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Abstract. Knuth introduced the problem of sorting numbers using a sequence of
stacks. Tarjan extended this idea to sorting with acyclic networks of stacks (and
queues), where items to be sorted move from a source through the network to a
sink while they may be stored temporarily at nodes (the stacks). Both character-
ized which permutations are sortable this way; but they ignored the associated
optimization problem (minimize the number of moves) and its complexity.

Given a complete, thus cyclic, network of k ≥ 2 stacks, any permutation is
obviously sortable. The important question now is how to actually sort with a
minimum number of shuffles, i.e., moves in between stacks. This is a natural
algorithmic complement to the structural questions asked by Knuth, Tarjan, and
others. It is the first time shuffles are considered in stack sorting—despite of the
great practical importance of this optimization version.

We show that it is NP-hard to approximate the minimum number of shuffles
within O(n1−ε ) for networks of k ≥ 4 stacks, even when the problem is restricted
to complete networks, by relating stack sorting to MIN k-PARTITION on circle
graphs (for which we prove a stronger inapproximability result of independent
interest). For complete networks, a simple merge sort algorithm achieves an ap-
proximation ratio of O(n log n) for k ≥ 3; however, closing the logarithmic gap
to our lower bound appears to be an intriguing open question. Yet, on the posi-
tive side, we present a tight approximation algorithm which computes a solution
with a linear approximation guarantee, using a resource augmentation to αk +1
stacks, given an α-approximation algorithm for coloring circle graphs.

When there are constraints as to which items may be placed on top of each
other, deciding about sortability becomes non-trivial again. We show that this
problem is PSPACE-complete, for every fixed k ≥ 3.

1 Introduction

Stacks, as a fundamental data structure, play an important role in theoretical computer
science, artificial intelligence, and combinatorial optimization. At the same time, stacks
also model a wide range of applications in logistics and motion planning, where the
access to items is restricted in a last-in first-out fashion.

We investigate a problem, in which k stacks are used for sorting. The k stacks form a
directed network which we assume to be complete for most of the paper. A permutation
of items to be sorted is given at a source node, and all items must arrive at a sink in
correct order. Items may move along arcs in the network and may be stored temporarily
on a stack at each node. When the network contains a cycle, any permutation can be
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sorted. Popping an item from one stack, moving it along an arc and then pushing it to
the next stack is called a shuffle, and our goal is to minimize the number of shuffles
needed to sort the given permutation.

Our Contribution. Our paper is the first primarily algorithmic view on stack sorting; it
explicitly captures the essence of shuffles in sorting with a network of stacks. We prove
that it is NP-hard to approximate the minimum number of shuffles within O(n1−ε) for
k ≥ 4 and any fixed ε > 0, even when the network of stacks is restricted to be com-
plete, by relating STACK SORTING to the MIN k-PARTITION problem on circle graphs.
For the latter problem we prove inapproximability within O(n2−ε) as an intermediate
result which is of interest in its own. For the case of complete networks and k ≥ 3,
a simple merge sort algorithm computes an O(n logn)-approximation, but closing the
gap to our lower bound appears to require significantly new insight into the problem (or
into graph coloring, a we discuss). Still, we present an O(n)-approximation algorithm
which needs a resource augmentation to αk + 1 stacks instead of only k, using an α-
approximation algorithm for coloring circle graphs. We discuss that this is best possible
in a certain sense. Furthermore, we prove that it is PSPACE-complete to decide whether
a given permutation is sortable using a complete network of k ≥ 3 stacks, when there
are constraints as to which items may be placed on top of one another. We conclude
with several challenging open problems.

Our results have direct consequences for various practical stacking problems from
the operations research literature, e.g., [2,3,6,9,16], as well as for blocks world models
in artificial intelligence [12,17], among others.

Related Work

Stack Sorting. Knuth introduced the idea of stack sorting using the language of railway
sidings [15]; he characterized permutations which can be sorted using k stacks in series.
Tarjan extended these ideas to sorting with acyclic networks of stacks (and queues) [18].
Even and Itai considered the sortability of permutations using k parallel stacks [7]. They
related this question to the problem of deciding k-colorability of a circle graph, which
was proven to be NP-complete for k ≥ 4 by Unger [19].

In all these papers (and those which followed), an item, once popped from a stack,
may never be pushed back on it again. The point of interest has always been a character-
ization of which permutations can be sorted using a particular configuration of stacks.
This (mathematically beautiful) point of view is surveyed by Bóna in [4]; he states, that
“virtually nothing can be proved” for general networks of stacks.

Inspired by personal discussions about our work on this paper, Felsner and Pergel
recently considered stack sorting from the perspective of extremal combinatorics [8].
Assuming that all items have to be moved to stacks before the first item may move to
the sink, they consider instances in which an optimal solution has a maximum number
of shuffles. They give good bounds on this number for different magnitudes of k.

Applications. In recent years, the operations research literature dealt with a number of
practical applications involving stack sorting: Assigning incoming trains [6] or trams [3]
to tracks of a switching yard or depot; parking buses in parking lots [9]; and stowage
planning for container ships [2], to mention only a few. All of these ask whether it
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is possible to assign items to stacks such that items can be retrieved in a desired order
without blocking each other. Even though shuffles are a natural part of real life stacking,
researchers asked for sortability with parallel stacks, where shuffles are not an issue,
instead of asking for sorting with few shuffles using a complete network of stacks,
which would model many of the above applications more accurately: shunting rail cars
with fewest moves, stowing containers with minimal number of re-stacking operations,
etc. Our paper is a first step towards investigating these optimization problems.

König et al. have recently introduced a mathematical model and a heuristic for a
particularly rich stacking problem which has the minimization of shuffles as objective.
They model in great detail stacking problems occurring in the logistics of integrated
steel production and in container terminal operation [16], which among other things
include limited stack heights. PSPACE-completeness of deciding sortability is shown.

2 Problem Formulation and Relations to Graph Coloring

A formal definition of STACK SORTING is as follows. We are given a directed graph
G = (V ∪{s,t},E) where s has no in- and t has no out-edges. To avoid trivialities, we
require that any v ∈ V is on an s-t-path in G, |V | = k ≥ 2, and that G contains a cycle. A
permutation π of items 1, . . . ,n (the input sequence) is given at s, and has to be sorted,
i.e., all items have to arrive at t in ascending order. Items may only move along arcs
in G. When an item arrives at node v �= t, it is stored on a stack Sv. A stack may be
accessed on one end only, its top, so items may only leave in the reverse order they
arrived. Naturally, items may only leave s in the order prescribed by π . Whenever an
item moves along an arc (v,w) where v �= s and w �= t, we say it is shuffled. The question
is how to move items such that all items arrive at t in the correct order, using the smallest
number of shuffles?

When (s,v),(v,t) ∈ E for all v ∈ V , i.e., items can be moved from the source to any
stack and from any stack to the sink, there is an interesting relationship between STACK

SORTING and graph coloring. A graph coloring is an assignment of colors to the nodes
of a graph. We call a coloring proper, if nodes which share an edge receive different
colors; a k-coloring uses at most k colors. A circle graph is a graph the nodes of which
can be drawn as chords of a circle such that two chords intersect iff the corresponding
nodes share an edge. Even and Itai noted that deciding if a permutation π is sortable
with k parallel stacks, i.e., E = {(s,v) : v ∈V}∪{(v, t) : v ∈V}, is equivalent to deciding
k-colorability of a circle graph the nodes of which are the items in π [7], which is hard
for k ≥ 4 [19]. Obviously, shuffles are impossible in the case of parallel stacks.

The class of circle graphs is equivalent to the so called overlap graphs [10]: Their
nodes can be represented as intervals such that two nodes share an edge iff their corre-
sponding intervals intersect but none of the two contains the other. With the latter rep-
resentation, the correspondence of k-colorings to sorting with k parallel stacks becomes
clear immediately: We define n intervals with unique start and end points in a discrete
set of 2n points in time. The start points of the intervals are ordered corresponding to
π . Immediately after the start of an interval, we insert the endpoints of all intervals cor-
responding to items i such that all intervals corresponding to items 1, . . . , i have already
started, in ascending order. When two nodes do not share an edge, either their intervals
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Fig. 1. Optimally sorting π = 24361875 with one shuffle using k = 2 stacks; (a) shows the circle
representation of the permutation, (b) the circle graph with a shuffle-optimal coloring of the
nodes; (c) depicts the assignment of items to stacks before the shuffle, (d) the assignment after
the shuffle and after moving the first four items out and all remaining items to the stacks

do not intersect, which means the latter of the corresponding items arrives after the first
has already left the buffer, or one of their intervals contains the other, which means that
the corresponding items arrive at a stack in the reverse order they need to leave it. In
both cases, the items can be put on the same stack. In any other case, the two items
would block each other leaving the stack, which could be a reason for not putting them
on the same stack.

In a proper k-coloring of the nodes of the circle graph, the color of a node determines
to which of the k stacks the corresponding item has to be moved to from s in order for
all items to be able to arrive at t in correct order without shuffles. We now make the
important observation that, if a proper k-coloring is impossible, monochromatic edges
are unavoidable (edges with both endpoints in the same color), and this relates STACK

SORTING to another coloring problem, the MIN k-PARTITION problem. The following
example, cf. Fig. 1, illustrates the connection between circle graphs and STACK SORTING

assuming G to be complete, i.e., E = {(s,v) : v ∈V}∪{(v,w) : v,w ∈V}∪{(v, t) : v ∈V}.
It also demonstrates that, quite counterintuitively, while a proper k-coloring of a circle
graph does correspond to a solution to STACK SORTING without shuffles, asking for a
coloring with fewest monochromatic edges is not the same as asking for few shuffles.

The circle graph in Fig. 1(b) is clearly not 2-colorable. So obviously, at least one
shuffle is necessary. The improper 2-coloring of the nodes represents the sorting of the
permutation on two stacks shown in 1(c) and 1(d), which has exactly one shuffle and
thus is optimal. The coloring has two monochromatic edges and is suboptimal in this
sense: Changing the color of node 6 from green (circle) to red (square) would yield a
coloring with just one monochromatic edge. However, the sorting of the permutation
implied by this new coloring would have at least two shuffles.

At the core of the relationship between monochromatic edges in a coloring of a
circle graph and the number of shuffles in sorting with complete networks of stacks
lies the following observation: Suppose in a k-coloring of a circle graph, there is a
color class with c nodes and many, say c − 1, monochromatic edges. Consider a stack
containing the corresponding c items. On one hand, all monochromatic edges could be
incident to the item on top of the stack. In this case, shuffling this one item would,
so to speak, resolve all c − 1 monochromatic edges. On the other hand, each of the
c − 1 monochromatic edges could connect two neighboring items on the stack—in this
case, at least c

2 shuffles would be necessary. The point is, that in a coloring, the number



Sorting with Complete Networks of Stacks 899

of monochromatic edges for one color class does not depend on a certain ordering of
its nodes, while on a stack, the order of its items is the single most important factor
determining the number of shuffles necessary.

Yet, as we will see, the circle graph representation for sorting with complete net-
works of stacks is useful for proving hardness of approximation for STACK SORTING.

3 Hardness of Approximation

We show that it is NP-hard to approximate the minimum number of shuffles in STACK

SORTING within a factor better than O(n). We start with the MIN k-PARTITION prob-
lem on graphs: one asks for deleting a minimum number of edges such that the remain-
ing graph is k-colorable. We prove a strong inapproximability for this problem on circle
graphs using ideas from [14] where the same result was shown for dense graphs.

Theorem 1. Let G be a circle graph. For any k ≥ 4, it is NP-hard to approximate the
minimum number of monochromatic edges γ(G,k) in a k-coloring of G within O(n2−ε).

Proof. Let I = (H,k) an instance of the k-COLORING problem for a circle graph H =
(V ′,E ′) with n nodes. Deciding if I is a yes-instance (which is equivalent to deciding
if the minimum number γ∗ of monochromatic edges in a k-coloring of H is 0) is NP-
complete [19]. We will construct an instance J = (G,k) of MIN k-PARTITION where G
is a circle graph with N nodes, such that approximating the minimum number γ(G,k)
of monochromatic edges in a k-coloring of G within O(N2−ε) is equivalent to deciding
γ∗ = 0, and thus to deciding I. In other words, our construction will create a quadratic
gap in the possible optimal values of J, thus amplifying the hardness of deciding I to
the hardness of approximating the optimal value of J.

Let s := n
2
ε −1. We construct G = (V,E) as follows:

V := {v1,v2, . . . ,vs : v ∈ V ′},

E := {(vi,wj) : (v,w) ∈ E ′; i, j = 1, . . . ,s; i �= j}.

In terms of the chord diagram of the circle graph, we obtain G from H by replacing
each chord in H by s parallel chords in G. So G is a circle graph with N := sn nodes
and s2m edges.

Now every k-coloring c of G can be transformed to a coloring c′ in which all copies
vi ∈V of a node v ∈V ′ have the same color without increasing the number of monochro-
matic edges: For each v ∈ V ′, pick the vi ∈ V with the fewest incident monochromatic
edges and color all of v’s copies in vi’s color. By this, it follows immediately that every
optimal k-coloring c of G either has no or at least s2 monochromatic edges: When there
is at least one monochromatic edge, compute c′ from c as described above. Let (vi,wj)
be a monochromatic edge in c′. Since all s copies of wj are neighbors of all s copies of
vi, there are at least s2 monochromatic edges. Furthermore, we have

s2 = n
4
ε −2 = n

2
ε (2−ε) = N2−ε .

Now suppose there was an algorithm computing an O(N2−ε)-approximate solution to
J with γ monochromatic edges. Then,
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– γ ∈ o(N2−ε) ⇒ γ∗ = 0 ⇒ H is k-colorable
– γ ∈ Ω(N2−ε ) ⇒ γ∗ ≥ 1 ⇒ H is not k-colorable.

Thus, such an algorithm would decide I. 	


We now establish some bounds relating monochromatic edges in the coloring of a circle
graph and shuffles in solutions to the corresponding instance of STACK SORTING.

Lemma 1. Let � be a solution to an instance I of STACK SORTING with k stacks re-
quiring L shuffles. Let c� : V → {1, . . . ,k} be the coloring of the corresponding circle
graph G = (V,E) obtained by assigning each node the color corresponding to the stack
its item was first placed on, and let γ� denote the number of monochromatic edges in c�.
Then,

γ� ≤ (n − 1) ·L.

Proof. From the correspondence between G and I it is clear, that for each monochro-
matic edge in c�, at least one of the items corresponding with its end points must be
shuffled from its original stack in order to move both items to the output sequence. On
the other hand, each item can only be incident to at most n−1 other items in G, so each
shuffle can only “pay” for the need to shuffle items of at most n − 1 monochromatic
edges. 	


Lemma 2. Let c : V → {1, . . . ,k} be a coloring of a circle graph G = (V,E) with γ
monochromatic edges. Let I be the instance of STACK SORTING with a complete net-
work of stacks corresponding to G. One can easily obtain a solution �c to I with Lc = 2 ·γ
shuffles from c.

Proof. The construction of �c happens in phases. A phase p ends whenever a prefix ap

of the identity permutation of all items not moved to the sink yet has been removed
from the source, e.g., phase one ends immediately after item 1 has been removed from
the source. During each phase, items are moved from the source to stacks as prescribed
by c. When phase p ends, we move all items in ap to the sink before continuing with the
next phase: If the item needed next, say i, is not on top of its stack, we shuffle away all
items above it to some arbitrary stack, move i to the sink, and then reverse all shuffles.

Note that for any item j which has to be shuffled in order to access i, we have i < j.
On the other hand, when j was removed from the source, not all items m with m < i had
been removed from the source yet (otherwise i would have been moved to the sink in a
previous phase). So from the correspondence between G and I, it is clear that (i, j) ∈ E ,
and this edge is monochromatic in c since i and j are on the same stack. So for each
two shuffles in �c, there is a distinct monochromatic edge in c. 	


We are now ready to proof the main result of this section.

Theorem 2. Approximating the minimum number L∗ of shuffles in STACK SORTING

within O(n1−ε) is NP-hard, even when restricted to complete graphs with a fixed num-
ber of k ≥ 4 stacks.
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Proof. For an arbitrary circle graph G, let I denote the corresponding instance of STACK

SORTING with a complete network of k ≥ 4 stacks. Now suppose there was an n1−ε-
approximation algorithm for STACK SORTING. Then, for any instance, we can compute
a solution � with L ≤ n1−εL∗ shuffles, where L∗ denotes the number of shuffles in an
optimal solution. As before, let c� be the coloring with γ� monochromatic edges ob-
tained from assigning each node in G the color corresponding to the stack which the
corresponding item was first placed on in �. By Lem. 1, we have

γ� ≤ (n − 1) ·L ≤ n2−ε L∗ ≤ n2−ε Lc∗ ≤ 2 ·n2−ε · γ∗

where c∗ denotes a coloring of G with the minimum number γ∗ of monochromatic
edges. The last inequalities follow from the fact that L∗ is the minimum number of
shuffles possible and Lem. 2.

Thus, anO(n1−ε)-approximation algorithm for STACK SORTING immediately implies
an O(n2−ε)-approximation algorithms for MIN k-PARTITION on circle graphs. 	


Due to the generality of STACK SORTING, Thm. 2 has numerous consequences: The
hardness of approximation immediately carries over to most applications involving sort-
ing with stacks, and also to many blocks world planning models in artificial intelligence
where table capacity, i.e., the number of stacks, is limited.

4 Approximation Algorithms for Complete Networks

We will now state our positive results. Even though their tightness w.r.t. our hardness
result is unsatisfactory, we will discuss that they are the best we may currently hope for.

Fact 1. STACK SORTING with k ≥ 3 stacks can be done with 2 · (n logn) shuffles.

This fact follows immediately from the application of a merge sort algorithm on stacks.
An elaborate proof of this can be found in [8], where the authors also argue that there
are instances for which Ω(n logn) shuffles are needed when k is constant.

Remark 1. It follows from Fact 1, that in order to close the gap to the lower bound from
Thm. 2, it would suffice to obtain an algorithm A which has a linear approximation
guarantee only for instances, for which an optimal solution requires o(logn) shuffles.
Returning the better solution of algorithm A and the mentioned merge sort would result
in a linear approximation algorithm.

Closing the gap between hardness of sublinear approximation and the straight-forward
O(n logn) approximation appears to be very intriguing. One way to achieve this is at
the expense of a resource augmentation.

Theorem 3. There is an efficient algorithm which computes a solution with 3n ·L∗ shuf-
fles using αk+1 stacks where L∗ denotes the minimum number of shuffles using k stacks,
given an α-approximation algorithm for coloring circle graphs.
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Proof. Our algorithm proceeds in phases, the lengths of which are determined by re-
peatedly employing an α-approximation algorithm A for coloring circle graphs. Itera-
tively considering longer prefixes of π , we apply A to the circle graph defined by the
current prefix, to determine the longest prefix which is still αk-colorable by A. We move
the corresponding set P of items of the current phase to the first αk stacks according to
the computed αk-coloring, meanwhile moving items to the output whenever possible.
Since there may be items, which the coloring of the subgraph of this phase assumes
to be movable to the output, but which we cannot actually move out yet, we use stack
Sαk+1 to store these items temporarily.

As a result, the items in P on each stack are now ordered from top to bottom on the
first αk stacks and from bottom to top on Sαk+1. We will now perform shuffles in order
to have all these items on one stack, linearly ordered from bottom to top.

Let S1 be the stack containing the set Q of all items from previous phases. We pick
another arbitrary stack S2 and merge all items in X := P ∩ (S1 ∪ S2) onto a third stack
S3. We then merge all items in Q ∪ X ∪ Sαk+1 onto S2, now having all stacks ordered
from top to bottom and S1 empty. Finally, we merge all items from all stacks onto S1

while moving items to the output whenever possible and, quite importantly, inserting
the next item in π at the correct position, thus having sorted a part of π for which A
could not find an αk-coloring. We have obtained a stack containing all items up to the
current phase ordered from bottom to top.

Note that in one phase, we have shuffled each item at most three times. Hence, our
algorithm needs L ≤ 3pn shuffles where p denotes the number of phases.

On the other hand, any solution to STACK SORTING requires at least one shuffle for
each phase of our algorithm: Whenever the number of colors needed by A exceeds αk,
the chromatic number of the circle graph exceeds k, thus at least one shuffle is necessary.
Also, at the beginning of the next phase, our algorithm has moved the maximum number
of items possible to the output and it may use all stacks available without restrictions.
This is naturally the best possible situation for an optimal solution as well. Thus, the
number of shuffles needed by an optimal solution is L∗ ≥ p, and L ≤ 3n ·L∗.

The runtime of our algorithm is obviously dominated by the n calls to A. 	


Remark 2. As the chromatic number of circle graphs cannot be determined exactly in
polynomial time, a resource augmentation of at least one stack is unavoidable with our
algorithm. This is rooted in the structure of circle graphs itself: In the stack assignment
obtained from a proper coloring of the corresponding circle graph, the stacks do only
remain sorted as needed by the algorithm as long as items are moved to the output
immediately whenever possible. Thus, it is impossible to assign more than one color
class to one stack: It may always happen, that items in an additional color class on the
same stack keep items in the first color class from being moved to the output in time,
thus destroying the linear order of items within one color class in the stack and possibly
causing a non-constant number of additional shuffles in each phase of the algorithm. In
that sense, our resource augmentation is best possible.

The relation to (improper) coloring circle graphs is our only algorithmic handle to
approximating STACK SORTING (despite considerable efforts). Lower bounds for ap-
proximate colorings, in turn, classically rely on (a) maximum clique size ω , or (b) the
number of vertices divided by the cardinality of a largest independent set. While for
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(b) a simple example shows that the bound is trivial (linear gap) for circle graphs, it is
known for (a) that no better factor than logω can be obtained (this is mentioned in [1],
citing a Russian paper by Kostochka; note that this falsifies Unger’s claim of having
obtained a 2-approximation [19]). In fact, the best known approximation factor for col-
oring circle graphs is α = logn [5], and no improvement to a constant factor is possible
without a new lower bound on the chromatic number of graphs.

Alternatively, abandoning colorings, one is tempted to characterize instances which
need “few” shuffles (in the sense of Remark 1), yet, even deciding whether no shuffles
are needed is NP-hard. On the other hand, if the permutation π avoids the pattern 1-2-3,
no shuffles are needed if k ≥ 5 (this is the result that every triangle free circle graph is
5-colorable, see again [1]). It becomes clear once more why circle graphs “frustrated
mathematicians for some years” [11], and still continue to do so.

5 Stacking Constraints

We finally consider the generalization in which items may not be placed arbitrarily on
top of others. An instance of STACK SORTING WITH CONFLICTS is an instance of
STACK SORTING plus such constraints, which can be modeled as a directed graph D
with node set {1, . . . ,n} such that an edge (i, j) in D signifies that item i may not be put
directly on top of item j. This is a practically relevant extension [16], and sortability
becomes a justified question again.

Deciding sortability in a more general setting is PSPACE-complete: In [16], initially,
some items need to be placed on stacks in a well-defined configuration; in addition,
there are height bounds on the stacks. Also, the number of stacks k is part of the input
and this fact is crucial in the reduction proving hardness there.

We give a more elaborate construction, eliminating all these additional assumptions
and prove the following significantly stronger result.

Theorem 4. For any fixed k ≥ 3, deciding whether there exists a feasible solution to an
instance of STACK SORTING WITH CONFLICTS is PSPACE-complete.

Proof. We give a reduction from a special case of CONFIGURATION TO EDGE shown
to be PSPACE-complete in [13]: An instance NCL = (G,C,e∗) of this problem is based
on a 3-regular undirected graph G = (V,E), node weights c : V → R with c ≡ 2 and
edge weights w : E → R with w(e) ∈ {1,2} ∀e ∈ E . C denotes a feasible configuration,
given by an orientation of the edges in E such that the sum of the weights of edges
pointing into a node is at least the node weight, i.e., ∑e∈δ−(v) w(e) ≥ c(v) ∀v ∈ V , where
δ−(v) and δ+(v) denote the sets of incoming and outgoing edges of a node v ∈ V in C,
respectively. e∗ ∈ E denotes a certain edge of the graph and the question is: Is there a
sequence of feasible edge reversals such that the orientation of e∗ is finally reversed?

We call edges with weight two heavy, all other edges light. G may only contain two
types of nodes: Nodes with three heavy incident edges, called OR-nodes, and nodes
with one heavy and two light incident edges, called AND-nodes.

The construction of an instance J of STACK SORTING WITH CONFLICTS for fixed
k ≥ 3 from an instance NCL of this special case works in three steps: First, we define
basic gadgets consisting of items on two stacks for OR- and AND-nodes, respectively;
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Fig. 2. Basic gadgets: Figs. (b) and (d) show stack representations of feasible configurations (a)
and (c) at an OR-node and an AND-node respectively

then, we prove that the items of all gadgets can be put on any fixed number of k ≥ 3
stacks without losing their properties crucial to the reduction; finally, we prove that we
can number all items in the construction such that there exist a permutation π which
forces the items into a configuration on stacks corresponding to the initial configuration
C in NCL, and that a subsequent feasible reversal of e∗ in NCL corresponds exactly to
sortability of π . A complete proof for Thm. 4 is given in the full version of this paper;
here, we only state its main ideas.

Fig. 2 shows the basic gadget for each OR- and AND-node. Each node v ∈ V is
associated with two stacks S1

v and S2
v , and for each edge e ∈ E , we introduce an item ie.

A feasible configuration C in NCL corresponds to a configuration of items on stacks as
follows: Item ie is on stack S1

v or S2
v iff e ∈ δ+(v) in C. We specify stacking constraints,

such that only items corresponding to edges incident to a node v can be placed on the
stacks corresponding to v. Also, we introduce some additional items, which may only
be placed on the stacks of one single basic gadget (cf. Fig 2). Items ie corresponding to
heavy edges may only be placed on items hv, items corresponding to light items only on
items �v, and in any case it is required that e ∈ δ (v), i.e., e is incident to v. It is fairly easy
to check, that feasible stackings on S1

v and S2
v correspond exactly with configurations in

NCL which are feasible at v.
Fig. 3 shows how we can now assign all items from all basic gadgets to only three

stacks while preserving their properties essential for the reduction. We separate the
items of each stack of a basic gadget by items t with proper stacking constraints. Then
we have one stack S3 holding the items of stacks in the basic gadgets in reverse order.
In order to change the orientation of one edge, we shuffle items from S3 to the other two
stacks S1, S2, such that the stacks of two basic gadgets in between which we would like
to shuffle an item ie are exposed on top of S1 and S2 (cf. Fig. 3). Due to the stacking
constraints specified, items from different basic gadgets never mix in the process.
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v
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w
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t1v

t2v

t1w

t2w

(b)

Fig. 3. Only using three stacks: Fig. (b) shows the stacking in which item ie can be shuffled from
S1

w to S2
v . This corresponds to changing the orientation of e in Fig. (a).

The stack of the basic gadget containing ie∗ is at the bottom of S3, in correct order.
Directly underneath ie∗ is an item α , which clearly may only be moved, if the direction
of e∗ is feasibly changed before. With the help of some more additional items b, we
can now define a numbering of the items and a permutation π in which α comes before
all other items of basic gadgets, such that the constructed instance of STACK SORTING

WITH CONFLICTS is sortable iff the orientation of e∗ can be feasibly changed. 	


6 Conclusions

Sorting with stacks is not a surprising connection between a fundamental data structure
and a classic algorithmic theme. It is surprising however, that theory avoided the appar-
ent need for shuffles—only sortability, not sorting itself has been considered so far. Our
hardness results partially explain this lack of elegant and efficient algorithms.

Open Problems

Our work spawns some challenging open complexity issues. Hardness of approxima-
tion, i.e., Thm. 2, only holds for k ≥ 4. Indeed, it is not even known whether polynomial
time algorithms exist for k = 2 and k = 3.

There is still an annoying logarithmic gap between our inapproximability result and
the best known approximation algorithm, which we only manage to close by resource
augmentation. As pointed out in Sec. 4, the lower bound we use—the minimum number
of monochromatic edges in a k-coloring of a circle graph—is not suited for a better
result. Since (improper) coloring circle graphs is the only known handle to approximate
STACK SORTING, what is an alternative lower bound on the number of shuffles?

Finally, also queues could be considered for intermediate storage of items (as e.g.,
Tarjan did). This is closely related to the so-called “midnight constraint” present in some
applications, where all items have to be removed from the source, before the first item
may be moved to the sink. The circle graphs then become permutation graphs which
can be properly colored in polynomial time; thus, our hardness of approximation does
not apply. But is this case really significantly easier?
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