
OPERATIONS RESEARCH
Articles in Advance, pp. 1–14

http://pubsonline.informs.org/journal/opre/ ISSN 0030-364X (print), ISSN 1526-5463 (online)

Vector Space Decomposition for Solving Large-Scale
Linear Programs

Jean Bertrand Gauthier,a Jacques Desrosiers,a Marco E. Lübbeckeb

a HEC Montréal and GERAD, Montréal, Canada H3T 2A7; b Lehrstuhl für Operations Research, RWTH Aachen University,
D-52072 Aachen, Germany

Contact: jean-bertrand.gauthier@hec.ca (JBG); jacques.desrosiers@hec.ca, http://orcid.org/0000-0003-0719-1500 (JD);
marco.luebbecke@rwth-aachen.de, http://orcid.org/0000-0002-2635-0522 (MEL)

Received: September 8, 2016

Revised: March 20, 2017; September 28, 2017

Accepted: December 23, 2017

Published Online in Articles in Advance:
August 2, 2018

Subject Classifications: linear programming;
algorithms

Area of Review: Optimization

https://doi.org/10.1287/opre.2018.1728

Copyright: © 2018 INFORMS

Abstract. We develop an algorithmic framework for linear programming guided by dual
optimality considerations. The solution process moves from one feasible solution to the
next according to an exchange mechanism that is defined by a direction and a resulting
step size. Part of the direction is obtained via a pricing problem devised in primal and dual
forms. From the dual perspective, one maximizes the minimum reduced cost that can be
achieved from splitting the set of dual variables in two subsets: one being fixed while the
other is optimized. From the primal perspective, this amounts to selecting a nonnegative
combination of variables entering the basis. The direction is uniquely complemented by
identifying the affected basic variables, if any.

The framework is presented in a generic format motivated by and alluding to concepts
from network flow problems. It specializes to a variety of algorithms, several of which
are well known. The most prominent is the primal simplex algorithm where all dual vari-
ables are fixed: this results in the choice of a single entering variable commonly leading
to degenerate pivots. At the other extreme, we find an algorithm for which all dual vari-
ables are optimized at every iteration. Somewhere in between these two extremes lies the
improved primal simplex algorithm for which one fixes the dual variables associated with
the nondegenerate basic variables and optimizes the remaining ones. The two last variants
both bestow a pricing problem providing necessary and sufficient optimality conditions.
As a result, directions yielding strictly positive step sizes at every iteration are also issued
from these pricing steps. These directions move on the edges of the polyhedron for the
latter while the former can also identify interior directions.

Funding: Jacques Desrosiers acknowledges the National Science and Engineering Research Council of
Canada [Grant RGPIN/04401-2014] and the HEC Montréal Foundation for their financial support.
Jean Bertrand Gauthier acknowledges the GERAD—Group for Research in Decision Analysis (of
Montréal, Québec, Canada)—for its financial support.

Keywords: primal simplex algorithm • column generation • degeneracy • residual problem • optimized reduced costs • cycles •
positive step size algorithms • vector space

1. Introduction
Degeneracy is a critical performance issue when solv-
ing linear programs with the simplex method in
practice.

Dantzig and Thapa (2003, p. 167) suggest “that pivot-
selection criteria should be designed to seek feasi-
ble solutions in directions away from degenerate and
‘near’-degenerate basic feasible solutions, or better yet,
driven by dual feasibility considerations.” We revisit
that statement with a different interpretation: when
trying to avoid primal infeasible directions, one should
consider pivot-selection (or pricing) rules that are also
guided by dual optimality.

While Dantzig’s pivot rule accurately measures the
improvement rate of the objective function, the influ-
ence on the affected basic variables is taken for granted
for every nonbasic variable unit change. When one
realizes that not all affected basic variables can actually

move, it becomes clear that the pricing rule suffers
from a visibility problem in terms of basic variable space.
Indeed, null step sizes can only happen when at least
one basic variable is valued at one of its bounds. As
such, degeneracy is a vicious cycle in the sense that
solutions with higher levels of degeneracy are more
likely to yield degenerate pivots. Additional computa-
tions based on the basis are incorporated in the pricing
step of steepest edge and Devex pivot rules (Forrest and
Goldfarb 1992, Harris 1973), which helps alleviate, but
not eliminate, this shortcoming. We propose the elim-
ination of basic variables leading to degeneracy from
consideration in the pricing step: This is sufficient to
overcome primal degeneracy. It grants more freedom
in the dual variables thus allowing the pricing process
flexibility in meeting dual optimality.

We propose a framework, which, given a basic fea-
sible solution, fixes the values of a subset of dual variables

1

http://pubsonline.informs.org/journal/opre/
mailto:jean-bertrand.gauthier@hec.ca
mailto:jacques.desrosiers@hec.ca
http://orcid.org/0000-0003-0719-1500
mailto:marco.luebbecke@rwth-aachen.de
http://orcid.org/0000-0002-2635-0522

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
2 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

and optimizes the remaining ones for maximizing
the minimum reduced cost. In the primal interpreta-
tion, this results in a pricing problem in which one
selects a nonnegative combination of variables enter-
ing the basis. The way to divide the dual variables
into two subsets relies on the choice of a vector sub-
space basis in the primal, capitalizing on the actual
values taken by the basic variables. This opens a wide
spectrum of possibilities. The general scheme resem-
bles a dynamic decomposition like Dantzig and Wolfe’s
and inspires the name of vector space decomposition.
It unifies a variety of specialized algorithms for lin-
ear and network programs. The most prominent spe-
cial case is the primal simplex algorithm (PS) where
all dual variables are fixed: this results in the choice
of a single entering variable commonly leading to
degenerate pivots. At the other extreme when no dual
variables are fixed, that is, all dual variables are opti-
mized at every iteration, we find the so-called min-
imum weighted cycle-canceling algorithm (MWCC)
which is strongly polynomial when solving network
flow problems (Goldberg and Tarjan 1989). Somewhere
in between these two extremes lie the improved primal
simplex algorithm (IPS) of Elhallaoui et al. (2011) for
which one only fixes the dual variables associated with
the nondegenerate basic variables, and the dynamic
constraint aggregation method (DCA) of Elhallaoui
et al. (2005) specifically designed to overcome degen-
eracy in the context of set partitioning models when
solving the linear relaxation by column generation (see
Lübbecke and Desrosiers 2005). Building our unified
framework is motivated and enabled by network flow
analogies seen in Gauthier et al. (2017). Alluding to
Dantzig and Thapa (1997), our proposal can also be
interpreted as a very general dual guided pivot rule.

Besides having a common theoretical container for
such seemingly different algorithms as PS, IPS, DCA,
MWCC, and (yet unknown) others, we feel that the
framework itself opens a new avenue of generally cop-
ing with degeneracy in simplex-like (and related) algo-
rithms. Much more importantly, however, we see an
utmost practical perspective for our work. The primal
simplex method has strong competitors with the dual
simplex and barrier methods (Bixby 2002). In partic-
ular in linear programming based branch-and-bound,
primal algorithms are not the first choice. In column
generation, however, the primal simplex algorithm is
inherently encoded in the pricing mechanism, regard-
less of which algorithm is actually used to reoptimize
the linear restricted master programs. Column gen-
eration gains more and more significance in solving
well-structured very large-scale linear programs from
practical applications. As a descendant of the primal
simplex method, it inherits all difficulties with degen-
eracy, and the linear relaxations of combinatorial opti-
mization problems particularly suffer from this. Our

framework offers a general and flexible remedy, and
yet, it allows (and benefits from) tailoring to the par-
ticular application at hand. Furthermore, it is fortunate
that our framework plays particularly well with a num-
ber of alternative suggestions to cope with degener-
acy or degeneracy-related effects in column generation,
such as dual variable stabilization (du Merle et al. 1999,
Ben Amor et al. 2009).

The paper is organized as follows. Section 2 takes
a close look at the essential components of the frame-
work. Several concepts that partake (or not) in the res-
olution process of a linear program are examined such
as nondegenerate pivots, cycles and directions, and the
so-called residual problem. Each of these is presented
in a separate manner, whereas the last subsection ties
everything together. Section 3 builds upon these ties
and gives birth to the generic framework. Two proposi-
tions are exposed in Section 4, the first determines con-
ditions guaranteeing positive step sizes at every iter-
ation and the second shows that identified directions
can be interior rather than along edges. We conclude
in Section 5 with our contribution and some research
perspectives.

2. Linear Program
Consider the linear program (LP) with lower and up-
per bounded variables:

z
⋆ :�min c

⊺
x

s.t. Ax � b [π] (1)

l 6 x 6 u ,

where x, c, l, u ∈ �
n , b ∈ �

m , A ∈ �
m×n , and m < n. We

assume that the matrix A is of full row rank, that LP (1)
is feasible, and that z

∗ is finite. The vector of dual vari-
ables π ∈ �

m associated with the equality constraints
appears within brackets on the right-hand side.

2.1. Notation
Vectors and matrices are written in bold face by, respec-
tively, using lower and upper case. We denote by I

r

the r × r identity matrix and by 0 (respectively, 1) a
vector/matrix with all zeros (respectively, ones) entries
of contextually appropriate dimension. For an ordered
subset R ⊆ {1, . . . ,m} of row indices and an ordered
subset P ⊆ {1, . . . , n} of column indices, we denote
by A

RP
the submatrix of A containing the rows and

columns indexed by R and P, respectively. We further
use standard linear programming notation like A

B
x

B
,

the subset of basic columns of A indexed by B multi-
plied by the vector of basic variables x

B
. The index set

of nonbasic columns N is used analogously.
In Section 2.2, we formulate the so-called residual

problem, which allows the construction of an oracle gen-
erating feasible directions in Section 2.4. The latter also
provides two alternative primal and dual conditions
characterizing optimality for linear programs. Finally,

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS 3

Figure 1. (Color online) Forward and Backward Variables
for the Residual Problem

yj

cj

xj
uj

−cj

yj + n

lj x j
k

let us embark upon this generic framework in Sec-
tion 2.5 by analyzing a linear transformation, the goal
being to structure the technological constraints.

2.2. Residual Problem
It is a common concept in developing network flow
algorithms to use a residual network to improve upon
some intermediate solution by identifying augmenting
flows; see Ahuja et al. (1993). Let us stay in the spirit
of network flows and propose analogies for linear pro-
grams leading to primal-dual optimality conditions on
the so-called residual problem.

We define the residual problem LP(xk) with respect
to a given solution xk at iteration k > 0 as follows.
Each variable x j , j ∈ {1, . . . , n}, in the original LP (1)
is replaced by two variables: the forward variable y j of
cost d j :� c j represents the possible increase rk

j :� u j −xk
j

of x j relatively to xk
j while the backward variable y j+n of

cost d j+n :� −c j represents its possible decrease rk
j+n :�

xk
j − l j . In fact, the y-variables satisfy y j − y j+n � x j − xk

j ,

∀ j ∈ {1, . . . , n}. Moreover, only one from each pair can
be used with a positive value, that is, the condition
y j y j+n � 0 holds, ∀ j ∈ {1, . . . , n}; see Figure 1.

Equivalent to LP (1), a formulation for the residual
problem LP(xk) is given as

z⋆ � zk
+ min d⊺y

s.t. K y � 0 [π]

0 6 y 6 r k ,

(2)

where zk :� c⊺xk , d :� [d j] j∈{1,...,2n} is the cost vector,
y :� [y j] j∈{1,...,2n} contains the forward and backward
variables, their residual capacities given by the upper
bounds r k :� [rk

j] j∈{1,...,2n}, and the matrix K :� [A,−A] ≡
[k j] j∈{1,...,2n} stands to remind us that the kernel (or null
space) of this matrix is the set of solutions to K y � 0.
A variable fixed to 0 is uninteresting, so LP(xk) may
be written using only the residual variables, that is, the
y-variables with positive residual capacities within the
set Jk :� { j ∈ {1, . . . , 2n} | rk

j > 0}. While this might
appear like a trivial statement, it is solely responsible
for allowing the identification of directions inducing
null step sizes as presented in the next section.

2.3. Directions and Cycles
By neglecting the upper bounds from (2), one obtains
a cone whose every extreme ray induces an extreme
direction originating from xk as stated in Definition 1.

Figure 2. (Color online) The Cone {y > 0 | K y � 0} ⊆ �
2n
+

Cut
by w⊺y � 1

0

w⊤y = 1

Definition 1 (Bazaraa et al. (1990)). Given an extreme
ray y ∈ {K y � 0, y > 0} ⊆ �

2n
+

, the components of direc-
tion ®v ∈ �

n are computed as differences:

®v j � y j − y j+n , ∀ j ∈ {1, . . . , n}.

To find an improving direction, it then suffices to
look within this set of extreme rays. This can be done
via an optimization program. However, since optimiz-
ing in a cone is inconvenient with respect to any com-
parative measure (unless the optimal solution is the
only extreme point), let us add the normalization con-
straint w⊺y � 1, where w > 0 is a vector of arbitrary
positive weights. This results in a cut cone where every
nonnull extreme point corresponds to an extreme ray.
In the same vein, by considering a different weight vec-
tor w, the cutting plane would be slanted differently
thus producing a modified set of extreme points, yet
each of these would remain associated with the same
extreme ray. The cone displayed in Figure 2 illustrates
these extreme rays.

A normalized direction is a direction (abusively speak-
ing by the correspondence between extreme rays and
extreme points) for which y satisfies the intersection
between the cone and the normalization constraint,
that is,

y ∈ N :� {K y � 0, y > 0,w⊺y � 1} ⊆ �
2n
+
. (3)

In the following, Definition 2 introduces the notion
of cycle, which interchangeably characterizes a normal-
ized direction, whereas Lemma 1 gives us a fundamen-
tal property regarding the cost and the reduced cost
of such a cycle. Observe that the domain N does not
depend on the current solution xk . However, by def-
inition of the cone, a cycle may always be followed
from xk with a nonnegative step size ρ > 0. Definition 3
reconsiders the existence of the residual bounds r k and
characterizes the cycles that feature a strictly positive
step size with respect to xk .

Definition 2. Let w ∈�
2n be a vector of strictly positive

weights. A cycle W is the positive variable support of y
in a normalized direction, that is, W :� { j ∈ {1, . . . , 2n} |
y j > 0, y ∈ N }.

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
4 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

The cost of a cycle W in (2) is computed as dW :�
∑

j∈W d j y j . A negative cycle is a cycle with negative cost.
The reduced cost of variable x j , j ∈ {1, . . . , n}, is defined
as c̄ j :� c j − π

⊺a j while those of variables y j and y j+n

are, respectively, d̄ j :� c j − π
⊺a j � c̄ j and d̄ j+n :� −c j −

π
⊺(−a j) � −c̄ j . The following provides the analogous

result from networks that the cost and reduced cost of
a cycle are equal.

Lemma 1. The cost dW and the reduced cost d̄W of a cycle
W are equal.

Proof. A cycle W satisfies (3), hence
∑

j∈W k j y j � 0 and

d̄W �
∑

j∈W (d j − π
⊺k j)y j � dW − π⊺

∑

j∈W k j y j � dW . �

Definition 3. An augmenting cycle at xk is a cycle W
whose composing y-variables have positive residual
capacities, that is, rk

j > 0, ∀ j ∈ W, or equivalently

W ⊆ Jk .

When in the following we speak of negative cycles,
we always refer to negative augmenting cycles as per
Definition 3 and Lemma 1. Under the previous nomen-
clature, necessary and sufficient optimality conditions
come together in a straightforward manner. In addition
to the complementary slackness optimality conditions
based on the reduced cost of the original x-variables,
we repeat here two alternative conditions characteriz-
ing optimality for LP (1).

Proposition 1 (Gauthier et al. (2014, Theorem 4)). A fea-
sible solution xk to LP (1) is optimal if and only if the
following equivalent conditions are satisfied:

Complementary slackness: There exists a π such that

c̄ j>0 ⇒ xk
j � l j ; c̄ j<0 ⇒ xk

j �u j ;

l j<xk
j <u j ⇒ c̄ j�0.

(4)

Primal: LP(xk) contains no negative cycle, that is,

dW > 0, for every cycle W in LP(xk). (5)

Dual: There exists a π such that the reduced cost of every
residual variable of LP(xk) is nonnegative, that is,

d̄ j > 0, ∀ j ∈ Jk . (6)

2.4. Oracle

To prove the optimality of xk or improve the current
solution, we derive an oracle relying on the identifica-
tion of cycles. One can be derived from the domain (3)
and an objective function that effectively computes the
cost (or the reduced cost) of each cycle properly as
follows:

min
y∈N

d⊺y. (7)

Since upper bounds are removed from the do-
main N , the oracle (7) may unfortunately identify a
nonaugmenting cycle if any y-variable with zero resid-
ual capacity remains. Keeping track of the residual

variables can be done by partitioning the x-variables
according to their current values. To achieve this,
let xk be represented by (xk

F , x
k
L , x

k
U), where the three

subvectors refer to the set of free variables F :� { j ∈
{1, . . . , n} | l j < xk

j < u j}, at their lower bounds L :� { j ∈

{1, . . . , n} | xk
j � l j}, and at their upper bounds U :�

{ j ∈ {1, . . . , n} | xk
j � u j}, respectively. Let there be f :�

|F | such free variables, 0 6 f 6 n. Observe that if xk is
basic then 0 6 f 6 m. Controlling the presence/absence
of the residual variables while solving the oracle can
then alternatively be achieved by imposing

y j � 0, ∀ j ∈ U and y j+n � 0, ∀ j ∈ L. (8)

By the primal optimality conditions in Proposition 1,
it is possible to improve intermediate solutions using
negative cycles until an optimal solution is reached. In
this respect, the step size ρ associated with the nega-
tive cycle W must satisfy ρ y j 6 rk

j , ∀ j ∈ W , and this
cycle is canceled when the step size is equal to ρ :�
min j∈W rk

j /y j > 0.

2.4.1. Primal Simplex Algorithm. Consider a basic so-
lution xk and the index set of basic variables B within
PS. A pivot operation tries to improve the current solu-
tion using a nonbasic entering variable, say xl , l ∈ N .
The aftermath of this operation is simplified to a prop-
erly selected exiting variable and the associated step
size ρ is determined by the ratio test. The ratio test
is useful on two counts. It maximally exploits the
exchange potential of the entering variable and it main-
tains a basic solution for xk+1. The mechanic is incred-
ibly simple although it might sometimes render the
linear algebra aspect of the pivot nebulous, especially
in the context of degeneracy. In this respect, when PS
performs a nondegenerate pivot at iteration k > 0, it
goes from vertex xk represented by a nonoptimal basis
to vertex xk+1 by moving along an edge (Dantzig and
Thapa 2003, Theorem 1.7), a direct consequence of the
entering/exiting variable mechanism. In the case of a
degenerate pivot, the basis is modified, but the geomet-
rical vertex solution remains the same. In other words,
the n-dimensional direction ®v (see Definition 1)

®v j �

{

y j − y j+n , ∀ j ∈ B ∪ {l}

0, ∀ j ∈ N\{l}
(9)

induced by the selected negative reduced cost entering
variable xl leads outside the domain of LP (1) and we
do not move. One may want to consider the column a l

of the entering variable as part of the linear span of AB ,
defined as V (AB) :� {ABλ | λ ∈ �

m}. By definition, any
m-dimensional column belongs to V (AB) � �

m mean-
ing in particular that for any nonbasic entering variable

∃!λ ∈ �
m such that

∑

j∈B

a jλ j � a l

which works out to λ � A−1
B a l . (10)

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS 5

Observe from (9) that a direction in the primal sim-
plex algorithm is not given by the sole entering vari-
able, nor is it limited to the entering/exiting variable
couple. It is rather associated with a cycle that com-
bines the entering variable to the affected basic ones.
Since the linear combination scalars λ in (10) can take
any sign, every column of AB is implicitly expected to
have freedom to move in either direction. This could
unfortunately turn out to be false when the pivot exer-
cise arrives. This possibility can only arise when a non-
basic column is defined by a linear combination con-
taining at least one basic variable at one of its bounds.
Indeed, the cycle associated to such an entering vari-
able might include a y j-variable, j ∈ B, with a residual
bound of 0, that is, a forward variable y j > 0 with xk

j � u j

or a backward variable y j+n > 0 with xk
j � l j . The reader

may want to compare this with (8) to realize that the
degeneracy phenomenon takes an equivalent form in
the oracle as well.

2.5. Linear Algebra

Applying the inverse of an arbitrary nonsingular ma-
trix on the equality constraints of LP (1) yields an
equivalent system. The goal of the linear transforma-
tion T

−1
P we propose is to structure the equality con-

straints, where P ⊆ B is an ordered subset of the indices
of the basic variables. The set P induces a subspace basis
AP with dimension p :� |P |. In that case, a subset of p
rows within AP are independent. There then exists a
row partition

[

ARP
ASP

]

of AP such that ARP is a nonsingu-
lar matrix of size p × p. For instance, an optimal basic
solution to the restricted phase I problem

min{1⊺θ | AP xP + Imθ � b ,θ > 0} (11)

identifies a set S of rows by associating (m − p) θ-
variables with the used columns of Im yielding the sim-

plex basis
[

ARP 0

ASP Im−p

]

, hence the requested row partition
of AP .

Let V (AP) :� {APλ | λ ∈�
p} be the vector subspace of

�
m spanned by AP . Because every subset of p linearly

independent vectors of V (AP) can be used as a sub-
space basis for V (AP), an alternative set to

[

ARP
ASP

]

is
[

Ip

M

]

,

where M :� ASPA
−1
RP . Together with the m − p indepen-

dent vectors of
[

0

Im−p

]

, it provides the basis T P of �m

and its inverse of particularly simple structure:

T P �

[

Ip 0

M Im−p

]

and T
−1
P �

[

Ip 0

−M Im−p

]

.

Applying T
−1
P on the system Ax � b results in Ā :�

T
−1
P A and b̄ :� T

−1
P b as follows:

Ā �

[

AR

AS − MAR

]

and b̄ �

[

bR

bS − MbR

]

. (12)

Definition 4 (Gauthier et al. (2016, Proposition 3)). A vec-
tor a ∈�m (and the associated variable, if any) is compat-
ible with AP if and only if āS :� aS − MaR � 0 or, equiv-
alently, a ∈ V (AP). Otherwise, the vector a is incompat-
ible.

Verifying the equivalence is straightforward when
decomposing

[

aR

aS

]

�

[

ARP
ASP

]

λ. Checking a column vector
for compatibility can therefore be done using meth-
ods available from the linear algebra arsenal. Some are
more efficient than others depending on the content
of the matrix A, probing cases being the network and
set partitioning problems that easily permit the veri-
fication of the definition; see the Transformation matrix
insight paragraph at the end of this section. Compat-
ibility can also be determined over the basis AB in
O(m2) using the positive edge rule (see Towhidi et al.
2014), which reduces the matrix multiplication compu-
tational penalty with a stochastic argument.

2.5.1. Column Partition. Given a subspace basis AP , let
Q :� {1, . . . , n}\P be an ordered subset of the indices
of all the variables outside the subset P ⊆ B. This addi-
tional column partition is represented by the matrix A�

[AP AQ]. Altogether, we have the row/column partition

A �

[

ARP ARQ

ASP ASQ

]

, where the nonsingular matrix ARP is

called the working basis. Applying T
−1
P on A yields

Ā �

[

Ip 0

−M Im−p

] [

ARP ARQ

ASP ASQ

]

�

[

ARP ARQ

0 ĀSQ

]

. (13)

If one thinks of T P as the current primal simplex
basis matrix, the ratio test of an entering variable xl

with null entries in āSl would be performed only on
the positive coefficients of āRl and thus only influence
variables related to AP . This means that all variables
associated with AP and the row set R are assumed to be
free whereas all variables associated with

[

0

Im−p

]

and the
row set S are assumed to be at their bounds. If the set
P indeed corresponds to free variables only (AP � AF),
the resulting step size would be positive for sure. In
this spirit, the purpose of T

−1
P is to induce a partition in

Ā to help look for so-called compatible column vectors;
see Section 3.

2.5.2. Transformation Matrix Insight. Ultimately, the
transformation matrix produces row and column par-
titions intimately linked together. Depending on the
application, the row partition can even be obtained in
the midst of selecting the set P by trying to capture
the linear dependence of the technological constraints.
Network flow and set partitioning problems are such
applications; see Figures 3 and 4, respectively.

In network flows, the free arcs forming AF can be
separated in trees forming a forest. The latter is ex-
pressed in matrix form in Figure 3(a) and one can then
associate a root node to each tree (in bold). Each of
these root nodes corresponds to a linear dependent
row in AF thus forming the row partition presented in

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
6 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

Figure 3. Network Flow Problem Row Partition

x54 x56 x16 x78 x98 x8, 10 x72

5 1 1

4 –1

6 –1 –1

1 1

7 1 1

8 –1 –1 1

19

–110

2 –1

3

5

4

6

7

9

8

10

1

2

3

(a) Matrix form of the forest induced by AF

x54 x56 x16 x78 x98 x8, 10 x72

1 1

–1

–1 –1

R

1 1

–1 –1 1

1

–1

1

S –1

(b) Row partition {R, S} of AF

Figure 3(b). A constructive approach leading to a con-
tracted network for the identification of negative cycles
is presented in Gauthier et al. (2017).

In set partitioning problems, and more specifically
when using DCA, a subspace basis

[
Ip

M

]
is obtained on

the fly while heuristically trying to select linear indepen-
dent rows within AF . This process is sketched in Fig-
ure 4. In Figure 4(a), the original matrix AF is presented
whereas Figure 4(b) reorganizes the duplicated rows
on the bottom (and this reorganization then applies to
the original system). By associating a unique identifier
to each singled out row in the top portion and replicat-
ing these identifiers in the bottom portion, Figure 4(b)
obtains five rows in the set R and three in the set S. Fig-
ure 4(c) uses these identifiers by replacing the matrix
content with trivial unit references for each identifier,
thus obtaining the subspace basis

[
I5
M

]
. One can easily

verify that the four columns of AF in Figure 4(b) belong
to the span of that subspace basis. This is also true for
a fifth column from the simplex basis AB , its actual
content being irrelevant.

3. Vector Space Decomposition
Framework

In this section, we look at the essential components
of the proposed framework. The algorithm relies

Figure 4. Set Partitioning Problem Row Partition

(a) Original matrix AF

©­­­­­­­­­­­
«

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

ª®®®®®®®®®®®
¬

(b) Row partition
[

ARF
ASF

]

©­­­­­­­­­­
«

ª®®®®®®®®®®
¬

1 1 a
1 1 b

1 1 c
1 1 d
1 1 e
1 1 a

1 1 b
1 1 e

(c) Subspace basis
[

I5
M

]

©­­­­­­­­­­
«

ª®®®®®®®®®®
¬

1
1

1
1

1
1

1
1

on an oracle to iterate. The latter is dynamically
updated with respect to the values of the current solu-
tion x

k . As such, the oracle is produced by applying
a row/column partition, based on the transformation
matrix, on the aforementioned residual problem. In
a nutshell, the portions obtained from this partition
communicate with each other in the same way a mas-
ter/subproblem would. In practice, we capitalize on
the dynamic partition by treating its content like a
Dantzig–Wolfe decomposition; see Dantzig and Wolfe
(1960). The generic framework is presented in Figure 5
as a concluding overview, whereas the different steps
listed therein are regrouped in four parts. Section 3.2
details the transformation leading to the pricing ora-
cle expressed in Section 3.3. An optimal solution
of the latter has to be manipulated to obtain a so-
called lifted cycle as presented in Section 3.4. We final-
ize the iteration with update operations discussed in
Section 3.5.

3.1. Initialization
It all starts at iteration k � 0 with some basic feasible
solution x

0 and column partition {F, L,U}. The con-
struction of the residual problem LP(xk) (2) calls for a
change of variables: y j − y j+n :� x j − xk

j , y j y j+n � 0, ∀ j ∈

{1, . . . , n}. These variables are bounded by 0 6 y j 6 rk
j ,

∀ j ∈ {1, . . . , 2n}.

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS 7

Figure 5. Generic Vector Space Decomposition Framework
for Linear Programs

Initialization: Iteration k :� 0;
Feasible solution x0;
Select the subspace basis AP ;

1: Derive the matrix T−1
P and the row/column

partitions {R, S}/{P,Q} of A;
2: Divide the vector y ∈ �

2n
+

with the three sets HP ,VP

and ZP as in (14)–(16);
3: Solve the pricing problem (21) for µk

V and the projected cycle W k
V ;

4: If µk
V > 0, terminate with an optimality certificate for xk ;

5: Extract the lifted cycle W k
V∪H from (22)–(23) and the direction ®vk ;

6: Compute the step size ρk (24);
7: Obtain the solution xk+1 :� xk

+ ρk ®vk using the system (25);
8: Update the subspace basis AP ;
9: Iterate k :� k + 1;

3.2. Structured Residual Problem

Once an arbitrary subspace basis AP is selected, the
induced matrix T−1

P is derived along with a row/
column partition {R, S}/{P,Q} of matrix A. The only
point we shall insist on is the structuring effect of
T−1

P . The same can obviously be observed in the resid-
ual problem LP(xk). Let us divide the vector y ∈ �

2n
+

according to P with the three sets

HP ≡ HP(x
k) :�

⋃

j∈P

{ j, j + n} (14)

VP ≡ VP(x
k) :� Jk\HP (15)

ZP ≡ ZP(x
k) :� {1, . . . , 2n}\(HP ∪VP), (16)

where the y-variables in the set HP are hidden from
the oracle, the residual variables in VP are rather vis-

ible in the oracle, whereas the remaining ones (with
null residual upper bounds) in ZP remain at zero. The
residual y-variables are obviously exhaustively consid-
ered within HP and VP . However, observe that while VP

contains only residual variables, HP may or may not.
That is, if there exists a j ∈ P such that either j ∈ L or
j ∈ U, then y j+n or, respectively, y j has a null residual
capacity. Discarding the variables in ZP from the resid-
ual problem, that is, yk

j � 0, ∀ j ∈ ZP , the formulation (2)
can then be rewritten as

z⋆ � zk
+ min

∑

j∈HP

d j y j +

∑

j∈VP

d j y j

s.t.
∑

j∈HP

kR j y j +

∑

j∈VP

kR j y j � 0 [ψR]

∑

j∈VP

k̄S j y j � 0 [ψS]

0 6 y j 6 rk
j , ∀ j ∈ HP ∪VP ,

(17)

where k j is the jth column vector of K, K̄ :� T−1
P K, and

ψ⊺ � [ψ
⊺

R, ψ
⊺

S] is the vector of dual variables of the
transformed system. The original dual vector π can be
retrieved from ψ using the expression π⊺ �ψ⊺T−1

P , that
is, [π

⊺

R, π
⊺

S]� [ψ
⊺

R −ψ
⊺

S M , ψ
⊺

S].

3.3. Pricing Oracle: Cycle and Direction
The pricing problem exploits the structure in (17) and
derives an oracle based on the resulting transforma-
tion. The oracle is presented in both primal and dual
forms, each having its own interpretation. Let us start
with the dual form that is derived by trying to meet the
necessary and sufficient optimality conditions. That is,
if the assumed free variables in the set P are at an opti-
mal value, the dual variables of π, or those of ψ, must
impose a reduced cost of zero on these variables [com-
plementary slackness conditions (4)]:

0� c̄
⊺

P � c
⊺

P −ψ
⊺

RARP

(� c
⊺

P − (π
⊺

R + π
⊺

S M)ARP � c
⊺

P − π
⊺

RARP − π
⊺

S ASP).
(18)

Furthermore, if the current solution xk is optimal,
there exists a dual vector ψS such that the smallest re-
duced cost of the remaining variables in VP , say µV , is
nonnegative [dual condition (6)]. This verification can
be done with the linear program

max µV

s.t. µV 6 d̄ j � d j −ψ
⊺

R kR j −ψ
⊺

S k̄S j [y j] ∀ j ∈ VP , (19)

where the vector ψ
⊺

R � c
⊺

P A−1
RP is fixed by (18), whereas

the vector ψ
⊺

S is part of the optimization so as to max-
imize the minimum reduced cost. More generally, one
can use the scalars w j > 0, ∀ j ∈ VP , and maximize the
minimum normalized reduced cost (see Section 3.3.1):

max µV

s.t. µV 6
d̄ j

w j

�
1

w j

(d j −ψ
⊺

R kR j −ψ
⊺

S k̄S j)

[y j] ∀ j ∈ VP . (20)

Dualizing (20), we obtain the primal form that com-
prises m − p + 1 constraints:

min
∑

j∈VP

d̃ j y j

s.t.
∑

j∈VP

k̄S j y j � 0 [ψS]

∑

j∈VP

w j y j � 1 [µV] (21)

y j > 0, ∀ j ∈ VP ,

where d̃ j :� d j − ψ
⊺

R kR j � d j − c
⊺

P A−1
RP kR j , ∀ j ∈ VP . The

oracle interpretation is done through the primal-dual
pair (20)–(21). It brings together the negative cycles
and T−1

P .

3.3.1. Oracle Interpretation. First of all, the formula-
tion (21) is always feasible unless x0 is the only feasible
solution of LP (1). Reciprocally, (20) is always feasi-
ble although unbounded in the exception case. Note
that we can ensure that the primal-dual pricing sys-
tem is feasible/bounded if we write the normalization

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
8 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

constraint as a less-than-or-equal inequality or equiv-
alently one imposes µV 6 0. Furthermore, weight val-
ues of w used for the normalization constraint can
be set in stone or updated dynamically. In the for-
mer case, think of the all-ones vector typically used
in network flows (see Gauthier et al. 2015) or the
norm based weights such as w j � w j+n � ‖a j ‖, ∀ j ∈

{1, . . . , n}, which makes the ratio d̄ j/w j impervious to
the scaling of variable x j . In the latter case, dynamic
weight choices can also be made to help steer the pric-
ing problem toward or away from certain solutions; see
Rosat et al. (2017a, b) for several alternatives that have
been particularly successful for solving set partition-
ing problems using the integral simplex using decompo-
sition algorithm (ISUD) (Zaghrouti et al. 2014). Finally,
it can also be noted that all other things being equal, a
smaller value of w j favors the selection of variable y j in
the pricing problem. Conversely, an infinite weight is
equivalent to discarding a variable in a partial pricing
strategy.

Let yk
V :� [yk

j] j∈VP
denote an optimal solution to the

primal-dual system of value µk
V at iteration k > 0. If

µk
V > 0, the dual optimality conditions are satisfied and

we terminate with an optimal solution xk . Otherwise,
µk

V < 0 and the current solution might be improved by
following a direction.

3.4. Projected and Lifted Cycles

An optimal negative cycle, say W k
V , derived from (21) is

augmenting since only residual variables y j , j ∈ VP , are
considered (see Definition 3). However, the fact that the
solution yk

V for the visible variables is built omitting
the variables in yH > 0 means that it only provides a
portion of yk . Then again, by construction of the linear
transformation, these hidden components are uniquely
determined within (17) in the system of row set R
where the free nature of variables in P is assumed, that
is,

∑

j∈HP

kR j y j +

∑

j∈VP

kR j y
k
j � 0, y j > 0, ∀ j ∈ HP . (22)

The nonsingularity of ARP is made apparent in
the transformed system (13) and also finds its way
in the equivalent formulation (17). The solution
yk

H to (22) is then determined alike (10) by λP :�
A−1

RP(−
∑

j∈VP
kR j y

k
j) as

yk
j �

{
−λ j , if λ j < 0

0, otherwise
and

yk
j+n �

{
λ j , if λ j > 0

0, otherwise
for all j ∈ P, (23)

and the direction ®vk follows from the application of
Definition 1 to yk

� [yk
H , yk

V , yk
Z]. Observe that the com-

plementarity condition y j y j+n � 0, ∀ j ∈ {1, . . . , n}, is

taken into account at every stage. First off, by look-
ing for extreme point solutions to the pricing problem,
any negative cycle W k

V cannot contain both y j and y j+n

variables simultaneously. Secondly, yk
H is established

in (23) by dichotomy on the signs of λP .
All in all, the cycle W k

V found in the pricing prob-
lem is the support of incomplete information about the
direction yet, once W k

V is identified, the complete cycle
is always uniquely determined. In this respect, let W k

V

be called a projected cycle on the visible variables in
the linear system (21) whereas the full cycle produced
with [yk

H , yk
V] is named the lifted cycle and is denoted

by W k
V∪H .

Furthermore, since the reduced cost of the hidden
variables is d̄ j � 0, ∀ j ∈ HP , we must have d̄(W k

V) �

d̄(W k
V∪H). By Lemma 1, the reduced cost of the cycle

W k
V∪H also corresponds to its cost such that fixing the

reduced costs of the hidden components to zero trans-
fers the reduced cost information to the visible vari-
ables as d̃ j , j ∈ VP , although the latter contains some
dual variables free to be optimized in the pricing prob-
lem. Finally, recall that the projected cycle W k

V is always
augmenting. Whether or not the lifted cycle W k

V∪H is
itself guaranteed to be augmenting over the set of resid-
ual variables in Jk is directly related to the free nature of
the hidden variables in HP . In other words, whether the
step size computed next is certainly positive depends
on the content of P (see Proposition 2).

3.5. Step Size and Updates

The step size ρk of the lifted cycle W k
V∪H is computed

with respect to the residual capacities of the variables
forming it, divided by their respective contribution as

ρk :� min
j∈W k

V∪H

{
rk

j

yk
j

}
> 0. (24)

A new primal solution xk+1 :� xk
+ ρk ®vk with cost

zk+1 :� zk
+ ρk µk

V is obtained as

∀ j ∈ {1, . . . , n}, xk+1
j :�





xk
j + ρ

k yk
j , if j ∈ W k

V∪H

xk
j − ρ

k yk
j , if j + n ∈ W k

V∪H

xk
j , otherwise.

(25)

Depending on the choice of the subspace basis AP ,
xk+1 represented by [xk+1

F , x
k+1
L , x

k+1
U] could be nonba-

sic. Section 4.2 explains how and when this can hap-
pen with the conceptualization of interior directions. We
simply mention that any nonbasic solution xk+1 can be
rendered basic by solving a restricted problem over the
set of free variables:

zk+1
�min c

⊺

F xF + c
⊺

L xL + c
⊺

U xU

s.t. AF xF +ALxL +AU xU � b (26)

lF 6 xF 6 uF , xL � xk+1
L , xU � xk+1

U .

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS 9

This problem identifies augmenting cycles compris-
ing free variables only, and increases or decreases the
value of these variables until some lower and upper
bounds are reached while possibly improving the over-
all solution cost. In network flows terminology, one
obtains a cycle free solution, that is, a network solution
containing no cycle composed of free arcs only; see
Ahuja et al. (1993).

There only remains to update the residual problem
LP(xk+1) with residual capacities r k+1 and column par-
tition {F, L,U}, and to select a new subspace basis AP .
Another iteration k → k + 1 then starts in Step 1.

4. Properties
The generic framework ultimately depends on a sin-
gle parameter, that is, the selection of the set P. Sec-
tion 4 derives two propositions revolving around this
selection. In Section 4.1, we underline particular well-
known variants of this framework, whereas Section 4.2
qualifies the kinds of directions found in accordance
with the selected set P. In Section 4.3, an illustrative
example on a three-dimensional polyhedron shows
that a direction with a positive step size can occur on an
edge, or be interior. Finally, Section 4.4 draws the line
between the proposed framework and actual imple-
mentations based on its principles.

4.1. Special Cases

Let us start with a family of variants that perform a pos-
itive step size at every iteration. This is completed with
four specific variants found in the linear programming
literature.

Proposition 2. Let xk , k > 0, be a nonoptimal basic solution
to LP (1). Given P ⊆ F, the step size of ®vk is guaranteed to
be positive.

Proof. If P ⊆ F, or equivalently P ∩ (L ∪ U) � �, then
all the hidden y-variables in HP are residual as well
as those in VP . Therefore, the primal-dual pair of the
pricing problem (20)–(21), respectively, matches the
necessary and sufficient primal-dual optimality condi-
tions of Proposition 1. Indeed, the a posteriori lifted
cycle W k

V∪H obtained from W k
V trivially only uses vari-

ables in Jk and is as such a negative cycle in LP(xk),
meaning that the associated step size is positive. �

Remark. Consider the case P * F, or equivalently P ∩
(L ∪ U) , �, from the perspective of dual optimality
conditions. If there exists a j ∈ P such that j < F (i.e.,
j ∈ L ∪ U), then the reduced cost of zero imposed on
both, y j and y j+n is too stringent. The reduced cost
of a y-variable with a null residual capacity is irrel-
evant, which would incidentally have granted more
freedom toψR. One can see the pricing oracle construc-
tion also misleads the verification of the dual condi-
tion (6). Indeed, (18) implies d̄ j � d̄ j+n � 0, ∀ j ∈ P, or

equivalently d̄ j � d j − ψ
⊺

R kR j > 0, ∀ j ∈ HP , that is, the
nonfree variables contained in HP are all part of the
verification when they should not. In other words, this
overly restrictive observation is also echoed in the pri-
mal form where a cycle using such a y-variable is made
possible, that is, the additional column in the primal
form comes from the additional constraint in the dual
form. Observe that this is portrayed in PS when facing
a degenerate basis.

Case P � �. When choosing P � �, it amounts to a
subspace basis A� of dimension zero, which in turn
means that V(A�) � {0}. Since the vector subspace
contains only the zero vector, there are no compati-
ble variables, basic or otherwise. The transformation
is trivial, that is, T� � T

−1
� �

[

I0 �
� Im

]

� Im . From a dual
point of view, the entire m-dimensional dual vector π
is optimized to maximize the minimum reduced cost.
From a primal point of view, the pricing problem con-
tains precisely all the residual variables and guaran-
tees a positive step size (otherwise the current solu-
tion is optimal). When A is the node-arc incidence
matrix of a network, this particular case corresponds
to the remarkable strongly polynomial minimum mean
cycle-canceling algorithm (MMCC) of Goldberg and
Tarjan (1989) devised for capacitated minimum cost
flow problems. With respect to arbitrary linear pro-
grams, it appears natural to think of yet another anal-
ogy: minimum weighted cycle-canceling algorithm. From
a mechanical point of view, the adaptation is straight-
forward. However, the extent to which time complexity
properties are transferable is left for another paper.

Case P � F. Choosing P � F corresponds to the strat-
egy developed by Elhallaoui et al. (2011) in IPS. The
vector subspace V (AF) includes all columns of AF �
[

ARF
ASF

]

but none associated with the basic variables at
one of their bounds: ∀ j ∈ B, a j ∈ V (AF) ⇔ j ∈ F. The

transformation is given by T
−1
F �

[I f 0

−M Im− f

]

, where M �

ASFA
−1
RF . As a special case of Proposition 2, a positive

step size is guaranteed.
Case P � B. When choosing P � B, we have m linearly

independent column vectors with AB and V (AB)��
m .

All variables are compatible whereas the sets P and Q,
respectively, correspond to all basic and nonbasic vari-
ables. The subspace basis induces T B � T

−1
B �

[

Im �
� I0

]

�

Im yielding once again a trivial transformation. Most
importantly, it fixes π⊺ � c

⊺

B A
−1
B , that is, all dual vari-

ables, and with w � 1, the generic framework becomes
the primal simplex algorithm with Dantzig’s pivot-
selection rule. When B ∩ (L ∪ U) , �, that is, when at
least one basic degenerate variable is present, the set
HP contains y-variables with null residual capacities
and a null step size can occur, that is, a degenerate
pivot.

Case P ⊇ F. When choosing P ⊇ F, we have f 6 p 6 m
linearly independent column vectors in AP . This case

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
10 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

Figure 6. (Color online) Special Cases of VSD:
MMCC (1989), IPS (2008), DCA (2005), and PS (1947)

AP

MMCC …

P = BP = ∅

P = F

P ⊇ F

Positive step sizes

P ⊆ F

Possibly degenerate pivots

PSDCAIPS …

P ∩ (L ∪ U) ≠ ∅

notably includes DCA, the strategy used in Elhallaoui
et al. (2005) for solving set partitioning problems by
column generation. While the equivalent form with
the columns of AB exists, the subspace basis

[

I
M

]

is
obtained by design, more precisely heuristic row clus-
tering as seen in Figure 4. If P ⊃ F, then the set HP

contains p − f y-variables with null residual capaci-
ties. This possibly larger than necessary subspace basis
gives a lot of freedom in the implementation of DCA,
a method steered by practical imperatives.

Figure 6 synthesizes these special cases with respect
to Proposition 2, providing also the year they have been
designed.

4.2. Interior Directions

Since PS relies on the edge movement induced by a
pivot by considering the direction of travel, let us add
a layer of definition on the resulting impact of this
direction.

Definition 5. Let C be a polyhedron. Given a vertex
x ∈ C and a direction ®v , 0, let x + ρ®v ∈ C for some
ρ > 0. The vector ®v is called an edge direction originating
from x if for 0 < δ < ρ, the vector x + δ®v belongs to an
edge of C. Otherwise, a nonedge direction is called an
interior direction originating from x.

An important property of IPS (where P � F) is its
movement on an edge (Elhallaoui et al. 2011, Propo-
sition 4). Proposition 2 shows that the family of algo-
rithms with P ∩ (L ∪ U) � �, or equivalently P ⊆ F,
ensures a positive step size at every iteration. This also
means that the oracle associated with any of these vari-
ants is able to verify the necessary and sufficient opti-
mality conditions. While one might rest uneasy about
equivalent necessary and sufficient optimality condi-
tions provided by two different oracles, the following
proposition sheds light on their content and character-
izes improving interior directions originating from a
nonoptimal basic solution xk . In a nut shell, since the
case P � F only identifies edge directions, it provides
the smallest dimensional cone K̄SV yV � 0, y > 0, able
to exhaustively identify the set of feasible edge direc-
tions. Variants using P ⊂ F must then contain these

edge directions or combinations of these, that is, inte-
rior directions.

Proposition 3. Let xk , k > 0, be a nonoptimal basic solution
to LP (1). For P ⊂ F, an interior direction ®vk (if any) is a
nonnegative combination of the edge directions.

Proof. For P � F, any lifted solution yk
� [yk

V , y
k
H , y

k
Z]

to (21)–(23) is in a one-to-one correspondence with an
extreme ray of the cone defined by removing the nor-
malization constraint. Let Ωk

F be the index set of these
extreme rays, indexed by ω. Any solution y to (21)–(23)
is nonnull and by the representation theorems of
Minkowski and Weyl (see Section 7.2 in Schrĳver 1986),
it can then be expressed as a nonnegative combination
of these extreme rays, that is, y �

∑

ω∈Ωk
F

yωλω, λω > 0,

∀ω ∈ Ωk
F , or component-wise for j ∈ {1, . . . , 2n}, y j �

∑

ω∈Ωk
F

yωj λ
ω , λω > 0, ∀ω ∈ Ωk

F . By Definition 1, every

component ®v j , j ∈ {1, . . . , n}, of the associated direction
®v is given by

®v j � y j − y j+n �

∑

ω∈Ωk
F

(yωj − yωj+n)λ
ω , λω > 0, ∀ω ∈Ωk

F ,

and hence, ®v is a nonnegative combination of the edge
directions:

®v �

∑

ω∈Ωk
F

vωλω , λω > 0, ∀ω ∈Ωk
F . (27)

For P ⊂ F, the pricing problem involves more visible
y-variables compared to the case with P � F because
VP ⊃ VF . At the same time, it contains f − p more con-
straints since m − p + 1 > m − f + 1. Therefore, if ®vk is
not an edge direction, then it is interior and by (27) it
can be expressed as a nonnegative combination of the
edge directions. �

Note that a direction leading to a nonbasic solution
must be an interior direction. As such, observe that
the case P � � is one of the variants susceptible to
lead to nonbasic solutions. However, since T−1

� � Im and
all dual variables are optimized in the pricing prob-
lem, the simplifications applicable to the different steps
in Figure 5 imply that maintaining the basic nature
of encountered solutions is irrelevant. For all other
cases, fetching an index set P of linearly independent
columns can be made simply by solving (26).

4.3. Illustrative Examples

Consider the linear program expressed in (28) with
x1, x2, and x3, and four inequality constraints. Let
x4 , . . . , x7 be the slack variables associated with each
constraint and assume the initial basic solution x0 uses
these at values x0

4 � 21, x0
5 � 8, x0

6 � 15 and x0
7 � 32 for a

total cost of z0
� 0. This basic solution is nondegenerate

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS 11

Figure 7. Extreme Rays yV at x0 in Pricing for P � F and
P ��

Variants y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

P � F 1 0 0
0 1 0
0 0 1

P �� 1 0 0 0 1 0 1 2 0 2 0
0 1 0 1 0 1 1 0 1 0 0
0 0 1 0 1 1 0 2 0 0 2
0 2 1 0 0 3 0 0 1 0 0
1 2 0 0 0 0 3 0 1 0 0
2 3 1 0 0 0 3 3 0 0 0

and hence there are three edge directions according to
the selected entering variable x1, x2, or x3.

max 130x1 + 80x2 + 60x3

s.t. 2x1 − x2 + 2x3 6 21

− x1 + x2 − x3 6 8 (28)

2x1 − x2 − x3 6 15

− x1 − x2 + 2x3 6 32

x1 , x2 , x3 > 0.

Let us start with the possible values of the projected

vector yV ∈ �
|V |
+

arising from y ∈ �
14
+

while solving the
oracle (21). For P � F, eight variables are hidden from
the pricing problem, that is, the forward and back-
ward y-variables associated with the four slack vari-
ables in F, only three are visible in (21), that is, y1,
y2 and y3, whereas y8, y9 and y10 are fixed to zero.
The three-dimensional extreme ray (y1 , y2 , y3) can take
values (1, 0, 0), (0, 1, 0), and (0, 0, 1). For P �� and inci-
dentally HP � �, y8 , y9 and y10 are again fixed to zero
such that all the residual variables are visible in the
oracle. The vector yV is therefore the 11-dimensional
vector (y1 , . . . , y7 , y11 , . . . , y14) for which the six extreme
rays, conveniently expressed with integers, are listed in
Figure 7.

Figure 8 details the content of ®v0 ∈ �
7 found under

the suggested set P and weight vector w. One would
of course use the stopping criterion µk

V 6 0 since (28)
is being maximized. The minimum cost of the associ-
ated cycle W0

V is given by µ0
V , the step size ρ0 recovered

Figure 8. Directions ®v0 Found at x0 in Pricing for P � F and Two Variants of P ��

c j coefficients 130 80 60

Variant w j variables x1 x2 x3 x4 x5 x6 x7 z1 µ
0
V ρ0

P � F 1 ®v0 (edge) 1 0 0 −2 1 −2 1 130 7.5
x1 7.5 0 0 6 15.5 0 39.5 975

P �� 1 ®v0 (interior) 1
6

1
4

1
12

−1
4

0 0 1
4

140
3

84
x1 14 21 7 0 8 15 53 3,920

P �� ‖a j ‖
2 ®v 0 (interior/face) 1

22
1
11

0 0 −1
22

0 3
22

145
11

176

x1 8 16 0 21 0 15 56 2,320

Figure 9. (Color online) Three-Dimensional Interior
Direction (®v 0

1 , ®v
0
2 , ®v

0
3)� (1

6
,

1
4
,

1
12
) with P �� and w � 1

x1

x2

x3

(1/6, 0, 0)

(0, 1/4, 0)

(0, 0, 1/12)

with (24), and the new solution x1 obtained with (25).
As expected, the direction ®v 0

� (1, 0, 0,−2, 1,−2, 1)
found with IPS (P � F) follows an edge and yields an
extreme point solution at x1. Notice that since x0 is non-
degenerate, we have F � B and we would have found
the same direction upon selecting x1 as the entering
variable in PS.

When P � � and w j � 1, ∀ j ∈ {1, . . . , 14}, ®v0
�

(1
6
,

1
4
,

1
12
,− 1

4
, 0, 0, 1

4
) induced by the last extreme ray of

Figure 7 so happens to be interior (Figure 9) and yields
a feasible solution x1, which is nonbasic (six variables
take positive values). By Proposition 3, this ®v 0 is indeed
the combination of edge directions, that is,

®v0
�

1
6
(1, 0, 0,−2, 1,−2, 1)+ 1

4
(0, 1, 0, 1,−1, 1, 1)

+
1
12

(0, 0, 1,−2, 1, 1,−2).

The last example in Figure 8 still uses the set P ��
but uses a weight vector whose every element w j is
determined by computing the squared norm ‖a j ‖

2 of
each column, that is, w1 � 22

+ (−1)2 + 22
+ (−1)2 � 10.

The pricing problem finds a different extreme ray
that also induces an interior direction, indeed ®v0

�

(1
22
,

1
11
, 0, 0, −1

22
, 0, 3

22
) that happens to be within the x1x2-

face.
By no means do we imply that the set P � � pro-

vides all around better directions than with P � F. In
fact, it suffices to modify the coefficients of x1 and x2

in the third constraint to 1 and 3 to get the opposite
effect when using w � 1. In other words, it remains
difficult to distinguish what the quality of a direction
really is. For instance, Klee and Minty (1972) propose

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
12 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

a parametric LP for which the Dantzig’s pivot rule
behaves exponentially. This is a pathological exam-
ple not reflecting typical practical behavior but yield-
ing a theoretical insight. Similar examples have been
suggested for many known pivoting rules (Paparrizos
et al. 2009), and we do so within our framework in the
following.

The Klee–Minty polytope is a hypercube of paramet-
ric dimension whose corners have been distorted. It
can be written as

max
x>0

2n−1x1 + 2n−2x2 + · · ·+ 2xn−1 + xn

s.t. x1 6 5

4x1 + x2 6 25 (29)

8x1 + 4x2 + x3 6 125

...
...

2n x1 + 2n−1x2 + · · ·+ 4xn−1 + xn 6 5n
.

The previous LP contains n variables, n constraints,
and 2n extreme points. Starting at x � 0, the initial basis
comprises all the slack variables s j , for j � 1, . . . , n,
valued at s j � 5 j . Using the Dantzig’s pivot rule, PS
first selects the variable with the largest reduced cost
(indeed, the largest c j in this case), that is, x1 as the
entering variable. It then goes through each of the
extreme points before reaching the optimal solution
at (0, 0, . . . , 5n). None of the 2n − 1 pivots is degener-
ate, hence IPS would follow the same trajectory as PS,
this showing that IPS can also have an exponential
time complexity in the worst case. MWCC behaves in
a totally different way. Assuming unit weights in the
pricing problem (21), the latter writes as

µ �max
y , s>0

2n−1 y1 + 2n−2 y2 + · · ·+ 2yn−1 + yn

s.t. y1 − y1+3n � 0

4y1 + y2 − y2+3n � 0

8y1 + 4y2 + y3 − y3+3n � 0 (30)
...

...

2n y1 + 2n−1 y2 + · · ·+ 4yn−1 + yn − y4n � 0

y1 + y2 + · · ·+ yn−1 + yn +

n
∑

j�1

y j+3n � 1,

where y1+3n , y2+3n , . . . , y4n are the backward residual
variables for the slacks at their upper bounds. Taking
into account the last equality to zero together with the
normalizing constraint, we derive an upper bound on
the value of µ:

µ �max(2n−1 y1 + 2n−2 y2 + · · ·+ 2yn−1)+ yn

�max

(

y4n − yn

2

)

+ yn �max
y4n + yn

2
6

1

2
.

Let µ(y j) � 2n− j/(2(2n− j+1 − 1)), j � 1, . . . , n , be the
value of the objective function in (30) for the cycle using
variable y j , each one inducing an edge direction. The
reader can verify that µ(yn) �

1
2
, whereas µ(y j) <

1
2

for
all j � 1, . . . , n − 1. Therefore, MWCC selects the cycle
composed of yn � 0.5 and y4n � 0.5. The pivot operation
raises xn to 5n , decreases sn by the same amount to zero,
and therefore MWCC reaches the optimal solution in a
single iteration on the Klee–Minty polytope.

4.4. Computational Behavior

Having a generic framework that conceptually hosts,
for example, PS, IPS, DCA, and MMCC does not imply
that we believe in a generic competitive implementa-
tion of the framework. Note that all these specializa-
tions are efficiently implemented in the literature, but
each implementation massively exploits their respec-
tive context. However, our unified presentation opens
up further opportunities for more tailoring to partic-
ular applications. This may manifest in special kinds
of transformation matrices, special update strategies of
the row/column partitions, and/or in special strate-
gies of computing dual solutions. We think of this
versatility as one of the framework’s biggest strengths
that may be most useful in contexts in which solv-
ing the pricing problem is expensive anyway, like in
column generation. An oracle capable of producing
strictly improving columns may be extremely useful.

PS at one end of the spectrum is highly competi-
tive, even in network problems where 70%–90% of the
pivots are degenerate (Ahuja et al. 1993, Section 18.3).
At the other end, MMCC applied on the same type of
problems is desperately slow where sometimes solv-
ing the oracle takes more time than the original prob-
lem (Kovács 2015); we observe the same behavior for
the linear programming counterpart MWCC. Never-
theless, when cancel-and-tighten, a clever partial pric-
ing strategy for which the order of the improving cycles
becomes irrelevant, is considered alongside MMCC,
we see significant time reductions (Gauthier et al. 2015,
2017). In this light, MWCC, just like its network coun-
terpart MMCC, may be an intermediate step to reach
a more efficient cancel-and-tighten version adapted to
linear programs. This is certainly worth investigating.

Moreover, while IPS requires the inverse of a subma-
trix within the current basis, the additional computa-
tional burden needs to be intimately tied to the imple-
mentation for it to make any sense. On that note, it
seems that the positive edge rule is already implemented
in practice (Towhidi et al. 2014).

Finally, DCA is a sound and proven method based on
an intuitive clustering of the rows appearing in master
problems based on set partitioning formulations. Mul-
tiple strategies have been developed to cope with rout-
ing and scheduling applications in an efficient manner
(Elhallaoui et al. 2008, 2010). While it does not seem

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS 13

like it can efficiently be applied to arbitrary linear pro-
gramming matrices, DCA has also been extended to
ISUD, which considers integrality in the solution pro-
cess. The idea is to transfer the integrality requirements
to the oracle. The latter aims to determine integer lead-
ing directions via ad hoc cutting planes and dynamic
weights for the normalization constraint until it fails
for lack of tractability. ISUD is as such often able to ter-
minate with a near-optimal solution thus eliminating
the typical branch-and-bound tree.

5. Conclusion
This paper unites under one generic framework several
known primal algorithms with a broad spectrum of
possibilities. Aside from pinpointing reasons simplex-
type algorithms suffer from degeneracy, the elimina-
tion of the latter is made possible through a linear
transformation. The purpose of this paper is further
driven by primal algorithms such as column genera-
tion where mechanisms coping with degeneracy are
beneficial. The two extreme cases of our framework
correspond to the primal simplex and the minimum
weighted cycle-canceling algorithms. Two properties
are established for different family members: positive
step sizes at every iteration and pricing problems that
provide edge directions only. The improved primal
simplex algorithm is remarkably the only variant that
qualifies for both features. While interior directions are
certainly usual in the realm of nonlinear algorithms,
it is not so often that one thinks about such possibili-
ties for simplex-like algorithms. On another note, the
minimum weighted cycle-canceling algorithm requires
neither a matrix transformation nor the maintenance of
basic solutions. It even does not require the knowledge
of a dual vector at any iteration, although the conver-
gence proof in strongly polynomial time for the net-
work version is totally driven by the dual point of view.
Because the cost and the reduced cost of a cycle are
equal, any heuristic looking for negative cycles could
interchangeably use the original costs of the variables
or some reduced costs derived from any approxima-
tion of the dual values. This idea is already proving
elegant in our recent experiments with heuristic sub-
problem pricers within branch and price for vehicle
routing problems where columns are found using the
original costs rather than the traditional reduced costs.

The vector space decomposition framework revolves
around a unique parameter and is derived directly
from necessary and sufficient optimality conditions
established on the residual problem. The parameter
may vary at every iteration and dictates how the lin-
ear program decomposition is made. Some variables
are hidden, producing an oracle looking for cycles in
a projected space where only visible variables remain.

Cycles are found and lifted back to the residual prob-
lem before finding the step size along the associated
direction.

Finally, column generation as a primal algorithm
to solve large-scale linear programs is a main benefi-
ciary of our proposal. Indeed, the dual guided pricing
can reduce the row size of the master problem where
degeneracy difficulties occur. Moreover, accelerating
strategies such as stabilization techniques can be incor-
porated to all the variants. Indeed, dual variables can
be optimized within intervals in either the master or
the subproblem providing flexible arrangements. As
we play with dual variables, the automated identifica-
tion of dual optimal inequalities (Valério de Carvalho
2005, Ben Amor et al. 2006, Gschwind and Irnich 2016)
is also appealing.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algo-
rithms, and Applications (Prentice Hall, Upper Saddle River, NJ).

Bazaraa MS, Jarvis JJ, Sherali HD (1990) Linear Programming and Net-
work Flows (John Wiley & Sons, New York).

Ben Amor HMT, Desrosiers J, Frangioni A (2009) On the choice of
explicit stabilizing terms in column generation. Discrete Appl.
Math. 157(6):1167–1184.

Ben Amor HMT, Desrosiers J, Valério de Carvalho JM (2006) Dual-
optimal inequalities for stabilized column generation. Oper. Res.
54(3):454–463.

Bixby RE (2002) Solving real-world linear programs: A decade and
more of progress. Oper. Res. 50(1):3–15.

Dantzig GB, Thapa MN (1997) Linear Programming 1: Introduction.
Mikosch TV, Resnick SI, Robinson SM, eds. Springer Series
in Operations Research and Financial Engineering (Springer,
New York).

Dantzig GB, Thapa MN (2003) Linear Programming 2: Theory and Exten-
sions. Mikosch TV, Resnick SI, Robinson SM, eds. Springer Series
in Operations Research and Financial Engineering (Springer,
New York).

Dantzig GB, Wolfe P (1960) Decomposition principle for linear pro-
grams. Oper. Res. 8(1):101–111.

du Merle O, Villeneuve D, Desrosiers J, Hansen P (1999) Stabilized
column generation. Discrete Math. 194(1–3):229–237.

Elhallaoui I, Desaulniers G, Metrane A, Soumis F (2008) Bi-dynamic
constraint aggregation and subproblem reduction. Comput.
Oper. Res. 35(5):1713–1724.

Elhallaoui I, Metrane A, Desaulniers G, Soumis F (2011) An improved
primal simplex algorithm for degenerate linear programs.
INFORMS J. Comput. 23(4):569–577.

Elhallaoui I, Metrane A, Soumis F, Desaulniers G (2010) Multi-phase
dynamic constraint aggregation for set partitioning type prob-
lems. Math. Programming 123(2):345–370.

Elhallaoui I, Villeneuve D, Soumis F, Desaulniers G (2005) Dynamic
aggregation of set partitioning constraints in column generation.
Oper. Res. 53(4):632–645.

Forrest JJ, Goldfarb D (1992) Steepest-edge simplex algorithms for
linear programming. Math. Programming 57(1):341–374.

Gauthier JB, Desrosiers J, Lübbecke ME (2014) Decomposition theo-
rems for linear programs. Oper. Res. Lett. 42(8):553–557.

Gauthier JB, Desrosiers J, Lübbecke ME (2015) About the min-
imum mean cycle-canceling algorithm. Discrete Appl. Math.
196(December):115–134.

Gauthier JB, Desrosiers J, Lübbecke ME (2016) Tools for primal
degenerate linear programs: IPS, DCA, and PE. EURO J. Trans-
portation Logist. 5(2):161–204.

Gauthier JB, Desrosiers J, Lübbecke ME (2017) A strongly polyno-
mial contraction-expansion algorithm for network flow prob-
lems. Comput. Oper. Res. 84(August):16–32.

Gauthier, Desrosiers, and Lübbecke: Vector Space Decomposition
14 Operations Research, Articles in Advance, pp. 1–14, © 2018 INFORMS

Goldberg AV, Tarjan RE (1989) Finding minimum-cost circulations
by canceling negative cycles. J. ACM 36(4):873–886.

Gschwind T, Irnich S (2016) Dual inequalities for stabilized column
generation revisited. INFORMS J. Comput. 28(1):175–194.

Harris PMJ (1973) Pivot selection methods of the Devex LP code.
Math. Programming 5(1):1–28.

Klee V, Minty GJ (1972) How good is the simplex algorithm?
Shisha O, ed. Inequalities, Vol. 3 (Academic Press, New York),
159–175.

Kovács P (2015) Minimum-cost flow algorithms: An experimental
evaluation. Optim. Methods Software 30(1):94–127.

Lübbecke ME, Desrosiers J (2005) Selected topics in column genera-
tion. Oper. Res. 53(6):1007–1023.

Paparrizos K, Samaras N, Zissopoulos D (2009) Linear programming:
Klee–Minty examples. Floudas CA, Pardalos PM, eds. Encyclo-
pedia of Optimization, 2nd ed. (Springer, Boston), 1891–1897.

Rosat S, Elhallaoui I, Soumis F, Chakour D (2017a) Influence of the
normalization constraint on the integral simplex using decom-
position. Discrete Appl. Math. 217(January):53–70.

Rosat S, Quesnel F, El Hallaoui I, Soumis F (2017b) Dynamic penal-
ization of fractional directions in the integral simplex using
decomposition: Application to aircrew scheduling. Eur. J. Oper.
Res. 263(3):1007–1018.

Schrĳver A (1986) Theory of Linear and Integer Programming (John
Wiley & Sons, Chichester, West Sussex, UK).

Towhidi M, Desrosiers J, Soumis F (2014) The positive edge criterion
within COIN-OR’s CLP. Comput. Oper. Res. 49(September):41–46.

Valério de Carvalho JM (2005) Using extra dual cuts to accelerate
convergence in column generation. INFORMS J. Comput. 17(2):
175–182.

Zaghrouti A, Soumis F, El Hallaoui I (2014) Integral simplex using
decomposition for the set partitioning problem. Oper. Res.
62(2):435–449.

Jean Bertrand Gauthier is currently at the Johannes
Gutenberg University in Mainz, Germany, in a postdoctoral
position with Professor Stefan Irnich. His work, “Primal
Algorithms for Degenerate Linear and Network Flow Prob-
lems,” was awarded the best dissertation prize at HEC Mon-
tréal (2016).

Jacques Desrosiers is a full professor in the Department
of Management Sciences at HEC Montréal. He is also a
member of the GERAD Operations Research Center. His
main research interests include column generation algo-
rithms and large-scale optimization for vehicle routing and
crew scheduling in air, rail, and urban transportation.

Marco E. Lübbecke is a professor and chair of operations
research at the School of Business and Economics and the
Department of Mathematics at RWTH Aachen University,
Germany. He has been modeling and solving large and com-
plex discrete optimization problems from science and indus-
try for more than 20 years. His main research contributions
are in computational integer programming, in particular in
the field of decomposition algorithms. Marco is an INFORMS
board member.

