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We consider the problem of covering an orthogonal polygon with a minimum number of axis-
parallel rectangles from a computational point of view. We propose an integer program which
is the first general approach to obtain provably optimal solutions to this well-studied NP-hard
problem. It applies to common variants like covering only the corners or the boundary of the
polygon, and also to the weighted case. In experiments it turns out that the linear programming
relaxation is extremely tight, and rounding a fractional solution is an immediate high quality
heuristic. We obtain excellent experimental results for polygons originating from VLSI design,
fax data sheets, black and white images, and for random instances. Making use of the dual
linear program, we propose a stronger lower bound on the optimum, namely the cardinality of a
fractional stable set. Furthermore, we outline ideas how to make use of this bound in primal-dual
based algorithms. We give partial results which make us believe that our proposals have a strong
potential to settle the main open problem in the area: To find a constant factor approximation
algorithm for the rectangle cover problem.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Linear Programming, Integer Programming

1. INTRODUCTION

A polygon with all edges either horizontal or vertical is called orthogonal. Given an
orthogonal polygon P , the rectangle cover problem is to find a minimum number
of possibly overlapping axis-parallel rectangles whose union is exactly P . In com-
putational geometry, this problem received considerable attention in the past 25
years, in particular with respect to its complexity and approximability in a number
of variants. Still, the intriguing main open question [Bern and Eppstein 1997] is:

Is there a constant factor approximation algorithm for the rectangle
cover problem?
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We do not answer this question now, but we offer a different and new kind of reply,
which is “computationally, yes.” In fact, we provide a fresh experimental view, the
first of its kind, on the problem which has applications in the fabrication of masks
in the design of DNA chip arrays [Hannenhalli et al. 2002], in VLSI design, and in
data compression, in particular in image compression.

Previous work. Customarily, one thinks of the polygon P as a union of finitely
many (combinatorial) pixels, sometimes also called a polyomino. The polygon P
can be associated with a visibility graph G [Maire 1994; Motwani et al. 1989a;
1989b; Schrijver 2003]: The vertex set of G is the set of pixels of P and two vertices
are adjacent in G if and only if their associated pixels can be covered by a common
rectangle. Rectangles correspond to cliques in G. A clique is a set of vertices, any
two of which are adjacent. We will denote by θ the number of rectangles in an
optimal cover. An obvious lower bound on θ is the size α of a maximum stable set
in G, also called maximum independent set. This is a set of pixels, no two of which
are contained in a common rectangle. In the literature one also finds the notion of
an antirectangle set.

Chvátal originally conjectured that α = θ, and this is true for convex poly-
gons [Chaiken et al. 1981] and a number of special cases. Szemerédi gave an exam-
ple with θ 6= α, see Fig. 1. Intimately related to the initially stated open question,
Erdős then asked whether θ/α was bounded by a constant. In [Chaiken et al. 1981]
an example is mentioned with θ/α ≥ 21/17 − ε, however, this example cannot be
reconstructed from [Chaiken et al. 1981], and thus we cannot verify it. The best
proven bound is θ/α ≥ 8/7.

For polygons with holes and even for those without holes (also called simple
polygons) the rectangle cover problem is NP-hard [Masek 1979; Culberson and
Reckhow 1994] and MaxSNP-hard [Berman and DasGupta 1997]. In particular
this implies that there is no polynomial time approximation scheme. Since the rect-
angle cover problem is a special set cover problem, the standard greedy approach
immediately gives an O(log n) approximation. For general polygons, Anil Kumar
and Ramesh [2003] are the first (and currently best) to improve upon this obvious
factor, giving an approximation guarantee of O(

√
log n), where n is the number

of edges of P . The proof of this result is rather involved. For simple polygons
Franzblau [1989] gives a sweepline algorithm which achieves an approximation fac-
tor of 2. In the general case, the proven factor of this algorithm is O(log n) but
conjectured by Franzblau [1989] to be 3. The lower bounds used to prove approx-
imation guarantees are the stable set size α and (an upper bound on) the size of
a largest clique in G. A constant factor approximation in the general case can be
considered as the remaining white spot in the problem’s complexity landscape.

Quite some research efforts have gone into finding polynomially solvable special
cases; we mention only covering with squares [Aupperle et al. 1988; Levcopoulos
and Gudmundsson 1997] and polygons in general position [Bern and Eppstein 1997].
Interestingly, there is a polynomial time algorithm for partitioning a polygon into
non-overlapping rectangles [Ohtsuki 1982]. However, a polygon similar to Fig. 4
shows that an optimal partition size may exceed an optimal cover size by a linear
factor, so this does not lead to a constant factor approximation.
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Our Contributions. Despite its theoretical hardness, we demonstrate the rectan-
gle cover problem to be computationally very tractable. In particular we study an
integer programming formulation of the problem. Doing this, we are the first to of-
fer an exact (of course non-polynomial time) algorithm to obtain provably optimal
solutions, and we are the first to introduce linear/integer programming techniques
in this problem area. It has been pointed out e.g., by Anil Kumar and Ramesh
[2003] that the main difficulty in coming up with good approximation algorithms
is to find good lower bounds on the optimum cover size. Based on a fractional
solution to the (dual of the) linear programming relaxation we propose a stronger
lower bound which we call the fractional stable set size. In fact, this new lower
bound motivates us to pursue previously unexplored research directions to find a
constant factor approximation algorithm. These are the celebrated primal-dual
scheme [Goemans and Williamson 1996], rounding a fractional solution, iterated
rounding [Jain 2001], and a dual fitting algorithm [Vazirani 2001].

Currently with “only” encouraging computational results in our hands, we are
optimistic that our research will actually contribute to a positive answer to the
initially stated long standing open question. We sketch partial results and promising
ideas. A fruitful contribution of our work is a number of open questions it spawns.
Last but not least we hope to increase the awareness in the computational geometry
community towards tools from mathematical programming.

Preliminaries. Since we are dealing with a combinatorial problem, we identify P
with its set of combinatorial pixels. This way we write p ∈ P to state that pixel p is
contained in polygon P . Let R denote the set of all rectangles in P . It is important
that we only count rectangles and do not consider their areas. Thus, it is no loss
of generality to restrict attention to inclusionwise maximal rectangles. We will do
so in the following without further reference. The number of these rectangles can
still be quadratic in the number n of edges of P [Franzblau 1989], see also Fig. 2.

2. AN INTEGER PROGRAM

Interpreting rectangles as cliques in G we can make use of the standard integer
programming formulation for the minimum clique cover problem in graphs [Schri-
jver 2003]. A binary variable xr indicates whether rectangle r ∈ R is chosen in the
cover or not. For every pixel p ∈ P at least one rectangle which covers p has to be
picked, and the number of picked rectangles has to be minimized:

θ = min
∑

r∈R

xr (1)

s. t.
∑

r∈R:r3p

xr ≥ 1 p ∈ P (2)

xr ∈ {0, 1} r ∈ R (3)

This integer program (which we call the primal program) allows us to optimally
solve any given instance of our problem, and we will do so in our experiments. When
we replace (3) by xr ≥ 0, r ∈ R (3′), we obtain the associated linear programming
(LP) relaxation. There is no need to explicitly require xr ≤ 1, r ∈ R, since we
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are minimizing. We call the optimal objective function value of the LP relaxation
the fractional cover size of P and denote it by θ̄. Clearly, it holds that θ̄ ≤ θ. In
general, no polynomial time algorithm is known to compute the fractional clique
cover number of a graph, that is, for solving this linear program [Schrijver 2003].
In our case, however, the number of variables and constraints is polynomial in
n, in fact quadratic, due to the fact that we work with maximal rectangles only.
Therefore, the fractional cover size θ̄ can be computed in polynomial time.

The integer program (1)–(3) immediately generalizes to the weighted rectangle
cover problem, where rectangles need not have unit cost. It is straightforward, and
it does not increase the complexity, to restrict the coverage requirement to par-
ticular features of the polygon like the corners or the boundary—two well-studied
variants [Berman and DasGupta 1997] for which no exact algorithm has been pre-
sented. It is also no coincidence that a formal dualization of our program leads
to a formulation for the dual problem of finding a maximum stable set. A binary
variable yp, p ∈ P , reflects whether a pixel is chosen in the stable set or not. We
have to require that no rectangle contains more than one of the chosen pixels, and
we maximize the number of chosen pixels. We call this the dual integer program:

α = max
∑

p∈P

yp (4)

s. t.
∑

p∈P :p∈r

yp ≤ 1 r ∈ R (5)

yp ∈ {0, 1} p ∈ P (6)

Again, when replacing (6) by yp ≥ 0, p ∈ P (6′), we obtain the associated LP
relaxation. We call its optimal objective function value ᾱ the fractional stable

set size of P . We refer to a feasible solution to the dual as a fractional stable

set. It holds that ᾱ ≥ α. By strong linear programming duality we have ᾱ =
θ̄. We stress again the fact that we distinguish between the (primal and dual)
integer programs which solve the problems exactly, and their respective continuous

linear programming relaxations, which give bounds. In general, optimal solutions
to both linear programs (1)–(3′) and (4)–(6′) are fractional. However, using an
interesting link to graph theory, in the case that G is perfect [Golumbic 1980],
optimal solutions are automatically integer because of a strong duality between
the integer programs [Schrijver 2003]. This link was established already early, see
e.g., [Berge et al. 1981; Motwani et al. 1989a; 1989b], and our linear programs give
optimal integer covers in polynomial time for this important class of polygons with
α = θ.

2.1 About Fractional Solutions

Our computational experiments fuel our intuition. Anticipating our numerical re-
sults we already give some qualitative observations here. In linear programming
based approximation algorithms the objective function value of a primal or dual
fractional solution is used as a lower bound on the integer optimum. The more we
learn about such fractional solutions the more tools we may have to analyze the
problem’s approximability.
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Fig. 1. The original counterexample to α = θ by Szemerédi and (to the right; indicated is the odd
whole) an optimal fractional cover. Thicker lines (points) indicate rectangles (pixels) which are
picked to the extent of 0.5.

General Observations. The linear relaxations (1)–(3′) and (4)–(6′) appear to be
easily solvable to optimality in a few seconds on a standard PC. The vast majority
of variables already assumes an integer value. A mere rounding of the remaining
fractional variables typically gives an optimal or near-optimal integer solution (e.g.,
instance night is a bad example with “only” 95% integer values, but the rounded
solution is optimal). For smaller random polygons the LP optimal solution is very
often already integer; and this is an excellent quality practical heuristic, though
memory expensive for very large instances.

Odd Holes. Fig. 1 (left) shows Szemerédi’s counterexample to the α = θ conjec-
ture. The 5 rectangles indicated by the shaded parts have to be in any cover. In
the remaining parts of the polygon, there are 5 pixels which induce an odd-length
cycle C (“odd hole”) in the visibility graph G. To cover these pixels, at least 3
rectangles are needed, implying θ ≥ 8. On the other hand, at most 2 of these pixels
can be independent, that is, α ≤ 7. The odd hole C is precisely the reason why
G is not perfect in this example. Fig. 1 (right) shows that C is encoded in the
optimal fractional solution as well: Exactly the variables corresponding to edges of
C assume a value of 0.5. The same figure shows an optimal fractional stable set.
Pixels corresponding to vertices of C assume a value of 0.5 (drawn fatter in the
figure). That is, ᾱ = θ̄ = 7.5. This immediately suggests to strengthen the LP
relaxation.

Lemma 2.1. For any induced odd cycle C with |C| ≥ 5, the inequality
∑

r∈C xr ≥
d|C|/2e is valid for (1)–(3), where r ∈ C denotes the rectangles corresponding to

the edges of C.

The graph theoretic complements of odd holes are called odd antiholes. A graph
is not perfect either if it contains an induced odd antihole. We can prove that there
is no way of representing even the simplest non-trivial antihole with 7 vertices in a
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rectangle visibility graph. Odd holes are therefore the only reason for imperfection,
however, they are not the only reason for fractional solutions. From our experi-
ments, arbitrary fractions are possible, not only halves. More explicitly, we know
of no way of lower bounding the smallest occurring fraction, and simply rounding a
fractional solution does not give a constant factor approximation. We pursue this
a little further next.

High Coverage. We define the coverage of a pixel p as the number of rectangles
which contain p. For the classical set cover problem, rounding up an optimal
fractional solution gives an f -approximate cover, where f is the maximum coverage
of any element. In general, a pixel can have more than constant coverage; even
worse, almost no pixel may have constant coverage. Even in an optimal cover of a
simple polygon in general position pixels may have high coverage (see Fig. 2). Unlike
in the general set cover case, high coverage is no prediction about the fractions in an
optimal LP solution: In Fig. 2 (right) there are no fractional variables, the solution
is integer. The fractional (indeed integer) optimal solution to this simple example
has a remarkable property. Every rectangle in the optimal cover contains pixels of
low coverage. More precisely, the following holds.

Lemma 2.2. In an optimal cover C, every rectangle r ∈ C contains a pixel which

is uniquely covered by r.

This can be easily seen since otherwise C \ {r} would be a cover, contradicting the
optimality of C. We call these uniquely covered pixels private. Since the number
of private pixels is the number of rectangles in a cover we deem this aspect of
the problem worthy of more investigation. Even more so since by complementary
slackness (see below) private pixels (these fulfill the constraints (5) with equality)
are the only candidates for being picked (at least fractionally) into a stable set.

Note that a set of private pixels need not be a stable set. It is therefore natural
to relax the concept and ask: What are the characteristics of polygons where every
pixel has only constant coverage? What kind of polygons have “many” pixels with
“low” coverage? How can we exploit Lemma 2.2? Answers to these questions would
turn LP rounding into a constant factor approximation algorithm. These questions
also keep appearing in different guises in the next section.

3. LP BASED APPROXIMATION

There are more elaborate linear programming based approaches to constant factor
approximation algorithms. They can be used as analytical tools to theoretically
sustain our excellent computational results.

3.1 Iterated Rounding

In standard LP rounding (of all the fractional variables) the approximation fac-
tor hinges on the magnitude of the smallest fraction. Alternatively, Jain [2001]
proposed to round up only one fractional variable at a time, adapt the linear pro-
gram to reflect the rounding, solve the modified linear program again, and iterate.
Adapting the linear program in our case means that rounding up a rectangle r at
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Fig. 2. Left: The shaded center pixel is covered by any maximal rectangle; almost all pixels have
non-constant coverage. In an optimal cover, the coverage of the center pixel is linear in the cover

size. The right figure schematically shows a minimal cover and a maximum stable set. Note that
there are pixels of small, in fact unique coverage in the cover—we call these private.

fractional value x is the same as reducing the coverage requirement for all the pixels
in r from 1 to 1 − x.

Proving an approximation factor via this iterated rounding scheme relies on two
parts: The first is that one can always (in every iteration) find a rectangle/variable
with a large value, and the second is that a solution to the final (modified) linear
program is still feasible to the initial linear program in order to guarantee that the
initial linear program actually gives a lower bound on the cover size of the rounded
solution. The latter is indeed immediate for our linear program. For the former, in
our experiments we always found (fractional) variables of value at least 0.5, and a
geometric argument why this is always the case would be most interesting.

3.2 Primal-Dual Scheme

The primal-dual scheme [Goemans and Williamson 1996] builds on relaxing the
complementary slackness optimality conditions [Schrijver 2003] in linear program-
ming. The general scheme iteratively improves an initially infeasible integer primal
solution, that is, a set of rectangles, to finally obtain a feasible cover. The im-
provement step is guided by a feasible fractional dual solution, that is a fractional

stable set, which is improved in alternation with the primal solution. The relaxed
complementary slackness conditions contain the key information. In our case they
read

xr > 0 ⇒ 1

d
≤

∑

p∈P :p∈r

yp r ∈ R (7)

for some constant d, and

yp > 0 ⇒
∑

r∈R:r3p

xr ≤ c p ∈ P (8)
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for some constant c. First note that if a possibly infeasible primal integer solution
is maintained, xr > 0 means xr = 1. An interpretation of condition (7) is that
every rectangle in the constructed cover must cover at least 1/d pixels from the
fractional stable set. Condition (8) states that a pixel in the fractional stable set
must not be contained in more than c rectangles (regardless of whether in the cover
or not).

We found two cases where we can compute a cover and a fractional stable set
simultaneously such that the two conditions hold. Thin polygons, as unions of
width 1 or height 1 rectangles, are a class of polygons amenable to LP rounding
and the primal-dual scheme: Since no pixel is covered by more than two rectangles
this gives a 2-approximation. More generally, polygons of bounded width (every
pixel contains a boundary pixel in its “neighborhood”) are a new non-trivial class
which allows a constant factor approximation. Of course, the primal-dual scheme
trivially applies when all rectangles have bounded (combinatorial) area.

3.3 Dual Fitting

Since α ≤ θ the former natural approach to approximation algorithms was to
construct a large stable set usable as a good lower bound [Franzblau 1989]. Since
α ≤ ᾱ we propose to use the stronger bound provided by a fractional stable set. Our
dual fitting approach is to simultaneously construct a cover C ⊆ R and an pseudo

stable set S ⊆ P of pixels with |C| ≤ |S| (we say that S pays for C). “Pseudo”
refers to allowing a constant number c of pixels in a rectangle, that is, we relax (5)
to

∑
p∈P :p∈r yp ≤ c. From this constraint we see that picking each pixel in S to the

extent of 1/c (which is a division of all yp variables’ values by c) gives a feasible
fractional solution to our dual linear program. A cover with these properties has a
cost of

|C| ≤ |S| ≤ c · ᾱ = c · θ̄ ≤ c · θ , (9)

that is, it would yield a c-approximation. Actually, one does not have to require that
S pays for the full cover but 1

d
|C| ≤ |S| for a constant d suffices, which would imply

a (c · d)-approximation. This paying for a constant fraction of the primal solution
only is a new proposal in the context of dual fitting. Here again, the question is
how to guarantee our conditions in general. From a computational point of view,
we obtain encouraging results which suggest that our proposal can be developed
into a proven constant factor approximation. In the next section we sketch some
ideas how this can be done.

4. TOWARDS A CONSTANT FACTOR APPROXIMATION

4.1 Obligatory Rectangles and Greedy

For set cover, the greedy algorithm yields the best possible approximation factor of
O(log n). The strategy is to iteratively pick a rectangle which covers the most yet
uncovered pixels. One expects that for our particular problem, the performance
guarantee can be improved. Computationally, we answer strictly in the affirmative.
Again, our contribution is the dual point of view. It is our aim to design an
algorithm which is based on the dual fitting idea of Section 3.3, and we mainly
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have to say how to construct a feasible dual fractional solution.

We use some terminology from [Hannenhalli et al. 2002]. Certain rectangles have
to be in any cover. A prime rectangle contains a pixel which is not contained in any
other rectangle. Such a pixel is called a leaf. Every cover must contain all prime
rectangles. For a given pixel p we may extend horizontally and vertically until we
hit the boundary; the rectangular area R(p) defined by the corresponding edges
at the boundary is called the extended rectangle of p. R(p) might not be entirely
contained in the polygon but if so, it is a prime rectangle [Hannenhalli et al. 2002].
Moreover, let C′ ⊆ C be a subset of some optimal cover C. If there is a rectangle r
which contains (P \ C′) ∩ R(p) for some extended rectangle R(p), then there is an
optimal cover which contains C ′ and r [Hannenhalli et al. 2002]. In this context,
let us call rectangle r quasi-prime and pixel p a quasi-leaf. The algorithm we use
to compute a cover is a slight extension of [Hannenhalli et al. 2002], but we will
provide a new interpretation, and more importantly, a dual counterpart:

Quasi-Greedy

1. pick all prime rectangles
2. pick a maximal set of quasi-prime rectangles
3. cover the remaining pixels with the greedy algorithm
4. remove redundant rectangles (“pruning”)

It has not been observed before that a set of leafs and quasi-leafs forms a stable
set. This leads to the idea to compute a pseudo stable set containing a maximal
set of leafs and quasi-leafs. Thus, in order to build a pseudo stable set we check for
every rectangle in the greedy cover whether it contains

1. a leaf
2. a quasi-leaf
3. a corner pixel

(in this order). The first positive test gives a pixel which we add to the pseudo sta-
ble set. A corner pixel is a corner of a rectangle which is private and a corner of the
polygon. We already observed that pixels from steps 1 and 2 are independent. Fur-
thermore, any rectangle obviously contains at most 4 corner pixels, and since corner
pixels are private, actually at most 2 of them. By our previous considerations, this
would imply a 2-approximation if the constructed pseudo stable set would pay for
the whole cover. In general, we found this not to be true. We have constructed
examples which suggest that one cannot guarantee that a constant fraction of the
cover has been paid for. To achieve this latter goal one has to add more pixels to
the pseudo stable set. To this end we extend the above test and also check for every
rectangle in the cover whether it contains

4. a border pixel.

A border pixel p is private and adjacent to a non-polygon pixel p̄ (the outer face
or a hole). The row (or column) of pixels which contains p, which is adjacent to
p̄, and which extends to the left and the right (to the top and the bottom) until
some non-polygon pixel is hit must not be adjacent to a different hole (or the outer
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not a border pixel

border pixel

(row is adjacent to more than one hole)

corner pixel

not a corner pixel (not private)

not a border pixel (not private)

Fig. 3. Illustrating corner and border pixels; yellow pixels are the row of the border pixel (which
is adjacent to only one hole).

face) other than the hole (or the outer face) the pixel p̄ corresponds to, see Fig. 3.
Also these pixels have a natural motivation: They are a kind of analogue to corner
pixels in the sense that a border pixel represents an edge of a rectangle. It is,
however, conceivable that some rectangle contains several border pixels picked into
the pseudo stable set, even though we conjecture than one cannot come up with a
geometry that enforces such a situation.

Let us furthermore remark that after the pruning step in Quasi-Greedy, every
rectangle in the cover contains a private pixel (Lemma 2.2). This pixel is an intuitive
candidate to become a pixel in a pseudo stable set. This set would actually pay for
the whole cover. However, it is not clear whether one can control how many pixels
of this set can be contained in the same rectangle.

4.2 Using Boundary Covers

There is a simple 4-approximation algorithm for covering the boundary of an or-
thogonal polygon [Berman and DasGupta 1997]. In this context a natural question
arises: Can we always find an interior cover whose size is bounded from above by a
constant multiple of the size θboundary of an optimal boundary cover? The answer
is “no.” Our counterexample in Fig. 4 shows that there is an O (

√
n)-cover of the

boundary of the polygon in the left figure with maximal horizontal and vertical
strips. But the optimal interior cover needs Θ(n) rectangles since the white uncov-
ered pixels in the right figure are independent. Nevertheless, the latter observation
is actually very encouraging. We conjecture that one can find an interior cover of
size less than c1 · θboundary + c2 · α where c1 are c2 are appropriate constants. This
would imply a constant factor approximation for the rectangle cover problem.

We constructed an example (Fig. 5) that shows that an optimal boundary cover
may leave an odd hole of interior pixels uncovered. This implies that a solution to
a linear program for covering the remaining pixels may be fractional.



Rectangle Covers Revisited Computationally · 11

Fig. 4. A boundary cover may leave a non-constant fraction of pixels uncovered. Note that in this
example all uncovered pixels are leafs, i.e., uniquely contained in some rectangle and therefore are
all independent. A (4-approximation of a) boundary cover and a cover for these pixels obtained
e.g., by our Quasi-Greedy algorithm is thus a proven 5-approximation (in fact, actually optimal).

0.500000

0.500000

0.500000

0.5000000.500000

0.500000

0.500000

0.500000

0.500000

0.500000

Fig. 5. An optimal boundary cover of this polygon is depicted with green rectangles; the red pixels
form an odd hole which need to be covered by three additional rectangles. A fractional solution
to the linear program is given on the right.

4.3 Quasi-Prime Rectangles and Breaking Holes

There is a large class of polygons (e.g., polygons resulting from typical oligonu-
cleotide masks [Hannenhalli et al. 2002]) where the optimal cover is found after
the first two steps of the Quasi-Greedy algorithm in Section 4.1. Then the cover
consists of only prime and quasi-prime rectangles. This is of course in general not
the case (see Fig. 1). Now, consider the set U of pixels remained uncovered after
step 2. We can prove that there is an induced cycle (a hole) in G whose vertices
correspond to a subset of U . Covering each second edge of this hole extends the
previous partial cover. We call this covering step to “break a hole.” A straight-
forward algorithm is the following: while the polygon is uncovered, iteratively pick
a maximal set of quasi-prime rectangles, then find a hole and break it. We can
iteratively extend also the partial pseudo stable set. The quasi-prime rectangles
are paid for by quasi-leafs, which form a stable set. The rectangles which break an
even (odd) hole can all (but one) be paid for by a stable set, too.
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We have experimented with related and extended ideas based on the observations
sketched in Sections 4.2 and 4.3 and obtained encouraging results. We hope that
our findings will constitute an important step to enable researchers to finally come
up with a constant factor approximation algorithm.

5. COMPUTATIONAL EXPERIENCE

A technical investigation of our LP based proposals for possible constant factor
approximations for the rectangle cover problem and their computational evalua-
tion went hand in hand. Directly or indirectly all primal-dual related questions
boil down to “is it geometrically possible to select many pixels which are almost

independent?” In this respect we think that the Quasi-Greedy algorithm is a
representative method to provide partial answers. It is also our aim to further
sustain the somewhat unexpected well-behavior of the problem or our formulation.

5.1 “Real-World” Polygons

Our test set comprises polygons of various sizes which are derived from VLSI mask
design (instances VLSI*), a set of standard fax images3 (instances ccitt*), and
several black and white images (instances marbles, mickey, . . . ). The ratio between
the number of available rectangles and the optimal cover size can be seen as one
indicator about the difficulty of an instance (this has to be used carefully as Fig. 2
shows an easy instance with θ2 rectangles). Tables I and II summarize our results.

5.2 Random Polygons

We used two different generators for random polygons. The first, flip-coin, simply
decides for each pixel (of a square of given size) with a given probability (the same
for every pixel) whether it is in the polygon or not. The second, union, generates a
given number of rectangles and outputs their union: Each generated rectangle has
random upper left and lower right corners (up to a given maximum side length,
common for width and height), i.e., it is placed at a random position. Random

always refers to uniformly at random. Fig. 6 shows sample polygons, Figs. 7 and 8
try to capture the difficulty of our random polygons. Tables III and IV summarize
our results.

5.3 Results

Tables I and III give overwhelming evidence for the excellent quality of the lower
bound obtained from the LP relaxation of our integer program. The integrality gap
(relative gap between linear and integer program in percent) is always close to zero
(for 1564 out of 1800 random polygons the gap actually is zero).

From Tables II and IV we first observe that covers computed with our Quasi-

Greedy algorithm are generally very close to optimum. To computationally sup-
port our conjecture that the dual fitting analysis of Quasi-Greedy indeed leads

3Available at ftp://nic.funet.fi/pub/graphics/misc/test-images/



Rectangle Covers Revisited Computationally · 13

Fig. 6. Samples of random 50×50 polygons. The top row is generated with the flip-coin generator
with pixel probabilities of 90%, 75%, and 50%. The bottom row is generated with the union
generator: the characteristics as (maximal side length, number of rectangles) pairs are (10, 1000),
(5, 2000), and (3, 2000), in that order. Even though union type polygons in the bottom row look
“more natural” our algorithms are more challenged by dense flip-coin polygons.

to a constant approximation factor we evaluate several more characteristics of the
pseudo stable sets we compute. Our findings are summarized in Figs. 9–14.

We have never seen more than 4 pixels of a pseudo stable set in a rectangle (which
appears to be a sensible number to aim at in a geometry context). We remark that
our observed worst case is 4 pixels but the average fraction of rectangles containing
3 or 4 pseudo stable pixels is almost negligibly small. Our pseudo stable sets
consistently pay for more than 75% of the cover size. According to our line of
argumentation in Section 4.1, this empirically supports that Quasi-Greedy be an
(4 · 4

3
)-approximation algorithm for the rectangle cover problem. From Table IV it

appears that large and dense polygons obtained from the flip-coin generator come
closest to refute this conjecture; we generated density 90% instances of size up to
1000× 1000, however, to no negative effect to our conjecture.

5.4 Corner and Boundary Covers

Finding a minimum cover only for the corners or the boundary of a polygon is NP-
hard as well [Berman and DasGupta 1997]. Just out of interest, and to initiate a
fresh thinking here as well, we computationally related the optimum cover sizes for
these problems to minimum rectangle (interior) cover sizes.

The relation θcorner ≤ θboundary ≤ θ is obvious. In computations we found that
θboundary is closer to θ than to θcorner, and it appears that θ ≤ 2·θcorner which implied
that θ ≤ 2 ·θboundary. Recall that there is a 4-approximation for the boundary cover
problem.
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instance characteristics dual (stable set size) primal (cover size)
Instance size density rectangles opt. LP opt. IP LP gap opt. LP opt. IP LP gap

VLSI1 68×35 50.25% 45 43.000 43 0.000% 43.000 43 0.000%
VLSI2 3841×298 95.34% 16694 4222.667 4221 0.039% 4222.667 4224 0.032%
VLSI3 148×135 45.09% 78 71.000 71 0.000% 71.000 71 0.000%
VLSI5 6836×1104 55.17% 192358 77231.167 77227 0.005% 77231.167 77234 0.004%
ccitt1 2376×1728 3.79% 27389 14377.000 14377 0.000% 14377.000 14377 0.000%
ccitt2 2376×1728 4.49% 30427 7422.000 7422 0.000% 7422.000 7422 0.000%
ccitt3 2376×1728 8.21% 40625 21085.000 21085 0.000% 21085.000 21085 0.000%
ccitt4 2376×1728 12.41% 101930 56901.000 56901 0.000% 56901.000 56901 0.000%
ccitt5 2376×1728 7.74% 46773 24738.500 24738 0.002% 24738.500 24739 0.002%
ccitt6 2376×1728 5.04% 30639 12013.000 12013 0.000% 12013.000 12014 0.008%
ccitt7 2376×1728 8.69% 85569 52502.500 52502 0.001% 52502.500 52508 0.010%
ccitt8 2376×1728 43.02% 41492 14024.500 14022 0.018% 14024.500 14025 0.004%
marbles 1152×813 63.49% 56354 44235.000 44235 0.000% 44235.000 44235 0.000%
mickey 334×280 75.13% 17530 9129.345 9127 0.026% 9129.345 9132 0.029%
day 480×640 64.63% 45553 32191.000 32190 0.000% 32191.000 32192 0.003%
night 480×640 96.02% 17648 7940.985 7938 0.038% 7940.985 7943 0.025%

Table I. Results for the primal and dual linear/integer programs. For each instance we list its size in pixels, its number of pixels
(as a fraction), and its number of (maximal) rectangles. For the dual and the primal programs (in that order) we give the optimal
linear and integer program objective function values. The ‘LP gap’ is the relative gap between linear and integer program. Notice
that instances mickey and night do not have a fractional optimal solution with ‘nice’ fractions. The 21086 reported as optimal
for ccitt3 in the extended abstract [Heinrich-Litan and Lübbecke 2005] is improved here since the optimality tolerance of the
solver was erroneously set to a non-zero value by default.
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Quasi-Greey cover pseudo stable set characteristics
Instance optimum Quasi-Greedy prime quasi-prime greedy corner border max pixels pays for
VLSI1 43 43 1.000 41 2 0 0 0 1 100.00%
VLSI2 4224 4701 1.113 1587 203 2911 1105 1279 4 88.79%
VLSI3 71 71 1.000 71 0 0 0 0 1 100.00%
ccitt1 14377 14457 1.006 10685 2099 1673 1632 28 2 99.91%
ccitt2 7422 7617 1.026 3587 409 3621 3574 29 3 99.76%
ccitt3 21086 21259 1.008 15691 2020 3548 3427 86 3 99.84%
ccitt4 56901 57262 1.006 42358 8605 6299 6110 59 2 99.77%
ccitt5 24739 24911 1.007 18529 2985 3397 3259 98 2 99.84%
ccitt6 12014 12132 1.010 8256 1049 2827 2764 35 2 99.77%
ccitt7 52508 52599 1.002 39230 10842 2525 2448 56 2 99.96%
ccitt8 14025 14303 1.020 7840 1353 5110 5023 54 3 99.77%
marbles 44235 44235 1.000 43548 687 0 0 0 1 100.00%
mickey 9132 9523 1.043 5582 690 3251 528 1593 3 88.13%
day 32192 32431 1.007 26308 3777 2346 749 900 4 97.85%
night 7943 8384 1.056 4014 501 3869 762 1810 4 84.53%

Table II. Details for the Quasi-Greedy algorithm of Section 4.1. We compare the optimal cover size against ours: We list the
absolute numbers and the relative quality of Quasi-Greedy covers as a factor from optimum; this is typically around 1.01.
The following columns list the number of prime and quasi-prime rectangles, and those picked by the greedy step. Then, the
number of corner and border pixels in the constructed quasi stable set S is given (the number of (quasi-)leafs equals the number
of (quasi-)primes). Finally, we state the maximal number of pixels of S in some rectangle, and the fraction of the cover size for
which S pays.
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primal dual
Instance generator density rectangles LP gap LP gap Quasi-Greedy

flip-coin(50,90%) 90.059 498.890 .012 .014 227.490 1.031
flip-coin(50,80%) 79.966 626.190 .000 .000 364.550 1.005
flip-coin(50,70%) 69.999 663.700 .002 .002 457.830 1.000
flip-coin(100,90%) 90.013 2013.160 .029 .029 887.190 1.048
flip-coin(100,80%) 80.008 2506.970 .003 .003 1430.310 1.008
flip-coin(100,70%) 69.960 2661.090 .001 .001 1806.960 1.000
flip-coin(200,90%) 90.031 8075.250 .037 .037 3506.940 1.058
flip-coin(200,80%) 79.971 10045.080 .004 .004 5677.470 1.009
flip-coin(200,70%) 69.974 10612.130 .000 .000 7166.130 1.001

union(50,10,1000) 91.630 65.360 .000 .000 30.780 1.005
union(50,5,2000) 79.967 225.710 .014 .014 98.260 1.021

union(50,3,2000) 72.162 364.020 .009 .009 172.130 1.022
union(100,20,1000) 91.173 89.910 .000 .000 42.060 1.002
union(100,10,3000) 86.760 352.440 .018 .018 137.100 1.027
union(100,6,4000) 76.995 976.780 .015 .015 403.070 1.039
union(200,30,1500) 89.397 244.130 .006 .006 94.250 1.016
union(200,15,5000) 85.595 852.010 .009 .012 299.810 1.044
union(200,9,6000) 61.749 2272.620 .005 .005 1038.140 1.016

Table III. Cumulated results for our experiments with random polygons. We give the character-
istics for flip-coin polygons as (size, density) pairs and those for union polygons as triples (size,
maximal side length, number of rectangles). We generated 100 polygons for each line in this table,
1800 in total. Headings’ meanings are identical to those in Table I.

6. CONCLUSIONS

The rectangle cover problem turns out to be computationally very tractable. The
extremely small integrality gaps are a strong vote for our integer programming
approach. Despite such successes and the ability to obtain provably optimal so-
lutions to geometric problems this methodology is not very common in computa-
tional geometry. We hope to contribute with our work to more curiosity towards
mathematical programming techniques in this community. On the downside of it,
integer programs for industrial size polygons, e.g., from VLSI design are extremely
large. The generation of the integer programs consumes much more time than solv-
ing them (solution time is typically only a few seconds using the standard solver
CPLEX 9.1.0 [ILOG Inc., CPLEX Division 2004]). As a remedy we also experi-
mented with a column generation approach, that is, a dynamic generation of the
variables of the linear program. This enables us to attack larger instances.

It is common that theory is complemented by computational experience. In this
paper we did the reverse: We found promising research directions by a careful study
of computational experiments. Finally, we propose:

Restatement of Erdős’ Question. Is it true that both, the integrality gap of our
primal and that of our dual integer program are bounded by a constant? The
example in Fig. 1 places lower bounds on these gaps of θ/θ̄ ≥ 16/15 and ᾱ/α ≥
15/14, implying the already known bound θ/α ≥ 8/7. We conjecture that these
gaps are in fact tight. Originally, we set out to find an answer to Erdős’ question.
We conclude with an answer in the affirmative, at least computationally.
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Quasi-Greey cover characteristics pseudo stable set characteristics
Instance generator Quasi-Greedy prime quasi-prime greedy corner border max pixels pays for
flip-coin(50,90%) 227.490 106.190 45.470 77.310 20.170 33.700 2.420 90.333
flip-coin(50,80%) 364.550 240.820 90.740 33.490 15.380 10.910 2.060 98.157
flip-coin(50,70%) 457.830 363.100 88.310 6.460 4.010 1.530 1.560 99.807
flip-coin(100,90%) 887.190 372.720 105.690 417.820 109.110 173.280 2.980 85.747
flip-coin(100,80%) 1430.310 912.340 331.680 188.580 84.190 61.130 2.320 97.133
flip-coin(100,70%) 1806.960 1407.230 367.510 32.430 19.810 7.830 2.010 99.746
flip-coin(200,90%) 3506.940 1381.700 292.770 1875.160 489.380 767.020 3.060 83.573
flip-coin(200,80%) 5677.470 3556.520 1270.610 859.720 390.540 278.280 2.890 96.802
flip-coin(200,70%) 7166.130 5551.210 1473.220 142.640 86.490 34.520 2.070 99.711
union(50,10,1000) 30.780 21.660 6.160 2.970 1.260 1.430 1.290 99.371
union(50,5,2000) 98.260 59.720 17.050 21.900 8.670 10.280 1.840 97.166
union(50,3,2000) 172.130 103.870 32.660 36.200 14.420 14.670 1.920 95.386
union(100,20,1000) 42.060 30.550 6.720 4.870 2.520 2.000) 1.380 99.534
union(100,10,3000) 137.100 80.030 20.470 37.520 14.850 17.790 2.050 96.819
union(100,6,4000) 403.070 219.120 62.500 124.500 47.750 53.690 2.380 93.931
union(200,30,1500) 94.250 59.460 13.240 21.900 11.090 9.150 1.860 98.658
union(200,15,5000) 299.810 166.190 33.830 102.380 40.820 48.550 2.510 96.086
union(200,9,6000) 1038.140 691.800 154.850 195.540 92.980 75.340 2.080 97.825

Table IV. Cumulated results for our random experiments with polygons of flip-coin and union type. Headings’ meanings are
identical to those in Table II. Large and dense instances of this type appear to be most critical to refute our conjecture that our
dual fitting approach leads to a constant factor approximation algorithm; see our comments in the text.
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Fig. 7. Every cross in this and the following pictures represents a single random instance. This pic-
ture visualizes the very low combinatorial complexity of random flip-coin type polygons: Knowing
the number of rectangles in an such a polygon almost allows guessing the size of a greedy cover.
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Fig. 8. Combinatorial complexity of random union type polygons. At a medium density around
50% a cover uses the largest fraction of available rectangles.
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Fig. 9. Quasi-Greedy’s computation of pseudo stable sets on flip-coin instances. The axis labels
correspond to the headings in Tables II and IV. Denser polygons make it harder for a pseudo
stable set to pay for the whole cover. The number of pseudo stable pixels in some rectangle never
exceeded 4.
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Fig. 10. This is Fig. 9 for union instances.
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Fig. 11. Quasi-Greedy’s computation of pseudo stable sets on flip-coin instances. The need to
use border and corner pixels in a pseudo stable set increases chances that more pseudo stable
pixels are contained in some rectangle, as was to be expected.
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Fig. 12. This is Fig. 11 for union instances.
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Fig. 13. Quasi-Greedy’s computation of pseudo stable sets on flip-coin instances. This is the
analogue to Fig. 11, evaluating the fraction of the cover the pseudo stable set pays for. Here again,
the need to use border and corner pixels decreases chances that the pseudo stable set is able to
pay for the whole cover or a very large fraction of it.
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Fig. 14. This is Fig. 13 for union instances.


