empty” RMP 2 for each ship and a structure for the dynamic
program (DP). Each route set R∗

v only contains the dummy
route index 0. All sets Rv are empty. To ensure feasibil-
ity of the problem initially and during branch-and-price, we
introduce one artificial variable for each time window. The
coefficients of these continuous variables equal to Qi for
time window i in constraint (2) and Mi for the minimum
visit constraint (5). These artificial variables are penalized in
the objective function so that no artificial variable appears in
an optimal solution. In all RMP 2, sets Sv and S∗

v , respec-
tively, are initially identical with RMP 1 sets Rv and R∗

v .
The dynamic program is identical in structure for each ship.
Because the cost and feasible arc set for the dynamic pro-
gram have to be updated each time an RMP 2 is solved, we
maintain only one dynamic program the parameters of which
are adjusted each time it is called.

In the following two sections, we explain the pricing
strategy and the actual generation of column for the first level.

4.3. Level 1 Pricing Strategy

The RMP 1 pricing problem is to identify a minimum
reduced cost column, that is a least cost extreme cargo pat-
tern as described in Section 3.1, with respect to certain dual
variable values. However, an often faster (heuristic) strategy
in branch-and-price algorithms is to just identify a number
of negative reduced cost columns instead of solving the sub-
problem to optimality. In our approach, this is even more
important because we experienced tail-off effects that can
consume large amounts of time when solving the level 2
column generation algorithm. Therefore, it seems natural
to terminate the level 2 optimization as soon as we find
a few negative reduced cost solutions that are routes with
compatible cargo patterns.

The RMP 1 pricing strategy is described in Procedure 1,
which we call SolveNodeLevel1. It illustrates solving the LP
relaxation at a node in the RMP 1 branch-and-bound tree to
optimality. The actual pricing for a particular ship is sketched
in Procedure 2, called ExecutePricing. Procedure 2 initializes

a given ship’s RMP 2 and solves it by branch-and-price, iden-
tifies, if desired, a set of cargo patterns, and extends the level
1 RMP with one or several new cargo patterns. Procedure
1 has as input two global (fixed) parameters, t lim and clim.
For each RMP 2 we set an optimization time limit t lim. The
solution of a RMP 2 is stopped as soon as the time limit is
reached or an improving column with reduced costs less than
negative threshold clim is found. We reach LP optimality of a
RMP 1 node when no improving column for any ship could
be identified, and all RMP 2 optimization times are less than
t lim.

Procedure 1 SolveNodeLevel1(t lim, clim)

1. q ← ∅
2. for each v ∈ V do
3. q.enqueue(v)

4. end for
5. success ← true
6. while success = true do
7. GetBranching(x, y)
8. SolveRelaxation({Pvr : v ∈ V , r ∈ Rv}, x, y)
9. p ← q // initialize ship queue with last iteration’s

result queue
10. t ← 0
11. while p
= ∅ do
12. p.dequeue(v) // Consider first ship in queue
13. T ← max{t lim, tv}
14. (cmin, t) ← ExecutePricing(v, T , clim)

15. if cmin < 0 then
16. success ← true
17. q.remove(v)

18. q.enqueue(v) // Queue ship in result queue
19. break
20. else
21. success ← false
22. if t < t lim then
23. q.remove(v)

24. q.enqueue(v) // Queue ship in result queue
25. else
26. p.enqueue(v) // Queue ship at the end of

current queue
27. tv ← ∞
28. end if
29. end if
30. end while
31. end while

Procedure 1 is best explained by walking through an exam-
ple: Given a set {A, B, C, D} of ships, Procedure 1, in lines
1 to 1, first defines a processing order for each RMP 2 to be
solved. This is done in forming a queue q = (A, B, C, D). At

Naval Research Logistics DOI 10.1002/nav

Hennig, Nygreen, and Lübbecke: Split Pickup and Split Delivery 305

the beginning of each pricing iteration the linear relaxation
based on the current sets of columns Pvr for all ships and
routes and the current branching situation for variables xijv

and yiv is solved (line 1). Columns representing routes are
omitted as mentioned in Section 3.3. Each pricing iteration
(line 1) may have several pricing rounds (line 1) depending
on how many level 2 RMPs are solved. A pricing round rep-
resents the execution of a level 2 RMP. The goal is to stop
a pricing iteration as soon as a level 2 RMP delivers at least
one improving column (line 1) or if no improving columns
can be found for any ship.

The ship queue to be processed in the current pricing itera-
tion is called p and the ship queue for the following iteration
is called q. Queue p is initialized with q coming from the
previous iteration or the initial definition described above.
The size of p at processing start equals the number of ships
|V|, which is also the principle limit of pricing rounds of
the ship processing. The components tv of vector t represent
ship specific level 2 optimization time limits. These time lim-
its are initialized with 0. In the first pricing round ship v = A

is dequeued from p reducing queue p from (A, B, C, D) to
(B, C, D). Queue q = (A, B, C, D) remains unchanged. The
actual RMP 2 optimization limit T is set to t lim. Then pric-
ing is executed for ship A through procedure ExecutePricing.
The pricing procedure returns the minimum reduced cost cmin

found by the second level and the actual level 2 optimization
time t .

If cmin is negative, new improving columns have been
found and the level 1 RMP has been extended by Procedure 2.
ShipA is removed from next iteration’s queueq and enqueued
at the end of the queue: q = (B, C, D, A). The pricing iter-
ation is completed and the whole process starts over again
with LP relaxation solving. In the case where no improving
columns for A exist, that means cmin = 0 and t < t lim, ship
A is also queued at the end of q but a new pricing round has
to be started with the next ship in current queue p, namely B.
Let us assume the latter case and ExecuteP ricing is exe-
cuted for ship B. At this point p equals (C, D) and q still
equals (B, C, D, A). Now assume that cmin takes on value 0
and the time limit is reached. In this case no conclusion can
be drawn and ship B is enqueued in p = (C, D, B). This way
B may be examined again but next time without the optimiza-
tion time limit. In the worst case pricing rounds for C and D

lead to no conclusion either. The current queue would then
be p = (B, C, D) and B would have to be examined again.
Of course, without the optimization limit a clear conclusion
can be drawn after each round.

Procedure 2 facilitates the level 2 branch-and-price. Before
the level 2 problem can be solved, procedure FixLevel2-
Variables (line 2) fixes all RMP 2 branching variables xijv

for arcs and yiv for nodes already fixed in the RMP 1 to 0 or
1. Procedure UpdateLevel2Objective (line 2) updates the dual
information αi , βv and η in the RMP 2 objective and changes

Procedure 2 ExecutePricing(v, T , clim)

1. GetBranching(xv , yv)

2. GetDuals(α, βv , γ , η, ζ v , ξ v) // Get dual information
3. FixLevel2Variables(xv , yv)

4. UpdateLevel2Objective(α, βv , γ , η, ζ v , ξ v)

5. UpdateDPCost(γ , ζ v , ξ v)

6. (cmin, t , C) ← SolveLevel2(clim, T)

7. if cmin < 0 then
8. for each r ∈ C do
9. if r /∈ Rv then

10. Rv ← Rv ∪ {r}
11. Create(Pvr ← PatternGeneration(r))

12. else
13. Pvr ← Pvr ∪ GetPatterns(r)
14. end if
15. ExtendLevel1RMP
16. end for
17. end if

return cmin

the route costs CE
vr for all columns already contained in S∗

v

based on the new dual information ζijv on arcs, and ξiv and
γi on the nodes. Finally, the same dual information is used by
procedure UpdateDPCost (line 2) to change the arc costs in
the dynamic program. After this initialization step procedure
SolveLevel2 executes the level 2 branch-and-price in line 2.
Procedure SolveLevel2 is interrupted as soon as the first neg-
ative RMP 1 reduced cost column better than clim is found
or when the time limit is reached. At the outset of Proce-
dure SolveLevel2 a quick test is done to check if any column
already known from previous pricing iterations for the con-
sidered ship has a reduced cost smaller than clim. If that is the
case, branch-and-price is not executed. The actual optimiza-
tion time is recorded in t . This t does not have any impact on
Procedure 2 and is only transferred to Procedure 1 (see line 1
in Procedure 1). All routes from feasible solutions yielding a
negative reduced cost column are recorded in set C. Because
SolveLevel2 is a column generation procedure, route sets Sv

and S∗
v grow during optimization. In general, both sets grow

during each pricing round, and of course all routes found in
previous iterations in all predecessor tree nodes are kept and
need not be generated again by the subproblem.

The value clim is negative only if improving RMP 1
columns have been identified. A level 2 solution returns the
route used and a corresponding feasible cargo pattern, that
can be used as RMP 1 column. Set C may include one or
several different routes. For a single route, negative reduced
cost solutions may exist with one or several different cargo
patterns. To potentially reduce the number of RMP 1 pricing
iterations we use a heuristic cargo pattern generator, Pattern-
Generation, to identify, for each route found, several feasible

Naval Research Logistics DOI 10.1002/nav

306 Naval Research Logistics, Vol. 59 (2012)

cargo patterns at once. If a route is not yet contained in the
RMP 1 route set Rv we include the route (line 2) and create
a new cargo pattern set Pvr filled with a number of feasi-
ble cargo patterns (line 2). It may happen that the resulting
columns may not all have negative reduced cost but together
span a polyhedron that describes feasible cargo patterns for
the given route. In the best case this region will be sufficiently
large to provide all pickup and delivery quantities needed
during level 1 optimization. Should the region be too small,
C will at a future iteration, comprise a route already con-
tained in Rv . To avoid an accidental generation of identical
columns we do not execute PatternGeneration in this case and
only include all additional cargo patterns that yielded negative
reduced cost solutions (line 2). Finally, Procedure 2 extends
the level 1 RMP and returns the minimum reduced cost
identified.

The complete level 2 branch-and-price is solved in SCIP
with default settings. The dynamic program is called in each
tree node as long as negative reduced cost columns can be
identified. All columns with negative reduced costs provided
by the dynamic program in one pricing iteration are included
in sets Sv and S∗

v .

4.4. Cargo Pattern Generation

Given a route, it is simple to find a number of differ-
ent cargo patterns heuristically. These are not necessarily
extreme but hopefully provide a reasonable approximation.
If needed, extreme cargo patterns are generated if the heuris-
tic fails. We apply a strategy that lends itself from the less
complicated subproblem described in [6]. We assume that all
routes contain at most two voyages, which is consistent with
the realistic data available. The procedure works as follows:

1. Find all grade feasible pairs of one pickup and one
delivery time window for each voyage in the known
route.

2. Define all sequences of pairs for each voyage, where
a sequence is a unique ordering of pairs.

3. For each sequence greedily service as much cargo as
possible for the first, then second, then third, etc. pair
in the sequence.

4. Combine all non-identical cargo patterns found that
way for the voyages in all possible ways.

This procedure ignores the fact that it may not be optimal
to service as much cargo as possible for a given pair as
explained in Section 3.1. It also ignores that for different times
of beginning the second voyage, different cargo patterns may
be obtained. This enables us to generate cargo patterns for
each voyage independently and combine these patterns after-
wards. An empty cargo pattern is also assigned to each route,
which represents pickup and delivery quantities equal to 0 in
each time window.

The cargo pattern generator takes into account all con-
straints included in level 2. Once a cargo quantity for a pair
is decided, time window feasibility along the route must be
ensured. Otherwise a cargo pattern would not be feasible. To
be able to do this test for the second voyage, we assume max-
imum possible pickup and delivery times on the first voyage
and thus can derive a latest start of voyage time for the second
voyage.

The number of cargo patterns generated this way may be
large. A small example may clarify this. A single voyage with
only two pickup and two delivery time windows supplying
and demanding the same grade has four time window origin-
destination pairs. Hence there are 4! = 24 possible sequences
with at most 24 different cargo patterns. If a route contains
two such voyages already 24 times 24 cargo patterns are pos-
sible. Clearly, many of the single voyage cargo patterns may
be redundant, but especially for longer routes with few grades
the number of unique cargo patterns grows substantially. To
avoid unreasonably large matrices of the linear programs to
be solved in each node of the branching tree, we allow to
specify a maximum number of cargo patterns to be included
into the RMP 1 in one pricing iteration.

4.5. Acceleration

SCIP provides a number of heuristics to identify feasible
solutions used at different stages of the algorithm. In addition
to these default heuristics we include two simple heuristics,
one at each level: On level 1 we consider the LP relaxation
solution at each pricing iteration and try to find a feasible
solution in the following way: Identify which (fractionally)
used route of which ship is used the most. Fix all columns of
that ship not corresponding to that route to 0 and reoptimize
the LP problem. Continue this until one route for each ship
has been selected and check if the resulting solution is feasi-
ble with respect to the total quantity to transport. On level 2
we know that each route in route set S and each route pro-
vided by the dynamic program yields a feasible solution in
the RMP 2. However, these solutions may not be identified
during branch-and-price. Therefore we apply a fast probing
procedure provided by SCIP to solve the LP relaxation with
each route in S at the beginning of Procedure 2 and each
route provided by the dynamic program one at a time fixed
to 1.

A further acceleration can be achieved by solving the
dynamic program with a heuristic dominance rule. When-
ever the heuristic dominance rule does not yield negative
reduced cost columns, the correct dominance rule can be
applied. The heuristic dominance rule we apply only takes
into account costs and timing when comparing two partial
paths. The information about grades picked up and delivered
is ignored.

Naval Research Logistics DOI 10.1002/nav

Hennig, Nygreen, and Lübbecke: Split Pickup and Split Delivery 307

5. COMPUTATIONAL RESULTS

5.1. Instances and Settings

We use the same reality related test instances as in Hennig
et al. (working paper). The test instances are grouped into two
sets. The smaller instances described in Table 1 are of varying
complexity. The time periods of the first three instances only
allow routes with single voyages. In contrast, instances 4 to
6 require routes with up to two voyages. Table 2 illustrates
the larger instances. Each instance, starting from instance 8,
has a few additional time windows and ships as compared to
its previous instance.

We run SCIP 1.1.0.6 with CPLEX 11.2 as LP solver on
64-bit PCs with Intel Core 2 Duo CPUs, 3 GHz, 6 gigabyte
RAM (only one core is used per instance) and linux oper-
ating system. Two instances are run simultaneously on the
same computer as long as there is sufficient memory. We let
the branch-and-price run for 12 hours. Because of the timing
of the running time check points, longer branch-and-price
times are possible. However, this does not have any signifi-
cant impact on the solution. During branch-and-price we have
to disable SCIP’s preprocessing, cut generation, and propa-
gation functionalities to ensure a correct dual bound. For t lim

we choose 60 seconds and clim = −1. We allow at most 30
cargo patterns per voyage to be selected in the pattern gen-
erator. After 12 hours we solve the resulting level 1 master
problem without pricing with default CPLEX. In this second
run we solve the original problem comprising objective func-
tion (1) and constraints (2) to (9) with all routes and cargo
patterns found during the first run. Preprocessing and cut gen-
eration can be applied. Branching is performed on variables
λvr and z.

5.2. Results and Discussion

The computational results are shown in Tables 3 and 4.
We assess the results with respect to solution quality, algo-
rithm performance, and capability of the underlying model.
In the result tables, we can distinguish between results based
on the first branch-and-price run carried out with SCIP and
the second run without pricing performed with CPLEX. The
first part of each table, above the broken line, is dedicated
to SCIP. The parts under the broken lines report the CPLEX
information.

Table 1. Instance set A.

Instances 1 2 3 4 5 6

No. of ships 2 3 5 2 4 6
No. of products 2 2 5 4 5 5
No. of loading time windows 2 3 6 5 6 6
No. of discharging time windows 5 8 14 8 12 16

Table 2. Instance set B.

Instances 7 8 9 10 11 12

No. ships 8 8 9 10 12 15
No. products 4 5 6 7 8 11
No. loading time windows 9 12 14 15 18 21
No. discharging time windows 9 13 15 18 19 26

Before we start the discussion, the following explanations
may help to read the result tables: For the first run the best
lower bound (at optimization time limit) and the objective
value at root node LP relaxation optimum are reported. The
root node gap is the relative gap between the best solution
and the root node LP relaxation. This gap gives a measure
for the tightness of the LP relaxation. In fact, best solution
refers to the best solution identified by CPLEX. Therefore we
do not report optimality gaps between the best lower bounds
and the best solutions, because best solutions have in most
cases not been identified in the first run. Pricer calls take
place whenever new dual information is available during the
solving of a node in the branching trees. The number of calls
is reported for the first level RMP and for all second level
RMPs in total. Route regenerations refer to the number of
times level 2 provides a route that is already contained in
the first level RMP. The time needed to find all columns con-
tained in the best solution is reported under time to best cargo
pattern set. Under the broken lines in the tables the number
of explored nodes and the total running time for the second
run are reported. Except for instances 1, 2, and 4 the time to
best solution is the sum of the time used for branch-and-price
and the time until CPLEX finds the best solution.

Let us first take a look at the reported (best) solutions: In
all instances except instance 6 and 12 the entire available fleet
has been used. Optimality is only proven for instances 1, 2,
and 4. All other instances may not be optimal. Optimality
gaps are not reported for two reasons. First, for instances 8
to 12 RMP 1 root node LP relaxations have not been solved
to optimality in the given time limit and thus no valid lower
bounds are provided. Second, only instances 1, 2 and 4 pro-
vide interesting feasible solutions during the first run. For all
other instances valuable solutions are first identified in the
second run. However, where applicable we provide root node
gaps that are essentially identical to the optimality gaps. The
average gap for the multiple voyage instances 4 to 7 is only
4.9%, which is quite small for the freedom provided by the
model. It is conspicuous that the relaxation for instances 1 to
3 allowing only one voyage per route is much tighter than for
the instances with longer time periods. However, a general
conclusion should not be drawn. The quality of the results
greatly depends on the routes and cargo patterns generated
for the first level RMP. Hence, the performance of the algo-
rithm especially on the second and subproblem level plays
an important role.

Naval Research Logistics DOI 10.1002/nav

308 Naval Research Logistics, Vol. 59 (2012)

Table 3. Instance set A.

Instances 1 2 3 4 5 6

No. of ships used in best solution 2 3 5 2 4 4
Best solution 2681 4112 6936 5121 8102 7587
Best lower bound 2681 4112 6831 5121 7702 7416
Root node LP relaxation 2670 4088 6831 4804 7702 7408
% root node gap 0.4 0.6 1.5 6.6 5.2 2.4
No. of RMP 1 pricer calls 48 439 802 913 586 254
No. of RMP 2 pricer calls 614 19,591 13,239 33,633 26,975 28,711
No. of RMP 1 cargo patterns 540 12,698 29,122 54,399 44,745 21,469
No. of RMP 1 routes 44 449 1124 654 640 345
No. of route regenerations 0 0 60 89 58 15
Time to best cargo pattern set (s) 1 143 30,733 2499 685 38,177
Total branch-and-price time (s) 2 496 43,260 4262 43,200 43,380
% of B&P time used by level 2 100 96 100 96 100 100
% of RMP 2 time used by DP 4.7 3.0 3.2 2.7 1.8 3.5
No. of explored nodes on level 1 22 161 2 392 35 11
No. of explored nodes on level 2 506 17,325 8499 31,493 34,869 22,335
No. of explored nodes in final branching N/A N/A 232,583 N/A 31,925 435
Additional branching time (s) N/A N/A 10,036 N/A 2201 19
Time to best solution (s) 2 156 46,915 3550 45,390 43,398

Performance can be judged by the number of routes and
patterns generated and the time this takes. It turns out that the
number of RMP 1 pricer calls clearly is limited by the time
needed on level 2. Basically, the entire optimization time is
consumed by the second level. Pricing iterations there are
significantly faster. Compared to level 1, many pricer calls
are executed, that means many calls to the dynamic program
are made. However, at most 5.8% of the level 2 optimiza-
tion time is consumed by the dynamic program. The sum
of the RMP 1 routes and of the route regenerations for all
instances exceeds the number of RMP 1 pricer calls. That

means, that with each RMP 1 pricing iteration at least one
route with most often many cargo patterns is included into
the RMP 1. A route is included several times if it is beneficial
to extend the existing polyhedron of cargo patterns for that
route. The numbers show clearly that there are many unique
cargo patterns for the identified routes. Cargo pattern gen-
eration, which is part of the first level, consumes negligible
time. With at most 30 cargo patterns per single voyage or
900 patterns per two-voyage-route we allow the RMP 1 to
grow fast with each new route. Still route regeneration takes
place especially for the larger instances and shows that cargo

Table 4. Instance set B.

Instances 7 8 9 10 11 12

No. of ships used in best solution 8 8 9 10 12 14
Best solution 8471 10,405 11,471 12,927 14,523 16,998
Best lower bound 8056 N/A N/A N/A N/A N/A
Root node LP relaxation 8041 — — — — —
% root node gap 5.2 N/A N/A N/A N/A N/A
No. of RMP 1 pricer calls 975 259 345 259 294 360
No. of RMP 2 pricer calls 71,497 20,709 13,788 4135 1686 2302
No. of RMP 1 cargo patterns 12,387 6893 9248 7647 9155 7921
No. of RMP 1 routes 888 289 340 299 309 380
No. of route regenerations 148 69 99 55 79 87
Time to best cargo pattern set (s) 7812 38,124 39,914 15,082 24,398 35,148
Total branch-and-price time (s) 43,200 43,260 43,320 43,200 47,100 43,260
% of B&P time used by level 2 100 100 100 100 100 99.6
% of RMP 2 time used by DP 1.3 2.5 2.2 5.8 3.6 1.2
No. of explored nodes on level 1 147 1 1 1 1 1
No. of explored nodes on level 2 59,540 15,528 10,323 1807 761 962
No. of explored nodes in final branching 817,400 9834 78,290 30,449 2,317,267 1,028,948
Additional branching time (s) 5408 73 797 305 17,237 10,968
Time to best solution (s) 3835 43,320 44,072 43,485 50,539 53,385

Naval Research Logistics DOI 10.1002/nav

Hennig, Nygreen, and Lübbecke: Split Pickup and Split Delivery 309

patterns are not easily obtained. The fractions of total time
used by level 1 underline that producing many patterns poses
no problem with LP relaxation solving.

The tree sizes of the second level reflect the complexity of
nested column generation. We try to reduce time consuming
tail-off problems by stopping optimization soon after the first
improving solutions have been found. Still we face another
time problem. If we consider the number of times level 2 pric-
ing has been executed and the number of processed nodes on
level 2 in total, we see that on average there are only few pricer
calls in each tree node. Subproblem solving consumes com-
parable little time and so time consumption is mainly caused
by solving level 2 LP relaxations. We observe a few cases in
each of the largest instances where solving a single RMP 2
takes more than 1000 seconds. If we could disregard these
cases as problematic exceptions we still would have average
single node LP solving times for the largest instances of up
to 42 seconds.

The second run underlines the complexity of the largest
instances. Although all columns are known, and presolving
and cut generation are applied, CPLEX needs ∼3 to 4 hours to
solve instances 11 and 12. In fact, instances 8 and 12 running
alone on a single computer could not be solved to optimality
due to insufficient memory. The optimizations terminate with
1.6% and 3.2% optimality gap.

There are two key challenges to the proposed algorithm:
time consumption on level 2 and the ability to find good
solutions during the first run. A technical way to improve
running times would be to solve all RMP 2 for one pricing
iteration in parallel. This would eliminate the need for para-
meter tlim and a large speed up may be obtained because often
one of the RMP 2 solves relatively quickly, while others may
need exceptional running times. A more elaborate pattern
generation may also reduce running time through reducing
the number of route regenerations. At least it is not advis-
able to replace the proposed pattern generation strategy with
solving an LP for a given route for different sets of dual vari-
able values or omit the pattern generation completely. Both
approaches are significantly slower than the proposed one. It
may also be beneficial to reduce the RMP 1 and RMP 2 matri-
ces through omitting arc and node constraints and implicitly
branching on arcs and nodes through branching on sets of
columns. This however, would have prevented us from using
advanced branching techniques and heuristics already imple-
mented in SCIP. Good solutions have to be found heuristi-
cally. The employed RMP 1 heuristic mentioned in Section
4.5 helps to find solutions but do not work well enough to
replace the second run. A few instances show a considerably
shorter time to best cargo pattern set than to algorithm ter-
mination as is the case in many branch-and-bound contexts.
This should be exploited.

The underlying model provides great freedom. We have
limited the routing possibilities only with respect to realistic

constraints and not to achieve a faster algorithm. If a larger
number of potentially visited time windows on a voyage
is desired, the algorithm would remain the same. Arbitrary
splitting of time window quantities is permitted. In (Hennig
et al., working paper) the same test instances were run with
two column pregeneration algorithms, one allowing arbitrary
splitting of cargo quantities and the other one based on dis-
cretized splits. With the first algorithm no feasible solution
was found for many of the larger test instances. For all but one
of the other instances we now improve results slightly and in
one case up to 8%. We improved the results compared to the
second algorithm in (Hennig et al., working paper) between
1 and 7%. However, we did not find better solutions for the
two largest instances. In both instances we now use one addi-
tional ship which leads to a cost increase of 5% for instance
12. Interestingly, costs for instance 11 do not increase due
to one voyage less in the new solution. Note that the costs
reported in Tables 3 and 4 are not directly comparable to
the results reported in Hennig et al. (working paper). The
above discussion is based on a postoptimization step similar
to the one described in Hennig et al. (working paper). It has to
be pointed out that the proposed branch-and-price approach
considers a significantly larger feasible region than the other
mentioned models. The same feasible region would not have
been possible to consider in a column pregeneration context.

6. CONCLUSIONS AND FURTHER RESEARCH

In this article, we present a rich routing and schedul-
ing problem eminent in today’s industry. Unlike classical
assumptions in the vehicle routing literature, we consider a
heterogenous vehicle/ship fleet, multiple commodities, and
time window service quantity dependent service times. The
problem includes many-to-many relations for pickup and
delivery of single commodities and time window sequence
dependent vehicle capacities. We approach this problem with
a nested column generation algorithm decomposing the prob-
lem into many single ship problems which are themselves
decomposed into a route generation and a cargo decision
problem. This way we avoid a dynamic program, that is pos-
sibly extremely difficult to solve. Our results demonstrate the
capabilities of the approach.

For the SDVRP, the largest instances optimally solvable
today comprise about 100 customers [6]. Allowing a split of
loads in both the pickup and delivery time windows implies a
complication of this already tremendously difficult optimiza-
tion problem. The problem gets even more complex with arc
dependent capacity constraints and quantity dependent time
window service times. As a computational consequence this
implies a further combinatorial explosion of solution possi-
bilities, so it is not surprising that the resulting type of SPSDP
is even harder to solve. It is precisely this explosion (in finding

Naval Research Logistics DOI 10.1002/nav

310 Naval Research Logistics, Vol. 59 (2012)

optimal combinations of split loads) which consumes most of
our reported computation times. Thus, being able to provide
high quality solutions to instances with almost 50 pickup and
delivery locations (as we do) is noteworthy.

Our research immediately points to further research direc-
tions. Even though we have a satisfactory proof-of-concept,
there is still room for improvement. We did not, for instance,
add valid inequalities to any restricted master problem in
order to strengthen the dual bounds, nor did we implement
tailored primal heuristics to be used in our nested decom-
position approach. More elaborate branching rules for the
SPSDP could help solving the RMP 2 level quicker. It would
be interesting to study the SPSDP from a generic point of
view. A further very interesting subject of study should be to
find efficient algorithms to solve the cargo pattern generation
problem quickly and in an exact fashion. Efficient branching
rules for the SPSDP are also to be developed.

ACKNOWLEDGMENTS

Most of this work was done while the first and third authors
were with the Combinatorial Optimization & Graph Algo-
rithms Group at Technische Universität Berlin, Germany.
The authors thank Dr. Michael Drexl for his comments and
support in connection with the use of the boost resource
constraint shortest path algorithm.

REFERENCES

[1] T. Achterberg, Scip: Solving constraint integer programs,
Math Program Comput 1 (2009), 1–41.

[2] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savels-
bergh, and P.H. Vance, Branch-and-price: Column genera-
tion for solving huge integer programs, Oper Res 46 (1998),
316–329.

[3] J.M. Belenguer, M.C. Martinez, and E. Mota, A lower bound
for the split delivery vehicle routing problem, Oper Res 18
(2000), 801–810.

[4] G. Bronmø, B. Nygreen, and J. Lysgaard, Column generation
approaches to ship scheduling with flexible cargo sizes, Eur J
Oper Res 200 (2010), 139–150.

[5] A. Ceselli, G. Righini, and M. Salani, Column generation for
the split delivery vehicle routing problem, Technical report,
University of Milan - DTI - Note del Polo n. 118, 2009.

[6] G. Desaulniers, Branch-and-price-and-cut for the split deliv-
ery vehicle routing problem with time windows, Oper Res 58
(2010), 179–192.

[7] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis,
“Time constrained routing and scheduling,” in: M. Ball, T.L.
Magnanti, C.L. Monma, and G.L. Nemhauser (Editors), Net-
work routing, Volume 8, Handbooks in operations research
and management science, Chapter 2, Elsevier Science B. V.,
North-Holland, Amsterdam, 1995, pp. 35–139.

[8] J. Desrosiers and M.E. Lübbecke, “A primer in column gener-
ation,” in: G. Desaulniers, J. Desrosiers, and M.M. Solomon
(Editors), Column generation, Springer-Verlag, Berlin, 2005,
pp. 1–32.

[9] M. Dror, G. Laporte, and P. Trudeau, Vehicle routing with split
deliveries, Discr Appl Math 50 (1994), 239–254.

[10] F. Hennig, B. Nygreen, M. Christiansen, K. Fagerholt, K.C.
Furman, J. Song, G.R. Kocis, and P.H. Warrick, Maritime
crude oil transportation—A split pickup and split delivery
problem, Eur J Oper Res 218 (2012), 764–774.

[11] S. Irnich and G. Desaulniers, “Shortest path problems with
ressource constraints,” in: G. Desaulniers, J. Desrosiers,
and M.M. Solomon (Editors), Column generation, Springer-
Verlag, Berlin, 2005, pp. 33–65.

[12] M. Jin, K. Liu, and R.O. Bowden, A two-stage algorithm with
valid inequalities for the split delivery vehicle routing problem,
Int J Prod Econ 105 (2007), 228–242.

[13] C. Lee, M.A. Epelman, C.C. White III, and Y.A. Bozer, A
shortest path approach to the multiple-vehicle routing problem
with split pick-ups, Trans Res Part B 40 (2006), 265–284.

[14] M.D. McKay and H.O. Hartley, Computerized scheduling of
seagoing tankers, Nav Res Logist 21 (1974), 255–264.

[15] R. Nersesian, The economy of shipping venezuelan crude to
china, Explor Prod: Oil Gas Rev 2 (2005), 78–80.

[16] M. Nowak, Ö. Ergun, and C.C. White, Pickup and delivery
with split loads, Trans Sci 42 (2008), 32–43.

[17] UNCTAD. Review of maritime transport 2011, United
Nations, New York and Geneva, 2011.

[18] I. Vacca and M. Salani, The vehicle routing problem with dis-
crete split delivery and time windows, In Proceedings of the
9th STRC Swiss Transport Research Conference, September
9, 2009 in Monte Verita Switzerland, 2009.

[19] F. Vanderbeck, A nested decomposition approach to a three-
stage, two-dimensional cutting-stock problem, Manage Sci 47
(2001), 864–879.

Naval Research Logistics DOI 10.1002/nav

