
Minimizing the Stabbing Number of Matchings, Trees, and
Triangulations

Sándor P. Fekete
�
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Abstract

The (axis-parallel) stabbing number of a given set of line
segments is the maximum number of segments that can be
intersected by any one (axis-parallel) line. We investigate
problems of finding perfect matchings, spanning trees, or
triangulations of minimum stabbing number for a given
set of points. The complexity of these problems has been
a long-standing open problem; in fact, it is one of the
original 30 outstanding open problems in computational
geometry on the list by Demaine, Mitchell, and O’Rourke.

We show that minimum stabbing problems are NP-
complete. We also show that an iterated rounding tech-
nique is applicable for matchings and spanning trees of
minimum stabbing number by showing that there is a
polynomially solvable LP-relaxation that has fractional
solutions with at least one heavy edge. This suggests
constant-factor approximations. Our approach uses poly-
hedral methods that are related to another open prob-
lem (from a combinatorial optimization list), in combina-
tion with geometric properties. We also demonstrate that
the resulting techniques are practical for actually solving
problems with up to several hundred points optimally or
near-optimally.
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1 Introduction

Objective Functions.Typical problems in combina-
torial optimization, algorithmic graph theory, or compu-
tational geometry deal with minimizing the length of a
desired structure: Given a set of points, find a set of line
segments of small total length, such that a certain struc-
tural condition is maintained. Among the most popular
such structures are spanning trees, perfect matchings, or
(in a planar geometric setting) triangulations. However,
some geometric scenarios motivate other objective func-
tions; one such alternative for measuring the quality of a
structure is the total turn cost between adjacent line seg-
ments; e.g., see [3].

When dealing with structural or algorithmic proper-
ties, one can be more interested in yet another objective
function called thestabbing number. In order to unify
definitions for different structures and to allow for a con-
sistent notation throughout this paper, we describe this as
a property of a set of line segments: For a given set of line
segments, thestabbing numberis the maximum number
of segments that are encountered (in their interior or at an
endpoint) by any infinite line; if we consider only axis-
parallel lines, we get theaxis-parallel stabbing number.
When focusing on the number of objects defined by the
line segments, we may consider the closely relatedcross-
ing number, which arises from considering the number of
connected components in the intersection with the set of
line segments that we have to cross along a line. In the
absence of connected components of collinear segments
(which is the case for matchings), the crossing number is
equal to the stabbing number. When considering struc-
tures like triangulations, the crossing number is precisely
one more than the maximum number of triangles inter-
sected by any one line.

Related Work. Stabbing problems have been con-
sidered for a number of years. The complexity of many
algorithms in computational geometry is directly depen-
dent on the complexity of ray-shooting, which depends
directly on the stabbing number. Agarwal [1] describes
several applications of spanning trees with low stabbing
number, among themray-shootingand implicit point lo-
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cationsqueries(which by themselveshave applications
in polygoncontainment,implicit hiddensurfaceremoval,
polygonplacement,etc.).Thetheoreticallybestperform-
ing data structurefor ray tracing in two dimensionsis
basedon a triangulationof the scene;seeHershberger
andSuri [11]. Agarwal, Aronov, andSuri [2] investigate
thestabbingnumberof triangulationsin threedimensions,
wherethestabbedobjectsaresimplices.Held,Klosowski,
andMitchell [10] investigatecollision detectionin a vir-
tual reality environment;again,we haveadependency on
thestabbingnumber.

Extremalpropertiesof crossingnumberswere con-
sideredby Welzl [25] andby Matoǔsek[17], who showed
thatany planarsetof n pointshasa spanningtreewith a
crossingnumberof O

���
n� , andthereareexamplesrequir-

ing acrossingnumberof Ω
� �

n� . Anothervariantis stud-
iedby deBerg andvanKreveld[5]: Thestabbingnumber
of a decompositionof a rectilinearpolygonP into rect-
anglesis the maximumnumberof rectanglesintersected
by any axis-parallelsegmentthat lies completelyinside
of P; they prove thatany simplerectilinearpolygonwith
n verticesadmitsa decompositionwith stabbingnumber
O
�
logn� , andthey give an exampleof a simple rectilin-

ear polygon for which any decompositionhasstabbing
numberΩ

�
logn� . They generalizetheir resultsto rec-

tilinear polygonswith rectilinearholes. Shewchuk [23]
showsthatin d dimensions,a line canstabtheinteriorsof
Θ
�
n � d � 2� � Delaunayd-simplices.This implies, in partic-

ular, thata Delaunaytriangulationin theplanemayhave
linearstabbingnumber.

Despiteof this interestby a fair numberof notewor-
thy researchers,therehave beenno resultsor conjectures
whatsoever on the complexity of stabbingproblems. In
fact, resolvingthe complexity of stabbingproblemshas
beenone of the original 30 outstandingopenproblems
of computationalgeometryon the list that wasfirst pre-
sentedby Mitchell andO’Rourke in [19], basedon many
yearsof precedingdiscussionsandinformal surveys. An
up-to-dateandexpandedlist is maintainedby Demaine,
Mitchell, and O’Rourke and can be found on the inter-
net [6]. In addition to the opencomplexity status,the
readershouldtake notethat stabbingproblemshave de-
fied all attemptsfor obtaininggoodcombinatoriallower
bounds,andnothingis known aboutapproximation,other
thanthe factorO

� �
n� that canbe deducedfrom Welzl’s

work.

Our Work. In thispaper, wepresentthefirst general
algorithmicstudyof stabbingproblems. We resolve the
openproblemof complexity for variousstructures;our
techniqueis quite general,and it seemsclear that it can
beextendedto otherversions.We alsodescribea general
techniquebasedon LinearProgramming(LP) thatyields

goodlowerbounds,andis closelyrelatedto anopenprob-
lem from anotherprominentlist, this time from thecom-
binatorial optimizationcommunity[14, 15]. As a con-
sequence,we areableto deduceanextensionof the iter-
atedroundingtechniquedevelopedbyJainfor generalized
Steinernetwork problems[12]; makingadditionaluseof
the geometricstructureof the problem,we get the basis
for constant-factorapproximations.Finally, we demon-
strateby acomputationalstudyonvariousbenchmarksets
thatourLP-basedapproachis alsopracticallyuseful,both
for solvingproblemsapproximatelyor optimally, by con-
sideringintegerprogramming(IP).

Our resultsin detail:

	 We prove that deciding whethera point set has a
perfect matchingof axis-parallelstabbingnumber
5 is an NP-completeproblem; we also extend this
resultto generalstabbingnumber.

	 We give an NP-completenessproof for finding a
spanningtree of axis-parallelor generalstabbing
number, andhint atahardnessproof for axis-parallel
or generalcrossingnumber.

	 We prove that finding a triangulationof minimum
axis-parallelcrossingnumberis NP-hard.

	 We describeanLP-basedclassof lower boundsthat
canbe evaluatedin polynomial time. From a theo-
retical point of view, we usethe ellipsoid method;
theexistenceof a stronglypolynomialalgorithmfor
a closely relatedclassof problemsis subjectto an
openproblemfrom thelist [14, 15].

	 Wegiveresultson thestructureof fractionalvertices
of the resulting LP-relaxation: For matching, we
show that there always is an edgewith weight at
least1/5, while for spanningtrees,therealways is
an edgewith weight greaterthan1/3. This allows
applying an iteratedroundingtechnique,similar to
the one developedby Jain for generalizedSteiner
network problems;this shouldimply constant-factor
approximations.

	 We describethe resultsof a computationalstudy.
Using a diverseset of benchmarkinstances(based
on TSPLIB, Solomon’s vehicle routing problems,
andtwo differenttypesof randominstances)we are
ableto computeoptimal andnear-optimal solutions
for instancesup to several hundredpoints. This
demonstratesthatourLP-basedapproachis goodnot
only in theory(wherewe get a polynomial running
time basedon the ellipsoid method),but also for
actuallysolving instancesin practice(wherewe use
the simplex method). Results indicate far better
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approximationquality than the theorically possible
factorsof 5 or 3, respectively.

It shouldbenotedthatourpositive(LP-based)results
donotmakeany assumptionsonthestructureof thepoint
set:They canbeusedfor point setsin degenerateaswell
as in generalposition,andcanbe appliedto any family
of stabbinglines that can be evaluatedby considering
a subsetof polynomially many representatives. On the
other hand, the point setsconstructedin our hardness
proofsmakeuseof collinearpoints.

The rest of this paperis organizedas follows. Af-
ter somebasicdefinitionsandnotationin Section2, we
givesketchesof ourvarioushardnessproofsin Section3,
with detailsomittedfrom this extendedabstract.In Sec-
tion 4, we describeour LP-basedapproachfor construct-
ing bounds.Section5 presentsaniteratedroundingtech-
niquefor matchingandspanningtreeproblems;theresult-
ing algorithmsappearto be constant-factor approxima-
tions. Section6 presentsa detailedcomputationalstudy
on perfectmatchingsof low stabbingnumber. Final con-
cludingthoughtsandmiscellaneousresultsandproblems
arepresentedin Section7.

2 Preliminaries

In the following, we considera planar point set P of
cardinalityn. Whendealingwith matchings,we assume
thatn is even,if necessaryby omitting oneof thepoints.

Givena setof line segmentsL, thestabbingnumber
of a line 
 is the numberof segmentsof L thatareinter-
sectedby 
 . The stabbingnumberof L is the maximum
stabbingnumberover all lines 
 ; the axis-parallel stab-
bing numberof L is themaximumstabbingnumberover
all axis-parallellines 
 . In the restof this paper, the set
L will ariseas a matching,spanningtree, or triangula-
tion of a planarpoint setP, andour objective is to find
suchastructureof minimumstabbingnumber. Wedenote
by St-Matall

�
P� theminimumstabbingnumberamongall

matchingsof P, and by St-Mat2
�
P� the minimum axis-

parallelstabbingnumberof all matchingof P. Similarly,
we denoteby St-Treall

�
P� the minimum stabbingnum-

ber of all spanningtreesof P, by St-Tre2
�
P� the mini-

mum axis-parallelstabbingnumberof all spanningtrees
of P; by St-∆ all

�
P� theminimumstabbingnumberof all

triangulationsof P, andby St-∆ 2
�
P� the minimum axis-

parallelstabbingnumberof all triangulationsof P.

If we are not interestedin the numberof line seg-
mentsin L encounteredby a line 
 , but in the number
of connectedcomponentsof L ��
 , we get the crossing
number. For matchings,trees,andtriangulations,we use
the analogousabbreviations Cr-Matall

�
P� , Cr-Mat2

�
P� ,

Cr-Tre all
�
P� , Cr-Tre 2

�
P� , Cr-∆ all

�
P� , Cr-∆ 2

�
P� . Note

thatstabbingandcrossingnumberor deptharethesame
for matchings.

3 Complexity

In this sectionwe give proofs and proof sketchesthat
virtually all variantsof minimum stabbingproblemsare
NP-hard. Our techniqueis rathergeneralandshouldbe
applicableto other variantsas well. In this extended
abstract,we give only proof sketches;full detailscanbe
foundin thefull versionof thepaper.

3.1 Matchings

THEOREM 3.1. Deciding whetherSt-Mat2
�
P�� 5 is a

stronglyNP-completeproblem.

Proof. We prove the theoremby usinga reductionfrom
3SAT [9]. AssumewehaveaBooleanexpressiondenoted
by B

�
x0 � x1 ��������� xn � 1 � with n variablesand k clausesof

three literals. We constructa set of points P that has
a matchingM of stabbingnumber5 if and only if the
Boolean expressioncan be satisfied. For the overall
layoutseeFigure1. Notethecollinearsetsof pointsthat
functionas“barriers”: As they alreadyrequirea stabbing
numberof 5, they mustnot becrossedby additionalline
segments,thus imposinga clearcombinatorialstructure
thatis exploitedin theproof.

Eachvariablegadgetallows two feasiblematchings;
the particularchoicerepresentsa truth assignmentfor a
particularvariable,which in turn imposesrequirements
on how the literal gadgetsin therespective columnsmay
bechosen.Clausesarerepresentedby threeliteral gadgets
in thesamerow; theoverall constructionimplies that the
stabbingnumberof the row of a clauseis at most five,
if f at leastoneliteral gadgetin this row contributesonly
onestabbedline segment,meaningthatat leastoneliteral
satisfiestheclause. �
COROLLARY 3.1. There is no α-approximation algo-
rithm for St-Mat2

�
P� with α � 6� 5.

COROLLARY 3.2. ComputingSt-Matall
�
P� is a weakly

NP-hard problem.

Proof. We apply a perturbationtechnique,similar to the
onein [8]. Usethesameconstructionasfor thehardness
proof for theaxis-parallelcase.Considerthegrid formed
by the coordinatesof the resultingpoint set. This grid
is modifiedsuchthattheinterpointdistancesbetweenthe
pointsof the samegadgetareΘ

�
εn2 � . Furthermore,the

restof thegrid is perturbedby powersof ε, suchthatonly
axis-parallellinescanstabmorethantwo gadgets.Now it
is easyto seethatonly axis-parallellinesarecritical. �
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top rowsopen (satisfying)channel

satisfyingliteral

closed(non-satisfying)channel

non-satisfyingliteral

clause0

clause1

clause2

x1

x2

x3

x0

verticalbarriers

horizontalbarriers

reducers
x0 x0 x3x3x2x2x1x1

Figure1: Overall layoutfor St-Mat2
�
P� .

3.2 SpanningTrees.Thebasicconstructionfor show-
ing hardnessof finding a spanningtreeof minimumstab-
bing numberis very similar to theonefor matchings.As
before,we usebarriersto restrict possibleconnections:
Wemakeuseof thearrangementshown (in horizontalori-
entation)in Figure2.

LEMMA 3.3. Let S be the arrangement of 3k points
shownin Figure 2, and let P � S haveno other points
in the horizontal strip indicatedby shading. If P hasa
spanningtreeT with stabbingnumberc � 1, thennoedge
of T crossestheshadedregion.

c
k

(b)(a)

c
c

Figure 2: A barrier gadget: (a) In a spanningtree of
stabbingnumberc � 1, no line segmentmay crossthe
shadedregion. (b) Symbol for the barrier gadget; the
dottedline indicatestheblockedstrip.

The variablegadgetslook as in Figure3. Note the
use of barrier gadgets,and the remainingnumbersof
segmentsthatmaycrosstheinduceddottedlines.

LEMMA 3.4. Let S be the arrangementof pointsshown
in Figure 3, with barrier gadgets placed and sizedas
indicated,and let P � S. Thenany spanningtree of P
that has stabbingnumberat mostk � 1 useseither the
two“true” or thetwo “false” edges.

The overall layout of the constructionis shown in
Figure4. For proving hardnessof finding a spanningtree
of minimumcrossingnumberweusethefollowingbarrier
gadget.For a proof notethateachelementary2 � 2 cycle
of the gadgetmusthave at leastoneedgenot presentin
a tree; then the claim follows by pigeonholeprinciple.
Finally, the NP-hardnessproof for all directionsfollows
againby making only the axis-paralleldirectionsto be
critical.

(c−1) +2
2

c

Figure 5: A barrier gadget for showing hardnessof
minimizing thecrossingnumberof a spanningtree.
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true

false

k−2
k−2

k−2

k−2

k−2

k

k−2

k−2

k−2k

k k

k−5−2(n−i)

k−5−2(n−i)

(a) (b)

Figure3: A gadgetfor variablexi : (a) In a spanningtreeof stabbingnumberk � 1, eitherthe “true” or the “f alse”
settingis chosen.(b) Symbolfor thevariablegadget.

x1

x1

x1

x2

x2

x2

x3

x3

x3

c1

c2

c3

x1

x3

x2

k

k

symbol for literals

false literal

true literal

k−2n−2

k−2n−2

k−2n−2

k−2n−3

k−2n−1

k−2n+1

Figure4: Theoveralllayoutfor thehardnessprooffor spanningtrees.n is thetotalnumberof variables,k asufficiently
largenumber;in questionis theexistenceof a spanningtreewith stabbingnumberk � 1. Shown is therepresentation
of the3SAT instance

�
x1 � x2 � x̄3 ���

�
x̄1 � x2 � x3 ���

�
x1 � x̄2 � x3 � , for n � 3.
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LEMMA 3.5. Let S be the k � � c � 1� 2 � c arrangement
of pointsshownin Figure 5, and let P � S. If P has a
spanningtree T with crossingnumberc, then no other
edgeof T crossestheshadedregion.

Summarizing,we state:

THEOREM 3.2. It is NP-hard to determineSt-Tre2
�
P� ,

St-Treall
�
P� , Cr-Tre 2

�
P� , or Cr-Tre all

�
P� .

3.3 Triangulations. We usethefollowing terminology.
A horizontalline is a setof pointsthatareon ahorizontal
line. A vertical line is asetof pointsthatareon a vertical
line. A row consistsof two horizontal lines, and the
(empty)spacebetweenthem. A columnconsistsof two
verticallines,andthe(empty)spacebetweenthem.

LEMMA 3.6. Considera row consistingof two horizon-
tal lines in P, havinga and b points, respectively. The
horizontalstabberof thisrowencountersat leasta � b � 2
trianglesin anytriangulationof P.

A detailedproof canbe found in the full paper. The
lemmaanalogouslyholdsfor two vertical lines that form
a column. Whena row consistsof two horizontallines
that have Cr-∆ 2

�
P��� 2 pointsaltogether, we call it full

or fully triangulated.In a triangulationthat achievesthe
lower boundof the lemmathis row hasthepropertythat
all edgesalongthehorizontallineshaveto bepresent.The
sameappliesto full columns,andthis is theway how we
will usethelemma.

THEOREM 3.3. FindingCr-∆ 2
�
P� is NP-hard.

Theproof is basedonanotherreductionof 3SAT. The
mechanicsof gadgetsis similar to our previous two re-
ductions. Detailscanbe found in the full versionof the
paper. SeeFigure 6 for a schematiclayout of a repre-
sentingpoint setP for the3SAT instanceB

�
x 0 � x1 � x2 � ��

x0 � x1 � x̄2 ���
�
x0 � x̄1 � x2 ���

�
x̄0 � x̄1 � x̄2 � .

4 Linear Programsfor Stabbing

4.1 Linear Programs and St-Mat
�
P� . Thinking of P

asthe vertex setV of a straight-lineembeddedcomplete
graphG � �

V � E � , a handsomerepresentationof a perfect
matchingM is by its edgeincidencevectorx !#" 0 � 1 $ E,
wherexi j � 1 if i j ! M andxi j � 0 otherwise.For S % V
denoteby δ

�
S�&�'" i j ! E ( i ! S� j �! S$ . The following

linear inequalitiesare necessarilysatisfiedfor a perfect

matchinggivenby x.

∑
i j ) δ * i +

xi j � 1 , i ! V(4.1)

∑
i j ) δ * S+

xi j - 1 , S % V � (S( odd(4.2)

x - 0(4.3)

In a seminalpaperEdmonds[7] showed that this poly-
hedraldescriptionis alsosufficient in the sensethat the
extremepointsof the polytopeΠ definedby (4.1)–(4.3)
areexactly the incidencevectorsof perfectmatchingsin
G. Despitethefact that thereareexponentiallymany so-
called blossominequalities(4.2) one can solve a linear
programoverΠ in stronglypolynomialtime [4].

Now wewish to minimizethestabbingnumberk and
addto Π
(4.4)

∑
i j :i j .0/�* d +213 /0

xi j  k , stabbingline 
 � d � in directiond �

In principle, thereare infinitely many constraintsof this
type, even for onedirection. Note, however, that when
sweepinga stabbingline in directiond thestabbingnum-
berchangesonly at a vertex. Therefore,we only needto
checka linearnumberof lines in eachdirection. For the
samereason,“all” directionsreduceto theO

�
n2 � combi-

natorialdirectionsdeterminedby all pairsof verticesof G.
Whenrequiringintegralityof x andminimizingk in there-
sulting integer programyields exactly St-Mat

�
P� . When

integrality is relaxedto (4.3), this linearprogrammingre-
laxationgivesa lower boundon St-Mat

�
P� . Thesolution

x will in generalbefractional,andwe speakof fractional
stabbingnumberin this context.

TheresultingLP canbesolvedin weaklypolynomial
timebymeansof theellipsoidmethod[18]: Separatingvi-
olatedblossominequalitiesis possiblein polynomialtime
[20], andthereareonly polynomiallymany stabbingcon-
straints. It shouldbe notedthat this is closelyrelatedto
anotherwell-consideredopenproblem: [14, 15] asksfor
a strongly polynomial algorithm for finding an optimal
matchingin thepresenceof asinglegeneral“budget”con-
straint,which is ageneralversionof stabbingconstraints.
This illustratesthat giving a strongly polynomial algo-
rithm for our classof LPsmaynot bean easytask,even
thoughit is the intersectionof two well-behavedpolyhe-
dra. This difficulty hasbeenknown for otherclassesof
intersectingpolyhedra[22].

4.2 Linear Programs and St-Tre
�
P� . Thereare sev-

eralpolynomial-sizeformulationsfor spanningtrees[16].
However, even thoughexponentialin size,the following
cut-basedLP formulationturnsout to have someparticu-
larly usefulproperties:
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Figure6: Overall layout for Cr-∆ 2
�
P� . Clausesare

�
x0 � x1 � x̄2 � ,

�
x0 � x̄1 � x2 � , and

�
x̄0 � x̄1 � x̄2 � , with x0 � false

andx1 � x2 � true. Arrows indicatefull rowsandcolumns,light or darkshadingindicatestrueor falsevariablesand
literals.

∑
i j ) E

xi j � n � 1(4.5)

∑
i j ) δ * S+

xi j - 1 , S % V �(4.6)

∑
i j ) E * S+

xi j 4(S(5� 1 , S % V �(4.7)

x - 0(4.8)

with theadditionalstabbingconstraints
(4.9)

∑
i j :i j .0/6* d +213 /0

xi j  k , stabbingline 
 � d � in directiond �

Again, solving this LP when minimizing k can be
achievedin (weakly)polynomialtime.

5 Iterated Rounding

Key ingredientsof the linear programsdescribedin the
previoussectionareconstraintshaving acutstructure: We
require that for any set from a given family of subsets

of vertices, there is a guaranteedlower bound on the
size of a cut. Integer programsof this type have been
calledgeneralizedSteinernetworkproblems. It is known
that theseproblemsdo not tendto have nicely structured
fractionalvertices.Thisdoesnotgetbetterin thepresence
of stabbingconstraints. In the full paperwe provide
exampleswith edgesof rather small fractional weight.
Thisprohibitsastraightforwardapproximationby simply
roundingup a fractionalsolution.

A very elegant general techniquethat overcomes
thesedifficulties and achieves a 2-approximationalgo-
rithm for generalizedSteinernetworksproblemswaspre-
sentedby Jainin [12]: Basedon a polyhedralargument,
heestablishedthatany fractionalsolutionof ageneralized
Steinernetwork LP musthave anedgeof weightat least
1/2. Fromthis,hederivedanapproximationalgorithmby
iteratively roundingup the weight of the heaviest edges,
andre-solvingtheLP with thesefixededgeweights.

It is naturalto considersuchanapproachfor ourLPs
for deriving approximationmethodsfor stabbingprob-
lems, in particularfor matchingsandspanningtrees,as
the stabbingconstraintsalso have cut structure. How-
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ever, Jain’s crucial lemmaguaranteeinga heavy edgein
a fractionalsolutiondoesno longerapplyin thepresence
of stabbingconstraints:Figure 7 shows a matchingin-
stancefor which theoptimal fractionalaxis-parallelstab-
bing numberis achievedby a uniquesolutionwith maxi-
mumedgeweight1/3.

1/31/3

1/3

1/3

1/3

1/3

1/3 1/3

1/3

1/3

1/3

1/3

Figure7: An optimal fractionalsolutionwith maximum
edgeweight1/3.

However, usingadditionalgeometricproperties,we
canstill establishlower bounds.Our proofsarebasedon
thefollowing lemmas.

LEMMA 5.1. For any even set of points in the plane,
there is a fractionalperfectmatching x of minimumstab-
bing number, such that the supportgraph of x is planar.
Such a fractional matching can be found in polynomial
time.

LEMMA 5.2. For anysetof pointsin theplane, there is a
fractional spanningtreex of minimumstabbingnumber,
such that the support graph of x is planar. Such a
fractionalspanningtreecanbefoundin polynomialtime.

Bothproofsuseanuncrossing2-exchangeargument.
Note that the proof for Lemma5.1 requiressomeextra
carebecauseof theblossominequalities.A detailedproof
canbefoundin thefull paper. Theproofof Lemma5.2is
almostcompletelyanalogous.

THEOREM 5.1. For any evensetof points in the plane,
there is a fractionalperfectmatching x of minimumstab-
bing numberthat hasan edge of weightat least1/5. For
any setof pointsin the plane, there is a fractional span-
ning treex of minimumstabbingnumberthathasan edge
of weightmore than1/3.

Proof. For both problems,considera fractional vertex
with a planarsupportgraph.To seetheclaim for match-
ings,notethat theremustbea vertex with degreeat most

five;asthetotalweightfor eachvertex is 1, theclaim fol-
lows. To seethe claim for spanningtrees,note that the
total edgeweight is n � 1, andthe numberof edgesis at
most 3n � 6, implying that the averageweight is larger
than1/3. �

Thissetsthestagefor aniteratedroundingprocedure:
At eachiteration,fix theweightof anedgeof maximum
fractionalweight to 1, andresolve thelinearprogram.In
eachiteration,thenumberof edgeswith fractionalweight
is reduced,so we get an overall polynomialmethodfor
findinganintegralsolution.

It shouldbenotedthateventhoughthekey ingredient
for an iteratedroundingprocedureis provided by Theo-
rem 5.1, thereis still oneelementmissingfor establish-
ing thatthesepolynomialalgorithmsareindeedconstant-
factorapproximationalgorithms: As the objective func-
tion is a maximum,not a sum,we still needan extra ar-
gumentto assurethatJain’soverallapproachdoesindeed
work. Wearehopefulthatthisargumentcanbecompleted
[13]. As weshow in thefollowing Section6, thepractical
performanceseemsto beevenbetterthanthetheoretically
possibleguaranteesof 5 and3.

6 Computational Results

Test suite. We compileda test suite of variousin-
stanceson which we evaluatedour LP/IP approaches
andthe iteratedroundingtechniquefor St-Mat2

�
P� . The

suite includesten instanceswith up to 442 points from
the TSPLIB[21]; the C-class(“clustered”)of Solomon’s
instancesof the vehicle routing problem[24] with 100
pointseach;25 regulargridswith 20 to 360points,based
on grids of size5 � 5 up to 20 � 20 in which 20% ran-
domly chosenpointsareremoved;anda setof instances
with up to 100randompointsin theplane.Tables1 and2
displayour preliminaryresultson a PentiumIII 700MHz
PCwith 1GB mainmemoryrunningLinux. LPsandIPs
aresolvedbyCPLEX8.0,CPUtimesarelistedin seconds.
Tableentriesbearingthe † sign indicatean exceedingof
our CPU time limit of four hoursfor solving the IP, i.e.,
computingtheexactoptimum.

Somebrief observations. In LP solutionsvariables
may assumeratherarbitraryfractionalandsmall values;
this is alsotruewhenblossominequalitiesareadded.The
colinearityof pointsin thegrid instancesenablesusto re-
ducethenumberof stabbingconstraints,resultingin sig-
nificantly reducedcomputationtimes. The clusteringof
pointsin thevehicleroutinginstancesobviously facilitate
theLP/IP solutionprocess,aswasto beexpected.How-
ever, this observation is interestingin practicewherethe
datais usuallywell structuredasopposedto randomlydis-
tributed.

444



Instance LP opt LP CPU IP opt IP CPU iter. rounding
ulysses22 1.992308 0.01 2 0.05 2
berlin52 2.815158 0.52 4 8.86 5
lin105 5.500000 1.21 infeas. † 7
bier127 4.330856 5.64 infeas. † 5
u159 15.000000 1.76 infeas. † 15
ts225 13.750000 5.37 infeas. † 16
tsp225 11.500000 62.06 infeas. † 12
a280 10.500000 55.12 7 12 † 13
lin318 8.113143 131.54 7 12 † 11
pcb442 16.500000 270.03 7 19 † 18
c101 7.000000 0.10 7 1.75 8
c102 7.000000 0.10 7 1.75 8
c103 7.000000 0.10 7 1.75 8
c104 7.000000 0.10 7 1.75 8
c105 7.000000 0.10 7 1.75 8
c106 7.000000 0.10 7 1.75 8
c107 7.000000 0.10 7 1.75 8
c108 7.000000 0.10 7 1.75 8
c201 6.000000 0.50 6 2.00 7
c202 6.000000 0.45 6 2.00 7
c203 6.000000 0.46 6 1.95 7
c204 6.000000 0.46 6 1.95 7
c205 6.000000 0.46 6 1.95 7
c206 6.000000 0.46 6 1.92 7
c207 6.000000 0.46 6 1.95 7
c208 2.953237 0.58 † 5

Table1: Comparisonof boundsfor St-Mat2
�
P� anditer-

atedrounding:TSPLIBandclusteredinstances.

Instance LP opt LP CPU IP opt IP CPU iter. rounding
grid5a 2.500000 0.00 3 0.01 3
grid5b 2.750000 0.00 3 0.02 3
grid5c 2.750000 0.01 3 0.02 4
grid5d 2.000000 0.00 3 0.03 3
grid5e 2.500000 0.00 3 0.02 3
grid8a 5.003205 0.04 6 0.17 6
grid8b 5.125000 0.05 6 0.21 6
grid8c 5.000000 0.04 5 0.12 6
grid8d 5.428571 0.04 6 0.19 7
grid8e 5.403226 0.04 6 0.29 6
grid10a 4.250000 0.12 5 0.68 6
grid10b 4.250000 0.10 5 0.40 6
grid10c 5.250000 0.11 6 245.28 6
grid10d 4.500000 0.07 5 13.58 6
grid10e 5.000000 0.03 5 1.36 6
grid15a 6.000000 0.73 6 8.40 7
grid15b 7.500000 0.47 8 9.90 8
grid15c 6.000000 1.00 6 3.27 6
grid15d 6.500000 0.24 7 † 7
grid15e 6.750000 0.74 7 3.91 7
grid20a 9.166667 15.38 7 11 † 12
grid20b 9.250000 20.99 7 11 † 11
grid20c 9.500000 8.70 7 11 † 11
grid20d 9.500000 26.69 7 11 † 11
grid20e 10.000000 20.43 7 11 † 12
rand10a 1.750000 0.00 2 0.01 2
rand10b 1.833333 0.00 2 0.00 2
rand10c 1.750000 0.00 2 0.01 2
rand10d 1.700000 0.00 2 0.01 2
rand10e 1.812500 0.00 2 0.01 2
rand50a 2.594823 0.25 3 19.83 5
rand50b 2.628112 0.23 3 1.91 4
rand50c 2.668918 0.23 4 30.77 4
rand50d 2.661581 0.22 4 15.99 4
rand50e 2.789609 0.33 4 25.54 5
rand100a 3.376247 5.57 † 6

Table2: Comparisonof theLP/IP boundsfor St-Mat2
�
P�

anditeratedrounding:grid andrandominstances.

Thestabbingnumberobtainedfrom iteratedrounding
is often very close to the LP lower bound, and in our
experimentsit is never off the optimal value by more
thana factorof 2; typically, it is muchbetter, andmostly
within about20% of the optimum. We observe that the
“bad moves” aremadeonly in the final iterationsof the
iteratedrounding. For instance,about100 iterationsare
neededfor lin318 (with 318 points), the LP optimumis
at 8.113,andtheLP valueexceeds9.000only in the last
ten iterations,wherea valueof 11 is reached.We also
experimentedwith a “one good shot at once” approach
that is basedon the fact thateachfractionalvertex is the
convex combinationof perfectmatchings,by finding a
maximumweight perfectmatchingin the supportgraph
of theLP solution.Thisusuallygivesevenbetterfeasible
solutionsthan for iteratedrounding(with oneexception
in our test suite of problems). This techniquecertainly
deservesfurtherevaluationbothfrom acomputationaland
from a theoreticalpoint of view, anda discussionwill be
includedin thefull paper.

Thestabbingconstraintsseemto completelydestroy
the polyhedralstructureof the matchingpolytope. Half
of the TSP instancesare infeasible(becauseof an odd
numberof points),andthis is not detectedby theCPLEX
IP solver within 4 hours. Iteratedrounding terminates
in this casewith a non-perfectmatchingwith onepoint
unmatched.

Eventhoughourprototypesarenotyet readyto solve
even larger instances,they may serve asa goodstarting
point for the developmentof an industrialstrengthcode.
We planto includemorecomputationalresults,in partic-
ular for St-Matall

�
P� andSt-Tre2

�
P� , in thefull paper. We

alsoplantestswith IP formulationsfor triangulations.

7 Notesand Conclusion

We have shown that variousversionsof stabbingprob-
lemsareNP-hard,anddemonstratedhow anIP/LP-based
approachmaybeusefulfor solvingandapproximatingin-
stances.We expecta numberof extensionsof this work
andhopeto includemoredetailsandresultsin aforthcom-
ing full journalversion.Herewe only mentiona number
of otheraspectsthatarealsopossible.

Clearly themostinterestingopenproblemis a proof
thatour iteratedroundingtechniqueis indeeda constant-
factorapproximationalgorithm,with aperformanceguar-
anteeof 5 for matchings,and3 for spanningtrees.

Another interestingquestionis to decidethe exis-
tenceof structuresof smallconstantstabbingnumber. As
thehardnessproof for decidingtheexistenceof a match-
ingof stabbingnumber5 illustrates,thisis still notaneasy
task.Fromsomesolvablespecialcases,weonly noteone:
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THEOREM 7.1. St-Tre2
�
P� =2 and St-Matall

�
P� =2 can

bedecidedin polynomialtime.

Onemayalsoaskfor theaverage insteadof themax-
imum stabbingnumber, andrefer to the averageover all
possiblelines intersectinga setof line segments,instead
of just a combinatorialsetof representatives. This, how-
ever, amountsto solving problemsof minimum length,
with all implicationsto hardnessandapproximation.

THEOREM 7.2. A setof line segmentshasminimumaver-
age (axis-parallel, resp.)stabbingnumber, iff theoverall
Euclidean(Manhattan,resp.) lengthof all line segments
is minimum.

Finally, the closelyrelatedquestionof investigating
maximumstabbing-independentsubsets,i.e., subsetsof
lines with stabbingnumber1, may be interestingin its
own right. Decompositionsinto stabbing-independent
subsetsmayalsobea combinatorialapproachfor getting
approximationmethodsfor stabbingproblems.
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