
A Branch-Price-and-Cut Algorithm

for Packing Cuts in Undirected Graphs

Martin Bergner�, Marco E. Lübbecke, and Jonas T. Witt

Operations Research, RWTH Aachen University,
Kackertstr. 7, 52072 Aachen, Germany

{martin.bergner,marco.luebbecke,jonas.witt}@rwth-aachen.de

Abstract. The cut packing problem in an undirected graph is to find a
largest cardinality collection of pairwise edge-disjoint cuts.We provide the
first experimental study of this NP-hard problem that interested theorists
and practitioners alike. We propose a branch-price-and-cut algorithm to
optimally solve instances from various graph classes, random and from
the literature, with up to several hundred vertices. In particular we inves-
tigate how complexity results match computational experience and how
combinatorial properties help improving the algorithm’s performance.

1 Introduction

Given an undirected graph G = (V,E) with n = |V | vertices and m = |E| edges,
every S ⊆ V induces a cut δ(S) = {ij ∈ E | i ∈ S, j /∈ S}. We call S and V \S
the shores of cut δ(S). We assume G to be connected and S a non-trivial subset,
thus δ(S) �= ∅. Two cuts δ1 ⊆ E and δ2 ⊆ E are disjoint, if δ1 ∩ δ2 = ∅. The cut
packing problem is to find a largest cardinality set of pairwise disjoint cuts. The
maximum is called the cut packing number γ(G).

In combinatorial optimization, cut packing is known for its role in duality
theorems [12,22]. It is NP-hard in general [6] and even in planar graphs [4], but
polynomial time solvable in chordal or bipartite graphs [6] or when packing s-t
cuts [7,22]. Interestingly, packing directed cuts in digraphs is polynomial time
solvable as well [19]. Cut packing is closely related to other combinatorial opti-
mization problems like cycle packing [4] and independent set [6]: An independent
set I = {v1, . . . , vk} ⊆ V immediately translates to a (particular) cut packing
{δ({vi}) : vi ∈ I}. The latter provides a strong inapproximability result [5]: for
the stability number α(G) (the cardinality of a maximum independent set in G)
it holds that α(G) ≤ γ(G) ≤ 2α(G) − 1. Again, special graph classes allow bet-
ter approximation guarantees [5]. The parameterized version of the cut packing
problem is W[1]-hard by a reduction from parameterized independent set [10],
which is performed in the full version of this paper. Cut packing and variants
have applications in bioinformatics [5] and network reliability [6]. Colbourn [7]
mentions that the NP-hardness of several edge packing problems “limits their

� Supported by the German Research Foundation (DFG) as part of the Priority Pro-
gram “Algorithm Engineering” under grants no. LU770/4-1 and LU770/4-2.

J. Gudmundsson and J. Katajainen (Eds.): SEA 2014, LNCS 8504, pp. 34–45, 2014.
c© Springer International Publishing Switzerland 2014

A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 35

applicability” for obtaining bounds for network reliability. We mitigate this ar-
gument by presenting an exact integer programming based approach to solve
the cut packing problem for arbitrary graphs optimally.

Our Contribution. We are not aware of any experimental results, neither exact
nor approximate, for cut packing; thus we provide the first computational study
of the problem. We propose a branch-price-and-cut algorithm to optimally solve
instances from various graph classes, random and from the literature, with up
to several hundred vertices. This success mainly builds on an easily computable
combinatorial upper bound. In particular, we investigate how theoretical com-
plexity and approximability results match with computational experience.

2 Formulations and Properties

2.1 Compact Formulation

There are several known (integer) linear programming formulations for finding
one (minimum) cut in a graph. As trivially γ(G) ≤ m, we replicate the con-
straints of such a formulation, one set for each potential cut in a packing, in-
dexed by c = 1, . . . ,m. A cut δc = {ij ∈ E | i ∈ Sc, j /∈ Sc} induced by Sc

is represented by binary variables uc
i , i ∈ V , taking value 0 when i ∈ Sc and

value 1 when i /∈ Sc. With V = {1, . . . , n}, we normalize 1 ∈ Sc, c = 1, . . . ,m,
mildly reducing symmetry. Note that δ(Sc) = δ(V \Sc). The binary variables ycij ,
ij ∈ E, take value 1 iff ij ∈ δc, and the binary variables xc are used to count the
cuts in the packing. The cut packing problem can be formulated as

max

m∑

c=1

xc

s.t. uc
i − uc

j + ycij ≥ 0 ∀ij ∈ E, ∀c ∈ {1, . . . ,m} (1)

uc
j − uc

i + ycij ≥ 0 ∀ij ∈ E, ∀c ∈ {1, . . . ,m} (2)

ycij − uc
i − uc

j ≤ 0 ∀ij ∈ E, ∀c ∈ {1, . . . ,m} (3)

uc
i + uc

j + ycij ≤ 2 ∀ij ∈ E, ∀c ∈ {1, . . . ,m} (4)

uc
1 = 0 ∀c ∈ {1, . . . ,m} (5)

xc ≤
∑

ij∈E

ycij ∀c ∈ {1, . . . ,m} (6)

m∑

c=1

ycij ≤ 1 ∀ij ∈ E (7)

xc, uc
i , y

c
ij ∈ {0, 1} ∀ij ∈ E, ∀c ∈ {1, . . . ,m}, ∀i ∈ V .

The metric inequalities (1)–(4) ensure compatibility between u and y variables
for the c-th potential cut. Constraints (1) and (2) guarantee that if two vertices
are on different shores, the edge between them has to be in the cut. On the

36 M. Bergner, M.E. Lübbecke, and J.T. Witt

other hand, constraints (3) and (4) ensure that the edge between vertices on
the same shore will not be in the cut. Constraint (5) puts vertex 1 in Sc and
constraint (6) states that a cut is counted only iff there are edges assigned to
that cut. Together with constraint (3), at least one other vertex is in V \Sc. The
packing constraint (7) ensures that each edge is contained in at most one cut.

2.2 Extended Formulation

Let D denote the set of all non-empty cuts in G. A natural formulation is based
on variables xδ ∈ {0, 1}, representing whether δ ∈ D is part of a packing or not.

max
∑

δ∈D

xδ

s.t.
∑

δ�ij

xδ + x̄ij = 1 ∀ij ∈ E (8)

xδ, x̄ij ∈ {0, 1} ∀ij ∈ E, ∀δ ∈ D .

The binary slack variable x̄ij for edge ij ∈ E attains value 1 iff ij is not con-
tained in any cut in the packing. This model (in packing form) was presented
in [5]. We remark that it formally results from a Dantzig-Wolfe reformulation
of our compact formulation by keeping constraint (7) in the master problem
and reformulating constraints (1)–(6) into m identical subproblems which are
then aggregated into a single subproblem, thereby completely eliminating the
symmetry from the compact formulation.

3 Algorithmic Ingredients

In this section we describe the components of a full branch-price-and-cut al-
gorithm to solve the extended formulation to integer optimality. As D grows
exponentially, the linear programming (LP) relaxation of formulation (8) needs
to be solved by column generation. That is, we include a small set of variables
in a restricted master problem and price positive reduced cost variables using an
auxiliary optimization problem, the pricing problem. If no more positive reduced
variables can be found, the relaxation is proven to be optimal. Variables are also
referred to as columns in this context. See [9] for a thorough introduction to the
topic.

3.1 Solving the Pricing Problem

In order to find a variable/column/cut of positive reduced cost, or to con-
clude that none exists we seek a maximum reduced cost cut. This pricing prob-
lem amounts to solving maxδ∈D(1 − πT yδ) = 1 − minδ∈D(πT yδ), where π =
(πij)ij∈E denotes the current dual solution corresponding to equation (8) and

A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 37

yδ = (yδij)ij∈E is a binary vector indicating whether a given edge ij ∈ E belongs
to cut δ ∈ D.

In the resulting minimum cut problem, the dual variables πij are free, we thus
face a min-cut problem with arbitrary edge weights. We remark however, that
all dual variables at the root node are non-negative as the variables x̄ij ≥ 0 can
be interpreted as slack variables. This enables us to benefit from the broad range
of state-of-the-art minimum cut algorithms. We use the Stoer-Wagner algorithm
introduced in [25] and then generalized to hypergraphs in [17]. In case some dual
variables are negative (which happens because of branching, see below), we need
to solve the pricing problem as a binary program, as this results in a maximum
cut problem, which is NP-hard. The binary program arises from the compact
formulation by leaving out constraints (7), omitting the index c, and replacing
the objective function by the reduced cost function for the potential cut.

Desrochers et al. remark that pricing disjoint columns helps with arriving at
integral solutions [8]. In order to find such a set of disjoint columns, we use a
greedy heuristic during pricing, where we compute a cut δ1 of maximum reduced
cost, fix all variables corresponding to edges ij ∈ δ1 to 0 and resolve the pricing
problem, creating a new cut δ2, disjoint to δ1. We again fix the edges from δ2 and
iterate until no cut δk+1 can be found. The heuristic cut packing with objective
function value k is {δ1, . . . , δk}.

As the pricing problem in the tree resembles a max-cut problem, we employ
further heuristics to price out favorable columns based on max-cut heuristics [24]
inspired by the formulation of the problem. Columns that are not immediately
added to the restricted master problem were collected in a column pool which was
searched for positive reduced cost columns before calling any pricing algorithm.

3.2 Branching

As the restricted master problem is the linear programming relaxation of the
formulation, we need to use branching schemes in order to find optimal integral
solutions. We employ two different branching rules: First we try to branch on
original yij variables and if that is not possible, we will use Ryan-Foster branch-
ing [23] to branch on pairs of edges.

In the first case, given an LP solution x� of the master problem, we can calcu-
late the value of variables yij for each edge ij ∈ E as yij =

∑
δ:ij∈δ x

�
δ = 1− x̄�

ij ,
we can create two branches by setting the slack variables x̄ij = 1 in one and
x̄ij = 0 in the other branch enforcing that either no cut contains edge ij or
exactly one cut going through this edge ij. The first case can be respected di-
rectly in the pricing by setting yij = 0 or by solving a combinatorial algorithm
on a restricted graph where ij is contracted. The remaining dual variables stay
nonnegative in this case which is beneficial since we can still use a combinato-
rial algorithm. In the second case, the dual variables corresponding to edge ij
can be negative which we cannot respect in a min-cut algorithm. This justifies
solving the pricing problem using a binary program instead of using a classical
combinatorial min-cut algorithm throughout the branch-and-price tree because
of mixed negative and positive edge weights.

38 M. Bergner, M.E. Lübbecke, and J.T. Witt

In case yij = 1 − x̄ij is integral for all edges ij ∈ E, we can branch on pairs
of edges ij and kl, analogous to Ryan-Foster [23] branching. The branching
decisions are: Either x̄ij = x̄kl, (this is called the same branch) or x̄ij + x̄kl ≥ 1
(the diff branch). In the same branch, the two edges either must appear together
in a cut or neither of the edges must be part of a cut. In the diff branch, not
both edges are allowed to be in the same cut. These conditions can easily be
respected in the binary program. Theoretically, we could respect these branching
decisions in a combinatorial algorithm by constructing two reduced graphs for
the same branching decision by contracting edges ik and jl (and il and jk, resp.).
Unfortunately, this is only feasible for a limited number pairs and does not scale
in the case of a large number of consecutive branching decisions.

Solving the pricing problem with an arbitrary number of diff constraints is
an NP-hard problem on its own: Given a graph G, a weight function c : E → Q+

and a set of edge pairs P ⊆ E × E, we want to find a minimum cut with the
constraint that at most one edge from each pair p ∈ P is active in the cut. This
follows by a reduction from MONOTONE 1-in-3 SAT [11], which is performed
in the full version of this paper.

After enforcing the branching decisions, the set ∅ �= S � V to a cut δ(S) with
positive reduced cost 1 − ∑

ij∈δ πij might not be connected (if S is connected
but V \S is not, we can exchange the roles of S and V \S). While adding this cut
to the restricted master problem can potentially slow down the solution process
as it will not be part of an optimal solution, this causes no further harm. In
some cases, a special handling of these cuts can improve the performance which
we cover in detail in the full version of this paper.

3.3 Cutting Planes

The optimality gap between the LP relaxation of the extended formulation and
an optimal integral solution can be arbitrarily bad: The cardinality of an optimal
cut packing for a clique K = (VK , EK) with n nodes is 1 whereas the optimal
LP solution value will be n

2 , with cuts separating each vertex from the remaining
of the clique. The associated master variables all take the value 1

2 . To improve
the LP bound, we thus separate clique inequalities using the maximum weighted
clique heuristic based on an algorithm by Borndörfer and Kormos [3]. This is
readily available in the solver framework we use, which is SCIP.

For the column generation algorithm, we need to respect the dual variables
introduced when separating the cutting planes in the master problem. Given
a graph G = (V,E) and a set of cliques K, we can construct a hypergraph
H = (V, F) where original edges are copied and all cliques are converted to
hyperedges. Formally, F = {e ∈ E : e �∈ EK ∀K ∈ K} ∪ {VK : K ∈ K} and the
dual values from the clique cuts can be transferred to the hyperedges.

In the root node, we can use the hypergraph extension of the Stoer-Wagner
algorithm to solve the minimal cut problem. In the binary programming pricing
case, the transformation is straightforward by adding new variables and con-
straints to the pricing problem. This is particularly described in the full version
of this paper.

A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 39

3.4 Combinatorial Dual Bounds

In order to further strengthen the dual bound, we also consider combinatorial up-
per bounds. An edge clique cover Q is a set of cliques with

⋃
K∈Q EK = E. Find-

ing an edge clique cover of minimum cardinality is NP-hard [18]. In an integral cut
packing, at most one cut can be active per clique. Thus, the cut packing number
γ(G) is bounded from above by the number of cliques in an edge clique cover of
minimum cardinality. We solve the edge clique covering problem approximately
using the algorithm in [13] in order to obtain a valid upper bound. We calculate
an edge clique cover at the beginning and add all induced clique cuts to the master
problem before starting the column generation algorithm.

3.5 Primal Heuristics

Besides using the generic heuristics included in SCIP, we try to find good cut
packings by using a (noncrossing) maximum s-t path cut packing heuristic [6]
which we will call maxpath. Furthermore, we use an approximation algorithm for
the independent set [16] for degree bounded graphs and transfer the resulting
solution I = {v1, . . . , vk} to a solution S = {δ({vi}) : vi ∈ I} for the cut
packing problem by sorting the nodes according to non-decreasing degree and
sequentially adding the next available node to the independent set. In order
to assess the quality of the heuristic we calculate a maximum independent set
exactly by solving the textbook formulation max{∑i∈V xi : xi + xj ≤ 1 ∀ij ∈
E, xi ∈ {0, 1} ∀i ∈ V }.

4 Computational Setup and Results

We implemented the branch-price-and-cut algorithm in SCIP 3.0.1 [1] with CPLEX

12.4.0.1 as LP-solver. All computations were performed on Intel Core i7-2600
CPUs with 16GB of RAM on openSUSE 12.1 workstations running Linux kernel
3.1.10. The default time limit is 3600 seconds unless stated otherwise.

We applied our approach to instances from the 10th DIMACS implementation
challenge [2]. We expect difficult graph partitioning problems to be hard for the
cut packing problem, too, as in both settings the vertex set is partitioned in
some way. In addition, we collected coloring instances from [26] and investigate
the performance of our algorithm on these instances, because each color class in
a coloring constitutes an independent set, to which a cut packing is intimately
related.

We further generated smaller random graphs using several graph generators
such as Rudy by Rinaldi [21], Randgraph by Pettie and Ramachandran [20] and
NetworkX 1.7 by Hagberg et al. [15]. Moreover, we used the MUSKETEER graph
generator [14] to obtain a set of graphs which are similar to the graphs from the
literature. We used the random seed value 1 for the generation of random graphs
unless stated otherwise. In total, our test set comprises around 100 instances.

40 M. Bergner, M.E. Lübbecke, and J.T. Witt

4.1 Compact vs. Extended Formulation

In Fig. 1, we compare the integrality gaps and the running times of the compact
and the extended formulation on a test set generated with the Randgraph graph
generator. A generated graph graph-n-d consists of a random tree on n nodes

plus max{0, d%· n·(n−1)
2 −n+1} additional randomly selected edges. In Fig. 1, the

all column comprises the implementation with all presented features, in basic,
only the bare column generation implementation is visualized.

When looking at the time needed to solve the instances to optimality, the
extended formulation outperforms the compact one on almost every instance.
The difference in solution time increases further if all presented features are
added. In particular, the compact formulation was only able to solve 2 out of 12
instances to optimality. The basic implementation of the reformulation however
solved 8 out of 12 instances and with all features turned on, all instances can be
solved to optimality within the time limit.

If we look at the integrality gaps at the root node, we see that the gap obtained
by the extended formulation is remarkably better than the gap obtained by the
compact formulation. The bound improvement translates to a better pruning of
branch-and-price nodes and the removal of the symmetry by aggregation leads
to fewer branching decisions, which explains the huge difference in solution time.

0%

500%

1000%

1500%

1
0
-1

0

1
0
-2

0

1
0
-4

0

1
0
-8

0

2
0
-1

0

2
0
-2

0

2
0
-4

0

2
0
-8

0

4
0
-1

0

4
0
-2

0

4
0
-4

0

4
0
-8

0

basic compact

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

basic

all

compact

Fig. 1. Relative gap between primal and dual bounds at the root node for the compact
and extended formulations for random graphs of type graph-n-m (left) and a perfor-
mance profile for all the different formulations and settings (right) showing in how
many instances (y-axis in percent) an algorithm is at most x times slower (factor on
the x-axis).

4.2 Different Graph Classes

It is known that the cut packing problem can be solved in polynomial time on
bipartite and chordal graphs. In order to investigate whether this complexity im-
provement translates to faster solution times also for our (exponential) algorithm,
we evaluate the performance of the extended formulation on these instance types
using random instances generated with NetworkX 1.7. We generated connected

A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 41

bipartite graphs and connected chordal graphs. The latter were generated from
a random graph on n nodes, in which every edge occurs with probability d%.
To this graph, chords were iteratively added until the graph became chordal by
using NetworkX to search for chordless cycles of size larger than 3. The chord was
added randomly. We generated graphs with 10, 20, 40, 80, 160, and 320 nodes
and edge densities of 10, 20, 40, and 80 percent. We only generated chordal
graphs up to 160 nodes as using NetworkX to find all chordless cycles in larger
graphs was too expensive. The results are summarized in Table 1.

Table 1. Number of solved instances and mean of solution times for the extended for-
mulation for cut packing on random general, bipartite and chordal graphs. All reported
times in s are shifted geometrical means.

Type Nodes mean time

10 20 40 80 160 320

Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

random 4/4 0.0 4/4 0.0 4/4 25.2 0/4 3600 0/4 3600 0/4 3600 224.3

bipartite 4/4 0.0 4/4 0.0 4/4 0.1 4/4 1.0 4/4 20.8 4/4 527.8 13.9

chordal 4/4 0.0 4/4 0.0 4/4 0.1 4/4 1.3 4/4 9.3 1.7

We notice that the column generation procedure runs significantly faster on
the graph classes where the problem is solvable in polynomial time. We are able
to solve the cut packing problem to optimality in all generated bipartite and
chordal graphs with up to 320 nodes, resp. 160 nodes, in contrast to general
random graphs where we fail to solve instances larger than 40 nodes.

To evaluate the performance of our implementation on real-world data, we
selected those real-world instances from the the 10th DIMACS implementation
challenge with 500 nodes or less and all coloring instances from [26] with less than
5000 edges. We also tried to solve the problem on instances with hidden optimal
solutions for classical graph problems [27], but we were not able to successfully
solve the root node of any of the instances within the 1 hour time limit.

To compare the performance in these graphs to random graphs, we generated
both a random graph and a similar graph for each real-world graph. These graphs
have the same number of nodes and edges. The random graphs were generated
with Randgraph, a connected graph rand-n-m consists of n nodes and m edges.
In order to create similar graphs, we used MUSKETEER where we edited 7.5% of
the edges at level 2, 15% of the edges at level 1, and 30% of the level 0 of the
coarsening phases. The new graphs, forced to be connected, are denoted by suffix
-m. The results on these graphs are compared in Table 2.

We observe that our algorithm solved 5 out of 9 real-world instances to opti-
mality, but only 1 out of 9 of the corresponding random graphs. In contrast, the
graphs edited by MUSKETEER are more similar to the original graphs and indeed
our algorithm performs better on those than on arbitrary random graphs.

42 M. Bergner, M.E. Lübbecke, and J.T. Witt

Table 2. Branch-and-bound nodes and solution time (or relative gap achieved within
time limit) for real-world DIMACS partitioning benchmark graphs

Name Nodes Time/Gap Name Nodes Time/Gap Name Nodes Time/Gap

karate 1 0.1 karate-m 1 0.1 rand-34-78 25 7.5

dolphins 51 317.4 dolphins-m 1 1.5 rand-62-159 >188 8.0%

lesmis 3 2.3 lesmis-m 8 21.4 rand-77-254 >77 19.2%

polbooks 4 95.9 polbooks-m 1 36.3 rand-105-441 >74 17.6%

adjnoun >102 5.6% adjnoun-m >46 8.5% rand-112-225 >304 5.2%

football >29 9.5% football-m 9 2327.9 rand-115-613 >57 32.3%

jazz 1 380.4 jazz-m >1 27.25% rand-198-2742 >1 102.9%

celegansneural >1 4195.0% celegansneural-m >1 1161.3% rand-297-2148 >1 3612.2%

celegans meta >1 866.7% celegans meta-m >1 1646.8% rand-453-2025 >1 4038.6%

Overall, it seems that our algorithm is effective on small real-world problems
and on those graph classes where the problem is easy. On the other hand, random
graphs seem to be a challenge, even when they are reasonably sparse (10% of
overall edges).

4.3 Influence of Particular Implementation Parts

In addition to the basic column generation algorithm, we presented a few en-
hancements with the purpose of saving computation time. From our experiments,
the clique cover, clique separator, and the combinatorial pricing algorithm seem
to have the largest impact on the performance and we will restrict attention to
those only. We plot performance profiles in Fig. 2.

It becomes evident that disabling the initial clique cover heuristic including
the resulting clique inequalities causes the largest performance drop. The clique
separator can partially catch this drop by separating the cliques during run time,
but if both the clique separator and the clique cover heuristic are disabled, the
performance decrease is significant. A similar improvement can be noticed if
these features are added to a bare column generation procedure. In our case,
the combinatorial pricing is a nice add-on but has, nonetheless not that much
influence on the solution time as expected.

4.4 Relation to Independent Set

Motivated by the close connection to maximum independent set (MIS) we want
to study the relationship between an MIS and an optimal cut packing on selected
instances. For a given graph, we therefore compare the solution values of a greedy
algorithm to approximate the cardinality of an MIS, the cardinality α(G) of an
optimal MIS by using an exact integer program based algorithm to the values
of the maximum s-t path heuristic and γ(G). If an instance has not been solved
to optimality, only the best known dual bound on the cut packing number γ(G)
is shown. This can be seen in Fig. 3.

A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 43

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

all

-clique cover

-comb. pricing

-clique cuts

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

basic

+clique cover

+comb. pricing

+clique cuts

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

all

-comb. pricing

-clique cuts and cover

-pricing, cuts, cover

Fig. 2. Performance profiles for clique cover, clique separator, and combinatorial al-
gorithm showing in how many instances (y-axis in percent) a given setting is at most
x times slower (factor on the x-axis). The plot on the upper left states the influence
of disabling each part of the algorithm, on the upper right the influence of enabling
each part on a basic implementation is shown. The plot on the bottom presents the
performance of a concurrent deactivation.

We notice that the value of the solution found by the s-t maximal path heuris-
tic is often much worse than any of the other algorithms. The solution found by
the MIS heuristic is better but is usually much worse than the optimal solution.
In contrast, α(G) is mostly identical to γ(G). This comes as a surprise as there
is a theoretical gap of a factor of 2 that we do not observe in the instances in
our experiments. We are aware of the fact that the gap will be closer to 2 when
considering sparser graphs and in particular paths and trees.

5 Summary and Conclusions

We presented an exact algorithm for the cut packing problem and assessed its
performance on about 100 random and benchmark graphs from the literature.
The current size limits of our approach are up to 80 vertices on random graphs,
up to 500 vertices on graph partitioning benchmark graphs, and up to 5000 edges
on vertex coloring benchmark graphs. Our algorithm performs much better on
instances where the cut packing problem is solvable in polynomial time. Our
experiments revealed that γ(G) is typically much closer (and often even identical)
to α(G) than to the theoretically possible 2α(G) − 1.

44 M. Bergner, M.E. Lübbecke, and J.T. Witt

0

5

10

15

20

25

1
0
-1

0

1
0
-2

0

1
0
-4

0

1
0
-8

0

2
0
-1

0

2
0
-2

0

2
0
-4

0

2
0
-8

0

4
0
-1

0

4
0
-2

0

4
0
-4

0

4
0
-8

0

0

40

80

120

160

200

k
a
ra

te

d
o
lp

h
in

s

le
sm

is

p
o
lb

o
o
k
s

a
d
jn

o
u
n

fo
o
tb

a
ll

ja
z
z

c
e
le
g
a
n
sn

.

c
e
le
g
a
n
sm

.

0

20

40

60

80

100

a
n
n
a

d
a
v
id

D
S
J
C
1
2
5
.1

D
S
J
C
1
2
5
.5

D
S
J
C
1
2
5
.9

g
a
m

e
s1

2
0

m
ile

s1
0
0
0

m
ile

s5
0
0

m
ile

s7
5
0

m
y
c
ie
l3

m
y
c
ie
l4

m
y
c
ie
l5

m
y
c
ie
l6

m
y
c
ie
l7

q
u
e
e
n
1
0

1
0

q
u
e
e
n
1
1

1
1

q
u
e
e
n
5

5

q
u
e
e
n
6

6

q
u
e
e
n
7

7

q
u
e
e
n
8

1
2

q
u
e
e
n
8

8

q
u
e
e
n
9

9

maxpath greedy exact opt dual

Fig. 3. Objective function values of max path heuristic, greedy and exact MIS, opti-
mal cut packing or dual bound for random graphs (top left), DIMACS partitioning
benchmark graphs (top right), and coloring graphs (bottom)

We have made algorithmic use of the combinatorial structure of the problem:
we used min-cut algorithms for the pricing problem; we computed a combinato-
rial dual bound for tightening the relaxation; and we have exploited the problem’s
close relation to the independent set problem e.g., for designing primal heuristics.
Future computational research on the problem should clarify whether it pays to
work on (integer programming formulations for) better clique edge covers for
stronger dual bounds; and whether different formulations for min-cut can speed
up solving the pricing problem. In addition, one should fully exploit the known
branch-and-price machinery like dual variable stabilization.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Programming
Comp. 1(1), 1–41 (2009)

2. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning
and Graph Clustering. 10th DIMACS Implementation Challenge Workshop, Febru-
ary 13-14, 2012. Contemp. Mathematics, vol. 588. American Mathematical Society
(2013)

3. Borndörfer, R., Kormos, Z.: An algorithm for maximum cliques. unpublished work-
ing paper, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1997)

A Branch-Price-and-Cut Algorithm for Packing Cuts in Undirected Graphs 45

4. Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Al-
gorithms 48, 239–256 (2003)

5. Caprara, A., Panconesi, A., Rizzi, R.: Packing cuts in undirected graphs. Net-
works 44(1), 1–11 (2004)

6. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press,
New York (1987)

7. Colbourn, C.: Edge-packing of graphs and network reliability. Discrete Math
72(1-3), 49–61 (1988)

8. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the
vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

9. Desrosiers, J., Lübbecke, M.: Branch-price-and-cut algorithms. In: Cochran, J. (ed.)
Encyclopedia of Operations Research and Management Science. John Wiley &
Sons, Chichester (2011)

10. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness II: On
completeness for W(1). Theoretical Computer Science 141(12), 109–131 (1995),
http://www.sciencedirect.com/science/article/pii/0304397594000973

11. Fox-Epstein, E.: Forbidden Pairs Make Problems Hard. Bachelor’s thesis. Wesleyan
University (2011)

12. Fulkerson, D.: Blocking and anti-blocking pairs of polyhedra. Math. Program-
ming 1, 168–194 (1971)

13. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction, exact, and heuris-
tic algorithms for clique cover. In: Proc. 8th ALENEX, pp. 86–94 (2006)

14. Gutfraind, A., Meyers, L.A., Safro, I.: Multiscale network generation,
arXiv:1207.4266 (2012)

15. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: Proc. of the 7th Python in Science Conference
(SciPy 2008), Pasadena, pp. 11–15 (2008)

16. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

17. Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B
96-02. FU Berlin (1996)

18. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to
keyword conflicts and intersection graphs. Commun. ACM 21(2), 135–139 (1978)

19. Lucchesi, C., Younger, D.: A minimax theorem for directed graphs. J. Lond. Math.
Soc. 17, 369–374 (1978)

20. Pettie, S., Ramachandran, V.: Randgraph graph generator (2006),
http://www.dis.uniroma1.it/challenge9/download.shtml

21. Rinaldi, G.: Rudy, a graph generator (1998),
http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html

22. Robacker, J.T.: Min-max theorems on shortest chains and disjunct cuts of a net-
work. Tech. Rep. RM-1660-PR. Rand Corporation (1956)

23. Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. Opt.
Res. Q. 27(2), 367–384 (1976)

24. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3),
555–565 (1976)

25. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)
26. Trick, M.: Coloring instances (1993),

http://mat.gsia.cmu.edu/COLOR/instances.html
27. Xu, K.: Bhoslib: Benchmarks with hidden optimum solutions for graph problems

(2010), http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/
graph-benchmarks.htm

http://www.sciencedirect.com/science/article/pii/0304397594000973
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

	A Branch-Price-and-Cut Algorithmfor Packing Cuts in Undirected Graphs
	1 Introduction
	2 Formulations and Properties
	2.1 Compact Formulation
	2.2 Extended Formulation

	3 Algorithmic Ingredients
	3.1 Solving the Pricing Problem
	3.2 Branching
	3.3 Cutting Planes
	3.4 Combinatorial Dual Bounds
	3.5 Primal Heuristics

	4 Computational Setup and Results
	4.1 Compact vs. Extended Formulation
	4.2 Different Graph Classes
	4.3 Influence of Particular Implementation Parts
	4.4 Relation to Independent Set

	5 Summary and Conclusions
	References

