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The Cargo Express service of Swiss Federal Railways (SBB Cargo) offers fast overnight transportation of goodsbetween selected train stations in Switzerland and is operated as a hub-and-spoke system with two hubs.
We present three different models for planning the operation of this service as a whole. All models capture the
underlying optimization problem with a high level of detail: Traffic routing, train routing, makeup, scheduling,
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1. Introduction
The planning of freight train operations comprises
various difficult intertwined decisions on the strate-
gic (long-term), tactical (midterm), and operational
(short-term) level. Figure 1 depicts the tactical level
and the operational level according to the survey arti-
cle by Cordeau, Toth, and Vigo (1998). Considerable
research has been devoted both to each single aspect
of this process and toward integrating as many of
these planning steps as possible. In general, the par-
ticular freight train system at hand determines how
difficult and how important each single aspect is. For
example, there are significant differences between the
American and the European systems, and even within
a given country different systems with different focus
are operated.
The Cargo Express service of Swiss Federal Rail-

ways (SBB Cargo) (SBB, Cargo Express) considered in
this paper serves as an example of a freight system:
Cargo Express offers fast overnight transportation of
goods between selected train stations in Switzerland

and is operated as a hub-and-spoke system (as air-
lines do) with two hubs. In parallel, SBB Cargo offers
a “classical” freight train system, Cargo Rail, with
looser time constraints and a larger service network.
We briefly describe the Cargo Express service. Its

prominent features are the focus on fast transport,
guaranteed pickup and delivery times for customers,
and a dense railroad network spanning a compara-
tively small area. While the blocking mode, in which
cars are grouped and routed as a single block through
the network (and thus are not reclassified at inter-
mediate classification yards), is popular in the United
States, SBB Cargo Express operates in nonblocking
mode, as many European companies do. In fact, cars
are reclassified in two central hump yards, the hubs.
Each train can be composed by a limited number of
cars. Finally, hub overloading must be avoided by
limiting the number of cars in the yard at the same
time.
These features give a distinguishing flavor to the

planning steps and set the Cargo Express service off
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Figure 1 Mid- and Short-Term Planning Tasks in Freight Railroading

from most of the systems that have been considered
in the literature and the results that have been ob-
tained for these by Assad (1980), Cordeau, Toth, and
Vigo (1998), and Crainic and Laporte (1997). A clas-
sical paper is that of Crainic, Ferland, and Rousseau
(1984), who study the interactions between block-
ing, routing, and makeup for a Canadian freight sys-
tem. Ahuja, Jha, and Liu (2007) give a particularly
detailed model for the blocking problem arising in
the United States, Campetella et al. (2006) consider an
Italian freight service of a size comparable to that of
SBB Cargo Express, for which they do traffic routing,
and planning of service frequency and empty cars,
ignoring train load limits and yard capacities. None
of these models is intended to produce a detailed
schedule. Therefore, such models are inappropriate
for planning the SBB Cargo Express service. Kwon,
Marthland, and Sussman (1998) describe how an
existing solution consisting of blocking, routing, and
makeup plans and a target schedule can be adapted
to meet the train load constraints. Gorman (1998)
extends a model of Keaton (1992) to incorporate
time constraints on a coarse time scale. He addresses
the blocking, traffic routing, makeup, and scheduling
problem for a given set of candidate routes. He pro-
poses a tabu search approach that he tests on a U.S.
instance. In this instance he finds cost savings with
respect to a solution used in practice. However, the
method produces operating plans that can violate
constraints on the load of the trains and on time win-
dows. In contrast, in the SBB Cargo Express setting,
both time windows and load constraints are hard, and
the time windows are tighter.
In this paper, we present three different ways to

model the SBB Cargo Express service, all of which
capture the optimization problem at hand with a
high level of detail. Our models span the whole tac-
tical planning process: Traffic routing, train routing,
makeup, scheduling, and the basic engine (locomo-
tive) assignment are all addressed. On the other hand,
we do not model the operational level; i.e., our mod-
els do not capture empty cars movements, the precise
shunting operations in the classification yards, mini-
mum buffer times between arriving trains at the yard,
or the fitting of trains into the timetable. As we model
an overnight service, the latter aspect is not as crucial
as for other freight systems.

In the first approach, we provide a compact integer
linear programming (ILP) formulation of the problem
and apply a state-of-the-art general purpose solver to
it. In the second approach we hierarchically decom-
pose the problem, as suggested by Figure 1, and pro-
vide separate models for distributing the classification
work; for the combination of routing, makeup, and
locomotive assignment; and, finally, for scheduling in
our setting. We develop a branch-and-cut approach
for its hardest subproblem. Our third approach is
to formulate the entire planning problem as a side-
constrained set partitioning problem and solve it
using column generation. The integration of the above
planning steps leads to a complex master problem.
To the best of our knowledge, this model is the first
to integrate all planning steps of the tactical level.
Although we tailored the solution approach to our
specific problem, the model itself is applicable with
minor modifications to any nonblocking freight sys-
tem of larger scale.
Our solution methods span different algorithmic

techniques generally used for ILPs. Moreover, the
three approaches have an increasing level of modeling
detail and require algorithmic techniques of increasing
complexity. We carry out a comparison of the three
methods to identify the best trade-off between model-
ing detail, computational tractability, and implemen-
tation effort.
All experiments are performed on data derived

from a typical day of operation of the SBB Cargo
Express service, provided by SBB Cargo.
The paper is organized as follows. First, we give

a detailed problem description. Then, we introduce
our three models and next describe the correspond-
ing solution methods. Finally, we report on compu-
tational experiments, comparing the running time of
the algorithms and the quality of the solutions found.

Problem Description. The SBB Cargo Express sys-
tem is designed for customers who regularly need
overnight transportation of freight by train: A typi-
cal customer orders a regular transport of shipments
from an origin to a destination station. The customer
announces her fixed daily demand for the lifetime
of the schedule in advance and negotiates an earli-
est departure time and a latest delivery time for the
shipments with SBB Cargo. Once a year, SBB Cargo
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designs a new operating plan and a schedule that
accommodates all customer demands.
The transport itself works as follows. In the eve-

ning, the customers deposit their cars at the departure
stations before the earliest departure times. During
the night, a fleet of trains collects all deposited cars.
In general, each train of the fleet collects several ship-
ments at different stations. The cars of the same
shipment are always transported together, different
shipments at the same station may be transported
by different trains. In addition to the shunting time
needed at the hubs, a substantial amount of time
is spent in brake testing at each stop that involves
pickup or delivery.
The SBB Cargo Express network is operated as a

hub-and-spoke system: The fleet transports all the
goods to central classification yards in Däniken and
Zürich-Mülligen, where inbound trains are reclassi-
fied to form outbound trains. Outbound trains either
go directly to the other hub nearby without en route
pickup or delivery, or they deliver their cars at
the respective delivery stations. Finally, direct trains
between origin and destination stations are also
possible.
The service is operated such as to guarantee the

negotiated earliest pickup and latest delivery times.
Because trains are composed of so few cars, each

engine of the fleet operates in the same way; that is,
the planners consider the fleet to be homogeneous.
Each engine of the fleet can perform only one of the
tasks described above in one night, i.e., either going
to and from a hub once, including potentially a few
rides between the nearby hubs, or transporting a ship-
ment directly to its destination. An important con-
straint of this system is the yard capacity: Only a lim-
ited number of cars can stay in each hub concurrently,
and, most of all, hub overloading affects reclassifica-
tion time.
The main costs of an operating plan consist in oper-

ating the engines, that is, employing the drivers, and
servicing the equipment. In addition to this fixed cost
component, there is a cost per kilometer. The overall
goal is to minimize the total fixed and variable costs
of an operating plan.
A schedule is determined and operated with minor

daily changes for a whole year. Currently, the plan-
ners do not use any decision support system: They
construct the schedule by hand and slightly adapt it
in a trial period after its implementation. If demands
change over a year or new customers want to be
served, the SBB Cargo team generally succeeds in
adapting (again, by hand) the existing schedule to the
new situation.

2. Models
Capturing all of the characteristics of the SBB Cargo
Express system in a single model is a challenging

task. In this section we first lay the groundwork for
a precise mathematical description of the problem by
introducing the necessary common notation. Then we
present a suite of three models for our application.
The first one, Model 0, is an ILP formulation for the
problem, neglecting hub overloading issues and forc-
ing exactly one reclassification step for each shipment.
In Model 1 we decompose the problem into three
consecutive planning steps that we treat separately.
Model 2 is a set partitioning integer linear program
that exploits all of the optimization degrees of free-
dom by considering all of the decision levels at once.

2.1. Common Notation
We are given a �railroad� network N = �V �E���. The
node set V represents stations, hubs, and junctions;
the edge set E represents the tracks connecting those;
�� E → �+ is a length function on the edges. In our
models we consider the problem in which an arbi-
trary number of nodes of the network represent hubs,
and we denote the set of hubs by H ⊆ V . In the fol-
lowing we give a list of parameters and features that
we consider.
—The set S of shipments contains an element for

each transportation request. Each shipment s ∈ S has
the following properties:

• orig�s�: the origin station,
• dest�s�: the destination station,
• depart�s�: the earliest possible pickup time at sta-

tion orig�s�,
• arrive�s�: the latest possible delivery time at sta-

tion dest�s�,
• vol�s�: the number of cars (volume) compos-

ing s.
—The maximum train load Lmax bounds the total

number of cars that any engine can pull.
—The shunting time at a hub T h

shunt is the additional
shunting time an outbound train has to wait before
departing from hub h ∈ H after its last shipment has
arrived. This time is assumed to be independent of
the number and volume of the shipments. Similarly,
an engine needs T h

shunt time units to be decoupled from
an inbound train and coupled to an outbound train.
—The couple time at the stations T v

couple is the addi-
tional time incurred by picking up or delivering any
set of shipments at a station v ∈ V . It is independent
of the number and volume of the shipments.
—The hub capacity caph specifies, for each hub

h ∈H , the maximum number of cars that can concur-
rently stay at h without overloading the hub.
—The engine cost Cengine represents the operating

cost of one engine (fixed cost).
—The average speed �v is used to calculate the trav-

eling times of trains on the tracks.
—The kilometer cost c̄ represents the travel cost of

an engine per kilometer (variable cost).
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The fundamental part of a solution is a route of
a train through the network. By route we mean a
graph theoretic walk, which can in particular contain
repeated edges and nodes, and a set of shipments
served at the visited nodes. We distinguish between
pickup and delivery routes, respectively, bringing
shipments from the stations to the hubs or from the
hubs to the stations, and hub-connecting routes, which
move cars between two hubs. Given v ∈ V , we abuse
notation slightly and write v ∈ r to indicate that route r
visits node v; similarly, given s ∈ S we write s ∈ r
to indicate that shipment s is served by route r . The
length lr of a route r is the sum of the lengths of the
(possibly repeated) edges used in r , and the cost cr of
the route is computed as c̄ · lr . The volume vol�r� of a
route r is the sum of volumes of the shipments served
by r . We call r volume-admissible if it satisfies the load
constraint:

∑
s∈r vol�s�= vol�r�≤ Lmax.

A complete solution to our problem consists first of
sets of pickup routes Rx, delivery routes Ry , and hub-
connecting routes Rh. Second, it specifies arrival and
departure times arrive�r�v�, depart�r�v� at each node
v ∈ r for these routes. We call a route together with
such timing information a scheduled route. If a sched-
uled route respects all time windows and the cou-
ple time T v

couple, we call it time-consistent. A scheduled
pickup route rx to hub h is compatible with a sched-
uled delivery route ry from h if either rx and ry have
no common shipment, �s ∈ S� s ∈ rx ∧ s ∈ ry , or they
refer to the same hub and respect the precedence,
including shunting time at the hub: depart�ry�h� ≥
arrive�rx�h� + T h

shunt. The same notion of compatibil-
ity analogously applies to connections involving hub-
connecting routes. Formally, our railroad problem is
defined as follows:
Definition 1 (Multihub and Spoke Optimization

Problem (MHSOP)). Given a railroad network N =
�V �E���, a set of hubs H ⊆ V , a set of shipments S,
and the parameters Lmax, T h

shunt, T v
couple, caph, Cengine,

�v, and c̄ as defined above, find a feasible solution
of minimum cost. A feasible solution consists of the
size k of the necessary engine fleet and a set of pair-
wise compatible, scheduled, time-consistent, volume
admissible routes, such that all shipments are trans-
ported from their respective origin to their respec-
tive destination, the hub capacity limits are respected,
and the routes can be driven by k engines. The cost
of a solution is given by the sum of costs of the
selected routes plus the cost of operating k identical
engines.
MHSOP is strongly NP-hard because it contains

problems like the traveling salesman, bin-packing,
and diverse scheduling problems (Garey and Johnson
1979). This justifies computationally expensive ap-
proaches like mixed integer programming.

2.2. Model 0: Edge-Based Classical Vehicle
Routing Model

ILP formulations have proven to be a powerful and
versatile tool for modeling the whole host of NP-hard
problems. In addition, as long as standard solvers can
be applied, they represent an attractive choice from
an implementation cost point of view. Therefore, we
first evaluated the potential of such approaches. Toth
and Vigo (2002) discuss various formulations for sim-
pler but related vehicle routing problems (VRP), such
as the capacitated VRP and the VRP with time win-
dows. Next, we adapt and extend one classical for-
mulation therein to model MHSOP.
Let 
K be an upper bound on the number of engines

used in an optimal solution. Clearly, 
K ≤ �S�. We use a
three-index vehicle flow formulation (Toth and Vigo
2002) for MHSOP. This formulation has O��E� · 
K�
integer variables uet , each counting the number of
times track e ∈ E is traversed by a train with engine t,
and O��S� · 
K · �H �� binary variables vh

st , each taking
value 1 if shipment s is served over hub h by a train
with engine t. Moreover, to handle time windows,
we introduce O�
K · �V �� nonnegative variables wtv,
each representing the arrival time of engine t at sta-
tion v. These sets of variables allow the formulation
with a polynomial number of constraints.
However, the use of multiple hubs introduces sev-

eral complicating issues. First, pickup and delivery
routes require different sets of variables; the hub-
connecting routes have to be modeled, needing O��S� ·

K · �H �2� binary variables hs� t� start�t��end�t�. Furthermore,
delivery routes and pickup routes must be compati-
ble, which makes further O�
K · �S� · �H �� binary vari-
ables necessary to model the dependency between
in- and outbound trains. Direct connections further
complicate the model. Finally, in this formulation we
do not model hub overloading issues. The complete
model is available in Ceselli et al. (2006).
The resulting formulation is “compact” in the sense

that it involves only a polynomial number of vari-
ables and constraints. The approach proved to be
very useful to obtain feedback from our partners
quickly, to gain solid understanding of the problem,
and to evaluate the optimization potential. However,
the approach is completely impractical already on
very modestly sized instances, as we will see in §4.1.

2.3. Model 1—Hierarchical Decomposition:
Cluster-First, Route-Second, Schedule-Third

A natural approach is to follow the planning process
depicted in Figure 1 and translate it to the particular
problem at hand. For SBB Cargo Express, this means:
First, partition the shipments and the engines among
the hubs. Second, route trains separately for the hubs.
Third, schedule the routes. In this section, we give one
model for each step. As with most such hierarchi-
cal approaches, it is important to robustly design the
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objectives and constraints of the models for the early
steps such that they anticipate feasibility problems
that might occur in later steps.

Partition. The partitioning is performed with three
objectives: keeping the average travel time of each
shipment short, reclassifying shipments from or to the
same station in the same hub, and balancing the clas-
sification work among the hubs (as in the classical
blocking problem).
Because too much traffic at a hub may yield infeasi-

ble scheduling problems, we treat load balancing as a
hard constraint. Then, we trade off the two remaining
objectives by computing a kilometer equivalent cost
for connecting each station to a hub. The resulting
problem is a variation of a facility location problem
having a load balancing constraint.

Routing. The partitioning step creates �H � single-
hub subproblems that we route separately; i.e., we do
not plan dedicated hub-connecting routes. As solely
the routing, not the schedule, is decided in this step,
one cannot fully foresee the compatibility of gener-
ated routes and the feasibility for the size of the
engine fleet. Still, it is necessary to take these aspects
into account. To this end, we a priori fix the number
of engines to a value K to guarantee that the same
number of engines enter and leave the hub. Second,
we impose a maximum distance constraint on both
pickup and delivery routes to avoid construction of
long routes. The reason for this is that routes that are
too long cannot be scheduled in a compatible way.
An advantage of this approach is that the routing

now further decomposes into routing of pickup and
of delivery trains. The two routing problems are sym-
metric; hence, we only give a definition of the pickup
problem.
Definition 2 (Pickup Train Routing Problem

with Fixed Train Fleet (TRP)). An instance con-
sists of a network N = �V �E���, a specified hub node
h ∈ H ⊆ V , a set of shipments Sh, a maximum train
load Lmax, a maximum trip distance Dmax, the average
speed �v, the couple time T v

couple, and the fleet size K.
A feasible solution to the TRP consists of a set of K
volume admissible routes Rx, with each ending in h
such that the following properties hold:
1. For each shipment s ∈ Sh, there is a route r ∈ Rx

serving s: ∀ s ∈ Sh ∃r ∈Rx� s ∈ r .
2. No route is longer than Dmax. The length of a

pickup route r ∈ Rx is defined as the length of the
route plus the following term accounting for the cou-
pling time: ��v ∈ r � ∃s ∈ r� orig�s�= v � · T v

couple · �v.
The cost of a solution is the sum of the lengths of the
routes. The TRP asks for a solution of minimum cost.
In §3.1 we discuss a branch-and-cut approach for

this TRP.

Scheduling. A complete schedule for given solu-
tions Rx for the pickup TRP and Ry for the delivery
TRP specifies the departure and arrival times of each
route at each station. However, it is not necessary to
specify a schedule in such detail: The arrival time and
departure time windows are one-sided, in the sense
that there is a priori no latest pickup time or an ear-
liest delivery time for the shipments. For this reason,
it is never convenient for a train to slow down on
the tracks or to wait outside a station until it is pos-
sible to enter it. Therefore, we can completely specify
a schedule by giving the arrival and departure times
of the routes at the hub and assume w.l.o.g. that the
trains travel in the fastest possible way according to
�v and T s

couple.
The objective of the scheduling step is to minimize

the maximum hub load.
Definition 3 (Train Shunting and Scheduling

Problem (TSSP)). Let the solutions Rx and Ry to the
corresponding pickup and delivery TRPs for a set S
of shipments via a hub h be given. A feasible solution
to TSSP defines an arrival time arrive�rx�h� for each
rx ∈ Rx and a departure time depart�ry�h� for each
ry ∈Ry such that:
1. The (inferred) arrival and departure times of

each route at the stations are time consistent; i.e., they
respect the time windows of the shipments.
2. All routes are compatible w.r.t. the chosen arrival

and departure times at the hub.
3. There are always enough outbound engines

available:∣∣�rx ∈Rx � arrive�rx�≤ t 
∣∣

≥ ∣∣�ry ∈Ry � depart�ry�≤ t+ T h
shunt 

∣∣ ∀ t ∈�+! (1)

The cost of a solution equals the maximum number
of cars that are in the hub at the same time:

max
t∈�+

{ ∑
rx�arrive�rx�≤t

vol�rx�− ∑
ry �depart�ry�≤t

vol�ry�

}
! (2)

An optimal solution to TSSP is one for which this cost
is minimum.
We remark that the number of relevant constraints

in (1) is finite and that the maximum in (2) can be
computed over a finite set of relevant points in time,
for example, the arrival and departure times of the
trains at the hub plus the times derived by adding or
subtracting the shunting time.
In this model we treat the capacity limit as a soft

constraint by declaring it as the objective. In fact, as
sketched in §1 it can be argued that the capacity of a
classification yard is not determined by a single num-
ber of cars that, if exceeded, renders the yard inop-
erable but rather by a range in which it increasingly
gets more and more difficult to fulfill the requested
classification.
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Model 1 has some limitations: First, as in all such
approaches, optimization potential is lost in the hier-
archical planning process. Second, on instances with
tight time windows and capacity constraints, the sep-
aration between routing and scheduling may lead to
feasibility issues in the scheduling step, because the
routing is oblivious to the compatibility and time-
consistency problems its routing decisions may cre-
ate. A further restriction of Model 1 is that it neither
considers hub-connecting nor direct trains. These lim-
itations are discussed in some more detail in §§4.2
and 4.4.

2.4. Model 2: Path-Based Set Partitioning Model
When tight time windows are imposed, it may be
impossible to ensure an even load at the hubs using
Model 1. To overcome this problem and exploit the
additional optimization potential of direct connec-
tions and hub connections, we present a model that
describes the MHSOP as a whole.
A scheduled route is the fundamental notion in our

problem, and it is only natural to base a model on this.
A variable in this path-based approach represents
a time-consistent, load-admissible, scheduled route,
of which there are exponentially many. We select com-
patible pairs in such a way that a usage limit on each
hub is respected. The resulting ILP for MHSOP is
given in Figure 2. To deal with a finite number of con-
straints and variables in the first place, we consider
a set T = �0� ! ! ! � " − 1 of " points in time, and we
define as time slots each interval between subsequent
points. We assume trains to always arrive or leave the
hubs at the ends of a time slot. This is a common and
mild restriction, as we do not have full control over
the precise times anyway.
In this model, start�r� and end�r� denote the start

and end node of a scheduled route r . Each binary
variable xt

r indicates whether the scheduled pickup
route r , arriving at hub end�r� during time slot t, is
selected or not; similarly, the binary variable yt

r indi-
cates whether the scheduled delivery route r , leav-
ing hub start�r� during time slot t is selected or not.
Moreover, each binary variable ha�tr indicates whether
the hub-connecting scheduled route r , departing from
hub start�r� and arriving at the destination hub end�r�
at time a:t, is selected or not. We may refer to one
and the same variable also by its departure time d:t
from its origin hub. Following the policy of SBB Cargo
we do not consider pickups or deliveries on hub-
connecting routes. Finally, for each shipment s ∈ S we
introduce a binary variable ds modeling the possibil-
ity of transporting s with a dedicated engine directly
from its origin to its destination. Such a direct path is
not associated with any time because it is always pos-
sible to deliver a shipment on the direct path, respect-
ing the time windows.

min
∑

r∈R� t∈T

c̃r x
t
r + c̃r y

t
r + c̃r h

d�t
r +∑

s∈S

c̃sds

� �$s� ds +
∑

t∈T � r∈R� s∈r

xt
r = 1 ∀ s ∈ S

�$̌s� ds +
∑

t∈T � r∈R� s∈r

yt
r = 1 ∀ s ∈ S

�%sh�
∑

t∈T �end�r�=h�s∈r

xt
r +ha�tr − ∑

t∈T �start�r�=h�s∈r

yt
r +hd�tr =0 ∀s∈S� h∈H

��&hst�
∑

r� s∈r�end�r�=h
t1≥t

x
t1
r +h

a�t1
r − ∑

r� s∈r� start�r�=h

t2≥t+T h
shunt

y
t2
r +h

d:t2
r ≤ 0

∀ t ∈ T � h ∈H� s ∈ S[
�&̌hst�

∑
r� s∈r� start�r�=h

t1≤t

y
t1
r +h

d: t1
r

− ∑
r� s∈r�end�r�=h

t2≤t−T h
shunt

x
t2
r +h

a:t2
r ≤0 ∀ t∈T � h∈H� s∈S

]

�'th�
∑
t1≤t

end�r�=h

vol�r�xt1
r +vol�r�ha�t1r − ∑

t2≤t
start�r�=h

vol�r�yt2
r

+vol�r�hd�t2r ≤ caph ∀ t ∈ T � h ∈H

�(ht�
∑

r∈R�end�r�=h
t′≤t

xt′
r +ha:t

′
r − ∑

r∈R� start�r�=h

t′≤t+T h
shunt

yt′
r +hd:t

′
r ≥ 0 ∀ t ∈ T � h ∈H

xt
r � y

t
r � h

·�t
r � ds ∈ �0�1 ∀ r ∈R� t ∈ T � s ∈ S

Figure 2 ILP Model 2; See Comment in the Text for Interpreting the
Summations

Abusing notation slightly, we denote the set of all
scheduled routes by R, irrespective of their type; fur-
thermore, all summations in Figure 2 are meant to
be over feasible routes separately for the summands.
That is, a sum of type

∑
r∈R� t∈T xt

r + ha�tr is to be read
as the sum of all variables corresponding to feasible
pickup routes with arbitrary arrival time at any hub
plus the sum of all variables corresponding to feasi-
ble hub-connecting routes with arbitrary arrival time
at any hub. All sums of this type in the constraints
should be seen as a shorthand notation for two sep-
arate sums. For later use for the corresponding dual
variables, we refer to the constraints using the Greek
letters, indicated at the left of the model.
Constraints labeled �$ and $̌ are set partition-

ing constraints stating that each shipment has to be
picked up and delivered, respectively.
The %-constraints are global flow conservation con-

straints for the shipments at the hubs. Together with
the &-constraints they ensure the time-consistent in-
flow-outflow of shipments at hubs.
The �&-constraints enforce that a shipment that

arrives after time t has a corresponding outbound
train after time t + T h

shunt. The &̌-constraints represent
the symmetric statement for outbound trains.
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The (-constraints play a role for the engines similar
to that the &-constraints play, except that we allow
engines to end their duty at the hub. Together, the
& and ( constraints enforce the compatibility of the
chosen scheduled routes.
The '-constraints limit the usage for each hub h ∈H

to caph cars in each time slot. We remark that intro-
ducing these constraints provides an a priori guar-
antee to avoid hub overloading. With this model the
decision maker can evaluate different scenarios allow-
ing for different levels of maximum hub load.
Of the three types of constraints, &̌ , �& , and %, every

pair of types implies the third type. Therefore, we
chose to discard constraints &̌ . This implication was
expected, because �& and &̌ constraints are nothing
other than a variation of the classical generalized flow
conservation constraints for networks with intermediate
storage for flows over time problems; see, for example,
Hall, Hippler, and Skutella (2003).
We charge the engine cost to the pickup route;

together with the ( constraints, this allows using an
engine for pickup operations only.
Finally, we remark that shipments with a hub as an

origin or destination need special treatment. Although
this aspect has a minor impact on the model, it intro-
duces particular subtleties in the solution methods,
which we do not address here.
The advantages of this formulation are that it con-

siders both shipment and engine flows in one model
and that the flow conservation carries over to the
fractional variables; this means that all fractionally
valued routes in a solution have compatible counter-
parts, which simplifies the extraction of integral solu-
tions. Furthermore, using this decomposition, we can
efficiently solve the issue of time consistency and
volume admissibility in independent subproblems,
as described in §3.2.

3. Solution Methods
In this section we investigate the various algorithmic
challenges inherent in the three models: What are the
(sub-)problems that arise, how do we address them
both algorithmically and implementation-wise, and
what further techniques do we use to achieve a good
performance. Because Model 0 is meant to be opti-
mized using a (commercial) standard solver, we focus
on Models 1 and 2.

3.1. Model 1: A Branch-and-Cut Approach
The result of the decomposition approach in Model 1
is that the MHSOP is reduced to a partitioning prob-
lem, two independent TRPs, and a TSSP for each hub.
We consider the problems in this order.

Partitioning. The partitioning problem of §2.3 can
be formulated as follows.

We introduce binary variables )sh, indicating wheth-
er shipment s is served by hub h, and binary variables
pvh and dvh, indicating whether hub h is connected to
station v by a pickup or delivery route, respectively.
Let Cconnectvh be the cost of connecting hub h to sta-

tion v and qsh the cost of the cheapest trip for trans-
porting the shipment s over hub h.
The problem of partitioning the set of shipments,

such that no hub serves more than a fraction f of the
total volume, can be formulated as follows.

min
∑

v∈V �h∈H

Cconnectvh ·�pvh+dvh�+
∑

s∈S�h∈H

qsh ·)sh

s.t.
∑
h∈H

)sh≥1 ∀s∈S (3a)

)sh≤pvh ∀h∈H�∀s∈S�v∈V � orig�s�=v- (3b)

)sh≤dvh ∀h∈H�∀s∈S� v∈V � dest�s�=v- (3c)∑
s∈S

�vol�s�·)sh�≤f ·∑
s∈S

vol�s� ∀h∈H! (3d)

Constraints (3a) ensure that all shipments are
routed via a hub. Constraints (3b) and (3c) enforce
consistency of hub assignments and routes: If a ship-
ment s is routed via hub h, the origin and the desti-
nation station must be connected to h. Constraint (3d)
enforces the volume balance for each hub. Here, we
choose Cconnectvh as the combination of a fixed offset
for connecting a hub to a station, plus the connection
costs in terms of distance from the hub.
This problem is NP-complete, as it contains prob-

lems like three-partition and facility location (Ausiello
et al. 1998; Garey and Johnson 1979). However, this
formulation can be effectively optimized by a general
purpose solver (see §4).

Routing. Our solution approach to the TRP con-
sists of a transformation to the following well-known
distance constrained capacitated vehicle routing prob-
lem (DCVRP), which allows us to use existing reliable
software (Ralphs et al. 2003).
Definition 4 (Distance Constrained Capaci-

tated Vehicle Routing Problem (DCVRP)). Given a
complete network NDCVRP = �V �E� c� ��, where c is a
cost function on edges and � is a length function on
edges, a specified hub node ĥ ∈ V , demands di� i ∈ V
on the nodes, a maximum load LDCVRPmax , and a maxi-
mum distance DDCVRPmax .
Find K elementary circuits starting in ĥ with mini-

mum total cost, such that each customer node is vis-
ited by exactly one circuit, the sum of the demands
on each circuit does not exceed the load LDCVRPmax , and
no circuit exceeds the length DDCVRPmax .
In the following, we give a transformation / of

TRP into DCVRP, such that an optimal solution of
any TRP instance ITRP can be derived from an optimal
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solution of the corresponding transformed DCVRP
instance /�ITRP�.
An optimal solution to the routing problem con-

sists of two parts, the pickup routes and the delivery
routes. For simplicity, we again describe the transfor-
mation for the pickup case only.
Roughly speaking, the task of the transformation is

to do the following: Translate a problem defined on a
sparse graph for which the solution consists of a set
of circuits covering the network to a problem on the
complete graph for which the solution consists of a
set of paths covering the network. Moreover, we have
to correctly translate the length and load constraints.
The transformation / applies the following types

of modifications to instance ITRP to achieve the above
goals:
1. Add all missing edges to N TRP. The length of

such a new edge e = �u�v� is set to the length of the
shortest u�v path in N TRP.
2. Increase the length of each edge of the network

by T s
couple · �v.

3. Partly merge shipments with identical origin that
will definitely be transported by the same train.
4. Replace each station with j shipments, j > 1, by

a j-clique with edges of cost and length zero. Identify
each shipment of such a node with one of the nodes
of the new clique by assigning the shipment’s volume
to the demand of the clique-node.
5. Add K nodes with demand M ′ to the graph. The

nodes are connected to the hub by edges of weight
−M and to the rest of the network by the full bipartite
graph with zero-weight edges.
Steps 1 to 4 aim at making the network complete,

have the couple time included in the distances, and
have one shipment for each node. The idea behind
the K extra nodes introduced in Step 5 is to force
all circuits to start or end with such a node followed
by a “free jump” to the starting node of the corre-
sponding TRP path. Therefore, each of the K vehicles
must visit exactly one of these nodes. This is achieved
by setting the weight of the hub-extra node edges
to −M�M � 0, their demand to M ′ >

∑
s∈S vol�s�,

LDCVRPmax =M ′ +Lmax, and DDCVRPmax =Dmax−M .
The correctness of transformation / is established

in the following lemma, whose proof can be found in
Gatto, Jacob, and Nunkesser (2005).

Lemma 1. Let a TRP instance ITRP be given. Let &DCVRP
be an optimal solution to the DCVRP instance /�ITRP�
of cost c. Then, an optimal TRP solution for the pickup
has cost c +K ·M and can be reconstructed from &DCVRP
in linear time. The same statement holds for an optimal
solution for the delivery TRP.

Given an optimal solution of an instance of DCVRP,
an optimal solution of the TRP is constructed by con-
sidering the paths restricted to the nodes of the orig-
inal network.

The construction can be slimmed down a bit: First,
it is sufficient that the set of K nodes introduced can
induce a matching on any subset Q ⊂ V of size K.
Second, for the original graph nodes, all edges can be
removed, for which picking up both shipments of the
incident nodes causes a violation of the load or length
constraints.

Solving theDCVRP. The above construction allows
us to focus on solution approaches for DCVRP.
Many exact algorithms for the DCVRP were pro-

posed in the 1980s (Christofides, Mingozzi, and Toth
1981; Laporte, Desrochers, and Nobert 1984; Laporte,
Nobert, and Desrochers 1985). There are several soft-
ware packages for the general vehicle routing prob-
lem, commercial as well as free ones; see Blasum and
Hochstättler (2000), Hall (2004), and Ralphs (2006)
for a survey. A reliable and successful open source
package for the VRP is the branch-and-cut code by
Ralphs et al. (2003). We base our implementation on
this package and thus describe the “two index formu-
lation” of the DCVRP on complete undirected graphs
(Toth and Vigo 2002), which we use to extend the VRP
package.

min
∑
e∈E

cexe

s.t.
∑

e=�i� j ∈E

xe = 2 ∀ i ∈ V \�ĥ (4a)

∑
e=�ĥ� j ∈E

xe = 2K (4b)

∑
e=�i� j ∈E� i∈Q� j�Q

xe ≥ 2r�Q�

∀Q⊂ V \�ĥ � Q �= � (4c)

xe ∈ �0�1 ∀ e ∈ E! (4d)

Binary variables xe indicate whether a given edge e ∈ E
is chosen. Equations (4a) and (4b) enforce the correct
degree at the nodes and at the hub, respectively.
Constraints (4c), the capacity cut constraints, play a

similar role for the VRP as the subtour elimination
constraints do for the TSP (Lawler et al. 1985). The
left-hand side, evaluated at a solution vector, gives the
number of edges in that solution that cross the graph
theoretic cut 5Q�V \Q6. Note that every vehicle serv-
ing customers in Q contributes with two edges to the
size of the cut. The right-hand side should therefore
represent the minimum number of necessary cross-
ings of vehicles because of the connectivity require-
ment, capacity reasons, and the distance constraints.
The value r�Q� can be understood as the maximum
of two values: d�Q�, which accounts for the maxi-
mum distance constraints, and 7�Q�, which accounts
for the capacity constraints (and also for the connec-
tivity constraints).
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There are several valid but not equivalent choices
for a definition of d�Q� and 7�Q�. In fact, there is a
whole hierarchy of possible values for 7�Q� that lead
to different families of valid inequalities—the most
common being 7�Q�= �∑v∈Q dv/Lmax�. This gives the
rounded capacity inequalities; see Naddef and Rinaldi
(2002) for a more detailed discussion. The value d�Q�
is the minimum value k ∈ � such that the objective
value vk

TSP of a k-TSP problem on Q divided by DDCVRPmax
and rounded up equals k; see Toth and Vigo (2002):

d�Q�=min
{
k ∈�

∣∣∣∣ k≥
⌈
k-TSP�Q�

DDCVRPmax

⌉}
! (5)

Separation Heuristics. The separation problem for
rounded capacity inequalities and inequalities of
Type (4c) is NP-complete. For this reason, we focus on
effective separation heuristics that try to find violated
inequalities of Type (4c). By their heuristic nature
these methods cannot guarantee that a cut is found
even if one exists. As the cutting plane generation is
embedded into a branch-and-bound framework, this
might yield weaker bounds but does not compromise
the correctness of the algorithm.
Because the capacity constraints are effectively han-

dled by the existing software package we use, we
focus on the distance constraints. We devised the fol-
lowing separation heuristics. Given a solution, we
consider the support graph induced by all nonzero
edge variables. Then, we remove the hub node and
consider each connected component Qi separately.
Because we are only interested in instances of

DCVRP arising from our transformation / , we tuned
our cuts to handle these specific instances, thus dis-
carding the nodes introduced in Step 5 and the
involved edges of size −M in the length computa-
tion. Nevertheless, the cuts can be applied to the gen-
eral DCVRP. For the first set of cuts, we compute the
length of each component by weighing the length of
each edge by the value of its associated variable xe.
If the resulting length exceeds what can be traveled
by the vehicles serving the component, we know that
at least an additional vehicle is needed for the com-
ponent, and we can enforce this with an inequality
of type (4c). We introduce these cuts for three differ-
ent cases: fractional components, integral components

1 2 3 4 5 6

1 2 3 4 5 6 1 2 32 3 1 4 455 6 6

3 75
4

3

4

5 7

Figure 3 An In-Out Graph Together with a Linear Arrangement of Cutwidth 15
Note. All nonlabeled edges have unit weight.

(and, thus, circuits violating the length bound), and
all subpaths resulting from integral components that
violate the length bound. As the solutions arise in a
branch-and-cut setting, some of the branching deci-
sions might not be optimal. Therefore, these cuts have
local validity only in the branching tree. To overcome
this problem, we introduce globally valid cuts as fol-
lows. We consider the graph induced by the nodes of
an integral component Qi and compute lower bounds
for the distance of the tour needed to serve these
nodes. If the lower bound exceeds the distance that
can be served by the number of vehicles serving the
component, we can introduce a valid cut. We use
two easy methods to compute lower bounds for the
tours: the relaxation of TSP to 1-trees and its classi-
cal relaxation to the assignment problem; see Lawler
et al. (1985).
The transformation / and the extension of the

existing software to handle distance constraints
allowed us to effectively handle the TRP. The results
are presented in the experimental §4.

Solving the TSSP Problem. The TSSP has an inter-
esting connection to minimum cut linear arrangement
problems. To see the connection we consider an eas-
ier variant of TSSP in which we drop Condition 3,
set T h

shunt = 0, and only ask for the sequence of in-
and outbound trains at the hub that minimizes the
necessary hub capacity. The resulting sequencing task
can be depicted by the bipartite in-out graph Gio =
�U ∪V �E� in Figure 3. The inbound trains (in Rx) cor-
respond to nodes of the top partition, the outbound
trains (in Ry) to nodes of the bottom partition. Each
edge e= �rx

i � r
y
j � has a volume vol�e� corresponding to

the number of cars that train r
y
j receives from train rx

i .
We call Gio a uniformly directed bipartite graph, because
all edges are directed from U to V .
The problem is equivalent to finding a linear

arrangement of the graph G, i.e., an embedding of the
graph onto the horizontal line, such that all edges are
directed from left to right. For such an arrangement,
the maximal number of edges crossing any vertical
line is the �cut-� width, and it corresponds to the maxi-
mal number of cars residing in the shunting yard. The
width of a graph G is given by the minimal width of
a linear arrangement of G.
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Without the directions and the restriction to bipar-
tite graphs, this problem is known as the minimum
cut linear arrangement, a well-studied NP-complete
problem (Garey and Johnson 1979, problem GT44)
that was shown to remain NP-hard for graphs of
degree 3 (Makedon, Papadimitriou, and Sudborough
1985) and even for planar graphs of degree 3 (Monien
and Sudborough 1988). In Gatto, Jacob, and Nunkesser
(2005) the authors extend these results as follows.

Theorem 1. It is NP-hard to decide if a uniformly
directed bipartite planar graph of out-degree 3 and in-
degree 2 admits a linear arrangement of width �.

Despite this result, we can solve the instances of the
TSSP problem that arise in our setting by using a sim-
ple ILP formulation, because these instances are not
too large. For this formulation, we discretize the time
horizon into " points in time T = �0� ! ! ! � " − 1 and
make use of the previously defined in-out graph Gio.
We introduce binary variables at

r and dt
r ′ that model

arrival (and departure) of the trains r ∈ Rx (r ′ ∈ Ry ,
respectively) at times t ∈ T . Here, we assume that the
shunting time T H

shunt is given in time slots. We refer to
E as the edge set of the in-out graph Gio.

min C

s.t. at
r ≤at+1

r ∀r ∈Rx�t∈T (6a)

dt
r ≤dt+1

r ∀r ∈Ry�t∈T (6b)

at
r ≥d

t+T H
shunt

r ′

∀t∈�0�!!!�"−T H
shunt−1 � ∀�r�r ′�∈E (6c)

dt
r ′ =0 ∀r ′ ∈Ry� ∀t∈�0�!!!�T H

shunt−1 (6d)∑
e∈E

e=�r�r ′�

vol�e��at
r −dt

r ′�≤C ∀t∈T (6e)

ati
r =0 ∀r ∈Rx� arriveH�r�>ti (6f)

d
ti
r ′ =1 ∀r ′ ∈Ry� dep�r ′�<ti (6g)∑

r∈Rx

at
r ≥

∑
r∈Ry

d
t+T H

shunt
r ∀t∈�0�!!!�"−T H

shunt−1 (6h)

a0r =0� a"−1
r =1 ∀r ∈Rx

d0r ′ =0� d"−1
r ′ =1 ∀r ′ ∈Ry (6i)

all a·�d· ∈�0�1 ! (6j)

Equations (6a), (6b), and (6i) impose that, for every
edge e, the variables a·e and d·

e form a monotone
sequence starting with 0 and ending with 1.
The arrivals and departures of trains are scheduled

at the 0–1 transition of the respective variables; i.e,
for a pickup route rx ∈ Rx we set arriveH�rx�= t′ if
at′+1

rx − at′
rx = 1 and symmetrically for delivery routes.

Constraints (6c) and (6d) ensure that an outbound
train can only depart if all its cars have arrived and
that T H

shunt time units are available for shunting those
cars. Constraints (6e) represent the capacity constraint

over all time slots, which is the objective value. Con-
straints (6f) and (6g) introduce time constraints for
the earliest arrival/latest departure of trains; i.e., from
the time windows we infer a constraint of type
arriveH�r� > t′ on the arrival (departure) times at the
hub and express it in the form of Constraints (6f)
and (6g). Constraints (6h) ensure that a train can only
depart from the hub if there is an engine available.
Our experiments show that for the TSSP instances

that arise from the solutions to the TRPs on the SBB
Cargo Express instance, we can calculate a schedule
that minimizes the maximum hub load and respects
the time windows in, at most, a few minutes.

3.2. Model 2: A Column Generation-Based
Approach

Because Model 2 involves an exponential number
of variables, we adopt column generation techniques
(Desaulniers, Desrosiers, and Solomon 2005): we start
with a restricted problem, containing only the direct
shipment variables ds , then solve its linear relax-
ation (the so-called restricted master problem, RMP),
obtaining a vector of (optimal) dual variables. We use
this dual information to identify new variables of neg-
ative reduced cost. If any such variables are found,
they are included in the RMP and the whole process is
iterated. Otherwise, the value of the linear relaxation
of the RMP is a valid lower bound. Note that includ-
ing all direct shipment variables has the advantage
of making the RMP feasible from the beginning. In
contrast to the decomposition-based Model 1, the lin-
ear relaxation of Model 2 delivers a lower bound on
the value of an optimal solution. Furthermore, good
integer solutions can be found by combining a subset
of the dynamically generated columns that satisfy the
constraints of Model 2.
Because an optimal solution in which each ship-

ment is served by one route always exists, we can
safely relax the set partitioning constraints to set cov-
ering constraints. Then, the corresponding dual vari-
ables are restricted in sign, which leads to an easier
cost structure in the generation of columns. Further-
more, it is also easier to obtain feasible RMPs.
The Pricing Problems. The problem of finding

columns of (most) negative reduced costs is called the
pricing problem. For the sake of clarity, we denote
the dual variable corresponding to each constraint by
adding indices to the Greek letter indicating the con-
straint itself. Because the pricing problems involving
pickup and delivery routes are completely symmetric,
we discuss the pickup pricing only.
Here, the reduced cost of a (column encoding a)

pickup route r to hub h′ scheduled at time t′ is

Cengine+
∑
e∈r

l�e� · c̄−∑
s∈r

� �$s +%sh′�−
∑

s∈r� t≤t′
�&h′st

−vol�r�∑
t≥t′

'th′ −
∑
t≥t′

(h′t� (7)
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where �$s�(ht ≥ 0, 'th� �&hst ≤ 0, and %sh ∈ � repre-
sent the dual variables associated to the constraints
of Model 2. This reduced cost has three components:
a cost, which depends only on the arcs used in the
route, a prize,

∑
s∈r

rc�s� �=∑
s∈r

(
�$s +%sh′ +vol�s� ·

∑
t≥t′

'th′ +
∑
t≤t′

�&h′st

)
�

which depends only on the shipments picked up,
and a constant contribution Cengine −

∑
t≥t′ (h′t , which

depends only on the destination hub and arrival time
slot.
Definition 5 (Pickup Pricing Problem). Given a

network N , a hub h′ ∈ H , an arrival time t′, parame-
ters Lmax, Tcouple, �v, c̄, a set of shipments S, and a prize
rc�s� for each shipment s ∈ S, find a time-consistent,
volume-admissible, scheduled route in N of mini-
mum reduced cost.
This problem is a variation of the well-known

NP-hard resource constrained shortest path problem
with time windows (RCSPP) (Feillet et al. 2004). We
devised a particular dynamic programming shortest
path algorithm, similar to those presented in Boland,
Detheridge, and Dumitrescu (2006) and Feillet et al.
(2004), for solving the pickup pricing problem. Each
label l represents a partial route and encodes a 5-val-
ued state �=�l��>�l�� "�l�� ?�l��&�l��, where =�l�≥ 0 is
the cost of the partial route, >�l� ≥ 0 the collected
prize, "�l�≥ 0 the elapsed time, ?�l�≥ 0 the used vol-
ume, and &�l� the set of visited nodes in which pickup
operations occur. Each label refers to a particular node
of the network. Because it is not surprising for a rail-
road problem, our routes cannot be always elementary,
that is, without node and edge repetitions. However,
we only construct routes that we call “shipment ele-
mentary,” which means that no shipment is picked up
twice. Forcing the routes to be shipment elementary
is enough to preserve the quality of the lower bound
we obtain from the RMP.
Initialization. Let S1�v� and S2�v� be two subsets of

pickup shipments at node v; then, S1�v� dominates
S2�v� if∑

s∈S1�v�

rc�s�≥ ∑
s∈S2�v�

rc�s�∧ ∑
s∈S1�v�

vol�s�≤ ∑
s∈S2�v�

vol�s��

and all the shipments in S1�v� have no later pickup
time with respect to each shipment in S2�v�. This is not
a restriction in our case, because all of the shipments
in the same station share the same earliest pickup
time. That is, picking up all shipments in S1�v� instead
of all shipments in S2�v� requires no more resource
consumption and gives no smaller prize. We begin
by enumerating all nondominated subsets of shipments
for each pickup station in the network. Furthermore,
we create a set L of �N � labels corresponding to the

initial state �0�0�0�0���, one for each node of the
network.
Extension Procedure. Let L be the set of labels created

so far and l∗ ∈ argminl∈L�=�l�−>�l� ! In each round
the label l∗ is pushed to every neighboring node. Let
l∗ refer to node i∗, let j be one of its adjacent nodes,
and let e be the arc connecting them: a set of labels is
created and added to L. This set contains a label for
each nonempty, nondominated subset of shipments
Sk�j� at node j , encoding a state(

=�l�+ l�e� · c̄�>�l�+ ∑
s∈Sk�j�

rc�s�� "�l�+ l�e� · �v

+ Tshunt� ?�l�+
∑

s∈Sk�j�

vol�s��&�l�∪ �j 

)

and one additional label encoding a state �=�l� +
l�e� · c̄�>�l�� "�l� + l�e� · �v�?�l��&�l�� corresponding
to no pickup operation. Each label with ?�l� > Lmax
or "�l� > t′ is discarded. Label l∗ is finally removed
from L and stored in a separate list L̄.
Label Pruning. As in Boland, Detheridge, and

Dumitrescu (2006), we delete any label l at node i
with "�l�+ t̄ih′ > t′. Furthermore, let l be the value of
the incumbent RCSPP solution. Following Lübbecke’s
findings (2005), during the creation of each label l we
compute an upper bound 
> on the best prize that
can still be collected by filling the remaining volume;
this requires solving a fractional knapsack problem
(Pisinger 1997). If the value =�l� − >�l� − 
> is still
higher than l, label l can be discarded, because it can-
not yield improvements on the incumbent solution.
Dominance Rule. In our algorithm, a label l1 dominates

a label l2, if they refer to the same node of the network,
if =�l1� ≤ =�l2� and =�l1�−>�l1� ≤ =�ls�−>�l2� and if
"�l1�≤ "�l2�, and ?�l1�≤ ?�l2�. Moreover, in an optimal
MHSOP solution no route performs pickup operations
more than once at the same station, although a partic-
ular setting of the prizes rc�s� may yield the genera-
tion of routes containing cycles. As mentioned above,
forbidding such cycles (i.e., restricting the search to
elementary routes) leads to substantially better lower
bounds. Unfortunately, this comes at the price of mak-
ing the RCSPP computation much harder; in fact,
we must enforce &�l1�⊆ &�l2� as a further condition for
label l1 to dominate label l2. We stress that our tech-
nique requires elementariness only on a small subset
of the nodes of the network: This makes the prob-
lem tractable from a computational point of view. Fol-
lowing Beasley and Christofides (1989), the set &�l�
of each label is represented as a vector of binary
resources, one for each pickup station of the network;
each of them is set as consumed as soon as pickup
operations are performed at the corresponding sta-
tion. Finally, as was done in the work of Irnich and
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Desaulniers (2005), we tighten the dominance rule by
including in the set &�l� all stations that cannot be
reached anymore because of resource limitations.
Termination. Let L̄�h′� be the subset of labels in L̄

referring to node h′. When no new label is created,
a label l∗ ∈ argminl∈L̄�h′��=�l�−>�l� encodes an opti-
mal solution to the pricing problem.
Dominance of Time Slots. We also check the follow-

ing simple dominance rule for entire time slots. Let
hub h′ be fixed. If t2 > t1 and for all s ∈ S we have
that

∑
t1≤t<t2

(h′t = 0 and
∑

t≤t2
�&h′st ≥

∑
t≤t1

�&h′st , that is,∑
t1<t≤t2

�&h′st = 0, an optimal solution for t2 cannot be
worse than an optimal solution for t1. Therefore, we
may discard time-slot t1 in the search for the most
negative reduced cost column.
Pricing of the Hub-Connection Routes. Because no

pickup or delivery operations occur in hub connec-
tions, these routes always follow the shortest path
between the hubs. The pricing problem simplifies
to a knapsack problem, which we solve using the
MINKNAP algorithm (Pisinger 1997), adapted to han-
dle fractional prizes as described in Ceselli and Righini
(2005). Furthermore, the time-slot reduction proce-
dures described above can be readily adapted to hub-
connection pricing.
Finally, we remark that because the direct shipment

variables are included in the initial RMP we do not
need to consider them during pricing.

Acceleration Techniques. The literature on col-
umn generation abounds with acceleration techniques
(Desaulniers, Desrosiers, and Solomon 2001). We
briefly discuss some of our methods:
Preprocessing Strategies. We condensed the original

SBB Cargo Express network to a smaller network
without loosing optimality guarantees. The details of
such reductions are discussed in §4.
Heuristic Pricing. As most of the time is spent in

pricing we devised heuristic speedup techniques. At
each pricing step, we stop the pricing algorithm as
soon as a fixed number of negative reduced cost
columns has been found. Moreover, we limit the num-
ber of generated labels, as commonly done in rout-
ing problems (Toth and Vigo 2002). We reduce the
number of demands by aggregating shipments dur-
ing pickup and delivery pricing. The heuristics are
discarded if no negative cost label is found.
Perturbation. For the calculation of each RMP we

perturb the right-hand side of the &-constraints by
small random values. Consistent with the literature
(Desaulniers et al. 1999), this yields a significant
speedup of the LP-solving steps.
Columns Management. To keep the RMP small, we

subject the columns to aging. If a column keeps being
nonbasic for a given number of pricing iterations, it is
removed from the RMP and added to a column pool.
Before pricing, we scan this pool: If any previously

generated column is found with a negative reduced
cost, we insert it in the RMP and we skip pricing.
Stabilization. A common problem in column gener-

ation is that the dual variables tend to oscillate and
to assume extreme values. Using an interior point
method to solve the RMP is a possible remedy, but we
encountered severe numerical problems when using
the barrier algorithm in CPLEX. Instead, we adapted
the interior point stabilization approach described in
Rousseau, Gendreau, and Feillet (2007) to our prob-
lem, obtaining better convergence. However, balanced
dual values required to solve harder pricing problems
and this technique did not pay off with respect to the
overall performance.

Primal Heuristics. As solving only the linear relax-
ation of Model 2 to optimality takes a long time,
we experimented with heuristics based on the dive-
and-fix paradigm (Wolsey 1998). We augmented the
standard rounding procedure by performing column
generation steps and including problem-specific rules,
obtaining a dive-and-generate heuristic. Given a frac-
tional solution for the RMP, the heuristic iterates the
following steps until an integral solution has been
found.
Step 1. Round up the column c with the highest

fractional value, given that it is consistent with the
columns rounded up so far in the RMP constraints.
Step 2. Round down all columns in the RMP that

are not time-consistent with c.
Step 3. Solve the remaining RMP using the dual

simplex algorithm.
Step 4. If the solution is integral, stop.
Step 5. Otherwise, remove the shipments included

in c from the pickup, delivery, or hub-connection
pricing problem, according to the type of the route
encoded by c.
Step 6. Perform a fixed number of pricing iterations

to include new columns into the RMP and go back to
Step 1.
Note that by rounding up and down fractional

valued columns, it can happen that the RMP may
become infeasible. If this is the case, we apply a tech-
nique that tries to restore the feasibility of the RMP
by considering optimal dual rays of the (unbounded)
dual problem. In particular, we set all the objective
function coefficients to 0, and we simulate Phase I of
the simplex algorithm.
Because the number of pricing steps is limited,

dive-and-generate may still fail in finding a feasible
solution. Therefore, after each rounding step we exe-
cute a fast local improvement procedure that tries
to complete the current partial solution by further
rounding. To this aim, the procedure first greed-
ily rounds up more columns, maintaining the time
consistency between arrival and departure times of
the shipments at the hubs. Uncovered shipments are
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transported by direct paths. Inconsistencies of ship-
ments arriving at one hub and leaving from another
hub, as well as inconsistencies on the engines serving
each hub, are solved by using hub-connecting routes.
Hub capacity problems are addressed by shifting the
routes in time as far as possible. If capacity problems
remain, the heuristic introduces direct paths to lower
the necessary hub capacity.
We remark that our dive-and-generate approach

can be applied without problem-specific knowledge
to any ILP solved by column generation techniques.
Such heuristic is unconventional if compared to other
heuristics in column generation settings that rely
more on the compact formulation or metaheuristics
that are initialized and guided by the column genera-
tion process, see Danna and Pape (2005). Indeed, we
try to exploit, first, the skill of the pricing algorithm in
generating high-quality routes; second, the involved
structure of the RMP to combine the routes respect-
ing time consistency and hub-capacity; and, third, the
problem-specific structure for local improvement.

4. Experiments
In this section we report on the experimental results
with the three models. All computations were car-
ried out on a standard Linux PC with a 3-GHz pro-
cessor and 4-GB memory. CPLEX 9 was used as ILP
solver for Model 0 and as LP solver for Model 1 and
Model 2.
We start by describing the SBB Cargo Express

instance.
The planners of SBB Cargo Express service pro-

vided us with real data, i.e., the actual railroad net-
work, their timetable, and the demand matrix of a
specific month. The railroad network for the SBB
Cargo Express service has 651 nodes and 1,488 edges,
and they currently operate with two hubs, located
in Däniken and Zürich-Müllingen. In a preprocess-
ing phase, we first calculate the all-pairs shortest
paths among the nodes with shipments and the hubs.
Edges that do not occur on any such shortest path
can be safely ignored. In the resulting graph we con-
tract degree-two nodes if they are neither a hub nor
an origin nor a destination of any shipment. The
preprocessing condensed the network to 121 nodes
and 332 edges.
In Figures 4 and 5 we show, respectively, the orig-

inal network and a detail of it, together with the
condensed network that we extracted. Dark nodes
represent stations with shipments in the SBB Cargo
Express service and stations without shipments that
were retained in the condensed network. The two big-
ger square nodes correspond to hubs. The light col-
ored nodes and edges are stations and connections
that are not retained in the condensed network.

Figure 4 The Original Railroad Network Together with the Condensed
Network That We Extracted

Because the given demand matrix only comprises a
month total, we divided the supply in a daily aver-
age and rounded fractional numbers. This resulted
in a 200-shipment instance. Because the actual time
windows were not available, we defined the earliest
pickup and latest delivery times by relaxing the
pickup and delivery times on the currently imple-
mented plan by one hour.
To simulate the real setting, we fixed the parame-

ters to the following realistic values: The maximum
train load is 25 cars, and the average train speed is set
to �v= 60 km/hour. As a coupling time at stations we
chose T v

couple = 27 minutes. The length of each time slot
is set to 15 minutes. The shunting time at the hubs is
set to T h

shunt = 27 minutes, equal at both hubs. We con-
sidered a hub to be overloaded if more than caph = 80
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cars are in the yard during the same time slot. Finally,
we set Cengine = 1�000 and c̄ = 1. The three orders of
magnitude difference in cost make the minimization
of distance a secondary objective over minimization
of engines.
Taking into account only the number of shipments,

the SBB instance is about the size of the largest opti-
mally solved (much simpler) VRP instances; however,
trying to solve the entire tactical planning process
turns it into a very challenging problem.

4.1. Model 0
We implemented Model 0 using the OPL Model-
ing language (Hentenryck 1999) and solved it using
CPLEX. On a toy instance with 11 nodes, 23 edges,
and 11 shipments, we did not get any feasible solu-
tion in seven hours. However, a feasible (not optimal)
solution for the first five and the last six shipments
separately can be found in about 20 minutes. In fact,
this suggests a decomposition approach, and it was a
motivation to develop and implement more involved
approaches like Models 1 and 2.

4.2. Model 1
We implemented the branch-and-cut approach for
TRP, using SYMPHONY 5, a framework by Ralphs
and Ladányi (1999). We used CPLEX as LP solver for
SYMPHONY, and LEDA 4.5 for computing the min-
imum spanning trees and the assignment problems
needed for the cuts.
The computation flow through the three steps of

Model 1 is summarized in Table 1. The table is built
by five blocks, one for each step in the solution pro-
cedure, as indicated in the heading row.
In the first block we report the number of cars com-

posing shipments managed by the same hub after the
partitioning step. For the partitioning we enforced a
balance constraint of 55%; i.e., at most 55% of all ship-
ments can be assigned to one hub. The resulting split
led to four instances for TRP, pickup, and delivery for
Däniken and Zürich-Müllingen.
In the second block we indicate, for each hub and

for both the pickup and delivery phases, the num-
ber of nodes �N �, shipments �S�, and engines �E� in
the corresponding DCVRP instance. The DDCVRPmax val-
ues in the DCVRP subproblems (column “Dmax”) were

Table 1 Computation Flow Through All Phases of Model 1

Partition TRP instances TRP results Totals after fixing TSSP

Hub Cars Mode Dmax (km) N S E Dist. (km) CPU time Gap (%) Dist. (km) E Cost Max load

DK 253 Pickup 378 26 25 21 1,660 <1 min 0 7,686 35 42,686 106
delivery 296 31 30 21 2,590 90 min 0

ZMUE 208 Pickup 276 15 13 9 936 <1 min 0 80
delivery 319 17 14 9 1,628 15 h 5.9

chosen by taking the maximum distance from each
hub to a shipment assigned to it and increasing it
by the equivalent of time needed for shunting twice.
The rationale behind this choice is to allow serving
two shipments with the engine serving the farthest
one. The shipments for the instances were obtained
by aggregating, in cooperation with the SBB Cargo
planners, some of the demands with the same origin
for the pickup problem and with the same destination
for the delivery problem.
In the third block we report the results obtained

by solving the TRPs in terms of overall distance trav-
eled by the fleet (column “Dist.”), CPU time needed
to obtain such solution (column “CPU time”), and
gap between the best known upper and lower bounds
if optimality was not proved (column “Gap”). The
engine fleet size of each instance was incremented
sequentially until the number of infeasibilities with
respect to the time windows did not decrease any-
more. The solution process for all instances took about
10 days in total. Because we observed dramatically
higher computation times for instances with fewer
engines (and more infeasibilities), the best approach is
to decrement the fleet size from an initially large value
and stop when the number of infeasibilities increases.
The few remaining infeasibilities were solved by a

very simple fixing heuristic similar to the one pre-
sented in §3.2 for Model 2. In the fourth block of
Table 1 we indicate the overall traveled distance,
the number of used engines and the overall cost on
the whole solution. This approach resulted in using an
engine fleet of 11 engines for the shipments assigned
to Zürich-Mülligen (ZMUE) and 24 for the shipments
assigned to Däniken (DK), a fleet of 35 engines in
total.
The resulting TSSP instance takes the time win-

dows and the routes determined by TRP as an input.
As reported in the fifth block of the table, in the
timetable that minimizes the maximum hub load,
at most 80 cars are in ZMUE and 106 cars are in DK
at the same time. This causes a slight overload in DK.
The solution was found in less than a minute.
To sum up, we were able to produce a solution

that is close to the operational constraints. This comes
at the cost of a large computation time; it is also diffi-
cult to estimate losses in objective value by the three-
phase decomposition.



Ceselli et al.: Optimizing the Cargo Express Service of Swiss Federal Railways
464 Transportation Science 42(4), pp. 450–465, © 2008 INFORMS

4.3. Model 2
We implemented our column generation algorithm
for Model 2 using the SCIP library by Achterberg
(2007), with CPLEX as LP solver. It is the first time
SCIP is used to implement a CG algorithm.

Results. First, the full instance, on which we apply
Model 2, is considerably larger than the aggregated
instances for the TRP, as it considers 200 shipments
and the preprocessed network. With our current
implementation we reach the tailing-off phase in the
root node of the branch-and-price tree after a calcula-
tion time of around four days. At this time the value
of the relaxation is 29,217.
The best integral solution found with the dive-

and-fix heuristic of §3.2 has a cost of 35,276. This
solution was achieved with eight intermediate pric-
ing steps after each variable fix. Similar results can
be found with more steps, but experimental results
showed that it is ineffective to price more than 12
times. The best solution was found after 85 hours
of computation. However, very similar quality results
can be found within 12 hours. The best solution
uses 27 engines, two of which are direct connections.
Twelve engines travel to and from Däniken, 13 to and
from Zürich–Mülligen. Furthermore, there are eight
hub-connecting trains in each direction. The total trav-
eled distance is of 8,276 km.
The local improvement is mainly useful when the

dive-and-fix heuristic fails or for obtaining good solu-
tions in the early computation phases.

4.4. Comparison of Results
The advantage of Model 2 over Model 1 is twofold.
First, although the approach worked fine for the hub
ZMUE, we could not avoid some overload of the
slightly bigger hub DK.
Despite the shorter overall distance, Model 1 thus

requires substantially more engines than Model 2. For
the SBB Cargo Express instance, this results in a loss
of 7,410 (or 20%) with respect to the best solution
obtained by Model 2. Second, the need to iterate the
TRP and TSSP solution process with an increasing
number of engines and handling the infeasibilities
leads to an enormous computation time. Thus, the
integrated approach of Model 2 performs significantly
better on the given large real-world instance.

5. Conclusion and Future Work
Our computational experience confirms that captur-
ing all the modeling details of multiple hub-and-
spoke systems while still providing reliable solution
methods is a challenging task.
However, on the other hand, we also demonstrated

that this task is by far not hopeless.
Model 1 shows both the appealing and limiting

features of distributing tactical decisions to separate
levels, as is commonly done in practice. In fact, the

solution methods of Model 1 rely on consolidated and
effective algorithmic techniques and robust existing
software packages. The optimal solution at each deci-
sion level can be found with an affordable computa-
tional effort. However, a tough parameter tuning has
to be carried out to make the algorithms of the earlier
decision levels produce feasible instances for the later
decision levels.
On the other hand, with Model 2 we are able to con-

sider all interacting tactical decisions as a whole and
provide a solution algorithm that consistently pro-
duces feasible solutions of provably good quality.
A direct comparison between our solutions and the

currently implemented plan is not possible at this
stage, as our experiments were carried out on aver-
age valued instances; moreover, we decided to ignore
some of the seemingly secondary aspects in our mod-
els: We do not consider the problem of engine driver
assignment. We do not consider the problem of switch-
backs and furcations. It is rather straightforward, how-
ever, to incorporate the handling of switchbacks and
furcations in the pricing, because these only cause a
route to take longer to be carried out.
Our column generation algorithm exploits and ex-

tends very recent optimization techniques: one issue
we did not discuss is the question of branching rules.
A natural branching rule in our setting is the assign-
ment of shipments to hubs, based on the fractional
assignment of the solution at hand, which we imple-
mented. However, we only did few experiments on
small instances with different branching rules and
focused on heuristically obtaining integral solutions
already in the root node for the whole instance.
A near-optimal solution of a practical problem of

this scale and complexity was entirely out of scope
some years ago. Even though we focused on a sin-
gle instance of a particular problem, we think that
research like ours will contribute to algorithmic and
modeling improvements, leading to state-of-the-art
solvers that are capable of solving a problem like ours
“out of the box.”
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