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Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany
{liebchen,m.luebbecke,moehring,stiller}@math.tu-berlin.de

Abstract. We present a new concept for optimization under uncer-
tainty: recoverable robustness. A solution is recovery robust if it can be
recovered by limited means in all likely scenarios. Specializing the general
concept to linear programming we can show that recoverable robustness
combines the flexibility of stochastic programming with the tractability
and performances guarantee of the classical robust approach. We exem-
plify recoverable robustness in delay resistant, periodic and aperiodic
timetabling problems, and train platforming.

1 Introduction

Solutions for real-world problems found by mathematical optimization can
hardly enter into praxis unless they possess a certain robustness. In applications
robustness is not an additional feature but a conditio sine qua non. Usually, ro-
bustness is achieved ex post or by rules of thumb, i.e., heuristically. As systems
work closer to capacity shortcomings of these suboptimal approaches become
apparent. The classical two exact methods to deal with uncertain or fluctuat-
ing data in linear programming and combinatorial optimization are (2-Stage)
Stochastic Programming and Robust Optimization.

A 2-stage stochastic program is a linear program, where part of the input data
are random variables of some distribution. The distribution is either known, or
partly known, or can at least be sampled. The decision variables split into first
stage decisions and second stage decisions. The first stage decisions must be
chosen fixed for all scenarios. The second stage variables can be chosen after the
actual value of the random variables is revealed, i.e., the second stage decision can
be different for each scenario. Thus, strictly speaking the second stage variables
form a vector of random variables. But it is natural to interpret this vector of
random variables as a large (deterministic) vector containing for each scenario
one copy of the second stage variables. To be feasible in each scenario first and
second stage variables together must form a feasible vector for the data realized
in the scenario. Usually, the objective function of a 2-stage stochastic program
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comprises a cost function for the first stage variables and the expected cost
of the second stage variables according to the given distribution. Assuming a
discretized scenario set there is an obvious way to interpret a 2-stage stochastic
linear program as a (very large) usual linear program: The random variables
in the original linear program are resolved by adding for each scenario a copy
of the original linear program. In this copy the random variable is replaced by
its realization in the scenario. This is called the scenario expansion of a 2-stage
stochastic program.

Classical robust optimization considers a quite similar situation, except that
one abstains from second stage actions. Again for a linear program a certain
part of the data is subject to uncertainty. But as the robust program features no
second stage variables, the variables—which are fixed before the actual data is
revealed—must form a feasible solution for every scenario. A robust solution fits
for all scenarios. Likewise, the objective function of a robust program contains
no expectation or other stochastic component. The objective is a deterministic,
linear function of the solution. Obviously, a robust model avoids the use of
probability distributions. It suffices to know the range, in which the uncertain
data can fluctuate. Usually, one models this range smaller than given in reality,
thus excluding extremely unlikely scenarios.

Both methods have their merits for different types of applications. Still, for
a number of applications none of the two provides a suitable method. One of
these applications is delay resistant timetabling, e.g., for a railway system. Here
instances are usually too large for stochastic programming approaches. Whereas
robust optimization appeals for two reasons: A robust solution comes with a
guarantee to be feasible in all scenarios of a certain restricted scenario set. We call
this the set of likely scenarios. In addition, robust optimization yields compact
mathematical models which are likely to be solvable on a scale relevant for prac-
tical purposes like delay resistant timetabling. But it turns out that the classical
robust approach [1,15]—which we call strict robustness and which is a special
case of the broader concept we present here—is necessarily over-conservative in
the context of timetabling. The strict robust model yields a timetable where each
train ride is scheduled to take its technically minimal travel time plus at least
the total time of disturbances that is likely in the whole network. Unfortunately,
this over-conservativism is intrinsic to the classical robust approach.

In practice, one often encounters a way of handling disturbances that is dif-
ferent from both methods mentioned above. First, the plan is furnished with
some slack that shall allow to compensate disturbances. Second, the plan can be
recovered during operations. Third, these recoveries are limited. The limits ap-
ply to the actions that can be taken and the computational means by which the
recovery is calculated. For example, changes to the plan may be restricted to be
local or to only affect a certain subset of the planning variables. It is a promising,
practical concept that the plan has to be recoverable by limited means in every
likely scenario. Still, in practice the plans, their slack and the simple means of
recovery are currently not optimized together.
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Related work. The concept of recoverable robustness has first been formalized
together with concepts for the price of robustness in [11]. In the meantime it
has attracted several applications to optimization problems particularly in the
railway context. In [5,7] the concept has successfully been applied to shunting
problems. Specific cases of recoverable robust timetabling are treated in [4,6,7].
In particular, they can identify some types of scenario sets for which finding
a recoverable robust timetable becomes NP-hard and other types of scenario
sets for which an efficient algorithm exists. In [9] the concept of recoverable
robustness is spelled out specifically for the case of multi-stage recovery. Dynamic
algorithms for this case have been proposed in [8]. In case the recovery is a
linear program [16] provides for efficient algorithms and a stochastic analysis
of quality for recovery robust solutions both for the case of right-hand side
disturbances and for the case of matrix disturbances. The first application of
recoverable robustness in a study on real-world data was carried out in [3]. It
uses the techniques developed in this work and will be described in some detail
in Section 5.

Our contribution and Outline. In this work we present the concept of Recoverable
Robustness. The goal of recoverable robustness is to jointly optimize the plan and
the strategy for limited recovery. This will combine the flexibility of stochastic
programming with the performance guarantee and the compactness of models
found in robust optimization.

In Section 2 we develop the concept of recoverable robustness formally and in
full generality. As delay resistant timetabling has sparked its development, we ex-
emplify the modeling power of recoverable robustness by the case of timetabling
in Section 3. To solve recovery robust models we specify to Linear Recovery Ro-
bust Programs in Section 4, for which we provide an efficient algorithm. Finally,
we demonstrate the power of this method by citing a real-world application of
the method to the train platforming problem (Section 5).

2 The Concept of Recoverable Robustness

We are looking for solutions to an optimization problem which in a limited set
of scenarios can be made feasible, or recovered, by a limited effort. Therefore, we
need to define

– the original optimization problem (Step O),
– the imperfection of information, that is, the scenarios (Step S), and
– the limited recovery possibilities (Step R).

For Step O and Step S a large toolbox for modeling can be borrowed from
classical approaches to optimization respectively optimization with imperfect
information. Step R is a little less obvious, and we choose to formalize it via a
class A of admissible recovery algorithms.
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A solution x for the optimization problem defined in Step O is recovery-
robust

– against the imperfection of information (Step S) and
– for the recovery possibilities (Step R),

if in all situations that may occur according to Step S, we can recover
from x a feasible solution by means of one of the algorithms given in
Step R.

Computations in recovery-robust optimization naturally decompose into a
planning phase and a recovery phase. In the planning phase,

– we compute a solution x which may become infeasible in the realized
scenario,

– and we choose A ∈ A, i.e., one of the admissible recovery algorithms.

Such a pair (x, A) hedges for data uncertainty in the sense that in the recovery
phase

– algorithm A is used to turn x into a feasible solution in the realized scenario.

The output (x, A) of the planning phase is more than a solution, it is a precaution.
It does not only state that recovery is possible for x, but explicitly specifies how
this recovery can be found, namely by the algorithm A.

The formal definition of recoverable robustness [11] we give next is very broad.
The theorems in this paper only apply to strong specializations of that concept.

We introduce some terminology. Let F denote the original optimization prob-
lem. An instance O = (P, f) of F consists of a set P of feasible solutions, and
an objective function f : P → R which is to be minimized.

By R = RF we denote a model of imperfect information for F in the sense
that for every instance O we specify a set S = SO ∈ RF of possible scenarios.
Let Ps denote the set of feasible solutions in scenario s ∈ S.

We denote by A a class of algorithms called admissible recovery algorithms.
A recovery algorithm A ∈ A solves the recovery problem, which is a feasibility
problem. Its input is x ∈ P and s ∈ S. In case of a feasible recovery, A(x, s) ∈ Ps.

Definition 1. The triple (F ,R,A) is called a recovery robust optimization
problem, abbreviated RROP.

Definition 2. A pair (x, A) ∈ P × A consisting of a planning solution x and
an admissible algorithm A is called a precaution.

Definition 3. A precaution is recovery robust, iff for every scenario s ∈ S the
recovery algorithm A finds a feasible solution to the recovery problem, i.e., for
all s ∈ S we have A(x, s) ∈ Ps.

Definition 4. An optimal precaution is a recovery robust precaution (x, A) for
which f(x) is minimal.
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Thus, we can quite compactly write an RROP instance as

inf
(x,A)∈P×A

f(x)

s.t. ∀s ∈ S : A(x, s) ∈ Ps .

The objective function value of an RROP is infinity, if no recovery is possible
for some scenario with the algorithms given in the class A of admissible recovery
algorithms.

It is a distinguished feature of this notion that the planning solution is explic-
itly accompanied by the recovery algorithm. In some specializations the choice
of the algorithm is self-understood. For example, for linear recovery robust pro-
grams, to which we will devote our main attention, the algorithm is some solver
of a linear program or a simpler algorithm that solves the specific type of linear
program that arises as the recovery problem of the specific RROP. Then we will
simply speak of the planning solution x, tacitly combining it with the obvious
algorithm to form a precaution.

2.1 Restricting the Recovery Algorithms

The class of admissible recovery algorithms serves as a very broad wildcard
for different modeling intentions. Here we summarize some important types of
restrictions that can be expressed by means of that class.

The definition of the algorithm class A also determines the computational bal-
ance between the planning and the recovery phase. For all practical purposes,
one must impose sensible limits on the recovery algorithms (otherwise, the en-
tire original optimization problem could be solved in the recovery phase, when
the realized scenario is known). In very bold term, these limits fall into two
categories:

– limits on the actions of recovery;
– limits on the computational power to find those actions of recovery.

We mention two important subclasses of the first category:

Strict Robustness. We can forbid recovery entirely by lettingA consist of the single
recovery algorithm A with A(x, s) = x for all s ∈ S. This is called strict robust-
ness. Note that by strict robustness the classical notion of robust programming is
contained in the definition of recoverable robustness.

Recovery Close to Planning. An important type of restrictions for the class
of admissible recovery algorithms is, that the recovery solution A(x, s) must
not deviate too far from the original solution x according to some measure of
distance defined for the specific problem. For some distance measures one can
define subsets Ps,x ⊆ Ps depending on the scenario s and the original solution x,
such that the restriction to the recovery algorithm that A(x, s) will not deviate
too far from x, can be expressed equivalently by requiring A(x, s) ∈ Ps,x. As
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an example, think of a railway timetable that must be recovered, such that the
difference between the actual and the planned arrival times is not too big, i.e.,
that the delay is limited.

2.2 Passing Information to the Recovery

If (as it ought to be) the recovery algorithms in A are allowed substantially
less computational power than the precaution algorithms in B, we may want to
pass some additional information z ∈ Z (for some set Z) about the instance
to the recovery algorithm. That is, we may compute an extended precaution
B(P, f, S) = (x, A, z), and in the recovery phase we require A(x, s, z) ∈ Ps.

As a simple example, consider a class of admissible recovery algorithms A
that is restricted to computational effort linear in the size of a certain finite set
of weights, which is part of the input of the RROP instance. Then it might be
helpful to pass an ordered list of those weights on to the recovery algorithm,
because the recovery algorithm will not have the means to calculate the ordered
list itself, but could make use of it.

In Section 3 we present another example, namely rule based delay manage-
ment policies, which shows that it is a perfectly natural idea to preprocess some
values depending on the instance, with which the recovery algorithm becomes a
very simple procedure.

2.3 Limited Recovery Cost

The recovery algorithm A solves a feasibility problem, and we did not consider
any cost incurred by the recovery so far. There are at least two ways to do so
in the framework of recoverable robustness. Let d(ys) be some (possibly vector
valued) function measuring the cost of recovery ys := A(x, s).

– Fixed Limit: Impose a fixed limit λ to d(ys) for all scenarios s.
– Planned Limit: Let λ be a (vector of) variable(s) and part of the planning

solution. Require λ ≥ d(ys) for every scenario s, and let λ ∈ Λ influence the
objective function by some function g : Λ → R.

In the second setting, the planned limit λ to the cost of recovery is a variable
chosen in the planning phase and then passed to the recovery algorithm A. It
is the task of A to respect the constraint λ ≥ d(y), and it is the task of the
planning phase to choose (x, A, λ), such that A will find a recovery for x with
cost less or equal to λ. Therefore, and to be consistent with previous notation
we formulate the cost bound slightly different. Let P ′

s denote the set of feasible
recoveries for scenario s. Then we define Ps by:

A(x, s, λ) ∈ Ps :⇔ d(A(x, s)) ≤ λ ∧ A(x, s) ∈ P ′
s

We obtain the following recovery robust optimization problem with recovery
cost:
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min
(x,A,λ)∈P×A×Λ

f(x) + g(λ)

s.t. ∀s ∈ S : A(x, s, λ) ∈ Ps .

Including the possibility to pass some extra information y ∈ Y to A we obtain:

min
(x,A,z,λ)∈P×A×Z×Λ

f(x) + g(λ)

s.t. ∀s ∈ S : A(x, s, z, λ) ∈ Ps .

These recovery cost aware variants allow for computing an optimal trade-off
between higher flexibility for recovery by a looser upper bound on the recovery
cost, against higher cost in the planning phase. This is conceptually close to
two-stage stochastic programming, however, we do not calculate an expectation
of the second stage cost, but adjust a common upper bound on the recovery
cost. This type of problem still has a purely deterministic objective. The linear
recovery robust programs discussed later are an example of this type of RROP.

3 Recovery Robust Timetabling

Punctual trains are probably the first thing a layman will expect from robust-
ness in railways. Reliable technology and well trained staff highly contribute to
increased punctuality. Nevertheless, modern railway systems still feature small
disturbances in every-day operations.

A typical example for a disturbance is a prolonged stop at a station because
of a jammed door. A disturbance is a seminal event in the sense that the dis-
turbance may cause several delays in the system but is not itself caused by
other delays. Informing passengers about the reason for a delay affecting them,
railway service providers sometimes do not distinguish between disturbances,
i.e., seminal events, and delays that are themselves consequences of some initial
disturbance. We will use the term disturbance exclusively for initial changes of
planning data. A delay is any difference between the planned point in time for
an event and the time the event actually takes place. We also speak of negative
delay, when an event takes place earlier than planned.

A good timetable is furnished with buffers to absorb small disturbances, such
that they do not affect the planned arrival times at all, or that they cause
only few delays in the whole system. Those buffer times come at the expense
of longer, planned travel times. Hence they must not be introduced excessively.
Delay resistant timetabling is about increasing the planned travel times as little
as possible, while guaranteeing the consequences of small disturbances to be
limited.

We will now show how delay resistant timetabling can be formulated as a
recovery robust optimization problem. We actually show that a robust version
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of timetabling is only reasonable, if it is understood as a recovery robust op-
timization problem. Moreover, we show how recoverable robustness integrates
timetabling and the so-called delay management. Delay management is the term
coined for the set of operational decisions reacting to concrete disturbances, i.e.,
the recovery actions. Its integration with timetabling is an important step for-
ward for delay resistant timetabling, which can be formalized by the notion of
recoverable robustness.

Step O. The original problem is the deterministic timetabling problem. It exists
in many versions that differ in the level of modeling detail, the objective function,
or whether periodic or aperiodic plans are desired. The virtues of recovery robust
timetables can already be shown for a simple version.

A Simple Timetabling Problem. The basic mathematical model that stands to
reason for timetabling problems is the so-called Event-Activity Model or Fea-
sible Differential Problem [13]. A timetable assigns points in time for certain
events, i.e., arrivals and departures of trains. This assignment is feasible, if the
differences in time between two related events are large enough, to allow for the
activities relating them. For example, the arrival of a train must be scheduled
sufficiently after its departure at the previous station. Likewise, transfers of pas-
sengers require the arrival of the feeder train and the departure of the transfer
train to take place in the right time order and with a time difference at least
large enough to allow for the passengers to change trains. We now describe a
basic version of this model.

The input for our version of timetabling is a directed graph G = (V, E)
together with a non-negative function t : E → R+ on the arc set. The nodes of
the graph V = VAR∪VDP model arrival events (VAR) and departure events (VDP)
of trains at stations. The arc set can be partitioned into three sets representing
traveling of a train from one station to the next, EDR, stopping of a train at a
station, EST, and transfers of passengers from one train to another at the same
station, ETF. For travel arcs e = (i, j) ∈ EDR we have i ∈ VDP and j ∈ VAR,
for the two other types e = (i, j) ∈ EST ∪ ETF the contrary holds: i ∈ VAR

and j ∈ VDP. The function t(e) expresses the minimum time required for the
action corresponding to e = (i, j), in other words the minimum time between
event i and event j. For example, for a travel arc e the value of the function t(e)
expresses the technical travel time between the two stations.

A feasible timetable is a non-negative vector π ∈ R
|V |
+ such that t(e) ≤ πj −πi

for all e = (i, j) ∈ E. W.l.o.g. we can assume that G is acyclic.
For the objective function we are given a non-negative weight function w :

E → R+, where we = w(e) states how many passengers travel along arc e, i.e.,
are in the train during the execution of that action, or change trains according
to that transfer arc. An optimal timetable is a feasible timetable that minimizes
the total planned (or nominal) travel time of the passengers:

∑

e=(i,j)∈E

we(πj − πi).
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Thus the data for the original problem can be encoded in a triple (G, t, w),
containing the event-activity graph G, the arc length function t, and a cost
function on the arcs w. The original problem can formulated as a linear program:

min
∑

e=(i,j)∈E

wa(πj − πi)

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E

π ≥ 0

Step S. We assume uncertainty in the time needed for traveling and stopping.
Those actions typically produce small disturbances. For a scenario s we are
given a function ts : E → R+, with the properties ts(e) ≥ t(e) for all e ∈ E,
and ts(e) = t(e) for all e ∈ ETF. As we only want to consider scenarios with
small disturbances, we restrict to those scenarios where ts(e) − t(e) ≤ Δe, for
some small, scenario independent constant Δe. In a linear program one can
scale each row, i.e., multiply all matrix entries of the row and the corresponding
component of the right-hand side vector by a positive scalar, without changing
the set of feasible solutions. Therefore, we can assume w.l.o.g. Δe = Δ for all
e ∈ E. Additionally, we require that not too many disturbances occur at the
same time, i.e., in every scenario for all but k arcs e ∈ E we have ts(e) = t(e).

Of course, there are situations in practice where larger disturbances occur.
But it is not reasonable to prepare for such catastrophic events in the published
timetable.

Strict Robustness. The above restrictions to the scenario set can be very strong,
in particular, if we choose k = 1. But even for such a strongly limited scenario
set strict robustness leads to unacceptably conservative timetables. Namely, the
strict robust problem can be formulated as the following linear program:

min
∑

e=(i,j)∈E

we(πj − πi)

s.t. πj − πi ≥ t(e) + Δ ∀e = (i, j) ∈ E

π ≥ 0

In other words, even if we assume that in every scenario at most one arc takes
Δ time units longer, we have to construct a timetable as if all (traveling and
stopping) arcs were Δ time units longer. This phenomenon yields solutions so
conservative, that classical robust programming is ruled out for timetabling.
Indeed, delay resistant timetabling has so far been addressed by stochastic pro-
gramming [12,17] only. These approaches suffer from strong limitations to the
size of solvable problems.
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The real world expectation towards delay resistant timetables includes that
the timetable can be adjusted slightly during its operation. But a strict robust
program looks for timetables that can be operated unchanged despite distur-
bances. This makes the plans too conservative even for very restricted scenario
sets. Robust timetabling is naturally recovery robust timetabling as we defined
it. Naturally, a railway timetable has to be robust against small disturbances
and for limited recovery.

Step R. The recovery of a timetable is called delay management. The two central
means of delay management are delaying events and canceling transfers. Delaying
an event means to propagate the delay through the network. Canceling a transfer
means to inhibit this propagation at the expense of some passengers loosing their
connection.

Pure delay propagation seems not deserve the name recovery at all. But recall
that if delay propagation is not captured in the model, as in the strict robust
model, the solutions become necessarily over-conservative. Delay is a form of
recovery, and though it is a basic, it is a very important.

Actually, delay management has several other possibilities for recovery. For
example, one may cancel train trips, re-route the trains, or re-route the passen-
gers by advising them to use an alternative connection, or hope that they will
figure such a possibility themselves. Moreover, delay management has to pay
respect to several other aspects of the transportation system. For example, the
shifts of the on-board crews are affected by delays. These in turn may be subject
to subtile regulations by law or contracts and general terms of employment.

We initially adopt a quite simple perspective to delay management gradually
increasing the complexity of the model. First we concentrate on delay, later on
delay and broken transfers. The latter means plan with respect to delay manage-
ment decisions, i.e., decision whether a train shall wait for delayed transferring
passengers, or not in order to remain itself on time. Even basic delay manage-
ment decision lead to PSPACE-hard models.

Roughly speaking, for a PSPACE-hard problem we cannot even recognize an
optimal solution, when it is given to us, nor can we compare two solutions sug-
gested to us. (See below for details on the complexity class PSPACE.) Therefore,
we describe a variant that yields simpler models and is useful in railway practice.

Simple Recovery Robust Timetabling. First, we describe a model where the re-
covery can only delay the events but cannot cancel transfers. This is not a recov-
ery in the ordinary understanding of the word. The recovery is simply the delay
propagation. But this simple recovery already rids us from the conservatism trap
of strict robustness.

In the recovery phase, when the scenario s and its actual traveling and stop-
ping times ts are known, we construct a disposition timetable πs ∈ R

|V |
+ fulfilling

the following feasibility condition:

– The disposition timetable πs of scenario s must be feasible for ts, i.e.,

∀e = (i, j) ∈ E : πs
j − πs

i ≥ ts(e).
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These inequalities define the set (actually, the polytope) Ps of feasible
recoveries in scenario s.

If this was the complete set of restrictions to the recovery, every timetable would
be recoverable. We set up limits to the recovery algorithms:

TTC. The disposition timetable is bounded by the original timetable in a very
strict manner: Trains must not depart earlier than scheduled, i.e.,

∀e ∈ EDP : πs(e) ≥ π(e).

This is what we call the timetabling condition.
L1. We want the sum of the delays of all arrival events to be limited. Therefore

assume we are also given a weight function � : VAR → R+ that states how
many passengers reach their final destination by the arrival event i. We
fix a limit λ1 ≥ 0 and require:

∑

i∈VAR

�(i) (πs
i − πi) ≤ λ1.

L2. One may additionally want to limit the delay for each arrival separately,
ensuring that no passenger will experience an extreme delay exceeding
some fixed λ2 ≥ 0, i.e.:

∀i ∈ VAR : πs
i − πi ≤ λ2.

In our model a recovery algorithm A ∈ A must respect all three limits. The
bounds λ1 and λ2 can be fixed a priori, or made part of the objective function.
In this way upper bounds on the recovery cost can be incorporated into the
optimization process. For a timetabling problem (G, t, w) and a function � :
VAR → R+ and constants g1, g2 ≥ 0 and an integer k we can describe the first
timetabling RROP by the following linear program:

min
∑

e=(i,j)∈E

we(πj − πi) + g1 · λ1 + g2 · λ2

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E (1)
πs

j − πs
i ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ E (2)
πs

i ≥ πi ∀s ∈ S, ∀i ∈ VDP (3)
∑

i∈VAR

�(i) (πs
i − πi) ≤ λ1 ∀s ∈ S (4)

πs
i − πi ≤ λ2 ∀s ∈ S, ∀i ∈ VAR (5)

λ{1,2}, πs, π ≥ 0

The set of scenarios S in this description is defined via the set of all functions
ts : E → R+ which fulfill the following four conditions from Step S:

ts(e) ≥ t(e) ∀e ∈ E
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ts(e) ≤ t(e) + Δ ∀e ∈ E

ts(e) = t(e) ∀e ∈ ETF

|{e ∈ E : ts(e) �= t(e)}| ≤ k

In our terminology Inequality (1) defines P , Inequality (2) defines Ps, Inequalities
(3) to (5) express limits to the action of the algorithm, namely, that the recovery
may not deviate to much from the original solution. In detail (3) models the TTC,
(4) ensures condition L1 and (5) condition L2.

Here and in the remainder of the example we use mathematical programs
to express concisely the problems under consideration. These programs are not
necessarily the right approach to solve the problems. Note that the above linear
program is a scenario expansion and therefore too large to be solved for instances
of relevant scale. In Section 4, we will devise a general result that allows us to
reformulate such scenario expansions in a compact way. Thereby, the recovery
robust timetabling problem becomes efficiently solvable.

Breaking Connections. In practice delay management allows for a second kind
of recovery. It is possible to cancel transfers in order to stop the propagation of
delay through the network. We now include the possibility to cancel transfers
into the recovery of our model.

Again we consider a simple version for explanatory purposes. A transfer arc
e can be removed from the graph G at a fixed cost g3 ≥ 0 multiplied with the
weight we. With a sufficiently large constant M we obtain a mixed integer linear
program representing this model:

min
∑

e=(i,j)∈E

we(πj − πi) + g1 · λ1 + g2 · λ2 + g3 · λ3

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E (6)
πs

j − πs
i ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ EDR ∪ EST (7)

πs
j − πs

i + Mxs
e ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ ETF (8)
πs

i ≥ πi ∀s ∈ S, ∀i ∈ VDP (9)
∑

i∈VAR

�(i) (πs
i − πi) ≤ λ1 ∀s ∈ S (10)

πs
i − πi ≤ λ2 ∀s ∈ S, ∀i ∈ VAR (11)

∑

e∈ETF

wex
s
e ≤ λ3 ∀s ∈ S (12)

λ{1,2,3}, πs, π ≥ 0

xs ∈ {0, 1}|ETF|

In our terminology Inequality 6 defines P . Inequalities 7 and 8 define Ps for every
s. Again Inequalities 9 to 11 express limits to the actions that can be taken by the
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recovery algorithms. These are limits to the deviation of the recovered solution
πs from the original solution π.

3.1 Computationally Limited Recovery Algorithms

So far we imposed limits on the actions of the recovery algorithms. But delay
management is a real-time task. Decisions must be taken in very short time.
Thus it makes sense to impose further restrictions on the computational power
of the recovery algorithm. Note that in general such restrictions cannot be ex-
pressed by a mathematical program as above. We now give two examples for
computationally restricted classes of recovery algorithms.

The Online Character of Delay Management. In fact the above model has a fun-
damental weakness. It assumes that the recovered solution, i.e., the disposition
timetable πs = A(π, s) can be chosen after s is known completely. This is of
course not the case for real-world delay management: The disturbances evolve
over time, and delay management must take decisions before the whole scenario
is known. This means that the algorithms in A must be non-anticipative1.

PSPACE-hardness of Delay Management. The multistage structure of some de-
lay management models, namely that uncertain events and dispatching deci-
sions alternate, makes these problems extraordinarily hard. Even quite restricted
models have been shown to be PSPACE-hard [2].

The complexity class PSPACE contains those decision problems that can be
decided with the use of memory space limited by a polynomial in the input size.
The class NP is contained in PSPACE, because in polynomial time only poly-
nomial space can be used. It is widely assumed that NP is a proper subset of
PSPACE. Given this, one cannot decide in polynomial time that a given solution
to a PSPACE-hard problem is feasible, because else the solution would be a cer-
tificate and therefore the problem in NP. (Note, that the complexity terminology
is formulated for decision problems. Feasibility in this context means, that the
delay management solution is feasible in the usual sense and in addition has cost
less or equal to some constant.) Thereby it becomes even difficult to assess the
quality of a solution for delay management, or to compare the quality of two
competing delay management strategies.

Rule Based Delay Management. The previous observation is quite discouraging.
How shall one design a recovery robust timetable, if the recovery itself is already
PSPACE-hard? We now dicuss a special restriction to the delay management
1 Given a mapping of the random variables in the input and of the decision variables

to some partially ordered set (i.e., a timeline). Then a (deterministic) algorithm is
non-anticipative, if for any pair of scenarios s and s′ and every decision variable x,
the algorithm in both scenarios chooses the same value for x, whenever s and s′ are
equal in all data entries that are mapped to elements less or equal to the image of x.
This means that the algorithm can at no time anticipate and react to data revealed
later.
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that is motivated by the real-world railway application and turns each decision
whether to wait or not to wait into a constant time solvable question. The model
keeps the multistage character, but the resulting recovery robust timetabling
problem is solvable by a mixed integer program.

Delay management decisions must be taken very quickly. Moreover, as delay
management is a very sensitive topic for passengers’ satisfaction the transparency
of delay management decisions can be very valuable. A passenger might be more
willing to accept a decision, that is based on explicit rules, about how long,
e.g., a local train waits for a high-speed train, than to accept the outcome of
some non-transparent heuristic or optimization procedure. For these two reasons,
computational limits for real-time decisions and transparency for the passenger,
one may want to restrict the class A of admissible recovery algorithms to rule
based delay management. The idea is that trains will wait for at most a certain
time for the trains connecting to them. These maximal waiting times depend
on the type of involved trains. For example, a local train might wait 10 minutes
for a high-speed train, but vice versa the waiting time could be zero. Fixing the
maximal waiting times determines the delay management (within the assumed
modeling precision). But, which waiting times are best? Does the asymmetry in
the example make sense? We want to optimize the waiting rules, i.e., the delay
management together with the timetable.

Assume we distinguish between m types of trains in the system, i.e., we have
a mapping μ : V → {1, . . . , m} of the events onto the train types. A rule based
delay management policy A is specified by a matrix M = MA ∈ R

m×m
+ . The y-

th entry in the x-th row mxy is the maximum time a departure event of train type
y will be postponed in order to ensure transfer from a type x train. Formally, a
rule based delay management policy schedules a departure event j at the earliest
time πs

j satisfying

πs
j ≥ πs

i + ts(i, j) ∀(i, j) ∈ EST

πs
j ≥ min{πs

i + ts(i, j), πj + mμ(i)μ(j)} ∀(i, j) ∈ ETF

πs
j ≥ πj .

Arrival events are scheduled as early as possible respecting TTC and the trav-
eling times in scenario s:

πs
j = max({πj} ∪ {πs

i + ts(i, j)|(i, j) ∈ EDR}) ∀j ∈ VAR

Actually, the maximum is taken over two elements, as only one traveling arc
(i, j) leads to each arrival event j.

Moreover, for a transfer arc (i, j) ∈ ETF the canceling variable x(i,j) is set to
1 if and only if the result of the above rule gives πs

i + t(i, j) > πs
j .

It is easy to see that such a recovery algorithm gives a feasible recovery for
every (even non-restricted) scenario s and every solution π ∈ P . If we restrict
A to the class of rule based delay management policies, the RROP consists in
finding a m×m matrix M and a schedule π that minimizes an objective function
like those in the models we presented earlier:
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min
M,π,λ{1,2,3}

∑

e=(i,j)∈E

we(πj − πi) + g1 · λ1 + g2 · λ2 + g3 · λ3

s.t. πj − πi ≥ t(e) ∀e = (i, j) ∈ E (13)
∀s ∈ S, ∀j ∈ VDP : (14)

πs
j = max({πs

i + ts(i, j) |(i, j) ∈ EST}
∪ max{min{πs

i + ts(i, j), πj + mμ(i)μ(j)}|(i, j) ∈ ETF}
∪ {πj})

∀s ∈ S, ∀j ∈ VAR : (15)
πs

j = max({πj}
∪ {πs

i + ts(i, j)|(i, j) ∈ EDR}
πs

j − πs
i + Mxs

e ≥ ts(e) ∀s ∈ S, ∀e = (i, j) ∈ ETF (16)
∑

i∈VAR

�(i) (πs
i − πi) ≤ λ1 ∀s ∈ S (17)

πs
i − πi ≤ λ2 ∀s ∈ S, ∀i ∈ VAR (18)

∑

e∈ETF

wex
s
e ≤ λ3 ∀s ∈ S (19)

λ{1,2,3}, πs, π ≥ 0

xs ∈ {0, 1}|ETF|

The timetabling condition is ensured automatically by the rule based delay man-
agement described in Equations (14) and (15).

Rule based delay management algorithms are non-anticipative. The formula-
tion we give even enforces the following behavior: The departure πi of a train
A will be delayed for transferring passengers from train B (with arrival πj) for
the maximal waiting time mμ(i)μ(j), even if before time πi +mμ(i)μ(j) it becomes
known that train B will arrive too late for its passengers to reach train A at
time πi + mμ(i)μ(j). As formulated, a train will wait the due time, even if the
awaited train is hopelessly delayed. In practice, delay managers might handle
such a situation a little less short minded.

Rule based delay management is a good example for the idea of integrating
robust planning and simple recovery. Consider the following example of two local
trains, A and B, and one high-speed train C. Passengers transfer from A to B,
and from B to C. Assume local trains wait 7 minutes for each other, but high-
speed trains wait at most 2 minutes for local trains. Then train A being late
could force train B to loose its important connection to the high-speed train
C. Indeed, this could happen, if the timetable and the waiting times are not
attuned. In the planning, we might not be willing to increase the time a high-
speed train waits, but instead plan a sufficient buffer for the transfer from B to C.
This example illustrates that buffer times and waiting rules must be constructed
jointly in order to attain optimal delay resistance.
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4 Linear Programming Recovery

In this section we specialize to RROPs linear programs as recovery. We call such
an RROP a Linear Recovery Robust Problem (LRP). We show how LRPs can
be solved for certain scenario sets. This leads us to a special case, namely robust
network buffering, which entails the robust timetabling problem. Towards the
end of this section we turn to a variant of LRPs, where the planning problem is
an integer linear program.

4.1 Linear Recovery Robust Programs

Given a linear program (min c′x, s.t. A0x ≥ b0) with m rows and n variables. We
seek solutions to this problem that can be recovered by limited means in a certain
limited set of disturbance scenarios. The situation in a disturbance scenario s
is described by a set of linear inequalities, notably, by a matrix As and a right-
hand side bs. We slightly abuse notation when we say that the scenario set S
contains a scenario (As, bs), which, strictly speaking, is the image of scenario
s under the random variable (A, b). We will discuss later more precisely the
scenario sets considered in this analysis. For the linear programming case the
limited possibility to recover is defined via a recovery matrix Â, a recovery cost
d, and a recovery budget D. A vector x is recovery robust, if for all (As, bs) in
the scenario set S exists y such that Asx + Ây ≥ bs, and d′y ≤ D. Further, we
require that x is feasible for the original problem without recovery, i.e., A0x ≥ b0.
The problem then reads:

inf
x

c′x

s.t. A0x ≥ b0

∀(A, b) ∈ S ∃y ∈ R
n̂ :

Ax + Ây ≥ b

d′y ≤ D

When S is a closed set in the vector space R
(m×n+m) we know that either the

infimum is attained, or the problem is unbounded. This case constitutes the
principal object of our considerations, the Linear Recovery Robust Program:

Definition 5. Let A0 be an m × n-matrix called the nominal matrix, b0 be an
m-dimensional vector called the nominal right-hand side, c be an n-dimensional
vector called the nominal cost vector, Â be an m× n̂-matrix called the recovery
matrix, d be an n̂-dimensional vector called the recovery cost vector, and D be a
non-negative number called the recovery budget. Further let S be a closed set of
pairs of m×n-matrices and m-dimensional vectors, called the scenario set. Then
the following optimization problem is called a Linear Recovery Robust Program
(LRP) over S:
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min
x

c′x

s.t. A0x ≥ b0

∀(A, b) ∈ S ∃y ∈ R
n̂ :

Ax + Ây ≥ b

d′y ≤ D

We refer to the A as the planning matrix although it is a quantified variable.
The planning matrix describes how the planning x influences the feasibility in
the scenario. The vectors y ∈ R

n̂ with d′y ≤ D are called the admissible recovery
vectors. Note that we do not call S a scenario space, because primarily there is
no probability distribution given for it.

We are not unnecessarily restrictive, when requiring the same number of rows
for A0 as for Â and A. If this is not the case, nothing in what follows is affected,
except may be readability.

If a solution x can be recovered by an admissible recovery y in a certain
scenario s, we say x covers s.

To any LRP we can associate a linear program, which we call the scenario
expansion of the LRP:

min
x,(ys)s∈S

c′x

s.t. A0x ≥ b0

Asx + Âys ≥ bs ∀s ∈ S

d′ys ≤ D ∀s ∈ S

Note that in this formulation the set S is comprised of the scenarios s, whereas
in the original formulation it contains (As, bs). This ambiguity of S is convenient
and should cause no confusion to the reader. Further, note that in the scenario
expansion of an LRP each recovery variable ys is indexed by its scenario. Thus
the solution vector to the scenario expansion contains for each scenario a separate
copy of the recovery vector. In the original formulation the recovery vector y is
not indexed with a scenario, because the formulation is not a linear program but
a logical expression where y is an existence quantified variable.

The scenario expansion is a first possibility to solve the LRP. But, usually,
the scenario set is too big to yield a solvable scenario expansion. The scenario
sets, which we will consider, are not even finite.

We will frequently use an intuitive reformulation of an LRP, that can be
interpreted as a game of a planning player setting x, a scenario player choosing
(A, b), and a recovery player deciding on the variable y. The players act one after
the other:

inf
x

c′x s.t. A0x ≥ b0 ∧ D ≥
{

sup
(A,b)∈S

{
inf
y

d′y s.t. Ax + Ây ≥ b

}}
(20)

with constant vectors c ∈ R
n, b0 ∈ R

m and d ∈ R
n̂, constant matrices A0 ∈ R

m,n

and Â ∈ R
m,n̂, and variables x ∈ R

n, A ∈ R
m,n, b ∈ R

m and y ∈ R
n̂.
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Again, when it is clear that either the extrema exist or the problem is un-
bounded we use the following notation:

min
x

c′x s.t. A0x ≥ b0 ∧ D ≥
{

max
(A,b)∈S

{
min

y
d′y s.t. Ax + Ây ≥ b

}}
(21)

Observe, that an LRP, its scenario expansion and its 3-player formulation have
the same feasible set of planning solutions x. Whereas, the set of recovery vec-
tors y, that may occur as a response to some scenario (As, bs) in the 3-player
formulation, is only a subset of the set of feasible second stage solutions ys in
the scenario expansion. The 3-player formulation restricts the later set to those
responses y, which are minimal in d′y. But this does not affect the feasible set
for x.

The formalism of Problem (21) can also be used to express, that x and y are
required to be non-negative. But it is a lot more well arranged, if we state such
conditions separately:

min
x

c′x s.t. A0x ≥ b0 ∧ D ≥
{

max
(A,b)∈S

{
min
y≥0

d′y s.t. Ax + Ây ≥ b

}}
(22)

and

min
x≥0

c′x s.t. A0x ≥ b0 ∧ D ≥
{

max
(A,b)∈S

{
min
y≥0

d′y s.t. Ax + Ây ≥ b

}}
(23)

The purely deterministic condition A0x ≥ b0, which we call nominal feasibility
condition, could also be expressed implicitly by means of S and Â. But, this
would severely obstruct readability. In some applications the nominal feasibility
plays an important role. For example, a delay resistant timetable shall be feasible
for the nominal data, i.e., it must be possible to operate the published timetable
unchanged at least under standard conditions. Else, trains could be scheduled
in the published timetable x to depart earlier from a station than they arrive
there. However, in this rather technical section the nominal feasibility plays a
minor role.

Let us mention some extensions of the model. The original problem may as
well be an integer or mixed integer linear program,

min
x=(x̂,x̄),x̄∈Z

c′x s.t. A0x ≥ b0 ∧D ≥
{

max
(A,b)∈S

{
min

y
d′y s.t. Ax + Ây ≥ b

}}
(24)

or some other optimization problem over a set of feasible solutions P and an
objective function c : R

n → R, in case the disturbances are confined to the
right-hand side:

inf
f∈P

c(f) s.t. D ≥
{

sup
b∈S

{
inf
y

d′y s.t. f + Ây ≥ b

}}
(25)

with a fixed planning matrix A.
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Using the concept of planned limits to the recovery cost (cf. p. 6), the budget
D can also play the role of a variable:

min
D≥0, x

c′x + D s.t. A0x ≥ b0 ∧

D ≥
{
max(A,b)∈S

{
miny d′y s.t. Ax + Ây ≥ b

}}
(26)

In case of right-hand side disturbances only, we can again formulate:

inf
f∈P,D≥0

c(f) + D s.t. D ≥
{

sup
b∈S

{
inf
y

d′y s.t. f + Ây ≥ b

}}
(27)

4.2 Solving Right-Hand Side LRPs

In this part we show that some scenario sets for the right-hand side data of an
LRP yield problems that can be solved by a relatively small linear program.

Consider again the 3-player formulation of an LRP (21). Let P := {x ∈
R

n : A0x ≤ b0} be the polytope of nominally feasible solutions. If we fix the
strategies of the first two players, i.e., the variables x and (A, b), we get the
recovery problem of the LRP: min d′y subject to Ây ≥ b − Ax. The dual of
the latter is maxζ≥0(b − Ax)′ζ s.t. Â′ζ ≤ d. The recovery problem is a linear
program. Thus, we have strong duality, and replacing this linear program by its
dual in expression (21) will not change the problem for the players optimizing x
respectively (A, b).

min
x∈P

c′x s.t. D ≥
{

max
(A,b)∈S

{
max
ζ≥0

(b − Ax)′ζ s.t. Â′ζ ≤ d

}}
⇔

min
x∈P

c′x s.t. D ≥
{

max
(A,b)∈S,ζ≥0

(b − Ax)′ζ s.t. Â′ζ ≤ d

}
(28)

Consider the maximization problem in formulation (28) for a fixed x, thus find
max(A,b)∈S,ζ≥0(b−Ax)′ζ subject to Â′ζ ≤ d. Assume for a moment ‖b−Ax‖1 ≤
Δ. In this case, for each fixed vector ζ the maximum will be attained, if we can set
sign(ζi)(b−Ax)i = Δ for i with |ζi| = ‖ζ‖∞ and 0 else. In other words, under the
previous assumptions (b − Ax)′ζ attains its maximum when (b − Ax) = Δei for
some suitable i ∈ [m]. Therefore, if we have ‖b−Ax‖1 ≤ Δ, we can reformulate
problem (28):

min
x∈P

c′x s.t. ∀i ∈ [m] : D ≥
{

max
ζ≥0

(Δei)′ζ s.t. Â′ζ ≤ d

}
⇔

min
x∈P

c′x s.t. ∀i ∈ [m] : D ≥
{

min
y

d′y s.t. Ây ≥ Δei

}
(29)

The at first sight awkward condition ‖b − Ax‖1 ≤ Δ is naturally met if only
the right-hand side data changes, and is limited in the set S1 := {(As, bs) :
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‖b∗ − bs‖1 ≤ Δ, A∗ = A}}. For an LRP over S1 formulation (29) is equivalent
to a linear program of size O(m(n + n̂ · m)):

min
x∈P

c′x

s.t. ∀i ∈ [m] :
Ax + Âyi ≥ b + Δei

d′yi − D ≥ 0

Next, consider the scenario set

Sk := {(As, bs) : ‖b∗ − bs‖1 ≤ k · Δ, ‖b∗ − bs‖∞ ≤ Δ, A∗ = A}

for arbitrary k > 1. By the same token, the maximization over ζ in formula-
tion (28) for fixed x and (A, b) can be achieved, by setting the maximal �k�
entries of the vector (b − Ax) equal to 1 and the �k�-th entry equal to k − �k�.
For example, when k is integer, we can replace the scenario set Sk by those

(
k
m

)

scenarios, where exactly k entries of b deviate maximally from b∗, and the other
entries equal their reference value b∗i . So, we have:

Theorem 1. An LRP over Sk can be solved by a linear program of size
polynomial in n, n̂, m, and

(
k
m

)
.

Corollary 1. An LRP over S1 can be solved by a linear program of size
polynomial in n, n̂, and m.

Corollary 2. For fixed k an LRP over Sk can be solved by a linear program of
size polynomial in n, n̂, and m.

Of course, in practice this approach will only work, when k is very small.
The above reasoning can give a fruitful hint to approach RROPs in general.

First, try to find a small subset of the scenario set, which contains the worst-
case scenarios, and then optimize over this set instead of the whole scenario
set. In the above setting we can achieve this very easily, because the recovery
problem fulfills strong duality. If the recovery problem is an integer program this
approach fails in general. Still, one can try to find a small set of potential worst
case scenarios, to replace the original scenario set. Unlike the recovery problem,
the planning problem may well be an integer or mixed integer program, as we
show in the following.

For the manipulations of the formulations the linearity of P, Ax ≥ b or c is
immaterial. So we can extend the above reasoning to non-linear optimization
problems. Let c : R

n → R be a real function, P ′ a set of feasible solutions and
{gi : R

n → R}i∈[m] be a family of real functions, and assume that extrema in
the resulting RROP are either attained, or the problem is unbounded. For the
scenario set S1 of right-hand side disturbances we have with the above notation
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minx∈P ′ c(x)

s.t. D ≥
{

maxb∈S1

{
miny d′y s.t. g(x) + Ây ≥ b

}}

⇔
minx∈P ′ c(x)

s.t. ∀i ∈ [m] : g(x) + Âyi ≥ b∗ + Δei

D − d′yi ≥ 0

In particular we are interested in the case of an integer linear program (min c′x,
Ax ≥ b, x ∈ Z

n) with right-hand side uncertainty. We get as its recovery robust
version over S1.

minx∈Zn c′x
s.t. A0x ≥ b0

D ≥
{

maxb∈S1

{
miny d′y s.t. A∗x + Ây ≥ b

}}

⇔
minx∈Z c′x

s.t. A0x ≥ b0

∀i ∈ [m] : A∗x + Âyi ≥ b∗ + Δei

D − d′yi ≥ 0

Let A∗ = A0 and b∗ = b0. Defining f := A∗x − b∗ we can rewrite the previous
program as

min(x,f)∈Zn+m c̃′(x, f)
A∗x − f = b∗ (30)

s.t. ∀i ∈ [m] : f + Âyi ≥ Δei

d′yi − D ≥ 0
f ≥ 0

With a suitable cost vector c̃. Note that the original integer linear program
corresponds with the scenario part of the program only via the slack variable f .
In other words, for solving the recovery robust version the solving procedures
for the original, deterministic, integer linear optimization problem can be left
untouched. We only have to flange a set of linear inequalities to it. The f variables
function as means of communication between the original integer problem, where
they correspond to the slack in each row, and the linear part, in which their effect
on robustness is evaluated. In the next part we will consider this communication
situation for an even more specialized type of recovery.

4.3 Robust Network Buffering

Let us use Corollary 1 for the Simple Robust Timetabling problem with right-
hand side uncertainty limited in S1. Set g2 = 0 to drop the limit to the maximal
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delay at a node. By the corollary the Simple Robust Timetabling problem over
S1 reads as follows. Let χa be the indicator function of a, i.e., χa(x) = 1 if a = x,
and zero else.

min
π,f

∑
e=(i,j)∈E w(e)(πj − πi)

s.t. πj − πi + fe = t(e), ∀e = (i, j) ∈ E (31)
∀s ∈ E :

fe + ys
j − ys

i ≥ Δ · χe(s), ∀e = (i, j) ∈ E

D − d′ys ≥ 0
f, ys ≥ 0

Periodic Timetabling. Many service providers operate periodic schedules. This
means that—during some period of the day—equivalent events, e.g., all depar-
tures of the trains of a certain line at a certain station take place in a periodic or
almost periodic manner. For example, at a subway station each departure will
take place exactly, e.g., 10 minutes after the departure of the previous train. Like-
wise, most timetables for long-distances connections are constructed such that
if a train leaves from the central station of X to central station of Y at 12:43h,
then the next train to Y will leave the central station of X at (roughly) 13:43h,
the next at 14:34h, and so on. This means that the long-distance connection
from X to Y is operated with a period of one hour.

In case of periodic timetables, we do not plan the single events as in the
aperiodic case, but we plan periodic events. For these we schedule a periodic time,
which is understood modulo the period of the system. (There may also be differnt
periods in the same system, but we restrict our consideration here to the case of a
single, global period.) Assume we assign the value 5 to the variable corresponding
to the periodic event that trains of line A depart from station S towards station
S′. Let the period T of the system be one hour. Then—in every hour—five
minutes past the hour a train of line A will depart from station S towards station
S′. This leads to the Periodic Event Scheduling Problem (PESP)2, which can
be formulated as a mixed integer program of the following form. Let G(A, V ) be
a directed graph and three functions w, u, l : A → R on the arc set. Then the
following problem is called a PESP.

min
k∈Z|A|,π

∑
e=(i,j)∈A w(e)(πj − πi + keT )

s.t. u(e) ≥ πj − πi + keT ≥ l(e), ∀e = (i, j) ∈ A

This type of problem has a broad modeling power. For a comprehensive study
on periodic timetabling we refer the interested reader to [10].

To construct an RROP from an original problem, which is a PESP we have to
make a choice, whether we interpret the disturbances as periodic disturbances,

2 The Periodic Event Scheduling Problem was introduced in [14]. For details confer
also [10].



The Concept of Recoverable Robustness 23

like a construction site, that will slow down the traffic at a certain point for the
whole day, or as aperiodic events, like a jammed door at a stopping event. For
periodic disturbances we get the following program.

min
k∈Z|A|,π,f

∑
e=(i,j)∈A w(e)(πj − πi + keT )

s.t. πj − πi + fe + keT = l(e), ∀e = (i, j) ∈ A

πj − πi + f̄e + keT = u(e), ∀e = (i, j) ∈ A

∀s ∈ A, Ξ ∈ {0, 1} :
fe + ys

j − ys
i ≥ Δ · χe(i) · Ξ, ∀e = (i, j) ∈ A

f̄e + ys
i − ys

j ≥ Δ · χe(i) · (1 − Ξ), ∀e = (i, j) ∈ A

D − d′ys ≥ 0
ys ≥ 0

Note that the right-hand sides are still constants, though they look like a quadratic
term.

Again, the deterministic PESP instance can be flanged with a polynomial size
linear program to ensure robustness. This structure can be helpful for solving
such a problem, as the specialized solving techniques for the original integer
program can be integrated.

As an example for this approach confer [3], where a specialized technique for
an advanced platforming problem was combined with robust network buffering to
get a recovery robust platforming. The method was tested on real-world data of
Italian railway stations. The propagated delay through the stations was reduced
by high double-digit percentages without loss in the primal objective, which is
to maximizes the number of trains the station handles.

General Network Buffering. The general situation is the following: We are given
an optimization problem on a network. The solution to that problem will be
operated under disturbances. The disturbances propagate through the network
in a way depending on the solution of the optimization problem. The solution of
the original optimization problem x translates into a buffer vector f on the arcs
of the network. Changing perspective, the original problem with its variables x
is a cost oracle: If we fix a certain buffering f , the optimization will construct
the cheapest x vector to ensure the buffering f . Let us summarize the general
scheme.

Given an optimization problem P with the following features:

– A directed graph G.
– An unknown, limited, nonnegative vector of disturbances on the arcs, or on

the nodes, or both.
– The disturbances cause costs on the arcs, or on the nodes, or both, which

propagate through the network.
– A vector of absorbing potential on the arcs, the nodes, or both can be

attributed to each solution of P .
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If we further restrict the disturbance vector to lie in S1, we get the following
by the above considerations: The recovery robust version of P , in which the
propagated cost must be kept below a fixed budget D, can be formulated as the
original problem P plus a linear program quadratic in the size of G.

5 Platforming: A Real-World Study

In the previous section we have shown that a method to solve a linear, or convex,
or linear integer optimization problem can be extended to a method for the
recovery robust version of the problem with right-hand side disturbances in
an efficient and simple way, provided that the recovery can be described by a
linear program. Those conditions are fulfilled in particular for network buffering
problems. In this case the recovery is the propagation of a disturbance along a
network. The propagation in the network depends on the solution of the original
optimization problem. But this original optimization problem itself need not be
a linear program.

The advantage of this method for robustness is threefold:

– It yields an efficient algorithm, respectively it does not add to the complexity
of the original problem.

– The method provides for solutions which possess a precisely defined level of
robustness (in contrast to heuristics).

– The method is easy to implement. One can reuse any existing approach for
the original problem and supplement it with a linear program for recoverable
robustness.

To exemplify these advantages we describe a study on real-world data for the
train platforming problem (cf. [3]).

The train platforming problem considers a single station and a given set of
trains together with their planned departure and arrival times at the station
area. The goal is a conflict-free assignment of a pattern to as many of these
trains as possible. A pattern consists of a track in the station together with an
arrival path to this track and a departure path from the track. The assignment is
conflict free, if no track has a time interval during which two trains are assigned
to that track, and no pair of simultaneously used paths are in spacial conflict. In
the current study the spacial conflicts of paths are given explicitly in a conflict
graph.

It is straight forward to formulate this problem as an integer linear program
with (0, 1)-decision variables for each pair of a pattern and a train. Of course,
there are several possibilities to phrase this problem as an integer linear program.
In fact, the version used in the study is not trivial, but constructed carefully to
achieve a powerful model that allows to solve large-scale instances. (For details
we refer the reader to [3].) Independent of this particular study one might use
a different integer programming formulation, e.g., in case the path conflicts are
not given as a conflict graph, but implicitly by a digraph representing the in-
frastructure network. But the particular program is not relevant to the general
approach on which we focus here.
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The original program is reused without changes in the recovery robust pro-
gram. To effect robustness we add a linear program modeling the delay propa-
gation and a set of constraints that link the variables of the delay propagation
to those of the original program. The resulting program has three sections:

1. The original train platforming program to optimize the assignment of
patterns to trains (planning sub-model).

2. The linear program to model the delay propagation network (recovery
sub-model).

3. The constraints linking the nominal solution to the buffer values on the delay
propagation network (linking constraints).

In the delay propagation network each train has three vertices corresponding
to the three events in which it will free up each of the three resources assigned
to it (arrival path, platform, and departure path). Naturally, two vertices are
connected by an arc whenever delay at the train-resource pair corresponding
to the head-node may propagate onto the tail-node for a specic nominal solu-
tion. A delay in freeing up the platform for a train may propagate to a delay in
freeing up the same platform for other trains. Something similar applies to ar-
rival/departure paths, more precisely for paths that are in conflict. Every arc in
the delay propagation network has an associated buffer value, which represents
the maximum amount of delay that it is able to absorb without any propaga-
tion effect. Intuitively, a buffer corresponds to the slack among a given pair of
resource occupation time intervals.

The objective function of the original problem contains three parts that are
weighted (in the order given below) such that the optimal solution will also be
lexicographically optimal.

1. The total number of trains that can be assigned.
2. Certain trains have a preferred set of tracks to one of which they should be

assigned if possible.
3. A heuristic for robustness punishing any use of pairs of paths that are

in spacial conflict during time windows that are not overlapping (i.e. the
assignment is conflict-free) but close to each other.

For the recovery robust version we drop the third, heuristic objective and replace
it by the exact objective to minimize the maximum delay that can occur. We
use the scenario set S1 to get a compact model for the robust platforming. It
turns out that the second objective plays a role for none of the two methods in
any of the considered instances, i.e., the trains that are assigned to tracks can
always be assigned to their preferred tracks. Moreover, the real-world instances
are such that it is not possible to assign tracks to all given trains, neither in the
standard nor in the recovery robust model.

Note that by the weighting of the objective function this implies, that a
conflict-free assignment of all trains is physically impossible. But, in all consid-
ered instances the recovery robust method assigns as many trains as the original
method, i.e., as much as possible in general. Thus the two methods yield as-
signments that are equivalent in all given deterministic criteria. But they differ
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Table 1. Results for Palermo Centrale

time # trains not D CPU time D CPU time Diff. D Diff. D
window platformed nom nom (sec) RR RR (sec) in %

A: 00:00-07:30 0 646 7 479 46 167 25.85
B: 07:30-09:00 2 729 7 579 3826 150 20.58
C: 09:00-11:00 0 487 6 356 143 131 26.90
D: 11:00-13:30 2 591 6 384 228 207 35.03
E: 13:30-15:30 1 710 9 516 2217 194 27.32
F: 15:30-18:00 1 560 7 480 18 80 14.29
G: 18:00-00:00 3 465 11 378 64 87 18.71

significantly in delay propagation. In all instances the recovery robust method
yields assignments with a double-digit percentage of delay reduction. In one case
the reduction is almost 50%. Averaged over all instances the reduction is roughly
1/4.

Table 1 gives the details of the study for the station Palermo Centrale. The
study considers seven time windows during the day at the station Palermo Cen-
trale. These are given in the first column of Table 1. Further, the short cut nom
denotes values referring to the original method, whereas RR stands for the re-
sults of the recovery robust approach. For both the table states the CPU time
required to find the solution and the maximal propagated delay. Further, we
give the difference in propagated delay as absolute value (in minutes) and as
percentage of delay propagation in the original method’s solution. The number
of non-assigned trains is given without reference to the method, because both
methods achieve the same value here.

6 Conclusion

We have introduced recoverable robustness as an alternative concept for opti-
mization under imperfect information. It is motivated by practical problems like
delay resistant timetabling, for which classical concepts like stochastic program-
ming and robust optimization prove inappropriate. We describe the model in full
generality and demonstrate how different types of delay resistant timetabling
problems can be modeled in terms of recoverable robustness. Further, we spe-
cialized the general concept of recoverable robustness to linear recovery robust
programs. For these we provide an efficient algorithm in case of right-hand side
disturbances. By means of this general method delay resistant timetabling prob-
lems can be solved efficiently. This is exemplified by a real world application of
our method in a study [3] on recovery robust platforming. The platformings con-
structed with our method achieve maximal possible throughput at the stations,
but drastically reduces the delay propagation in comparison to a state-of-the-art
method.
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for recoverable robustness problems. In: Proceedings of the 8th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS 2008), Schloss Dagstuhl Seminar Proceedings (2008)

9. Cicerone, S., Di Stefano, G., Schachtebeck, M., Schöbel, A.: Multi-stage recoverable
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