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Abstract. We investigate a complex stacking problem that stems from
storage planning of steel slabs in integrated steel production. Besides
the practical importance of such stacking tasks, they are appealing from
a theoretical point of view. We show that already a simple version of
our stacking problem is PSPACE-complete. Thus, fast algorithms for
computing provably good solutions as they are required for practical
purposes raise various algorithmic challenges. We describe an algorithm
that computes solutions within 5/4 of optimality for all our real-world
test instances. The basic idea is a search in an exponential state space
that is guided by a state-valuation function. The algorithm is extremely
fast and solves practical instances within a few seconds. We assess the
quality of our solutions by computing instance-dependent lower bounds
from a combinatorial relaxation formulated as mixed integer program.
To the best of our knowledge, this is the first approach that provides
quality guarantees for such problems.

1 Introduction

In this paper, we investigate a dynamic stacking problem that has applications
in many production processes with intermediate storage for bulky items. Our
work is motivated by a cooperation with PSI-BT [14], a software company that
develops planning software for logistics and production processes in steel plants.
A crucial task in such a plant is the transportation and intermediate storage
of steel slabs over time, which is the prototype of the general stacking problem
considered here. It similarly occurs in other settings such as the shunting of rail
cars or container stowage.

We keep our problem formulation general enough to provide a concise, theo-
retically interesting problem class, but still specific enough to be applicable to
different industrial scenarios.

In practice, many different constraints like precedence relations, time windows,
stack heights, etc. have to be respected, and it is not surprising that the literature
abounds with heuristics.
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However, no general and versatile problem formulation like ours has been
presented before, let alone, solutions to them of proven quality.

From a computer science point of view, our problem is related to motion
planning and sorting with networks of stacks. The Towers of Hanoi puzzle is just
a very simple instance of our model. More interestingly, there are similarities to
the much more complex block sliding puzzles. Many of these puzzles are known
to be PSPACE-complete [8]. We show that this is true also for our stacking
problem, which rules out the existence of efficient algorithms in general.

Nevertheless, using ideas from dynamic programming and mixed integer pro-
gramming, well-established techniques from discrete optimization, we compute
solutions to all our real-world instances within 5/4 of an optimum.

Motivation. In integrated steel production, steel is casted in a 24/7 operation
in slabs, bars of up to 12 meters length and 30 tons weight. These are rolled
to sheet metal in a following batch process. Each slab is assigned to a customer
order before it is even casted, and is, thus, individual. The rolling at later points
in time is in a given order which (also because of technical reasons) typically
differs considerably from the casting sequence. In between, slabs are brought by
cranes to a storage area where they are piled up on stacks (for up to several
days). If slabs are needed much later (several weeks), they may leave the so-
called hot-buffer and can be temporarily stored in a much larger cold-buffer. In
both cases, the number of stacks and their height is limited.

In the hot-buffer, ideally, slabs should be stored in such a way that they are
readily available according to the planned batch sequence of the rolling process
(each batch may request several dozens of slabs in a given order). This conflicts
with the limited space, the casting sequence, and the complicating fact, that
slabs exiting a strand caster have to be moved away within tight time windows.
Time is less crucial in the cold-buffer, but the system inherent non-conformity of
input and output sequences becomes much more visible. Obviously, the buffers
constitute a major bottleneck, and a high productivity is desired.

Our Contribution. The stacking problem we describe captures practical sta-
cking processes accurately, yet it defines a general and versatile problem type.
We show that it is PSPACE-complete, even in a quite basic version. It is there-
fore unlikely that there exists an efficient algorithm to compute solutions of a
proven quality for this problem.

We define a state graph for practical stacking problems and develop a state-
valuation function which guides a partial exploration of this typically exponential
graph on all feasible stackings. The result is a kind of dynamic programming
algorithm which computes good solutions for real-world stacking instances fast.

The power of this approach is that it provides sufficient flexibility to model
all constraints that are relevant from a practical point of view and at the same
time also allows us to use different techniques and heuristics to speed-up the
state space exploration. We also report on the effect of a rollout strategy [2],
which gives slightly improved solutions at the expense of a considerable increase
in running time.
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This is the first time that a proof of the solution’s quality for a stacking
problem of this versatility is given. We do so by computing an instance-dependent
lower bound using a mixed integer program. On our industrial data we obtain
solutions that are less than 25% off optimum, usually considerably better.

Related Work. Practical stacking problems have been addressed in the litera-
ture a lot, like in steel production [7,13], container terminals [5,12], in the very
general area of generic planning problems [6], and several more. All of these pa-
pers significantly simplify the problems, in particular the precedence constraints
implied by stacking. Methodologies applied range from simulated annealing [7],
simulations [5], genetic algorithms [13], state space evaluations [3,10], but, to the
best of our knowledge, no principally exact approaches have been suggested.

2 Problem Definition and Hardness Results

We formally describe the stacking problem, omitting a few practically relevant
details; we comment on these where appropriate. Let [n] := {1, . . . , n}.

Incoming items. We have a set I := [n] of incoming items that arrive on m
parallel inputs over time. Each item i ∈ I is associated with a time window
[ri, di] ⊆ R

+; ri is the release time and di the due time of item i. An item i must
be removed from the input within its time window. We may either move it to
one of the k buffer stacks or directly to one of the target stacks defined below.
We assume that at any time at most one item is available at every input.

Buffer stacks. Let S := {S1, . . . , Sk} be a set of k buffer stacks. Stack S ∈ S
can hold up to h(S) items. We write i �S j iff i lies, not necessarily directly, on
top of j in S. We use the same notation for the target stacks defined below. An
allocation of items to stacks C := (S1, . . . , Sk) with their respective positions is
called a configuration. The initial configuration C0 need not be empty. The set
of items that are allocated to the buffer stacks in C0 is denoted by J . The entire
set of items is thus V := I ∪ J .

Stacking constraints. Items may not be placed arbitrarily on top of each other.
We model stacking restrictions by a conflict graph. Let G := (V, A) be a directed
graph with vertex set V and arc set A. Item i ∈ V cannot be placed directly on
top of item j iff (i, j) ∈ A. We call a configuration C = (S1, . . . , Sk) feasible if
every buffer stack S ∈ S contains at most h(S) items and for all i, j ∈ V such
that i lies directly on top of j, we have (i, j) /∈ A. We assume that the initial
configuration C0 is feasible.

Target stacks. We are given a set T := {T1, T2, . . . , T�} of target stacks. Each
target stack Ti ∈ T specifies an order (from first to last) in which the respective
items have to be collected. Every item i ∈ V occurs in at most one target stack;
define ti ∈ T as i’s target stack and let ti := ∅ if no such target stack exists.
Items for no more than w target stacks may be collected in parallel, capturing
the notion of limited space in the exit area of the buffer.
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Once we have started collecting items for a target stack, we may only move
away, or dispose, this target stack when all of its items have been collected.
Additionally, the order in which we dispose target stacks must obey precedence
constraints defined by a partial order ≺T on T : if T1 ≺T T2 for target stacks
T1, T2 ∈ T then T2 can only be disposed after T1 is disposed.

Moves and objective. We have four possible kinds of moves; (a) an item can be
moved from an input to a buffer stack, (b) from an input to its target stack (a
direct move), (c) from the top of a buffer stack to the top of another buffer stack
(this is called restacking), and (d) from the top of a buffer stack to a target
stack.

A move is feasible if it respects all the conditions like time windows,
height bounds, stacking conflicts, accessibility of target stacks, etc. defined above.
Transport times are known, but important for feasibility only, since they are
small as compared to pickup and drop-off times for items. Thus, our goal is to
build all target stacks with a minimum number of feasible moves, starting from
the initial configuration C0. Naturally, this includes determining the exact or-
der in which target stacks are started and disposed. The feasibility version asks
whether some feasible sequence of moves exists to build all target stacks.

Theorem 1. The stacking problem is in PSPACE.

Proof. We exploit Savitch’s Theorem [11] which states the equivalence between
the complexity classes PSPACE and NPSPACE. We can represent any config-
uration of the stacking problem in polynomial space. Moreover, all possible
moves from a given configuration can be computed in polynomial time. We can
therefore perform a nondeterministic search using only polynomial space: In each
step we choose one of the possible moves nondeterministically and only keep track
of the current state. Savitch’s Theorem states that any such nondeterministic
PSPACE algorithm can be transformed into a deterministic one. ��
We show that the feasibility version of the stacking problem is PSPACE-com-
plete using the nondeterministic constraint logic model of computation (NCL)
introduced by Hearn and Demaine [8]. The NCL model is an alternative view on
the complexity class PSPACE. It does not need to adopt a two-player view (like
in reductions from quantified boolean formulas), and is thus much better
suited to our problem.

More formally, we are given an undirected graph Ĝ = (N̂ , Ê) with non-nega-
tive integer weights on the edges and integral minimum inflow constraints for the
nodes. A configuration of Ĝ corresponds to an orientation of the edges such that
for every node the sum of the weights of all incoming edges is at least the mini-
mum inflow constraint of that node. A move from one configuration to another
corresponds to the reversal of a single edge such that all inflow constraints re-
main satisfied. We consider the decision problem whether, starting from a given
initial configuration Ĉ0, there exists a sequence of moves such that a designated
edge can be reversed. This problem is referred to as configuration-to-edge.
It is PSPACE-complete even if Ĝ is a planar and/or graph, i.e., consists of the
very simple or and and nodes only, depicted in Fig. 1 (a) and (b).



Solutions to Real-World Instances of PSPACE-Complete Stacking 733

u
a

bc

(a)

u
a

bc

(b)

a, b, c

S2
uS1

u

(c)

Fig. 1. Illustration of an or (a) and and (b) node. Bold edges have weight two, light
edges have weight one; the minimum inflow constraint is two. For the or node, one
edge can be directed outward iff at least one of the other two edges is directed inward.
For the and node, edge a may be directed outward iff b and c are directed inward. The
gadget for both nodes is depicted in (c).

Theorem 2. The feasibility version of the stacking problem is PSPACE-
complete, even if there are no incoming items, each buffer stack can hold at
most three items, and only one item is requested at a target stack.

Proof. We present a polynomial-time reduction from configuration-to-edge

with an and/or graph Ĝ = (N̂ , Ê) to our stacking problem. To this end, we
construct and and or gadgets that consist of two buffer stacks each. Abusing
notation slightly, we have one item e ∈ I for every edge e ∈ Ê, and every buffer
stack S ∈ S can hold at most two or three items. We consider an edge e directed
outward a node u iff item e is placed on the buffer stacks corresponding to u.

Consider an or node u ∈ N̂ , see Fig. 1(a). Our or gadget consists of two
buffer stacks S1

u and S2
u on which only the items a, b or c can be placed, see

Fig. 1(c). We enforce this restriction by placing dummy items z1
u and z2

u at the
bottom of S1

u and S2
u, respectively, and adding arcs (x, z1

u) and (x, z2
u) for all

x /∈ {a, b, c} to our stacking conflict graph. Imposing a height constraint of two,
we can place at most two items in {a, b, c} on these stacks. Edge x ∈ {a, b, c} is
directed outward of u iff x is placed on S1

u or S2
u, that is, at least one edge must

be directed inward. Clearly, this gadget implements an or node.
Next consider an and node u ∈ N̂ , with incident edges a, b and c, see Fig. 1(b).

Our and gadget again consists of two buffer stacks S1
u and S2

u. Again with the
help of dummy items, we enforce the following placement restrictions. There are
two helper items ha and hb which can be placed on top of each other, and at the
bottom of S1

u or S2
u. The heavy item a can be placed only at the bottom of S1

u or
S2

u. The light items a and b can be placed only at their corresponding helper item
ha and hb, respectively. A height bound of three on S1

u and S2
u now guarantees

that edge a can be directed outward only, if edges b and c are directed inward.
One easily checks that exactly all feasible edge configurations are represented by
a feasible item configuration, so this gadget implements an and node.

For some initial configuration Ĉ0 and a designated edge e ∈ Ê, configu-

ration-to-edge now reduces to the decision problem whether, starting from
the buffer stack configuration corresponding to Ĉ0, there exists a sequence of
moves such that the item e can eventually be moved. This decision problem can
be simulated by letting the dummy item that is hidden by e in the initial buffer
stack configuration be the only item that is requested at the target stack. ��
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In the PSPACE-completeness proof above we exploit crucially that complex
restacking operations may be necessary in order to access a particular item. The
key ingredients seem to be that we start with a non-empty initial configuration
and that every item has only a very limited number of buffer stacks onto which it
can be placed, i.e., the stacking conflict graph is rather dense. The next theorem
shows that the problem remains hard even if we remove these assumptions.

Theorem 3. The problem of deciding whether a given target sequence can be
built without any restacking operations is NP-hard if all buffer stacks have a
uniform height bound of h ≥ 6, even if we start with empty buffer stacks and
there are no conflicts between items.

Proof. We reduce mutual exclusion scheduling [9] for permutation graphs
to our stacking problem. In this problem, we are given a permutation graph
Ĝ(Π) = (N̂ , Ê) of n nodes and a positive integer h. Jansen [9] proved that for
every fixed h ≥ 6, the decision problem whether there exists a partition of N̂
into t independent sets of size at most h is NP-hard.

Let Π = 〈π1, . . . , πn〉 be the permutation of 〈1, . . . , n〉 that defines the permu-
tation graph Ĝ(Π). We define an instance of our stacking problem as follows:
Items appear at the input in the order 〈π1, . . . , πn, n + 1〉 and are requested at
the target stack in the order T = 〈n + 1, n, . . . , 1〉. The buffer stacks are empty
initially and have the same height bound h. It is not difficult to verify that the
target stack T can be built without any restacking operations, i.e., using 2n + 1
moves, iff N̂ can be partitioned into t = k independent sets of size at most h. ��

3 Guided Graph Search

We use graph terminology to specify the state space which is searched for a
solution to the stacking problem: We associate a node with each possible
buffer configuration C and define the neighborhood of a node as the set of all
configurations that can be constructed from C by one feasible move. The notion
of feasibility of a move includes that after the move it must still be possible to
remove all items from the inputs respecting their time windows. The due time
to remove items from their respective input in order to be able to feasibly serve
all inputs can be determined by a simple backward-calculation.

Note that the actual nodes of the state graph do not only consist of a buffer
configuration C but also comprise a time stamp t and a notion of progress made.
This progress includes the items already moved from the inputs, say A, and the
set of target stacks for which items are currently being collected Ω. We call
Σ := (C, t, A, Ω) a state; every state corresponds to exactly one node in the
state graph.

Obviously, it is impossible to generate even only a significant part of the state
graph—already the number of possible buffer configurations is huge. Thus we
use a valuation function on the buffer states to tell us which parts of the graph
are “interesting”. This approach is related to the idea of approximate cost-to-go
functions in dynamic programming [1].
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The definition of a proper valuation function depends on the nature of the
instances to be solved. We give two examples in Sections 3.1 and 3.2. The first
one yields an optimal algorithm for the Towers of Hanoi problem. The latter one
leads to good solutions for instances of our real-world application and may well
be suitable for other applications involving the storage of items on stacks.

The power of this approach is two-fold: On the problem formulation side, all
constraints regarding the structure of the stacks, travel times and the necessity
to respect time windows when removing items from the inputs can easily be
modeled by modifying the rules with which a node’s neighborhood is created;
on the solution side, different techniques can be used for the exploration of the
graph allowing fine-tuning of the algorithm towards speed, robustness, precision,
flexibility or other goals.

3.1 The Towers of Hanoi Example

We formulate the Towers of Hanoi problem as a stacking problem and solve
it optimally by our algorithm using a suitable valuation function. In this case,
there are no arriving items and no constraints for the number and height of the
stacks; only stacking constraints have to be respected.

There are n discs 0, 1, . . . , n − 1 with diameters d(0) > d(1) > · · · > d(n − 1)
and a larger disc may never be stacked on a smaller one. In the beginning, all
discs are stacked feasibly on S1 and the goal is to stack all of them feasibly on
S3 by only moving one disc at a time.

Then following iterative algorithm leads to the unique optimal solution [15].
First, arrange the three stacks S1 (source), S2, and S3 (target) into a triangle
with S1 on the left, S2 on top and S3 on the right. Apply two rules:

(R1) If n is even, move even discs clockwise and odd discs counter-clockwise
only; if n is odd, do it vice versa.

(R2) In move k, starting at 1, move the disc corresponding to the power of the
right-most (i.e., least-significant) 1-bit in the binary representation of k.

These two rules imply the following two facts; we omit their proofs.

(F1) In the unique optimal solution, a disc i is never moved to a non-empty
stack S�, such that the difference between i and the top-most disc j in S�

is even.
(F2) In the unique optimal solution, a disc is only moved to an empty stack if

every other feasible move violates Fact (F1).

We use (F1) and (F2) to define a valuation function. Let e(C) be the number
of empty stacks in a configuration C and v(S�) = 1 if the difference between the
two topmost discs in stack S� is even, and 0 otherwise. Let w > 1 be an arbitrary
number making e(C) a tie-breaker enforcing Fact (F2).

valhanoi(C) := w ·
(

3∑
�=1

v(S�)

)
− e(C) (1)
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Let C1 and C2 be two neighbored configurations in the unique optimal sequence
of moves. Then valhanoi(C2) is the unique minimum among all valhanoi(C),
where C is reached from C1 by a feasible move. Applying our greedy graph
search we thus obtain the unique optimal sequence of moves.

It is easy to see that time and space required by our search are of the same
order as the known lower bounds (see [4]) of Θ(2n) and Θ(n), respectively.

3.2 The Application-Driven Greedy Approach

Given a buffer configuration C = (S1, . . . , Sk) and the set of target stacks T to
be compiled, there is a natural lower bound on the number of moves needed: We
count one move for each item that will be moved from a buffer to a target stack
plus one move for each item which has to be moved out of the way; we will call
the latter the number of false positions in C.

In order to know more precisely which items must be “moved out of the way”,
we determine in a preprocessing step a linear extension <T of the partial order
≺T in which we will begin collecting items for target stacks. This is done by
a simple heuristic, which first orders all target stacks according to the latest
release time of one of their items, and then ensures Ti <T Tj for all Ti, Tj with
Ti ≺T Tj by delaying Tj until directly after Ti in <T if necessary. Now assume
without loss of generality that T1 <T T2 <T . . .

We now define the following partial precedence order on the items: For two
items i, j, we write i ≺ j iff ti <T tj and {ti, tj} �⊆ Ω, or ti = tj and j �ti i.
The number of false positions for item i on stack S is then

false(i, S) := |{j ∈ S : j �S i ∧ i ≺ j}| . (2)

From any configuration C without false positions, we can build all required
target stacks without a single restacking operation. Thus, we define a valuation
function which deems those buffer configurations interesting which have few false
positions.

We introduce a valuation functions valapp on states Σ = (C, t, A, Ω):

valapp(Σ) :=
|T |∑
θ=γ

dγ−θ · valapp
θ (Σ), (3)

where where γ is the smallest index of a target stack not yet disposed and d ≤ 1 is
some discount factor determining how fast the weight of false positions decreases
for target stacks to be compiled in the future,

valapp
θ (Σ) :=

k∑
�=1

∑
i∈S�∩Tθ

false(i, S�) ∀θ = γ, . . . , |T | (4)

accounts for the total number of false positions for items in Tθ.
Note that the sum of all false position in a configuration constitutes a lower

bound on the number of necessary moves only with respect to <T . Theoretically,
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starting to collect items for target stacks in a different order may lead to a better
solution. Yet we have found that the number of false positions computed with
respect to ≺T only is too weak of a bound to be of any help in the state space
search.

In view of some uncertainty in related processes and the strict bounds on
computation time prescribed by the slab stacking application, the most impor-
tant features of the used algorithm are speed and the ability to react to changes
in data. The latter can naturally be achieved by defining the state of the buffer
after a change in data as a new initial state and rerunning the algorithm, making
the speed of the algorithm an even more important goal for practical purposes.

Thus, a fast greedy variant of the graph search procedure is used, which in
each current node of the state graph computes the valuation function for all
neighboring nodes and picks the one with best value. To break ties, we prefer
moves which take less time and try to maintain as many unused stacks in the
buffer as possible. Somewhat surprisingly, this simple and extremely fast search
strategy leads to good solutions to practical instances, as described in Section 5.

An additional parameter, the lookahead f , is introduced to speed up the cal-
culation of the valuation function for each buffer state, especially for instances
where data is available for many future target stacks: Instead of considering all
values valapp

θ in (3), we only take the first f + 1 values into account; i.e., we
replace |T | by γ + f in (3). The effects of different choices for f for the practical
instances are described in Section 5.

Note that this valuation function favors buffer states in which items can be
moved to a target stack, but does not yet encourage the algorithm to actually
do so. Thus, we introduce an additional rule for the choice of a neighbor, always
preferring a state which moves an item to a target stack over one that does not.
The order in which the algorithm starts to build the target stacks is computed
in a preprocessing step by the following simple rule: Build those target stacks
first, for which all items have arrived at the buffer the earliest while respecting
precedence constraints on the target stacks where necessary.

In Section 5, we also report on the effects of combining our greedy algorithm
with a rollout strategy [2]. Due to space limitations, we only sketch the basic idea
here: If we have reached a state Σ in our state graph, we run the greedy algo-
rithm from each neighboring state and then continue with the state that returns
the mimimum number of moves. Clearly, this approach entails computational
overhead, but may improve the solution quality.

4 Lower Bounds from a Combinatorial Relaxation

In order to assess the quality of our solutions we compute lower bounds on the
optimal number of moves per instance. If the initial configuration is non-empty,
one may count how many items on top of an item are needed later and thus have
to be moved away. This bound is used for the cold-buffer instances below.

A more elaborate technique is needed for the hot-buffer instances. We
formulate a mixed integer program (MIP) and derive a bound from its linear
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programming (LP) relaxation. However, an MIP which captures the stacking

problem in full detail is far from being computationally tractable. In fact, in
order to represent an exponential solution one would have to work explicitly with
an exponential number of variables.

Instead, we devise a non-obvious but surprisingly useful combinatorial relax-
ation of the problem, which is mainly based on the time windows at the inputs:
We assume a sufficiently large number k ≥ n of stacks. This implies that we
need not take care of infeasible buffer configurations because each item can use
its own stack. As a consequence, we disregard the concept of stacks and con-
flicts at all, except for target stacks. The objective is to maximize the number of
direct moves from the inputs to the target stacks. For this relaxation, the MIP
computes a best possible linear extension <T of the partial order ≺T in which
to begin collecting items for target stacks.

Even though the MIP is deprived the essential stacking character, it turns out
that the LP relaxation gives a good lower bound in practice, see the hot-buffer
instances in Section 5.

5 Computational Results

We tested two different sets of industrial instances supplied by PSI-BT: hot-
buffer instances with few buffer stacks and tight time windows and cold-buffer
instances with many more buffer stacks, but without incoming items. In both
cases, all target stacks need to be built with a minimum number of moves. All
experiments were performed on a standard PC running Linux.

Hot-buffer instances. The time horizon for these instances is up to 12 hours. All
instances have 3 strand caster inputs, 3 target stacks can be built in parallel.
The number of buffer stacks varies between 14 and 16. The crane can transport
one item at a time. The numbers of needed moves are stated in Table 1.

Table 1. Solution quality for the hot-buffer instances of the greedy algorithm (and
rollout enhancement). LB refers to the MIP lower bound described in Section 4.

v1 v2a v2b v3
LB 325 496 251 732
greedy 362 561 264 794
gap (%) 10.2 11.6 4.9 7.8
rollout 359 538 260 785
gap (%) 9.5 7.8 3.5 6.8

The runtime for the greedy algorithm is less than 0.1 seconds per move. The
optimality gap is below 12% and can be improved to less than 10% using a
rollout strategy. An optimal integer solution to the MIP was computed using
the commercial solver CPLEX 10.1 within some minutes to a few hours. No
integer solution was found for instances v3 and we used the LP bound instead.
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Unfortunately, no data about the crane transports that are nowadays per-
formed by the manual operators is available. However, the steel plant states that
at least about half of all transports are restacking operations, while in our solu-
tions they account to less than 20%. This suggests the buffer performance could
be greatly improved by the implementation of our algorithm in practice.

Cold-buffer instances. All instances have 50 buffer stacks, and 5 target stacks
can be built simultaneously. There are no incoming items and therefore our
MIP lower bound does not apply. The crane can transport several items, up to
a maximum weight limit, simultaneously. Again, numbers of needed moves are
given in Table 2.

Table 2. Solution quality for the cold-buffer instances of the greedy algorithm (and
rollout enhancement). LB is the simple lower bound counting false positions.

aa1 aa2 aa3 aa4 ab1 ab2 ab3 ab4 ab5 ab6 ab7 ab8 ab9 ab10
LB 30 52 109 109 105 111 108 103 104 103 110 110 113 104
greedy 36 64 128 126 131 135 126 125 119 126 129 130 129 118
gap (%) 20.0 23.1 17.4 15.6 24.8 21.6 16.7 21.4 14.4 22.3 17.3 18.2 14.2 13.5
rollout 34 60 119 120 124 125 117 114 115 113 122 122 120 113
gap (%) 13.3 15.4 9.2 10.1 18.1 12.6 8.3 10.7 10.6 9.7 10.9 10.9 6.2 8.7

For these instances, more than 50% of the overall moves are restacking moves.
Our algorithm needs less than 3 seconds per move. The solution quality is below
25%, despite the large share of restacking moves.

In all our experiments, the computational overhead produced by the rollout
strategy was enourmous (increase in runtime by a factor of more than 1000),
while the gain in quality is marginal—the application of this method in practice
is therefore not conceivable.

6 Discussion

A major difficulty in developing better lower bounds is to capture the problem-
inherent restacking operations.

The Towers of Hanoi example shows that exponentially many restacking op-
erations may be needed; also our PSPACE-completeness proof relies crucially
on these operations. On the other hand, in our practical instances we observed
only a rather small number of restacking moves. It would be very interesting to
characterize the hardness of an instance by means of its “restacking complexity”.
Yet, in an ongoing work, we have experienced that such a characterization is not
obvious at all, even for two buffer stacks only.

One may argue that a solution quality of 25% off optimum is rather weak.
Three comments are in order here. First, we conjecture that the quality of the
computed solutions is much better than what we are able to prove. Second, in the
area of approximation algorithms, an approximation factor of 5/4 is considered
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to be very good for a problem that does certainly not admit a PTAS. Third, in
recent years we have witnessed tremendous advances in the area of computational
combinatorial optimization, in particular mixed integer programming. We believe
that striving for close-to-optimal solutions is a necessary and fruitful step in
advancing the field even further.

We hope that our results encourage further investigations concerning the ap-
plicability of discrete optimization to PSPACE-complete problems. The practical
relevance of these approaches in industry is evident. In fact, a prototype imple-
mentation of our algorithm is used to evaluate the buffer performance of two
steel plants already. Animated visualizations of our stacking plans were shown
to several practitioners, who were quite impressed by the low share of restacking
operations and the anticipation of slabs needed on target stacks in the future.
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