Math. Program., Ser. A
DOI 10.1007/s10107-014-0761-5

FULL LENGTH PAPER

Automatic Dantzig—Wolfe reformulation of mixed
integer programs

Martin Bergner - Alberto Caprara - Alberto Ceselli -
Fabio Furini - Marco E. Liibbecke - Enrico Malaguti -
Emiliano Traversi

Received: 21 September 2012 / Accepted: 1 February 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract Dantzig—Wolfe decomposition (or reformulation) is well-known to provide
strong dual bounds for specially structured mixed integer programs (MIPs). However,

A preliminary version of this paper appeared in [3].

Martin Bergner was supported by the German Research Foundation (DFG) as part of the Priority Program
“Algorithm Engineering” under Grants No. LU770/4-1 and 4-2.

Alberto Caprara: Deceased.

Electronic supplementary material The online version of this article
(d0i:10.1007/s10107-014-0761-5) contains supplementary material, which is available to authorized users.

M. Bergner - M. E. Liibbecke (I<)
Operations Research, RWTH Aachen University, Kackertstrale 7, 52072 Aachen, Germany
e-mail: marco.luebbecke @rwth-aachen.de

M. Bergner
e-mail: martin.bergner @rwth-aachen.de

A. Ceselli
Dipartimento di Informatica, Universita degli Studi di Milano, Via Bramante 65, 26013 Crema, Italy
e-mail: alberto.ceselli@unimi.it

F. Furini
LAMSADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris, France
e-mail: fabio.furini @dauphine.fr

A. Caprara - E. Malaguti
DEI, Universita di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: enrico.malaguti @unibo.it

E. Traversi

LIPN, Equipe AOC, Université Paris 13, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
e-mail: emiliano.traversi@lipn.univ-paris13.fr

Published online: 05 March 2014 &\ Springer

http://dx.doi.org/10.1007/s10107-014-0761-5

M. Bergner et al.

the method is not implemented in any state-of-the-art MIP solver as it is considered
to require structural problem knowledge and tailoring to this structure. We provide
a computational proof-of-concept that the reformulation can be automated. That is,
we perform a rigorous experimental study, which results in identifying a score to
estimate the quality of a decomposition: after building a set of potentially good can-
didates, we exploit such a score to detect which decomposition might be useful for
Dantzig—Wolfe reformulation of a MIP. We experiment with general instances from
MIPLIB2003 and MIPLIB2010 for which a decomposition method would not be the
first choice, and demonstrate that strong dual bounds can be obtained from the auto-
matically reformulated model using column generation. Our findings support the idea
that Dantzig—Wolfe reformulation may hold more promise as a general-purpose tool
than previously acknowledged by the research community.

Keywords Dantzig—Wolfe decomposition - Column generation - Block-diagonal
matrix - Matrix re-ordering - Automatic reformulation - Hypergraph partitioning

Mathematics Subject Classification (2000) 90C11 - 49M27 - 65K05

1 Introduction

Dantzig—Wolfe reformulation (DWR) of mixed integer programs (MIPs) is a computa-
tionally very successful approach to produce high-quality solutions for well-structured
discrete optimization problems like vehicle routing, crew scheduling, cutting stock,
p-median, generalized assignment, and many others [28]. The common structure of
these problems is the bordered block-diagonal form of the constraint matrix of the MIP
formulation, which reflects that otherwise independent subproblems are coupled only
by some linking constraints. This structure usually gives rise to a column generation
based solution approach.

It is generally agreed that DWR needs tailoring to the application at hand and is
quite far from being a general-purpose tool: It is the user who does not only know that
there is an exploitable structure present but also what it looks like, and how to exploit it
algorithmically. In particular, in view of the automatic use of general-purpose cutting
planes in all modern MIP solvers, this is unsatisfactory.

1.1 Our contribution

In this paper we give a computational proof-of-concept that the DWR process can
be automated and applied to a general MIP even when the latter seemingly does not
expose the matrix structure for which DWR is classically applied. We perform a suite
of experiments, the results of which can be taken as advice on what empirically consti-
tutes a good (or bad) DWR. Remarkably, a key ingredient—re-arranging a matrix into
bordered block-angular form—has been available for a long time. Also automatically
applying DWR to a given structure is a concept that is implemented in several frame-
works. However, these two components have not been combined in a MIP context
before. In this paper, we provide the missing link by proposing how to re-arrange a

@ Springer

Automatic Dantzig—Wolfe reformulation

matrix into a structure that is experimentally well-suited for DWR, in the sense that

a subsequent column generation approach consistently closes a significant portion of

the integrality gap.

Our main contributions are summarized as follows:

— We reveal that the constraint matrix of a general MIP can be re-arranged for DWR
in many different ways, necessitating a way to a priori evaluate the quality of a
re-arrangement;

— we perform a rigorous experimental study which results in a proxy measure for this
quality, which we call the relative border area;

— besides the classical bordered block-diagonal matrix structure, also a double-
bordered block-diagonal (also called arrowhead) matrix is amenable to DWR when
applying a variant of Lagrangian decomposition. The re-arrangement of matrices
into both forms having a good border area can be accomplished via a hypergraph
partitioning algorithm;

— for a set of medium sized instances from MIPLIB2003 and MIPLIB2010 our refor-
mulations on average lead to comparable or stronger root node dual bounds w.r.t.
a state-of-the-art MIP solver with default parameter settings (i.e., cutting planes,
preprocessing, etc. enabled);

— on a non-negligible fraction of these instances, we could automatically identify
reformulations yielding computational performances that are globally better than
those of state-of-the-art MIP solvers;

— our computational success is based on the observation that the constraint matrix of
a MIP may not originally contain a Dantzig—Wolfe decomposable form, but can be
“forced” into such a form in almost all cases;

— performance variability has raised great attention in the computational MIP liter-
ature lately; we show experimentally that this phenomenon is very pronounced in
the context of DWR.

As we re-arrange matrices with the goal of applying a DWR, we will use the notions
of re-arrangement of a matrix and (Dantzig—Wolfe) decomposition interchangeably,
as the former immediately leads to the latter in our context.

1.2 Related literature

For a general background on DWR of MIPs, column generation, and branch-and-price
we refer to the recent survey [28] and the primer [9] in the book [8] that also devotes
several chapters to the most important applications.

There are several frameworks which perform DWR of a general MIP, and handle
the resulting column generation subproblems in a generic way such as BaPCod [27],
DIP [23], G12 [22], and GCG [16]. In all cases, the bordered block-diagonal matrix
structure needs to be known and given to the algorithm by the user. In [16] it is
shown that such a generic reformulation algorithm performs well on bin packing,
graph coloring, and p-median problems. Tebboth, in his thesis [26], derives some
decomposable matrix structures of a linear program (LP) when it is formulated in
a specific modeling language. A similar approach of indicating the matrix structure
via key words in the modeling language is taken in [7,13,22,25] among others. All

@ Springer

M. Bergner et al.

proposals have in common that the user, in one way or another, needs to make available
her knowledge about the decomposition to be applied.

Specially structured matrices, like bordered block-diagonal forms, play an impor-
tant role in several fields, e.g., in numerical linear algebra. Therefore, several proposals
exist to re-arrange the rows and columns of a matrix in order to reveal such forms.
A typical motivation is to prepare a matrix for parallel computation, like for solving
linear equation systems, see, for instance, [2] and the many references therein. The
goal usually is to identify a given number of independent blocks (of almost equal
size) with as few constraints in the border as possible (see below for more formal
statements). Some works like [30] mention the possible use of such re-arrangements
in DWR of LPs, but we know of no actual experiment with MIPs. The method in [12],
for speeding up interior point methods, is based on graph partitioning as is ours. An
exact branch-and-cut algorithm for detecting a bordered block-angular structure was
proposed in [4].

Attempts to evaluate the re-arranged matrices in terms of suitability for DWR were
done rudimentarily in the LP case only [26]. We are not aware of any attempts to eval-
uate the quality of a decomposition in terms of suitability of DWR for the MIP case
(which has an undoubtedly larger potential). In fact, it is not even known what charac-
terizes a “good” decomposition in this context, and our paper gives computationally
supported guidance in this respect.

2 Partial convexification and Dantzig—Wolfe reformulations

A sketch of DWR applied to a MIP is as follows (see e.g., [9] for details). Consider a
general MIP

max {c'x : Ax <b, Dx <e, x € Z"" x Q'}. (1)

Let P := {x € Q" : Dx < e}. The polyhedron P;p := conv{P NZ"™" x Q"} is
called the integer hull w.r.t. constraints Dx < e. In a DWR based on a single block
of constraints Dx < e we express x € P;p as a convex combination of the (finitely
many) extreme points Q and (finitely many) extreme rays R of Pjp; this leads to

max c¢'x)
s.t. Ax <b
f= St S
qeQ reR
D k=1
qeQ
R
reQf, el
xeZ" x Q" 3)

where each ¢ € Q and r € R represent vectors encoding extreme points and rays,
respectively, and variables A and p correspond to weights in their combination.

@ Springer

Automatic Dantzig—Wolfe reformulation

D!t D! D! F!
D? D? D? F?
.Dkfl ’ Dk ’ Dk Fk
DF¥ Al AZ ... AF Al A2 ... Ak @
(a) block-diagonal (b) bordered (¢) double-bordered
block-diagonal block-diagonal

Fig. 1 Matrix forms

It is well-known that the resulting LP relaxation is potentially stronger than that
of (1) when P;p € P [17], in which case the dual bound one obtains from (2)—
(3) is stronger than the one from (1). This is a main motivation for performing the
reformulation in the first place. This partial convexification w.r.t. the constraints Dx <
e corresponds to implicitly replacing P with P;p in (1). This can be done, in principle,
by explicitly adding all valid inequalities for P;p to (1). When this is impracticable,
the implicit description is in a sense the best one can hope for.

The reformulated MIP (2)—(3) contains the master constraints Ax < b, the convex-
ity constraint, and the constraints linking the original x variables to the extended) and
W variables. In general, MIP (2)—(3) has an exponential number of A and p variables,
so its LP relaxation needs to be solved by column generation. The pricing subproblem
to check whether there are variables with positive reduced cost to be added to the
current master LP calls for optimizing a linear objective function over Pjp, so it is
again a MIP. The effectiveness of the overall approach hinges crucially on our ability
to solve this subproblem, either by a general-purpose solver or by a tailored algorithm
to exploit its specific structure, if known.

DWR is usually applied when matrix D has a block-diagonal form as depicted
in Fig. 1a where D' € Q™ *" fori = 1,...,k (and D is O elsewhere). In this
case, k disjoint sets of constraints are identified: Dx < e partitions into Dixi < ¢f,
i=1,..., k,wherex = (x', x?, ..., x¥), with x’ being an n;-vectorfori =1, ..., k.
Every D'x’ < ¢' individually is then convexified in the above spirit. We denote by
k the number of blocks of the reformulation. A matrix of the form as in Fig. 1b with
Al € Qmexni i =1,...,k is called (single-)bordered block-diagonal. For general
MIPs, often enough, constraints are not separable by variable sets as above, and a
double-bordered block-diagonal (or arrowhead) form is the most specific structure we
can hope for, i.e., the constraint matrix of (1) looks like Fig. 1c with F i e Qmixne =
1,...,k,and G € Q™" Them, constraints associated with the rows of A’ are called
the coupling (or linking) constraints and the n, variables associated with the columns
of F' are called the linking variables, denoted by x*. We intuitively speak of the k
blocks D', i =1, ..., k,and the remaining border. Each of the k groups of constraints
Dix! + Fix% < ¢! can be convexified. Let P! := {x € Q1" : Dix! 4+ Fixt < ¢}
Denote by Pli p the associated integer hull and, respectively, by Q' and R’ the set of
extreme points and rays of P} p- Then, the resulting DWR reads

max c¢'x 4)
k
s.t. ZAixi + Gx* <b
i=1

@ Springer

M. Bergner et al.

(hx =D g+ D (Vi) 5)
qeQ! reR!

> a=1 (Vi)

qeQ’

M eQ@l uieQf (Vi)

xeZ'" 7T xQ" 6)

where each ¢ € Q and r € R is augmented with x* components. This formulation
generalizes the explicit master format [21] handling both, the presence of linking
variables and a generic number of blocks. It is a variant of Lagrangian decomposition ,
similarly usedin [12,26]. Instead of replacing each linking variable with a copy for each
block it appears in, and adding constraints that ensure consistency of these copies, this
coordination is taken care of by the original x variables. Furthermore, by keeping all x’
variables in the master, one can enable several features of general purpose MIP solvers,
like the separation of generic cuts, advanced branching techniques, preprocessing, etc.,
without any additional implementation issues. We use the above formulation in our
experiments. We can further obtain a master problem formulation by projecting out the
original variables, and introducing for each linking variable a set of constraints which
ensures consistency in different blocks. However, we remark that the techniques and
findings described in the rest of the paper are not strictly dependent on the particular
master problem format.

3 Automatic detection of an arrowhead form

Potentially, every MIP model is amenable to DWR, even if its structure is not known
in advance (from the modeler or from other sources). In the latter case, we need to
detect a structure algorithmically. We need hence to decide: i) which constraints of
the MIP (if any) to keep in the master problem; ii) the number of blocks k and iii) how
to assign the remaining constraints to the different blocks. In other words, we need to
partition the set of the original constraints into one subset representing the master and
several subsets representing the blocks.

To this end, we follow the ideas proposed in [2] and [12] which build on well-
known connections between matrices and hypergraphs. Precisely, once the number k
of blocks is fixed, we propose a procedure for obtaining a decomposition consisting
of two main ingredients: i) a systematic way to produce a hypergraph starting from
the constraint matrix, and i) an algorithm that partitions its vertex set into k subsets
(blocks). The partition obtained corresponds to a re-arrangement of the constraint
matrix of the original problem in such a way that it presents an arrowhead form ready
to be used as input for the model (4)—(6).

3.1 Hypergraphs for structure detection

We use two different kinds of hypergraphs defined in the following which are the input
of the partitioning algorithm.

@ Springer

Automatic Dantzig—Wolfe reformulation

Row-Net Hypergraph. Given the matrix A, we construct a hypergraph H = (V, R) as
follows. Each column j of matrix A defines a vertex v; € V,and eachrow i of matrix
A defines a hyperedge r; € R linking those vertices v; € V whose corresponding
variable j has non-zero entry a;; # 0 in the row i.

Row-Column-Net Hypergraph. Given the matrix A, we construct a hypergraph H =
(V, RU C) as follows. Each entry a;; # 0 of matrix A defines a vertex v;; € V. For
every row i of A, we introduce a hyperedge r; € R which spans all vertices v;; € V
with a;; # 0; analogously we introduce a hyperedge c¢; € C for every column j
spanning all vertices for which a;; # 0.

3.2 Hypergraph partitioning

In order to obtain a decomposition we heuristically solve a minimum weight balanced
k-partition problem on one of the two hypergraphs. This problem is to partition the
vertices of a hypergraph V into k components V; (i = 1, ..., k) such that the sum
of weights on hyperedges containing vertices in more than one V; is minimized. The
partition is said to be balanced if |V;| ~ n/k.

For a given k-partition of a hypergraph, the blocks are obtained by grouping together
constraints corresponding to hyperedges r; € R consisting of vertices v belonging to
the same component; in the case of the row-net hypergraph, hyperedges r spanning dif-
ferent components correspond to linking constraints and are hence kept explicitly in the
master problem. Similar, for a row-column-net hypergraph, the hyperedges ¢ spanning
different components correspond to linking variables. We recall that by construction,
a partition on a row-net hypergraph does not allow partitions with linking variables.

The idea behind both constructions is to obtain “homogeneous” blocks, i.e., blocks
consisting of constraints on similar sets of variables and limiting at the same time
the number of linking constraints (in both cases) and linking variables (when a row-
column-net hypergraph is used). To take into account slightly un-balanced partitions,
dummy nodes that are not incident to any hyperedge are included in each graph. The
possibility of assigning weights to hyperedges enables us to penalize different com-
ponents of the border differently; for example linking variables may be less desirable
when they are discrete, or linking variables may be more or less difficult to handle in
the subsequent column generation process than linking constraints, etc.

3.3 A very special case: the temporal knapsack problem

The arrowhead structure of a matrix is so general that it cannot happen that there is
no such structure to detect. Therefore, “detection” can also be understood as “forc-
ing” a matrix into a particular structure. We illustrate this on the temporal knapsack
problem [5], also known as unsplittable flow on a line or resource allocation.

The problem is defined as follows. There are n items, the i-th of which has size w;,
a profit p;, and is active only during a time interval [s;, t;). A subset of items has to
be packed into a knapsack of capacity C such that the total profit is maximized and
the knapsack capacity is not exceeded at any point in time. It suffices to impose that

@ Springer

M. Bergner et al.

(a) original matrix (b) “detected” arrowhead form

Fig. 2 Constraint matrix of an instance of the temporal knapsack problem a original and b “forced” into
arrowhead form with k = 10 blocks

the capacity constraint is satisfied at the discrete points in time s;, i = 1, ..., n. Let
Sj:=1{i:s; < jand j < t;} denote the set of active tasks at time j, and x; a binary
variable equal to 1 if task i is selected, a binary program for the problem reads:

n
max Zp,-xi : Z wix; <C, Vjelsy,....sn},x; €{0,1}, Vie{l,....,n}s. (7)
i=1 ies;

Figure 2a shows that the coefficient matrix of this formulation does not contain any
non-trivial blocks (i.e., the entire matrix is one block), although all non-zero entries
in a column are associated with consecutive rows.

Applying the procedure explained in the previous subsection based on a row-
column-net hypergraph produces a decomposition with only a few linking variables,
see Fig. 2b, and “reveals” a Dantzig—Wolfe decomposable form. This form immedi-
ately suggests how to convexify groups of constraints in the spirit of (2)—(3) to (much)
better describe the integer hull implicitly. A DWR of the second matrix does not only
produce a strong relaxation but also allows to quickly solve instances to optimality
by branch-and-price, significantly outperforming a state-of-the-art MIP solver on the
standard formulation (7) [5].

4 Experimenting with a generic decomposition framework

An important lesson we learned from preliminary experiments [3] is that we are not
looking for “the” decomposition of a matrix. There is a much larger degree of free-
dom than originally expected: an arrowhead form is not unique; changing the input
parameters of our re-arrangement algorithm can very much vary the results, and most
importantly, seemingly small changes in the resulting decomposition may lead to very
different behavior in the subsequent column generation process (both, in terms of dual
bound quality and running time). Such sensitivity is a well-documented phenomenon
in MIP solving in general [20]. Figures 3 and 4 show for instance the influence of
the number k of blocks and the choice of the weights on hyperedges, respectively, on
the visual shape of the resulting arrowhead form. Not least, this non-uniqueness of
decompositions immediately calls for a priori evaluation criteria for a given decom-
position w.r.t. its usefulness for DWR. In this study, we concentrate on approaching
this question experimentally.

@ Springer

Automatic Dantzig—Wolfe reformulation

(¢) k = 4 blocks (d) £ = 5 blocks

Fig. 3 Influence of the number k of blocks on the shape of the arrowhead form (fiber); a smaller k tends
to give a smaller border

l&m

(a) 10teams, visually appealing (b) 10teams, visually poor

(¢) rout, visually appealing (d) rout, visually poor

Fig. 4 Visual differences for different decompositions (resulting from different settings in the partitioning
procedure). Top row (a, b) shows instance /0teams with k = 3 blocks; bottom row (¢, d) shows instance
rout with k = 4 blocks

In the following we describe the benchmark instances used in our computational
experiments, the specific setting used in our experimental framework (i.e., model (4)—
(6) of Sect. 2) and the sets of decompositions achieved using the procedure described
in Sect. 3 using three different settings.

@ Springer

M. Bergner et al.

4.1 Benchmark instances

We did not experiment on instances with known structure: in these cases the effec-
tiveness of DWR has already been proven, and indeed, the purpose of our study
is to prove that DWR can work for general MIPs. Instead, in order to confirm the
generality of the proposed method we tested our algorithm on MIPLIB2003 [1] and
MIPLIB2010 [20] instances. We selected a subset of instances, for which (a) the den-
sity is between 0.05 and 5 %, (b) the number of non-zeros is not larger than 20,000,
and (c) the fraction of discrete variables is at least 20 %. The rationale behind this
choice is the following: (a) if the instance is not sparse enough, no useful arrowhead
form can be detected, and therefore it is easy to tell a priori that DWR is not a promis-
ing option; (b) for large instances the partitioning heuristics may fail in finding good
partitions, and therefore the potential of our approach cannot be estimated; and (c)
without a sufficient degree of integrality no gains in the dual bound are possible from a
decomposition.

4.2 Experimental framework

All experiments to assess the performances of model (4)—(6) are carried out on an
Intel Core™ i7-870 PC (2.93 GHz, 8MB cache, 8GB memory) running Linux 2.6.34
(single thread). In all our experiments the CPU time limit is set to 1 hour.

For solving the column generation MIP subproblems we use the branch-and-cut
algorithm implemented in CPLEX 12.2, with single thread and default parameter
settings. In order to obtain a generic multiple pricing strategy, each time a new incum-
bent solution having negative reduced cost is found during the optimization of a MIP
subproblem, the corresponding column is inserted into the master. Whenever a MIP
subproblem is found to be unbounded, its integrality conditions are relaxed, and an
extreme ray is generated and added to the master by solving the resulting LP problem
to optimality.

For solving the master problem LPs we use the simplex algorithm of CPLEX 12.2,
with default parameter settings, again single thread. We implemented the dual variable
stabilization method described in [11]. We keep as a stability center the dual solution
giving the best Lagrangian bound so far, and we enforce a penalty factor ¢ whenever
each dual variable takes values outside an interval of width § around the stability
center. At each column generation iteration we change €, independently for each dual
variable, to a value randomly chosen between 0 and 10~*. Whenever the stability
center changes we set § := 0.00005 - |z — v|, uniformly for all dual variables, where
z is the current master problem LP value, and v is the best Lagrangian bound found
so far. An upper bound of 50.0 is imposed on § in any case. The stabilization is acti-
vated on problems with more than 400 constraints when, during the column generation
process, the gap |z —v| is between 1 and 80 % of the current |z| value. We experimented
with different parameter settings, but these values gave best performance; we exper-
imentally observed that, on our datasets, this stabilization mechanism is enough to
overcome potential convergence problems. As we did not go for efficiency, no further
performance improvement method was implemented.

@ Springer

Automatic Dantzig—Wolfe reformulation

4.3 Sets of decompositions

Different decompositions can be obtained using the hypergraphs described in Sect. 3.1
with different sets of input parameters. For instance, completely different decompo-
sitions can be derived by changing the number k of blocks, the number of dummy
vertices, and the weights of the hyperedges given as input parameters to the partition-
ing algorithm.

We do not optimally solve the NP-hard minimum weight balanced k-partition
problem. Instead, we use the heuristic multilevel hypergraph partitioning algorithm
in [18], of which the package hMETIS [19] is an implementation. In particular, the
hMETIS heuristics follow a multilevel recursive bisection paradigm, working in three
phases: coarsening, partitioning, and uncoarsening. Coarsening aims at constructing
a sequence of successively smaller hypergraphs by contracting hyperedges with a
so-called “FirstChoice” scheme; then, balanced partitioning is performed on the con-
tracted hypergraph by bisection; finally, during uncoarsening, the contracted hyper-
graph is expanded by successive projections, following backward the coarsening steps,
and running after each projection a local refinement procedure (FM), that is based on
tabu search. See [18] for details. hMETIS can solve the partitioning problem needed
in our procedure in a few seconds. All hMETIS parameters were kept at their default
values, except the random seed that was set to 1.

Decompositions without Linking Variables. As first set, we generate decompositions
leading to the standard single bordered structure with no linking variables. This shape
is important because the majority of formulations used in practice for DWR present
this shape. We create a row-net hypergraph imposing a weight of 1 on hyperedges
corresponding to constraints. We add a number of dummy vertices equal to 20 % of
the number of non-zero entries in the constraint matrix. We set k = 2, ..., 20 for
the number of blocks, obtaining 19 decompositions for each instance. An example
of a matrix in a MIP model, and the corresponding detected structure are reported in
Fig. 5a and d, respectively.

Balanced Decompositions. In the most general setting we search for decompositions
in which both constraints and variables can be part of the border. We create a row-
column-net hypergraph with a weight of 1 on hyperedges corresponding to continuous
variables, a weight of 2 on hyperedges corresponding to integer variables, and a weight
of 5 on hyperedges corresponding to constraints. We add a number of dummy vertices
equal to 20% of the number of non-zero entries in the constraint matrix. We set
k =2, ..., 10for the number of blocks, obtaining 9 decompositions for each instance.
Figure 5b and e show an example matrix as given in a MIP model, and the structure
detected using this approach, respectively.

Decompositions with few Linking Constraints. We created a row-column-net hyper-
graph imposing a weight of 1 on hyperedges corresponding to continuous variables, a
weight of 2 on hyperedges corresponding to integer variables and a weight of 10° on
hyperedges corresponding to constraints. We added a number of dummy vertices equal
to 20 % of the number of non-zero entries in the constraint matrix. Wesetk =2, ..., 10
for the number of blocks, obtaining 9 decompositions for each instance. See Fig. 5¢

@ Springer

M. Bergner et al.

(a) original 10teams (b) original fiber

1
o
li' i
I

(d) 10teams, detected struct. (e) fiber, detected structure (f) timtabl, detected struct.

Fig.5 Patterns of non-zero entries (black dots) in the coefficient matrix of a MIPs from the MIPLIB2003 [1];
the areas with grey background in (d)—(f) emphasize the embedded structure; a—c¢ show that matrix structure
directly from the MPS file, with a re-ordering of rows and columns according to a decomposition found
with (d) no linking variables, e balanced settings, f no linking constraints

and f for an example of a MIP model matrix and the structure detected in this way,
respectively.

Altogether, we obtain a benchmark sample of around 1500 decompositions of 39
instances, which cover a wide range of different possible shapes. These decomposition
are used for testing our computational framework in the following section.

5 Linking input and output measures

In the previous sections, we explained how the set of decompositions has been created
and solved via DWR. We now offer a complete analysis of the results obtained by
considering the link between the following output and input measures:

Output Measures. The definition of “usefulness” of a given decomposition is already
an open issue. To obtain as much methodological insight as possible, we primarily
measure such a usefulness in terms of the root node dual bound of the obtained mas-
ter relaxation, being a reliable indicator on the effectiveness of the corresponding
convexification process.

Efficiency is not the primary aim of our investigation. Yet, in order to evaluate a
decomposition’s computational potential, we consider as a second usefulness measure
the computing time needed to complete the column generation process at the root
node (including the time needed to obtain the decomposition, which is negligible). We
intuitively call this the computation time of a decomposition.

Input Measures. In an effort to understand which parameters affect most the output
measures, we take into account the following four direct indicators: number of blocks,
percentage of linking variables, percentage of linking constraints, and the percentage
of border area. The procedure explained in Sect. 3 can produce decompositions with
different values of the direct indicators, this can be done by explicitly fixing the num-

@ Springer

Automatic Dantzig—Wolfe reformulation

ber of blocks a priori or by properly changing the objective function of the graph
partitioning problem. As second set of indicators we consider the average density of
the blocks and the average integrality gap of the subproblems. These are called indi-
rect indicators because it is not possible with our procedure to obtain decompositions
minimizing or maximizing them.

Methodology of the Analysis. In each of the following subsections we consider each
of these input measures independently, we indicate the expected behavior from theory
and we present our experimental results, highlighting an eventual correlation to output
measures.

In particular, each subsection synthesizes the results of our experiments in two
figures, having the following structure. Each dot corresponds to one of the decompo-
sitions generated by the partitioning algorithm. The values on the horizontal (vertical)
axis correspond to a particular input (output) measure.

The integrality gap closed by a decomposition is computed by 1 — |OPT —
DWR|/|OPT — LP|, where OPT is the value of a best integer solution found by
CPLEX in one hour of computing time, DWR is the dual bound found by column
generation using a particular decomposition, and L P is the LP relaxation value of
the corresponding instance. On a few decompositions column generation could not
be completed within the given time limit; in these cases DWR was set to the best
Langrangian relaxation value found during column generation. We normalized the
computing time ¢ of every decomposition of each instance & as (t —) /o with uy
being the mean running time and o, being the standard deviation of running time of
all decompositions created for that specific instance. For each correlated input-output
pair, we fit a LOESS curve [6] with a span size of s = 0.75.

We further plot the different types of decompositions with different colors, where
the decompositions with no linking variables are plotted with a black dot (e), balanced
decompositions with a dark grey dot (e) and decompositions with few linking con-
straints with a light grey dot (). For every figure in the sequel, we provide a figure
disaggregated by instance in the appendix.

In the end of the analysis we propose a proxy measure, suitable for guiding an a
priori choice among several potential decompositions. This proxy measure is used in
Sect. 6, where more computationally related benchmarks are discussed and where we
compare the performances of our decompositions with CPLEX.

5.1 Direct indicators

As sketched above, direct indicators are those that can be either chosen as input
parameters or optimized in the hypergraph partitioning algorithm.

5.1.1 Number of blocks

We first observe the influence of the number k& of blocks, that is chosen as a parameter
in our partitioning algorithms, on the output measures.

@ Springer

M. Bergner et al.

g 100 o.r...-.oc‘- s ee 1

TN

1] - ™ =

o] 2

© s

2 N

o0 g 0

z g

5 :

g 2

%ﬁ e .

B 5 10 15 20
Number of blocks Number of blocks

(a) Gap (b) Time

Fig. 6 Influence of the number k of blocks on the output measures

Expectation 1 As the number of blocks increases, both the integrality gap closed at
the root node and the computing time decrease.

In fact, on one hand a higher number of blocks means more (smaller) subproblems,
that can be optimized faster than a few large ones. On the other hand, more blocks
means a more fragmented convexification, that might lead to looser bounds. We also
remark that, even if we expect the master relaxation to improve as k decreases, there
is no guarantee that a simple reduction in & is useful in terms of bound quality. In
fact, different values of k give different decompositions, in which different regions are
convexified, and no a priori dominance can be established between them. The results
of our experiments are synthesized in Fig. 6.

Observation 1 The average computing time decreases as the number of blocks
increases.

Observation 2 Decompositions without linking variables usually have smallest com-
putation times among all decompositions per instance.

Observation 3 When the number of blocks is small, it is more likely to close a high
integrality gap.

This can be observed by looking at the distribution of the dots in Fig. 6, and becomes
more evident by looking at the instance-by-instance plots reported in the appendix.
Keeping the number of blocks relatively small is a key point if we want to keep the
advantage of a strong dual bound. From the experiments it is hence also clear that we
should focus on decompositions with no more than 5 or 6 blocks. On the other hand, it
is important to notice that decompositions including 20 blocks exist, in which 100 %
of the integrality gap is closed at the root node.

This partially confirms our theoritical expectations: few blocks yield tight bounds,
but as their number increases both good and bad decompositions exist, thus motivating
the search for measures ranking good ones.

5.1.2 Percentage of linking variables

Second, we consider the fraction of linking Varlables in each decomposition (see
Fig. 7).

@ Springer

Automatic Dantzig—Wolfe reformulation

X 1

=

e} Q

2 g

< s 2

© o

g =

o0 3 0

£ B

= 3

g =,

g)n T e

=

= 0 25 50 75 100 0 25 50 75 100
Percentage of linking variables (%) Percentage of linking variables (%)

(a) Gap (b) Time

Fig. 7 Influence of the percentage of linking variables on the output measures

Expectation 2 As the fraction of variables in the border increases, the computing
time increases.

In fact, including variables in the border is not reducing the number of variables
in the subproblem, but is only allowing different copies of the same variable to take
different values in the subproblems. In a column generation setting, then, different
subproblems may blindly generate solutions which are found to be incompatible at a
master stage, thus slowing down the convergence of the process.

Expectation 3 As the fraction of variables in the border increases, the integrality gap
closed decreases.

As recalled in Sect. 2, including variables in the border is similar to including
constraints: due to the analogy with Lagrangian decomposition ,more variables in the
border lower the potential gain by the reformulation.

Observation 4 The fraction of variables in the border and the integrality gap closed
are linked by weak negative correlation.

In fact, as the fraction of variables in the border increases, the computing time
increases, and therefore many instances run into time limit, so the integrality gap closed
decreases. Hence, our expectations are confirmed. An opposite trend can be observed
for very low fractions of variables in the border. Indeed, good decompositions exist
for some instances, that rely on including linking variables into the border. For these
instances, the single border decompositions generated by our partitioning algorithms
may be substantially worse than those with a few linking variables, thereby worsening
the average gap closed.

Observation 5 Computing times tend to get worse as the fraction of variables in the
border increases.

The expected unstable behavior is observed also in practice.
5.1.3 Percentage of linking constraints

Third, in Fig. 8 we take into account the fraction of linking constraints % in each
decomposition.

@ Springer

M. Bergner et al.

<
X 100 oW T cm e ‘e
Lol Q O
2 g B
- = -
(e} o + 2 1
2
o o
a,]
® 50 S
o0 S 0
z E
L 3
& =2
L]
S 0 L] L]
g i o . .
= 0 25 50 75 100 0 25 50 75 100
Percentage of linking constraints (%) Percentage of linking constraints (%)
(a) Gap (b) Time

Fi

ot

g. 8 Influence of the percentage of linking constraints on the output measures

Expectation 4 As the fraction of constraints in the border increases, the integrality
gap closed at the root node decreases.

The rationale is the following: when a constraint is included in a block, its corre-
sponding region of feasibility is convexified, possibly yielding tighter bounds.

At the same time, in general subproblems are MIPs, and therefore it is hard to tell
a priori the effect on computing times obtained by adding constraints.

Observation 6 As the fraction of constraints in the border increases, the integrality
gap closed at the root node decreases.

This matches our theoretical expectation.

Observation 7 Computing time is higher for very low percentages of constraints in
the border.

Such an observation is not fully matching a modeler intuition, as when the number
of linking constraints is zero, we may have a pure block-diagonal form, which performs
perfectly in a decomposition setting. In an attempt to explain the experimental phenom-
enon, we consider two factors. First, the decompositions with very low percentages
of linking constraints include those with largest percentage of linking variables, that
according to Observation 5 yield higher computing time. Second, allowing a relevant
percentage of constraints to stay in the border means having more freedom in the
composition of blocks. In other words, it facilitates the partitioning algorithm to fit the
remaining constraints in the best block. This explanation meets also with practice: in
several partitioning problems, for instance, a natural decomposition is obtained only
by assigning a relevant fraction of the constraints to the border.

In contrast to our results in Sect. 5.1.2, where having very few linking variables
does not guarantee to provide tight bounds, having very few linking constraints does.
That is, adjusting the fraction of linking constraints experimentally offers more control
on the integrality gap closed with respect to adjusting the fraction of linking variables.

@ Springer

Automatic Dantzig—Wolfe reformulation

<

é, 100 1

Lo} [}

g E

2 [89) -~ 2

: 3

o

& 50 =

) < 0

> g

£, z

= =

si;o -2 .

o) L] .

g 0 e

= 0 25 50 75 100 0 25 50 75 100
Percentage of border (%) Percentage of border (%)

(a) Gap (b) Time

Fig. 9 Influence of the relative border area on the output measures

5.1.4 Percentage of border area

Fourth, we investigate the effect of adjusting linking variables and linking constraints
simultaneously, by considering the following relative border area

my -n—+m-ng —my-ny

P ®)

m-n

This is the ratio between the border “area” and the entire matrix “area,” and is a way
of encoding the intuition on visually appealing decompositions sketched in Sect. 4:
having a small border area is what a human expert usually aims to, while trying to make
a block diagonal structure appear by selectively choosing border elements. Trivially,
for a fixed number of blocks, a MIP whose constraint matrix is in pure block diagonal
form can be decomposed with border area zero.

Expectation 5 Decompositions having a reduced set of constraints and variables in
the border tend to yield tighter dual bounds.

The rationale comes directly from Expectations 3 and 4: each constraint that appears
in the border corresponds to a constraint that is not convexified; in the same way, each
column that appears in the border requires duplicated variables and linking constraints
to be created and relaxed in a Lagrangian decomposition fashion.

From the theoretical point of view, it is hard to predict the relation between relative
border area and computing times. However, following a modeler intuition, two extreme
cases can be considered: when all the constraints and variables are in the border, the
problem becomes an LP, that can be optimized efficiently; on the opposite, when no
constraints nor variables are in the border, we are facing the original MIP. Therefore,
such an observation suggests to investigate on the following with the results of our
experiments summarized in Fig. 9:

Expectation 6 Decompositions having a reduced set of constraints and variables in
the border tend to yield higher computing times.

Observation 8 A lower relative border area correlates with a better dual bound.

@ Springer

M. Bergner et al.

As can be observed, the trend in Fig. 9 is more clear with respect to that of results
on both percentage of linking constraints (Fig. 8) and linking variables (Fig. 7).

Observation 9 Tests whose computing time is high, often correspond to decomposi-
tions having relative border area either considerably low or considerably high.

The higher percentage of slow runs with low relative border area meets Expecta-
tion 6, and that of slow runs with considerably high relative border area meets Expec-
tation 2 and matches Observation 5. Furthermore, fewer linking constraints implies
more constraints in the subproblems, and hence potentially more extreme subproblem
solutions to generate via column generation, thus yielding higher computing time.

5.2 Indirect indicators

We also consider indirect indicators, that is, measures that cannot be reflected in the
objective function of our heuristic minimum k-way hypergraph partitioning approach.
Therefore, they are not optimized directly during the construction of a decomposition,
but only assessed a posteriori.

5.2.1 Average density of the blocks

First, we investigate the influence of the density of subproblems, computed as

k

nz; 1

5 = and § = — R
! n; -nm; k 1=21 !

where nz; denotes the number of non-zero coefficients in D. Each decomposition is
evaluated according to the average value § over its blocks.

Expectation 7 Dense subproblems are more difficult to solve, thus yielding higher
computing time.

This is often observed in the behaviour of MIP solvers. Our computational results
are summarized in Fig. 10.

|
o

normalized time
e ..
%

L]
(3
]
 J
CJ
o0
L]

integrality gap closed (%)

o0
0 20 40 60 80 0 20 40 60 80
Avg. subproblem density (%) Avg. subproblem density (%)
(a) Gap (b) Time

Fig. 10 Influence of the average subproblem density on the output measures

@ Springer

Automatic Dantzig—Wolfe reformulation

Fig. 11 Correlation between
relative border area and average
subproblem density

Percent of border (%)

0 20 10 60 80
Avg. subproblem density (%)

Observation 10 As the average subproblem density increases, the integrality gap
closed tends to decrease.

Observation 11 For low values of average subproblem density, as the average sub-
problem density increases, the computing time tends to decrease, while no particular
trend is observed as the average subproblem density further increases.

In order to explain this phenomenon we compared the average subproblem density
of each decomposition in our experiments with the corresponding relative border area,
see Fig. 11. We observe a strong correlation, and in fact Observations 8 and 10 are
coherent; moreover, the correlation in case of Observations 9 and 11 is reversed, i.e.,
lower density decompositions close a large fraction of the integrality gap but take
longer to compute whereas decompositions with a lower relative border area both
tend to have good dual bounds and a lower computation time.

5.2.2 Average integrality gap of subproblems

Finally, we analyze the relation between average integrality gap of the subproblems
and output measures. In order to obtain such an analysis, we considered the MIP
subproblems of each block of each decomposition independently, we set its objective
function coefficients to those in the original objective function of the problem, we
measured its LP relaxation value (LP), and then let CPLEX run until proven optimality
(that is, in the vast majority of our experiments) or until a time limit of 60 seconds
was reached (value ILP). The integrality gap was estimated as |(/LP — LP)/ILP|, and
for each decomposition the average among its subproblems was computed, excluding
those subproblems for which CPLEX could not find any feasible solution within the
time limit, and those having zero ILP value.

We stress that such a measure, besides being indirect in the sense discussed at the
beginning of the section, requires a potentially non-trivial MIP computation for each
subproblem, and is therefore interesting for a methodological insight only.

Theory suggests that

Expectation 8 A larger integrality gap in the subproblems may imply a larger poten-
tial for a stronger master dual bound.

This expectation has also been mentioned in the context of Lagrangean relax-
ation [17]. Trivially, a subproblem integrality gap of zero for whatever objective func-

@ Springer

M. Bergner et al.

S 4
Q
3 E
8 L=
S 3
o N
) o
50 S 0
= =
& =
E E
) 2
3
g 0 25 50 75 100 0 25 50 75 100
Avg. subproblem integrality gap (%) Avg. subproblem integrality gap (%)
(a) Gap (b) Time

Fig. 12 Influence of the average integrality gap at the root node of the subproblems on the output measures

tion indicates that no improvement of the dual bound is possible compared to the
original LP relaxation. For the computing time, we expect the following

Expectation 9 The computing time increases as the average integrality gap in the
subproblems increases.

This is due to the fact that closing the integrality gap is the main task of any MIP
solver in tackling each subproblem. Our results are reported in Fig. 12.

Decompositions corresponding to points on the horizontal axis are actually those
tests hitting time limits. In our experiments we found the following.

Observation 12 Both integrality gap closed and computing time correlate weakly to
average subproblem integrality gap.

Future experiments may reveal the usefulness of a measure related to the subprob-
lem integrality gap, perhaps by considering a more suitable definition of the objective
function.

5.3 Evaluating and exploiting a proxy measure

We remark that, when evaluating a decomposition, a strong dual bound cannot consti-
tute the ultimate quality measure, as this can be trivially maximized by reformulating
the whole original problem into a single subproblem (which amounts to optimally
solving the original MIP in the subproblem in a single shot).

From the analysis reported in the previous sections we drew the conclusion that
relative border area is the most appropriate proxy measure to estimate the quality of a
decomposition. In particular, it is the only measure exhibiting three appealing features
at the same time. First, the measure ranges from zero (best) to one (worst), being
zero for block-angular matrices. Second, it correlates negatively with integrality gap
closed. Third, itis eventually positively correlated also with the time needed to compute
the bound of the decompositions. In order to be more detailed on this third feature,
we present a further analysis on our results: we rank the decompositions by relative
border area, and we consider four classes of decompositions, corresponding to the four

@ Springer

Automatic Dantzig—Wolfe reformulation

Table 1 Average output

measures for relative border Quartile ~ Range Norm. int. gap Norm. cpu time
. closed
area quartiles
1 (0.0031, 0.0546] 71.97 0.10
2 (0.0546, 0.1380] 47.46 —0.07
3 (0.1380,0.3290] 29.42 —0.15
4 (0.3290, 0.9360] 12.80 0.11

quartiles in such a ranking; in Table 1 we report the average output measures for each
quartile: the table is composed of four rows, one of each quartile, and four columns,
reporting quartile, range of values corresponding to the quartile, average normalized
integrality gap closed, and average normalized computing time over decompositions
in each quartile.

We come to the following

Observation 13 A better tradeoff between integrality gap closed and computing time
can be obtained by looking for decompositions with low relative border area.

In fact, as reported in Table 1, decompositions having relative border area in the
fourth quartile are on average worse than those in all other quartiles in terms of both
computing time and integrality gap closed.

For the remaining quartiles, decompositions having low relative border area tend
to provide higher integrality gap closed at the price of higher computing time. Indeed,
this matches Expectations 5 and 6, and supports the general intuition that additional
computational effort is needed to obtain better bounds.

In Table 2 we report, for each MIPLIB instance, the details of the DWR with
minimum relative border area among all those generated by our graph partitioning
algorithms, as described in Sect. 4.3. Listed are: the instance features (name, number
of rows and columns), number of blocks, linking variables, and linking constraints,
maximum number of variables and constraints in a block, number of LP problems
solved during column generation and corresponding CPU time, number of MIP sub-
problems solved during the column generation process and corresponding CPU time,
number of columns and extreme rays generated during the optimization process. The
table is split in two horizontal blocks, corresponding to MIPLIB 2003 and MIPLIB
2010 instances, respectively. As can be seen, no obvious correlation appears between
the prediction given by the proxy measure and the single features of the chosen decom-
position; therefore our proxy measure proves to be unbiased with respect to the other
decomposition parameters.

Observation 14 Among those generated by our graph partitioning algorithms, a
decomposition corresponding to the best measure has either linking constraints or
linking variables, but not both, in the vast majority (36 out of 39) of the instances.

We remark that this phenomenon is not simply induced by Definition (8), as a low
relative border area can also be achieved by including in the border very few variables
and constraints at the same time. That is, our proxy measure seems to match an
intuitive behavior reported in the literature: for each instance, that is the representative

@ Springer

M. Bergner et al.

0 8CC 8¥1LTE 0c €00 0l 8Vl 8¢ 0 Ll 4 ¥6¢ SL9 cqeun
0 0ce 9 ¥¥C [4% €00 (44 98 90¢ 0 €l [4 ILT L6t 1qeyun
0 9¢ 650 09¢ w0 4! ¥C 33 cl 0 0c (494 CIL Yo13es
0 6l¢ 6'¢ S6 0 0¢C 59 I1 91 0 S 16¢ 9¢¢ LI
Cl ¥CC 860 891 0 123 [43 0¢ 8 0 8 9rc (74 sLNDegedd
01 124 90 091 100 Ie 91 0¢ 8 0 8 9¢l (74 egodd
0 810°S 60C0C 44! 98'CE Sov LST 816 91 0 € SSL 9SL'T 9sLcd
0 0cl 900 0ocl 10°0 Ie cl 61 91 0 14 9 69L Ligndo
0 53 9C'l 0c 0 S 43 9C 6 0 S (4 8¢C1 jomsou
0 S6S°LI L1T'9L8 89L°C 9€°LTL'T S 24! 11¢ 8 0 4 16¢ (444 qo[spow
0 L9Y1 8L'V8 0ov ev'Ie 10¢ SI8°1 116°C Ie 0 [4 1v'e STE'S o
0 796°C 65¥¢C 06L°1 £C°00¢ 968 ops'e vS8°1 0 LL 4 08%°9 Iee'e [geuueur
0 €6L el 0S8 ¥T0 98 6 69¢ 6¢ 0 01 48! £66°C tdey
I 9¢¢ 91°LS9°T LE 10°0 0C (444 8LI 0 Cl [4 96¢ (443 Sse[s
0 161°¢ 901 6 L (4314 119 19 9C 0 [4 8¥Cl ¥TT'l 0-7esos8
0 098 YI'LT 871 €50 SL 969 S9 0 9C C 61 ¥zl zeses
0 1TL'e CO'ELT 96L°1 $¥99°C 668 SeC 9t 4! 0 4 8Ly 8L8 guxy
0 859t LL'8CS YEET L1l 891°1 8L1 €IL C 0 4 £9¢ 861 1oqy
0 067°€ 681 08S°¢ 65°SS 65¢ 6L1 8¢ 6¢ 0 01 'l 8TLC qormope
0 L60°C 99°C¢ ¥60°1 (43014 8¥¢S 0€e ocr 8¢ 0 [4 6Ly 8 BQgmoye
0 S9¢ 69°1 89 £5°0 €< Sl §ce S6 0 6 0€e §70°T swea30 [
skey 0D (s) ouury, # (s) ouury, # suoD Tep Nitsle) TeA
pajeIoudn) dIN d1 [ewIXeIA Sunjury syoorg Smoy S[0D Qoue)suf

samjeaj uontsodwrodap 1sog

SaInjeaj adueIsuf

Qouejsul Surpuodsalriod ay) 1o ‘swyyriod[e Suruonnied ydeis mo Aq pajeroudd asoy) Suowe (g) amseaw Axord wnuwirurw Jo YA Y3 Jo s[reled ¢ dqelL

pringer

as

Automatic Dantzig—Wolfe reformulation

0 SL8 LEOI TLTl 9¢'e 091 LOY Lyy 8 0 8 €6C°1 LIT'E 000100-012020301
0 Iee 89°90¢8 89 Ic0 33 6Ev°E LSS 1233 0 4 8LOL 960°1 9aururt
0 66C 99°6CS or 900 1c 8TT'1 See 69 0 C €8T 0L9 L9¥01qa1
0 SLY 760 8¢ 10°0 SC Ll (43 91 0 91 88¢C (459 91xgJuel
I 4! 8¢'LT 148! 1o 6S 600 0€s So1 0 4 ¥91°8 650°1 pleroAu-md
0 69L°T S8'ST ¥9€ 97’81 €81 LLy vLT oy 96 4 1€6 06¥ 01-uoagid
0 81S'l ¥80€€‘E e €e'SL 8 S9Tl ve'l 811 6S € ¥99°¢ 099°¢ 061989-so0au
0 91¢ 6T°€86°C 144 €00 €C 060°€ (94 6 0 C 0LT‘9 006 01-06-eutw
0 8LT°C eriey’l ey Le'v ¥1¢ 8T6°¢€ 91y 968 0 C 6Cr‘8 0¢€8 G-99[-euru
0 08L YTv8 0ce 900 Sy Sly 677¢ [43 0 S LOT°C LyL'1 paygasow
0 6 SO'LYSE 91 €00 8 w0L'T €0T°1 0 L [4 Y91°€ 09T°C o5eydoroeur
0 £6£°T 98y T80°1 8V'8¢ we 123 ory 0 IS¢ C 001 00s [7A00sH00 Tw
¥ 0¢ 80°0 9¢ ¥0°0 81 LIC (494 6 0 C 1444 S0T'1 Op-gg-nws
0 061 L9°890°T 89 00 33 6 961 0 ST C 691 8¢E €1IySiuo
0 €56 17°0v0°1 0C 18°0 01 ILT €78 99 1 C IS¢ 8SL'T 010PYdsd
0 61T'S SeTVTl 919 17°85€C 60¢ 98 Tl 9¢ 0 C 0SLT 00S°C £D4ayseaq
0 orl ¥0°1 9¢ 10°0 6l LT1 961 0 L C 1494 8LE cwda
0 [43 £v'0 € 0 [4 SLE 439 0 cl C 0sL 080°1 0c-¢In
skey °D (s) auury, # (s) auury, # Nitog) TeA Nilvg) Tep
pajerouan dIN d1 [ewIIXeIAl Sunyury syoorg SMOY S[0D Qdue)suy

saInjeaj uonisodwodap jsog

SaInjeaj dueisuy

panunuod g Jqel,

pringer

As

M. Bergner et al.

of a potentially difficult combinatorial optimization problem, Lagrangian relaxation
may be more promising than Lagrangian decomposition, or vice versa. Still, in a few
cases, combining the two techniques may be promising.

Observation 15 Among those generated by our graph partitioning algorithms, a
decomposition corresponding to the best measure has no linking variables in the
majority (26 out of 39) of the instances.

This confirms another important modeler’s intuition: DWR unfolds its potential
when relaxing a few linking constraints is enough to decompose the problem in more
tractable subproblems.

6 Comparison to a state-of-the-art MIP solver

Finally, we sketch an answer to a very fundamental computational question: are there
generic MIP instances for which it is worthwhile to perform DWR with an automati-
cally generated decomposition instead of applying traditional cutting-planes methods?
The overall analysis presented in Sect. 5 motivates us to propose the following two
“automatic” algorithms.

DWR auto: for each instance, consider all the decompositions generated by the graph
partitioning algorithms as described in Sect. 4.3, pick one minimizing the relative
border area (8), keep the original variables in the master, including the possible linking
ones (as explained in Sect. 2), and perform a DWR of the resulting blocks; then solve
the resulting master problem by column generation.

DWR best: for each instance, consider all the decompositions generated by the graph
partitioning algorithms as described in Sect. 4.3, perform column generation on each
of the resulting master problems, and keep a decomposition giving the best dual bound.

That s, the algorithm “DWR auto” provides a benchmark for assessing the potential
of using the border area for finding decompositions yielding tight dual bounds, whereas
“DWR best” aims at assessing the potential of the overall automatic DWR mechanism.
Note that “DWR best” is extremely time consuming and only meant as an assessment
of the method’s potential.

As a benchmark MIP solver we use CPLEX 12.2 with full default settings, in
particular with default preprocessing and cutting planes enabled. As for DWR, the
CPLEX integrality gap closed is computed by 1 —|OPT— CPLEX|/|OPT — LP|, where
OPT is the value of the best integer solution found by CPLEX in one hour of computing
time, CPLEX is the dual bound found by CPLEX in the root node, after preprocessing
and cut generation, and L P is the LP relaxation value of the corresponding instance.

6.1 Quality of the dual bound

The first set of experiments aims at assessing the quality of the bound that can be
obtained using the DWR approach. Our goal is to show that by using such an algorithm,
it is often possible to obtain a better description of the convex hull of the full problem
than that obtained by CPLEX through a cutting plane process.

@ Springer

Automatic Dantzig—Wolfe reformulation

g ® No linking vars ® balanced arrowhead few linking constraints XDWR auto © CPLEX root
=z
100 - %= ¥ . ®
g 90- o o ¥ ¥ ® 2o R E & ® x
@ 80- 3 PO)
S 70- s o 4 PR =
S 60" s : =y #F 3 X
Y : . LE eaurEE
. - . foe . -
0 30 - - B " £ 5 :
> 20~ . .. e 1
X 10~ e e + == £
]* e - . -
g ¥ . T
o0 9 .
Q R A R R R R R R R R .
=} «w < e} = e N [} < [} i 9 e} h~4 ~ Nel < w0 b= = — N o N
4 £ 2 2% 34 i EEESEREEEEC g
S 8 &2 € 5 5 8 I = = Mz 2 a a2 R o5 5 9 &
e & & s g w = g T S B & & Q0 2 § B =
= % % o0 g g 5 8 E B *
=4
2
2l
Fig. 13 Distribution of fraction of integrality gap closed for all decompositions (MIPLIB2003)
g ® No linking vars ® balanced arrowhead few linking constraints XDWR auto © CPLEX root
=
100 &t * o
3 90- .2 e .
= T o4t ¢ : o
S 60- ¥ «x : e
Q, 50 e ¥ ® o
g 10 E = -
o 3 P . & —_
£ 1% ., i b =+ - i
= 0 COCR- <) o e a - s e - - et
-
&0 LI
]
E 8 2 2 $ 2 & % %2 2 8 2 % & 5 %8 8
T, 9 = NS 3 < = 8 < = . B %] £ S
g 3T % = g & g = & g 5 2 £ ¥ E Z
@ < = = N o] ¢ ¢ © & g g 3 = S
® 3] =} 0 = =) = = T 80 = = <~ T
g @) §D E g g £ 2 2, L g I3 S
S g g = g =% (g
g g
Q
o
-

Fig. 14 Distribution of fraction of integrality gap closed for all decompositions (MIPLIB2010)

Figures 13 and 14 depict the distribution of fraction of integrality gap closed for
all the about 1500 decompositions (see Subsect. 4.3) we tried for MIPLIB2003 and
MIPLIB2010 instances, respectively. Every dot represents one decomposition. On
some instances (glass4, modglob, timtab2, tr12-30, beasleyC3, macrophage, neos-
686190), column generation could not be completed within the time limit, and therefore
the gap of the best Lagrangian bound (potentially worse than the LP relaxation bound),
obtained during the column generation iterations, is reported [17]. One can see that a
decomposition with the respective best proxy measure (marked by a x) most of the
time leads to a very good choice among all decompositions we tried with respect to
the root node integrality gap closed, also compared to the bound obtained by CPLEX
after the cutting plane process at the root node (marked by a O).

In Table 3 we detail, for each instance in the dataset, our results for both the “DWR
auto” and “DWR best” methods, compared to the results obtained by CPLEX when
stopped after the cutting plane process at the root node as well as the time CPLEX
needs to solve the original problem to optimality.

Listed are: the instance name, the value of an optimal solution or best solution
computed by CPLEX in 1 hour (opt*), the value of the LP relaxation (LP) and the
corresponding duality gap (LP gap). Then, three vertical blocks follow, corresponding

@ Springer

M. Bergner et al.

68V ¥0°0S 1S18¢ SI'0 €¥'68 S0'6E SS9CE ¥8'18 09'vI 65 ¥¥C 96'C8 0¥91 ST96 0017698¢ 00CLLYIL 1qeawn
6L'1 ¥€°0 1S LO0 LL'L6 760 880 ¥8°66 L0'0 190 9L°66 010 1<y €L°L00TE 08°LESTS 4o13es
89°0 ¥L'8 1268 90'0 970 98'8 06'S y€C6 89°0 06°S €26 89°0 88’8 98'186 9S°LLOT nox
ST €T0 yee 800 L6'¥8 e TL6 60'16 LTT 850 98°68 85T (A4 19°08%S 00°0s€L SLNDegodd
s 600 % 80'0 L6'S6 ST LS 8¢€96 LTT LY 1096 0S'C 19729 SEBYLL 00°0S€L egodd
06'vLIT 0CT0 661 L00 1¥'9Y Ly'L 69111 LO'86 LT0 86'1EC S0'86 LTO €6'¢l GL'889C 00yCie 9sLcd
00°L 100 0 L0'0 007001 000 200 000 €1'sc L00 000 €I'sT €IS c0'0c— 0091— Ligndo
000 T91EL ¥EP'TO69 100 000 88'v 9Tl 00°06 6v'0 9CT'1 0006 6%°0 88V 00°¢y— 00 I¥— jomsou
0095€09¢ 10°0 0 €00 8¥06 1’0 €€10S°E€ ¥L'16 0 00°009¢ 0¢'Ly 6L°0 67’1 C9'Ly60Er0C 00°00S0+L0OT qo[spow
T 98ty OI1°€T TE0 €9°6S 8L'¢ ST90I €1'86 91°'0 ST901 €186 91°0 1$°8 S8 119— G8'¢9S— L2 L
608987 11°0 0 11°0 00°001 000 Iv'¥ €296 70'0 67°SES 026 800 101 00°L6CEl— 0091€l— [geuuel
00°€s €00 0 SO0 09°6¢ LE0 €0 000 190 651 000 190 19°0 0S'I¥eeserL— 00°008668€L— tdey
98°9r¢ LEO1 9v9°0C 200 000 €E'EE 6L'¢ 00°SL €€'8 00°009¢ 000 €eee €eee 00007200008 00°00001000CT Sse[s
€EILLE €00 0 80°0 8¢'C8 170 +9°€81 9196 SO0 VIEIl €6°€E 8L0 811 89°68%9L¥ST 00'0066LLST 0-gesas
¢6'SEl €10 8¢ 900 IS°16 0I'0 SL9T 8'L6 €0°0 L9LI €0'L6 €00 811 89°68Y9LYST 00°0066LLST zeses
00¥C6Ivl 200 0 Ly'0 ce'le 909 ISC6C SOEL €8'81 8Y'8E8C 96'CL 6881 869 88°00¢C1 00°€86¢ grouxy
£€9'96L9 800 6C Y00 T6'96 681 €S°0vS LT'86 LO'T €S°0vS LT86 LO'L SS'19 CSC809¢S1 00°S€650Y oqy
00€9LT ¥0°0 0 SI'y ¥¥'es Ly9 18°0SS 000 06°€l TSOL 000 06'¢l 06¢l 99°6001 008911 qoymope
SL'LEET ¥0°0 0 €6'l SS9 S€'S 86'8L6 LTTE €C0l 1S°¢6 65°C 1LYl OISl L1°€86 00°8STI eQgmoye
LSO 1T0 0 L¥'0 00°001 000 9F'l 00001 000 ¢T'C 986 SO0 9L°0 00°L16 0016 swedQ |

(%) (%) (®) (%)

oney ouwil SOPON owil], Paso[) (%) den owly, paso) (%) den owty, paso)y dep

(%)

J[NeJop XATAD 1001 XATdD de3 1599 YMA de3 ome ymg des 41 d1 do RN

Amo_vv IpmIuSeW JO SIOPIO OM) UIYIIM Pue ‘((]>) SpnIuSew Jo JOpIO U0 unpim (1>)
XATdD uey) 1)sej sem YA Yoy I0j saduelsur Jo a3ejuadrad oy 11odar om rernoned ur :xdE1dD pue YMd Aq papraoid spunoq [enp apou 1001 3y Jo uostredwo) ¢ JqeL,

pringer

as

Automatic Dantzig—Wolfe reformulation

8C98 0L'6 LYS'1 09'0 9¢'Cl 86'0 689¢8 €CT'T9 w0 689¢8 €079 W0 [48! 1€09v— 61'LSY— QauruLt
60'T SI'88F T1€6'SY €90 98¥¢E L8'8 €L6CS TO'66 €1'0 €L°6CS 2066 €10 19°¢l C6°0166€€6E— 8OTYILTOVE— L9¥d0[qa1
0S9% 200 0 190 1579 €69 €60 1Ly LLOT €60 IL'1y LLOT 8¥'8I er911e 00°€T8¢ 91x9juel
96°60¢ 60°0 0 L8'T 97'9F 7S°€S 00°009¢ 007001 000 0S'LT 0007 0009 00001 000 0001 plerAw-md
06'90¢C <00 0 100 000 TIT 2¢'1 000 ITIL €I'vy 000 TIrIr II°T1 0000001 — 00'0006— 01-uoadid
STyeery 800 0 LSO 116 ¥S'IC ¥8'% €L'ST 09°LT 00°009¢ 000 O0L€T 0L'€T 18¥¢€1S 00'0€L9 061989-s0u
01°0S SS'6S 8L0°TC S80 Iv'€e €L'8 TLE86T ¥T96 6V°0 TEE86C ¥T96 6V°0 CI'el 1S8IESOIL88— €9°LEETOEYBL— 01-06-eut
81'¥S9 81'C 6¥1 181 vv6v 6L°CC TI'9TPI PL'€8 €€°L TI'9TPl PL'E8 €€°L 60°SY L9'LLOECILIT8— LB LOLS6E99S— G-99[-ouru
€20 19°L9¢ TSO'OIT €0'T €T0 76’8 0€P8 6C°66 90°0 0P8 6266 900 9¢'8 SLYLLEOL 00°¢l6lIT payosowt
TCST TLTPL TTS'8 I€°LL TS'88 8Y'I1 16°G8E1 S6'66 €00 00°009¢ €9°66 LEO 00°001 000 00'vLE ogeydosoewr
00°sSey 00 0 900 000 LTy 200 000 LTV OI°L8 000 LIV LIV 00'sC— 00vC— [H00SU00 [W
007 €00 0 700 ¥S°C 1000 600 000 100 210 000 100 100 98 €V690YC— SL'LL99OYT— Ob-Gg-nws
SI'L Ly'6¥l 8T8LI LET vE6l 99°08 TL'8901 S¥'Ty SS°LS TL'890I S¥'Ty SS°LS 007001 000 00'IL ¢1YSIud
0€9 SI'S9T €SL'ST SS0 98°1¢€ °9°Cl €T IY01 8T'LS 16°'L €TI¥01 8T'LS T6°'L S8l wree 00'80% 010P3Ydsd
9I'SLY6 80 0 90l 6C°16 Y78 00°009¢ vL'€8 8€'CT 00°009¢ +L'€8 8EST ¥9¥6 er'ov 00'¥SL £D4arseaq
LTS 01>
c€ree 01>
0L'8 1>
LS89 SLL 9TI'LL 6S°S €679 6T'11 8T0¢ a8e10Ay
8C'T 90 €91 000 SO'LL 79 S0'1 °6'¢6 ILT SO'L °6'¢6 IL'T 80°8¢C 68°6 sLel guda
00°CEE6LT TO0 0 650 ¥T'66 89°0 +S6£8 €896 €8°C 00009¢ 000 <CTI'68 TI'68 eroITyl 0096S0¢T 0¢-¢In
79’1y 96'68 L16'7¢ 1€0 0T0S 009% +¥9'8LIT 99°CL 9T°ST 00°009¢ 6¥'09 0S9¢ 8E'TO 00'765¢€8 00'0959601 cqeun

(%) (%) @®%) (%)

oney Qwil SOPON owil], paso[) (%)den oewry pasor) (%)den awry, pesoy den

(%)

J[nejop XATIdD 1001 XHTdD de3 1509 YMA de3 o;ne ymg deS 41 d1 lile) QourIsuy

ponunuod ¢ Iqey,

pringer

as

M. Bergner et al.

§T9¢
STle
§T9

£v'961

19%1

erve

oney

(%)
dep

deS omne YA

LTSISL 00°09%11

pringer

As

penunuod ¢ Jqe],

Automatic Dantzig—Wolfe reformulation

to “DWR auto,” “DWR best,” and CPLEX, respectively. For each we report the inte-
grality gap, the improvement with respect to the LP relaxation bound (a value of zero
is reported if the decomposition is not able to improve over the LP relaxation bound),
the number of nodes used to attain that bound, and the time needed to compute that
bound. In bold we report the best configuration in terms of integrality gap.

The table is composed of two horizontal blocks, that refer to the 23 selected instances
of MIPLIB2003 and to the 16 selected instances of MIPLIB2010, respectively. The
last row of each block reports average values.

On 15 out of the 23 MIPLIB 2003 and 11 out of the 16 MIPLIB 2010 instances,
the dual bound found by our DWR approach improves on CPLEX’s root node bound
with default settings, and in four more instances the bound is the same.

On the average, whereas “DWR best” clearly outperforms CPLEX, “DWR auto” is
still competitive, experimentally supporting the meaningfulness of our proxy measure
for the quality of a decomposition.

6.2 Overall performance comparison

Since DWR and CPLEX produce bounds of different quality with different compu-
tational efforts, in a second set of experiments we aim at comparing the trade-off
between computing time and quality of the dual bound given by the two methods.
This is an overall index designed to measure the potential of both methods in actually
solving MIPs to optimality, and to help answering the ultimate question of whether
good dual bounds can be provided by DWR in reasonable time.

We remark that, apart from the computation of bounds, the remaining machinery in
branch-and-price and branch-and-cut algorithms is equivalent, as similar preprocess-
ing, heuristics, constraint propagation, branching techniques, etc., can be implemented.
Also the re-optimization process in the nodes of the branch-and-bound tree is similar,
provided the same decomposition is kept along the search tree. In fact, state of the art
branch-and-price frameworks [16] keep pools of columns, and therefore the optimiza-
tion of a node is likely to start from a restricted master problem containing at least the
columns forming an optimal basis for the father node, as in standard branch-and-bound
codes, and very often many more high quality columns already generated during the
optimization of siblings.

At the same time, re-implementing the techniques included in a state-of-the-art
branch-and-cut solver was beyond of the scope of this paper. Therefore, in order to
perform a comparison, we decided to consider the DWR giving best proxy measure in
“DWR auto,” and to take as a performance index the ratio between the time required
by our algorithm to obtain the dual bound at the root node, when using such a decom-
position, and the time required by CPLEX with default settings to obtain, either at the
root node or through branching, the same bound. In the comparison we included also
“DWR best.”

The results are also reported in Table 3. The last vertical block for CPLEX with
default settings shows the number of nodes and the CPU time needed to reach the
same bound as “DWR auto;” the ratio between “DWR auto” time and CPLEX time for
obtaining such a bound. Below each vertical block we report the fraction of instances

@ Springer

M. Bergner et al.

—CPLEX (DWR best) = —CPLEX (DWR auto) CPLEX —DWR auto
DWR best -~ DWR auto —DWR best

1.00

=——

0.00
1.000 0.100 0.010 0.001 1.00 0.75 0.50 0.25 0.00

Time performance Fraction of integrality gap closed

(a) Time (b) Gap

Fraction of instances
P =
o 1

Fraction of instances
&

Fig. 15 Performance profiles comparing DWR auto, DWR best and CPLEX

for which “DWR auto” was faster than CPLEX (<1), within one order of magnitude
w.r.t. CPLEX (<10) and within two orders of magnitude (<102).

On average, CPLEX is much faster in solving the root node relaxation. At the same
time, on many instances in which good decompositions can be found, CPLEX needs
to explore many branching nodes, and to spend a high CPU time for matching the
bound given by “DWR auto.” Finally, it is interesting to note that in more than half
of the instances (up to 52.17 % of MIPLIB2003 and up to 56.25 % of MIPLIB2010),
“DWR auto” is still within a factor 10% from CPLEX, making us optimistic that, after
a suitable software engineering process, our approach would become computationally
competitive on more instances.

6.3 Performance profiles

Finally, we compared “DWR auto” and “DWR best” to CPLEX using the methodology
of performance profiles [10]. We performed two different analyses, the first one is based
on time performance and the second one is based on bound performance, disregarding
the time needed to compute it.

The time analysis is displayed in Fig. 15a, where we show two different compar-
isons, the first one concerns “DWR auto” and CPLEX (black lines, dashed and solid),
the second one concerns instead “DWR best” and CPLEX (grey lines, dashed and
solid). For each pair of algorithms and for each instance, we consider as a perfor-
mance index the ratio between the time needed by the “DWR” method or CPLEX to
compute the “DWR” bound (respectively “auto” or “best”) and the smaller between
the two values. Normalization is then performed with respect to the fastest algorithm.
For each value 7 on the horizontal axis, we report on the vertical axis the fraction of
the dataset for which the corresponding algorithm is at most % times slower than the
fastest algorithm. The value on the vertical axis, corresponding to 7 = 1, indicates the
fraction of the instances in which the considered method is the fastest among the two
considered. As far as “DWR auto” is concerned, it outperforms CPLEX in around 8 %
of the instances, while “DWR best” in around 19 %. From the figure, we can also see
that in around 50 % of the instances “DWR auto” is at most two orders of magnitude
slower (see also discussion of Table 3 in Sect. 6.2), while “DWR best” only one order
of magnitude.

@ Springer

Automatic Dantzig—Wolfe reformulation

In Fig. 15b, we display the second performance profile based on the bounds of the
three methods. As a performance index we consider, for each instance and for each
method, the ratio between the bound obtained by such a method and the best bound
obtained using either “DWR auto,” “DWR best,” or CPLEX. Normalization is then
performed with respect to the index of the best algorithm among the three considered.
The picture reports the normalized performance index on the horizontal axis; for each
value 7 on the horizontal axis, we report on the vertical axis the fraction of the dataset
for which the corresponding algorithm closes at least a fraction & of the best achieved
gap, on the considered set of 39 instances. We always assume that the LP relaxation
value is available, thus the minimum closed gap for each instance and each algorithm is
set to 0. For instance, if we look for a method which is able to close at least about 20 %
of the best achieved gap, then CPLEX is the best choice. However, if we increase this
requirement to about 45 % both “DWR auto” and “DWR best” outperform CPLEX.
Finally, in almost 70 % of the cases “DWR best” provides best bound, while both
CPLEX and “DWR auto” give best bound in about 39 % of the instances.

7 Discussion

We have performed the first systematic investigation with an automatic Dantzig—Wolfe
type reformulation of arbitrary MIPs. Even though it is clear from theory that such
a reformulation can be used to improve the dual bound, it has not been considered a
generally useful computational tool in practice. Thus, the most unexpected outcome
of our study is that already a fairly basic implementation, combined with an automatic
choice of the decomposition, is actually capable of competing with a state-of-the-
art MIP solver. For some instances the dual bound computed by our method is so
strong that, given a heuristic solution of optimal value, optimality can be proven
at the root node. Furthermore, on a relevant subset of MIPLIB instances, we could
automatically detect Dantzig—Wolfe type reformulations for which the decomposition
approach yields an overall better computing behavior than a state-of-the-art branch-
and-cut based general purpose solver.

The results even improve if we choose the decomposition by explicit computations,
demonstrating that there is still potential. It turned out that different decompositions for
the same instance lead to, sometimes significantly, different dual bounds (see Figs. 13
and 14), and also to drastic differences in the computation times needed to solve the
resulting relaxation. Thus, out of the many questions spawned by our work, the most
important one is, both from a theoretical and a practical point of view, to characterize a
good decomposition. We believe that answers will be hard to find as they immediately
relate to the very core of computational integer programming: to better describe, in a
computational and efficient manner, the convex hull of integer feasible points. On the
other hand, approaching this important topic from a decomposition point of view may
yield new insights previously overlooked.

Our experimental setup for detecting a matrix structure certainly can be improved;
itis just one out of probably many conceivable approaches to come up with a proof-of-
concept. In particular, the process of generating decompositions by simply changing
parameters of partitioning algorithms, and then selecting one with best proxy measure,

@ Springer

M. Bergner et al.

LT
(b) fiber (c) gesa?2
I — :
L
(d) glass4 (e) harp2 (f) mine-90-10

(g) mine-166-5 (h) neos-686190 (i) noswot

Fig. 16 Detected matrix structures for selected MIPLIB2003 and MIPLIB2010 instances

can give place to better and more sophisticated approaches. Many experimental issues
on the design of good proxy measures are also left open, e.g., how the blocks’ balancing
and density impact on the overall performances.

Certainly, we will see alternatives in the future. We also alert the reader that the
seeming omnipresence of arrowhead structure in MIPLIB instances (c.f. Fig. 16) may
either reproduce structures which were incorporated in the model by a human modeler,
accidentally or on purpose, or simply be an artifact of the model and algorithm we use
to detect/enforce this structure. In any case, only a part of variables and constraints
describe the logic and mechanism of the problem to be modeled. Another substantial
part is present only because of “technical purposes” and “modeling tricks.” Detecting
and exploiting this information in a decomposition may lead to new insights into how
a good MIP model should be formulated.

There are some possible immediate extensions concerning the implementation.
Only further experimentation can show whether the advantage in the root node can be
retained throughout the search tree (it is also conceivable that an advantage becomes
visible only further down the tree). If one is only interested in a strong dual bound, the
addition of generic cutting planes is a natural next step (see [16]).

Of course, at the moment, our work is not intended to produce a competitive tool,
but to demonstrate that the direction is promising. Even in the future, we do not expect
that decomposition techniques will become the single best option approach to solve
MIPs. However, we hope that one can soon distinguish a priori, only based on the

@ Springer

Automatic Dantzig—Wolfe reformulation

instance, whether it can pay to apply a decomposition like DWR or not. Our results
indicate that promising instances are more than an exception.

Taking into account the fact that state-of-the-art solvers make successful use of
generic cutting planes for about 15 years now, it is clear that outer approximations of
the integer hull have a prominent headway in experience over inner approximations.
We hope to have inspired further research and experimentation with the second option;
indeed, follow-up research [14,15,24,29] is already available.

A final word is in order on what to expect in terms of measuring the quality of
a decomposition. The selection of “a good set” of cutting planes from a large pool
of available ones is a core topic in the computational cutting plane literature. Theory
suggests measures for the quality of single cutting planes, e.g., to prefer facet-defining
inequalities or deep(er) cuts etc. For selecting from a collection of cuts, however, a
theoretical argumentation is much scarcer and less-founded, and appears only problem-
specific in the literature.

In that light, a general theoretical a priori measure of what constitutes a good
Dantzig—Wolfe decomposition currently appears to be out of reach, and we may need
to fall back to computational proxies like the one we propose.

Acknowledgments We sincerely thank an anonymous referee for thoughtful and motivating feedback,
which led to a more meaningful experimental setup and a much improved organization of the material.

References

1. Achterberg, T., Koch, Th., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361-372 (2006)

2. Aykanat, C., Pinar, A., Catalyiirek, U.V.: Permuting sparse rectangular matrices into block-diagonal
form. SIAM J. Sci. Comput. 25, 1860-1879 (2004)

3. Bergner, M., Caprara, A., Furini, F,, Liibbecke, M.E., Malaguti, E., Traversi, E.: Partial convexification
of general MIPs by Dantzig—Wolfe reformulation. In: Giinliik, O., Woeginger, G.J., (eds.) Integer
Programming and Combinatorial Optimization, volume 6655 of Lect. Notes Comput. Sci., pp. 39-51,
Springer, Berlin (2011)

4. Borndorfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks. SIAM J. Optim. 9(1),
236-269 (1998)

5. Caprara, A., Furini, F.,, Malaguti, E.: Uncommon Dantzig—Wolfe reformulation for the temporal knap-
sack problem. INFORMS J. Comput. 25(3), 560-571 (2013)

6. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc.
74(368), 829-836 (1979)

7. Colombo, M., Grothey, A., Hogg, J., Woodsend, K., Gondzio, J.: A structure-conveying modelling
language for mathematical and stochastic programming. Math. Program. Comput. 1, 223-247 (2009)

8. Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation. Springer, Berlin (2005)

9. Desrosiers, J., Liibbecke, M.E.: A primer in column generation. In: Desaulniers et al. [8], pp. 1-32.

10. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201-213 (2002)

11. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discret. Math.
194, 229-237 (1999)

12. Ferris, M.C., Horn, J.D.: Partitioning mathematical programs for parallel solution. Math. Program.
80(1), 35-61 (1998)

13. Fragniere, E., Gondzio, J., Sarkissian, R., Vial, J.-Ph.: A structure-exploiting tool in algebraic modeling
languages. Manag. Sci. 46, 1145-1158 (2000)

14. Galati, M.V, Pratt, R.: The new decomposition algorithm in SAS/OR optimization. In: XXI Interna-
tional Symposium on Mathematical Programming (2012)

@ Springer

M. Bergner et al.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Galati, M.V., Ralphs, T.K., Wang, J.: Computational experience with generic decomposition using the
DIP framework. In: Proceedings of RAMP 2012. COR@L Laboratory, Lehigh University (2012)
Gamrath, G., Liibbecke, M.E.: Experiments with a generic Dantzig—Wolfe decomposition for integer
programs. In: Festa, P. (ed.) Proceedings of the 9th Symposium on Experimental Algorithms (SEA),
volume 6049 of Lect. Notes Comput. Sci., pp. 239-252, Springer, Berlin (2010)

. Geoffrion, A.M.: Lagrangean relaxation for integer programming. Math. Program. Stud. 2, 82-114

(1974)

Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: application in
VLSI domain. IEEE Trans. VLSI Syst. 20(1), (1999)

Karypis, G., Kumar, V.: hmetis 1.5: a hypergraph partitioning package. Technical report, Department
of Computer Science, University of Minnesota (1998)

Koch, Th., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G.,
Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.:
MIPLIB 2010—mixed integer programming library version 5. Math. Program. Comput. 3(2), 103-163
(2011)

Poggi de Aragdo, M., Uchoa, E.: Integer program reformulation for robust branch-and-cut-and-price
algorithms. In: Proceedings of the Conference Mathematical Program in Rio: A Conference in Honour
of Nelson Maculan, pp. 56-61 (2003)

Puchinger, J., Stuckey, P.J., Wallace, M.G., Brand, S.: Dantzig—Wolfe decomposition and branch-and-
price solving in G12. Constraints 16(1), 77-99 (2011)

Ralphs, T.K., Galati, M.V.: DIP—decomposition for integer programming. https://projects.coin-or.
org/Dip (2009)

Ralphs, T.K., Galati, M.V., Wang, J.: DIP and DipPy: towards a decomposition-based MILP solver.
In: XXI International Symposium on Mathematical Programming (2012)

Tebboth, J., Daniel, R.: A tightly integrated modelling and optimisation library: a new framework for
rapid algorithm development. Ann. Oper. Res. 104(1-4), 313-333 (2001)

Tebboth, J.R.: A computational study of Dantzig—Wolfe decomposition. PhD thesis, University of
Buckingham (2001)

Vanderbeck, F.: BaPCod—a generic branch-and-price code. https://wiki.bordeaux.inria.fr/realopt/
pmwiki.php/Project/BaPCod (2005)

Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs. In: Jiinger, M.,
Liebling, Th.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey,
L.A. (eds.) 50 Years of Integer Programming 1958-2008. Springer, Berlin (2010)

Wang, J., Ralphs, T.K.: Computational experience with hypergraph-based methods for automatic
decomposition in integer programming. In: Gomes, C., Sellmann, M. (eds.) Integration of Al and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems, volume 7874
of Lect. Notes Comput. Sci., pp. 394-402. Springer, Berlin (2013)

Weil, R.L., Kettler, P.C.: Rearranging matrices to block-angular form for decomposition (and other)
algorithms. Manag. Sci. 18(1), 98-108 (1971)

@ Springer

https://projects.coin-or.org/Dip
https://projects.coin-or.org/Dip
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

	Automatic Dantzig--Wolfe reformulation of mixed integer programs
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related literature

	2 Partial convexification and Dantzig--Wolfe reformulations
	3 Automatic detection of an arrowhead form
	3.1 Hypergraphs for structure detection
	3.2 Hypergraph partitioning
	3.3 A very special case: the temporal knapsack problem

	4 Experimenting with a generic decomposition framework
	4.1 Benchmark instances
	4.2 Experimental framework
	4.3 Sets of decompositions

	5 Linking input and output measures
	5.1 Direct indicators
	5.1.1 Number of blocks
	5.1.2 Percentage of linking variables
	5.1.3 Percentage of linking constraints
	5.1.4 Percentage of border area

	5.2 Indirect indicators
	5.2.1 Average density of the blocks
	5.2.2 Average integrality gap of subproblems

	5.3 Evaluating and exploiting a proxy measure

	6 Comparison to a state-of-the-art MIP solver
	6.1 Quality of the dual bound
	6.2 Overall performance comparison
	6.3 Performance profiles

	7 Discussion
	Acknowledgments
	References

