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Abstract We present an integer programming approach to the university course timetabling
problem, in which weekly lectures have to be scheduled and assigned to rooms. Students’
curricula impose restrictions as to which courses may not be scheduled in parallel. Besides
some hard constraints (no two courses in the same room at the same time, etc.), there are
several soft constraints in practice which give a convenient structure to timetables; these
should be met as well as possible.

We report on solving benchmark instances from the literature and the 2nd International
Timetabling Competition which are based on real data from the university of Udine. The
first set is solved to proven optimality; for the second set we give solutions which on av-
erage compete well with or beat the previously best known solutions. Our algorithm is not
an overall winner, but it is very robust in the sense that it deterministically gives satisfac-
tory lower and upper bounds in reasonable computation time without particular tuning. For
slightly larger instances from the literature our approach shows significant potential as it
considerably beats previous benchmarks. We further present solutions of proven quality to
a few much larger instances with more elaborate hard constraints.

Keywords Integer programming · Decomposition · University course timetabling

1 Introduction

The curriculum based course timetabling problem is to assign weekly lectures to time pe-
riods and rooms in such a way that a number of obvious hard constraints are fulfilled: a
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teacher can only teach one course at a time, a lecture room cannot host two courses si-
multaneously, courses of the same curriculum must not be scheduled in parallel, etc. If
this is impossible, the number of violations is to be minimized. Furthermore, several soft
constraints should be met as well as possible; these typically give desired structural prop-
erties like coherent daily time slots for lectures of the same curriculum, etc. This prob-
lem, also known as (curriculum based) university course timetabling, received much at-
tention in the operations research literature, see the surveys (Burke and Petrovic 2002;
Schaerf 1999), not least due to the fact that practical data is available for benchmarking, in
particular instances from the university of Udine (Di Gaspero and Schaerf 2003, 2006). In
ITC2007, the second International Timetabling Competition (www.cs.qub.ac.uk/itc2007),
more benchmarks from Udine were provided (Di Gaspero et al. 2007; McCollum et al.
2009), together with extended problem definitions, in particular for the soft constraints.

In this paper, we report for the first time on solving the four original Udine instances
to proven optimality (which is also, but certainly not only due to the fact that they became
rather easy for modern integer programming solvers), and give solutions to the 2007 in-
stances which do not violate any hard constraint. Here it turns out that we are able to very
well compete with, and often beat the strongest known, tailored solution methods which
are based on heuristics. We furthermore provide solutions to instances derived from prac-
tical data from Berlin’s Technical University which feature slightly more elaborate hard
constraints.

We approach the problem (which is NP-hard) via integer programming, as has been pro-
posed before, see e.g., Burke et al. (2007, 2008b, 2008), Carter (2001), Daskalaki and Birbas
(2005), Daskalaki et al. (2004), Qualizza and Serafini (2005), Schimmelpfeng and Helber
(2007). However, instead of directly solving a natural formulation based on three-indexed
variables for the course/time/room assignment, we decompose the problem in two stages. In
the first stage, we only match time periods and lectures; these pairs are then feasibly assigned
to rooms in a second step. This decomposition is exact with respect to hard constraints, that
is, no solutions are lost. This can be achieved by implicitly taking care about feasibility for
room assignments already in the first stage. Overall, this approach results in easier integer
programs, and thus larger instances can be solved.

University course timetabling

Each course consists of several lectures, each day consists of several time slots. A pair of
day and time slot is called a period. A curriculum is a set of courses no two of which may be
scheduled in parallel. Every lecture has to be scheduled to a period in a room which provides
enough seats to host the lecture (in our Berlin instances, each room must also provide the
requested features like projector, PC, blackboard, location, etc.). No two courses by the
same teacher or which appear in the same curriculum may be scheduled at the same period;
no two courses may take place at the same period in the same room. All these constraints
are considered hard. We defer the subtleties of soft constraints to our discussion on how to
formulate them in our integer programs in Sect. 3.

In a companion paper (Lach and Lübbecke 2008) we developed the theoretical back-
ground for our decomposition which considered hard constraints only. Here, we report on
how to make it useful in practice, in particular, we state how to incorporate a variety of soft
constraints.

http://www.cs.qub.ac.uk/itc2007
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2 The hard constraint solver framework

Our focus is on meeting all hard constraints (resp. as many as possible); thus, the core of our
model is built around this goal. Soft constraints are added as needed; see Sect. 3.

Denote by C the set of courses, by R the set of rooms, and by P the set of periods. For
each course c ∈ C we know its eligible periods P (c) ⊆ P , eligible rooms R(c) ⊆ R, and
that �(c) lectures have to be scheduled; that is, we have to provide �(c) different periods
for course c. As an example objective function (we use in Berlin) we formulate teachers’
preferences prio(c,p) for course/period combinations; the smaller the number, the higher
the priority.

Time conflicts of any kind are represented via a conflict graph Gconf = (Vconf,Econf):
A vertex (c,p) represents an eligible combination of course c and period p (and our
model has a binary variable xc,p ∈ {0,1} for each such combination). Two nodes (c1,p1)

and (c2,p2) are adjacent iff it is forbidden that c1 is scheduled at p1 and c2 is scheduled at
p2 (typically, p1 = p2). This stable set characteristic of the problem motivated several re-
searchers to relate timetabling to graph coloring, see e.g., Burke et al. (2007), and references
therein.

Instead of using binary variables which represent whether course c is scheduled at period
p in room r , we reduce the problem in three dimensions to a problem in two dimensions,
implicitly taking care of room conflicts. To this end, we represent eligible combinations of
courses and rooms as undirected bipartite graphs Gp = (Cp ∪ Rp,Ep), one for every period
p ∈ P . Courses which may be scheduled at p are given in set Cp , and Rp denotes the set of
all eligible rooms for all courses in Cp . A course c and a room r are adjacent iff r is eligible
for c. For ease of exposition let G = (C ∪ R,E) be the graph consisting of all components
Gp , p ∈ P .

For a subset U ⊆ C of vertices, denote by �(U) := {i ∈ R | j ∈ U, (i, j) ∈ E} the neigh-
borhood of U . Hall’s stable marriage theorem (Lovász and Plummer 1986) states that a
bipartite graph G = (C ∪ R,E) has a matching of all vertices in C into R if and only if
|�(U)| ≥ |U | for all U ⊆ C . Enforcing this condition, we are able to schedule courses in
such a way that rooms can be assigned later.

We call this the first stage of the decomposition. The resulting integer program obviously
has an exponential number of constraints (3), and we give details in Lach and Lübbecke
(2008) on how to cope with this (and why in practice there are not too many of them).

min
∑

(c,p)∈Vconf

prio(c,p) · xc,p (1)

s.t.
∑

p∈P(c)

xc,p = �(c) ∀c ∈ C, (2)

∑

c∈U

xc,p ≤ |�(U)| ∀U ⊆ C, p ∈ P, (3)

xc1,p1 + xc2,p2 ≤ 1 ∀((c1,p1), (c2,p2)) ∈ Econf, (4)

xc,p ∈ {0,1} ∀(c,p) ∈ Vconf. (5)

Once this program is solved, the second stage of the decomposition merely consists of
solving a sequence of minimum weight bipartite perfect matching problems in polynomial
time, one for each period p ∈ P . Clearly, this decomposition approach is exact, that is, in
principle it deterministically finds optimal solutions, provided one allows enough running
time.
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3 Integrating soft constraints

Besides mandatory constraints there is a wealth of possibilities for constraints which cannot
be kept in general, but best possibly fulfilling them gives desired structures to timetables.
For these soft constraints, we stick to the definitions from ITC2007, see again Di Gaspero
et al. (2007) and the more recent McCollum et al. (2009). Four types are mentioned (and
defined below): RoomCapacity (RC), MinimumWorkingDays (MWD), CurriculumCompact-
ness (CC), and RoomStability (RS). The first three can easily be included in the first stage
of the decomposition. On the other hand, the RS constraints need to go in the second stage,
and are ignored in the first. As a consequence, we theoretically may miss a globally opti-
mal solution, even when both stages are optimally solved. However, in that case, solution
quality would not significantly decrease since the RS constraints are the least important soft
constraints. Penalties for violations are taken from Di Gaspero et al. (2007) and McCollum
et al. (2009).

3.1 RoomCapacity constraints

A room should provide as many seats as requested by each assigned course. A penalty occurs
for each missing seat. This constraint is a hard constraint in our original (Berlin) framework;
ITC2007, however, treats it as soft. One might expect to handle room capacity in the second
stage of the decomposition, but a modification of Hall’s conditions (3) already does the job.

Let p be an arbitrary but fixed period. Hall’s conditions (3) are replaced by the following
set of constraints. We first require the number of courses that can take place at p to be at
most the number of available rooms:

∑

c∈C

xc,p ≤ |R| ∀p ∈ P. (6)

This avoids conflicts in the assignment of rooms. Next, we introduce constraints that take
the different room capacities and demands of the courses into account. Let set S contain the
different room capacities. Let C≥s denote all courses with demand larger than s; and R≥s

denotes rooms with capacity more than s seats. For each s ∈ S , except the biggest, and for all
c ∈ C≥s there is a three-indexed binary variable ys,c,p . If all rooms would dispose of different
capacities, we would introduce here another three-indexed problem formulation based on a
course/time/room assignment. But if many rooms share the same capacity, which is often the
case in real-world problems, the amount of the three-indexed ys,c,p variables is reasonably
large. So for real-world problems this constraint can be integrated in our decomposition
model without breaking the basic idea of this approach. We then add for all p ∈ P and all
s ∈ S

xc,p − ys,c,p ≥ 0 c ∈ C≥s , (7)
∑

c∈C≥s

xc,p − ys,c,p ≤ |R≥s |. (8)

Variable ys,c,p is set to one if course c takes place in a room of capacity smaller than s. By
constraint (8) we ensure that this does not happen for more courses than we have rooms
of appropriate capacity; otherwise, we incur a penalty which is considered in the objective
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function. Variable ysi ,c,p receives the coefficient objsi ,c,p which mainly reflects the difference
between the demand dem(c) of course c and si . We define objsi ,c,p as:

objsi ,c,p := min{dem(c) − si, si+1 − si}. (9)

We add to the objective function (1)

∑

c∈C≥s

objs,c,p · ys,c,p. (10)

3.2 MinimumWorkingDay constraints

For each course c we specify a minimum number mnd(c) of days, among which its lectures
should be distributed. This constraint goes into the first decomposition stage. We introduce
a binary variable zc,d for every course c and every eligible day d for this course. Now we
add

∑

p∈d

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D. (11)

So, zc,d can be set to one only if course c takes place at some period of day d . Furthermore,
we introduce another integer variable wc and the following constraint:

∑

d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C. (12)

Obviously, variable wc may take value zero only if course c takes place on more than
mnd(c) − 1 days. According to the penalty system introduced in Di Gaspero et al. (2007),
McCollum et al. (2009) we add to the objective function (1)

∑

c∈C

5 · wc. (13)

3.3 CurriculumCompactness constraints

For every curriculum, the corresponding courses should take place consecutively over a day.
We will see that, even though easily incorporated in the first stage, these soft constraints
have a negative influence on solution times. For every period p ∈ P and every curriculum
cu ∈ C U we introduce a binary variable rp,cu and the following constraint:

∑

c∈cu

xc,p − rcu,p = 0 ∀cu ∈ C U , p ∈ P. (14)

Variable rcu,p assumes value one if some course of curriculum cu takes place at period p,
and zero otherwise. Note that constraints (14) imply the stable set conditions (4) for curricu-
lum conflicts. Again with the help of binary indicator variables vcu,p we model curriculum
compactness:

−rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ C U , p ∈ P. (15)

If period p is the last of the day the term rcu,p+1 is omitted, and if p is the first period of
the day the term rcu,p−1 is omitted. Obviously, vcu,p has to be set to one if the curriculum
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cu has an isolated lecture at period p. Consequently, the following term is added to the
objective (1):

∑

cu∈C U ,p∈P

2 · vcu,p. (16)

3.4 RoomStability constraints

Room stability encourages all lectures of a course to take place in the same room. In contrast
to the previous soft constraints, we currently see no way to respect this already in the first
stage. As a consequence, the perfect matching structure of the second stage is destroyed, in
particular integrality of solutions is lost, and we have to resort to integer programming. The
negative impact on running times is significant.

As will be seen in Sect. 3.6 the IP Formulation of the second stage still resembles the
standard matching formulation on bipartite graphs. We introduce binary variables uc,pvr,p

which assume value one iff course c takes place in room r at period p. Furthermore, we add
binary variables yc,r for each course c and each eligible room r , which are included via

∑

p∈P

uc,pvr,p − |P| · yc,r ≤ 0 ∀c ∈ C, ∀r ∈ R. (17)

Variable yc,r must assume value one, if course c takes place in room r at least once. The
second stage objective function reads

∑

c∈C,r∈R

yc,r . (18)

Clearly, if (18) is minimized over all feasible course/room assignments, the RS constraint
is fulfilled best possibly according to the underlying bipartite graph. But as we will see,
the bipartite graph depends on the solution of the first decomposition stage. It is therefore
possible (and it happens) that the obtained solution is not a globally optimal one.

3.5 IP Formulation for the first stage

The introduction of soft constraints resulted in a significantly altered model as compared
to (1)–(5), not only visibly but also in terms of combinatorial structures. It turns out that this
has a negative impact on computation times. The only constraint we did not yet take care of
is that no two courses by the same teacher may be scheduled in parallel. Denote by T the
set of teachers, and by C(t) the courses given by teacher t ∈ T .

min
∑

p∈P,s∈S,c∈C≥s

objs,c,p · ys,c,p +
∑

c∈C

5 · wc +
∑

cu∈C U ,p∈P

2 · rcu,p

subject to
∑

p∈P

xc,p = l(c) ∀c ∈ C,

∑

c∈C

xc,p ≤ |R| ∀p ∈ P,

xc,p − ys,c,p ≥ 0 ∀s ∈ S, c ∈ C≥s , p ∈ P,
∑

c∈C≥s

xc,p − ys,c,p ≤ |R≥s | ∀s ∈ S, p ∈ P,

∑

p∈d

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D,



Ann Oper Res

∑

d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C,

∑

c∈cu

xc,p − rcu,p = 0 ∀cu ∈ C U , p ∈ P,

− rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ C U , p ∈ P,
∑

c∈C(t)

xc,p ≤ 1 ∀t ∈ T , p ∈ P,

rcu,p ∈ {0,1},
vcu,p ∈ {0,1},
wc ∈ Z+,

xc,p ∈ {0,1},
ys,c,p ∈ {0,1},
zc,d ∈ {0,1}.

3.6 IP formulation for the second stage

Originally, the second stage was to solve a minimum cost perfect matching problem for each
period. The situation is more involved in light of the soft constraints. Let G = (U ∪ V,E)

be a bipartite graph with node set U ∪ V defined according to the values x∗
c,p of variables

xc,p obtained in the first stage. Let cap(r) denote the capacity of room r and dem(c) denote
the seat demand of course c. Given a solution x∗ the graph G is defined as follows for each
p ∈ P :

U = {uc,p : x∗
c,p = 1, c ∈ C},

V = {vr,p : r ∈ R},

E =
{

uc,pvr,p if ys,c,p = 0 and dem(c) ≤ cap(r),

uc,pvr,p if ys,c,p = 1, dem(c) > cap(r), cap(r) = max{cap(r̂) : cap(r̂) < dem(c)}.
We denote for x ∈ U ∪ V by δ(x) = {e ∈ E : ∃y ∈ U ∪ V, e = xy ∨ e = yx} the cut of x in
G. Then, the integer program for the second stage reads as

min
∑

c∈C,r∈R

yc,r

subject to
∑

p∈P

uc,pvr,p − |P| · yc,r ≤ 0 ∀c ∈ C, r ∈ R, (19)

∑

uc,pvr,p∈δ(uc,p)

uc,pvr,p = 1 ∀uc,p ∈ U, (20)

∑

uc,pvr,p∈δ(vr,p)

uc,pvr,p ≤ 1 ∀vr,p ∈ V, (21)

uc,pvr,p ∈ {0,1},
yr,p ∈ {0,1}.

The constraints consist of two different parts. The RS constraints are given in (19),
cf. (17). Constraints (20) and (21) are from the standard formulation of a (one-sided per-
fect) matching in a bipartite graph, ensuring that each course gets one room assigned in a
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period when it takes place (20), and that no room is occupied more than once at the same
time (21).

4 Extensions

In Di Gaspero et al. (2007) and McCollum et al. (2009) several more constraints are men-
tioned which are relevant in practice, but do not appear in the ITC2007 competition’s prob-
lem definition for the purpose of a cleaner presentation. The authors state that “if in the
future this formulation will prove to be inappropriate (e.g., too simple), some features could
be reintroduced for future research.” In this section we demonstrate how to incorporate all
of them into our model; some experience is given in Sect. 5.

It is an advantage of our decomposition approach that several constraints, in particular
those relating to rooms, are easily dealt with, some are even automatically satisfied. Condi-
tions depending on the curriculum can be modeled via the rcu,p variables but require new
constraints in the decomposition’s first stage IP formulation from Sect. 3.5.

4.1 Lunch break for students

For each curriculum cu and a day d let p1,p2 be the periods around noon. Then we add the
following constraint:

rcu,p1 + rcu,p2 − lcu,d ≤ 1. (22)

If curriculum cu cannot have a lunch break, because courses are scheduled around noon on
day d , the binary variable lcu,d has to be set to one. This is penalized in the objective function
with two units per violation.

4.2 Specific patterns in curriculum compactness

This soft constraint is only sloppily defined in Di Gaspero et al. (2007) and McCollum et al.
(2009), but individually penalizing specific patterns of non-contiguous lectures of courses
in a curriculum can be done by encoding them similarly to the pattern in constraint (15).

4.3 Curriculum dependent maximum student dayload

The maximal number dload of courses a student should take in a given curriculum cu per
day d can be softly limited in the same way as we encourage lunch breaks. Let p1, . . . , pk

be the periods of day d , then we add a constraint

k∑

i=1

rcu,pi
− dlcu,d ≤ dload. (23)

The integer variable dlcu,d assumes a strictly positive value if the maximum dayload is ex-
ceeded. Every violation is penalized with four units.

4.4 Consecutiveness of lectures

Some lectures have to be (or must not be) scheduled in consecutive periods. Two parts
of the formulation need to be changed. The stable set conditions (4) based on the conflict
graph can be adapted straight forwardly. It is more complicated, yet doable, to adjust Hall’s
conditions (3), but the discussion is too involved for the scope of this paper.
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4.5 Room unavailability

If a room is not available at some period p, this room simply does not appear in the cor-
responding bipartite graph Gp , and is omitted in the Hall’s conditions (3) or equivalent
constraints for this period.

4.6 Appropriate room sizes

A lecture should not take place in a too large room. This requirement is symmetric to the
room capacity constraints, and is modeled in an analogous way. Again, let S be the set of
different room capacities. For all except the largest s ∈ S we introduce further constraints.
By C≤s we denote all courses with demand no greater than s, and by R≤s denote the rooms
with capacity no greater than s. Given s ∈ S , for all c ∈ C≤s we introduce a binary variable
ts,c,p with meaning symmetric to variables ys,c,p in Sect. 3.1. We add constraints

xc,p − ts,c,p ≥ 0 ∀s ∈ S c ∈ C≤s (24)
∑

c∈C≤s

xc,p − ts,c,p ≤ |R≤s | ∀s ∈ S (25)

A penalty reflecting the difference between s and the seat demand of course c is incurred
for using ts,c,p .

4.7 Complex weights for soft constraint violations

By our use of binary indicator variables for each individual violation of a soft constraint
(that is, for each single curriculum, day, period, or room) we may give individual penalties,
in particular depending on the number of students which take a given course.

4.8 Teacher preferences

Teachers may express priorities reflecting when they prefer (not) to teach. This is the original
objective function used e.g., at TU Berlin; we formulated this objective in Sect. 2.

5 Computational study

We report on three different sets of experiments. In the first (Sect. 5.1), we deal with “the
Udine instances,” in particular those used at ITC2007. The second set (Sect. 5.2) contains
somewhat larger instances from a recent paper by Cesco et al. (2008). For both sets we con-
sider both, the “basic” formulation (Di Gaspero and Schaerf 2006) (without RS constraints),
and the “extended” formulation (Di Gaspero et al. 2007; McCollum et al. 2009) with all four
types of soft constraints. The final (smallest) set (Sect. 5.3) contains much larger instances
with only hard constraints. This last set reflects the timetabling situation at the Technical
University of Berlin. All experiments were run on a 3.4 GHz Linux PC with 1 GB memory;
unless specified otherwise, we solved integer programs with CPLEX 11.0.1. The reported
optimality gaps were computed relative to the upper bound, i.e., as (upper bound–lower
bound) / upper bound.

The curriculum-based course timetabling web site http://tabu.diegm.uniud.it/ctt/ is most
helpful in making results comparable. First of all, they offer a solution validator which we

http://tabu.diegm.uniud.it/ctt/


Ann Oper Res

used, of course, to validate our results (solution files can be requested from the authors
by email). From the same web site one can download a program to benchmark machine
speed. In our computations, one CPU time unit corresponds to the time allowed for one
run in the ITC2007 competition: This should be around 400 seconds on a reasonable PC.
For ITC2007, the program of every finalist was run 10 times, each time with a different
random seed. Thus, it took 10 CPU time units to achieve their respective best solutions.
Sometimes, the competition winner Tomáš Müller (2008) did not achieve the overall best
result for an instance. Since we also compare ourselves against these overall best solutions
of all of the five finalists, we say that it took 5·10 CPU time units to obtain these solutions.
When we compare ourselves to the best solutions by the university of Udine’s Scheduling
and Timetabling Group (SaTT) we assumed they used 40 CPU time units since they started
40 runs to obtain their best results. Since in contrast our approach is entirely deterministic, it
is fair to allow ourselves a solution time equivalent to what is used in total in the respective
runs of these various groups.

There are several (similar) tables, and if you are in a rush, the most important conclusions
can be drawn from Tables 2, 4, 6, and 8.

5.1 The Udine benchmark instances

5.1.1 The original benchmarks from Di Gaspero and Schaerf (2003), Di Gaspero and
Schaerf (2006)

In Table 1 we list for the first time proven optimal solutions for all the four instances used in
Di Gaspero and Schaerf (2003, 2006), in particular test4 was unsolved within the given
time limits. These original instances do not feature RS constraints.

For all except the last instance, running times are quite short. Taking into account that no
previous approach has produced optimal results for all four instances, this is remarkable and
demonstrates the usefulness of our approach. Among all soft constraints, curriculum com-
pactness (CC) appears to destroy the combinatorial structure of the timetabling problem the
most. An impressive proof for this is given in Table 1 where these constraints are dropped.

5.1.2 The role of the solver

It should be mentioned that the last years have seen great improvements in integer program-
ming solvers, so one might suspect that our ability to solve test1–4 is mainly due to this
fact; however, with the several years old CPLEX9 we are able to produce optimal solutions

Table 1 Optimal solutions values for the Udine problem instances (basic formulation Di Gaspero and
Schaerf 2006). We list instance names, our objective function values (soft constraint penalties), and the CPU
time needed for computations. On the right the we see the results when the CC constraints are omitted

Instance Basic formulation Without CC constraint

(Di Gaspero and Schaerf 2006)

obj CPU sec. obj CPU sec.

test1 212 15.40 200 0.14

test2 8 6.31 0 0.08

test3 35 82.33 5 0.11

test4 27 1607.30 0 0.17
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to the first three instances within computation times comparable to those in Table 1, and a
very good solution for test4 (value 29) in about an hour. However, actually proving this
quality is not possible with CPLEX9, since the lower bound does not improve at all (the
zero-half cuts of later CPLEXes do help a lot in this respect).

In order to check the necessity of a commercial solver in the first place we tested
the non commercial, open source solvers SCIP (Achterberg 2009) (scip.zib.de) and CBC
(www.coin-or.org/Cbc/) to solve our integer programs. These could not match the good run-
ning times of the commercial solver CPLEX. The use of a commercial solver (and thus, the
possible lack of reproducibility of results on any machine) is, in fact, the reason why we did
not submit our results to the ITC2007 competition.

5.1.3 Benchmarks from ITC2007

The second International Timetabling Competition, ITC2007, extended the definition of soft
constraints by adding room stability (RS). Seven instances (comp01–07) were provided at
the outset of the competition, seven more (comp08–14) followed closer to the deadline
(and seven more after the deadline, but these are not yet available to us). Table 2 lists our
results. As one can see we are always (except twice) better than the average run of the
ITC2007 winner, and we are very competitive with the respective best results obtained by
all the five finalists. Results obtained in Table 2 are with CPLEX’ zero-half cuts turned on.

Table 2 We compare ourselves against the university of Udine’s Scheduling and Timetabling Group (SaTT),
against the objective of the ITC2007 winner, averaged over all his 10 runs, against his respective best run,
and against the overall best run of all the five finalists

Basic formulation Extended formulation

(Di Gaspero (Di Gaspero et al. 2007; McCollum et al. 2009)

and Schaerf

2006)

ITC2007 SaTT us

Instance SaTT us winner avg winner best finalists best

comp01 4 4 5.0 5 5 5 13

comp02 35 31 61.3 51 50 75 43

comp03 52 42 94.8 84 71 93 76

comp04 21 18 42.8 37 35 45 38

comp05 244 253 343.5 330 309 326 314

comp06 27 16 56.8 48 48 62 41

comp07 13 3 33.9 20 20 38 19

comp08 24 20 46.5 41 40 50 43

comp09 61 59 113.1 109 105 119 102

comp10 10 8 21.3 16 16 27 14

comp11 0 0 0.0 0 0 0 0

comp12 268 316 351.6 333 333 358 405

comp13 38 33 73.9 66 66 77 68

comp14 30 29 61.8 59 57 59 54

CPU time units 40 10 1 10 50 40 10

http://scip.zib.de
http://www.coin-or.org/Cbc/
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Table 3 Computation times for ITC2007 (extended formulation Di Gaspero et al. 2007; McCollum et al.
2009) listed separately for the two decomposition stages (in seconds), for time limits of a total of 1, 10,
and 40 CPU time units in the different subtables (a)–(c) (detailed limits on the two stages are given in the
respective headings). We report (in that order) the instance name, the objective function value (plus lower
bound and optimality gap), and the time to reach that solution. As a reference we also give the objective
value of and the time to reach the first feasible integer solution. Information on the second stage is similar.
Computation times listed in this table are rather coarsely reported and only serve as an indicator. CPLEX11
is used with default parameter settings

(a) Overall time limit: 1 CPU time unit

Instance stage 1 (time limit: 300 sec.) stage 2 (time limit: 80 sec.) total

obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj

comp01 4 4.00 0.00 <5 4 <5 8 <1 8 <1 12

comp02 273 0.00 100.00 120 430 <50 16 20 147 2 239

comp03 191 0.00 100.00 261 468 <10 3 60 143 10 194

comp04 36 21.90 39.15 264 358 <5 8 40 144 10 44

comp05 956 91.83 90.39 290 1241 <90 9 <1 16 <1 965

comp06 346 7.00 97.98 280 541 <100 49 80 180 3 395

comp07 448 0.00 100.00 290 525 <190 68 80 225 3 525

comp08 39 29.20 25.11 190 344 <4 39 70 173 4 78

comp09 113 36.89 67.35 290 444 <2 2 80 160 2 115

comp10 194 2.00 98.97 200 425 <110 41 60 207 2 235

comp11 0 0.00 0.00 <1 0 <1 7 <1 7 <1 7

comp12 1119 28.08 97.49 290 1119 290 3 4 77 <1 1122

comp13 75 32.17 57.11 270 492 <3 23 80 161 2 98

comp14 110 39.50 71.79 290 449 <20 3 80 141 1 113

(b) Overall time limit: 10 CPU time units

Instance stage 1 (time limit: 3300 sec.) stage 2 (time limit: 500 sec.) total

obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj

comp01 4 4.00 0.00 <5 4 <5 8 <1 8 <1 12

comp02 93 8.00 91.40 ∼3000 430 <120 0 208 138 2 93

comp03 84 0.00 100.00 3140 468 <40 2 300 132 10 86

comp04 35 27.43 21.61 2960 358 <5 5 330 145 10 41

comp05 463 24.30 95.26 2800 1241 <430 5 <1 13 <1 468

comp06 66 10.00 84.85 ∼3000 541 <300 13 300 181 3 79

comp07 8 2.00 75.00 ∼2000 525 <360 20 413 234 3 28

comp08 37 34.00 8.11 2990 344 <10 11 200 177 4 48

comp09 106 41.00 60.79 3280 444 <2 0 439 169 2 106

comp10 4 4.00 0.00 2385 425 <220 40 130 207 2 44

comp11 0 0.00 0.00 <1 0 <1 7 <1 7 <1 7

comp12 657 31.28 95.24 ∼2500 1119 290 0 4 81 <1 657

comp13 61 38.60 36.72 ∼1930 492 <3 6 300 155 3 67

comp14 51 41.00 18.66 ∼1500 449 <20 3 284 146 1 54
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Table 3 (Continued)

(c) Overall time limit: 40 CPU time units

Instance stage 1 (time limit: 13000 sec.) stage 2 (time limit: 2200 sec.) total

obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj

comp01 4 4.00 0.00 <5 4 <5 8 <1 8 <1 12

comp02 45 10.33 77.04 ∼11500 430 <120 1 2000 151 2 46

comp03 66 25.00 100.00 ∼12500 468 <40 0 432 127 10 66

comp04 35 27.43 21.61 2960 358 <5 3 1300 51 10 38

comp05 365 107.97 70.43 12700 1241 <430 3 <1 38 <1 368

comp06 37 10.00 72.97 7526 541 <300 14 2000 187 3 51

comp07 6 6.00 0.00 10000 525 <360 19 2000 221 3 25

comp08 37 37.00 0.00 500 344 <10 8 1200 178 4 44

comp09 99 45.89 53.65 12800 444 <2 0 500 165 2 99

comp10 4 4.00 0.00 2385 425 <220 12 2000 207 2 16

comp11 0 0.00 0.00 <1 0 <1 7 <1 7 <1 7

comp12 546 52.70 90.34 11000 1119 290 1 4 79 <1 548

comp13 61 40.81 33.72 ∼1930 492 <3 5 800 155 3 66

comp14 51 45.94 9.92 ∼1500 449 <20 2 900 146 1 53

In Table 3 we list statistics separately for the two stages of the decomposition for various
overall time bounds. These results were obtained with CPLEX11 default parameter settings.

5.1.4 Lower bounds

Meta heuristics are powerful to produce solutions to quite large timetabling instances. How-
ever, assessing the quality of these solutions is much harder. Recently, Burke et al. (2008a)
proposed a branch-and-cut algorithm to obtain lower bounds for the ITC 2007 instances. We
note that the time to solve our linear programming (LP) relaxation is much smaller since our
formulation contains much fewer constraints and variables (about a factor of two to three in
each dimension). Further, the program presented in Burke et al. (2008a) is not yet suited to
produce feasible integer solutions; this is why Burke et al. resorted to heuristics for this. We
list the lower bounds obtained by our approach in Table 4.

5.1.5 Extensions

In Sect. 4 we discussed several extensions for soft constraints as proposed in Di Gaspero et
al. (2007) and McCollum et al. (2009). Table 5 lists our results for the original Udine and the
first seven ITC2007 instances, when the problem definition is exemplarily extended by the
Maximum Dayload and the Lunch Break constraints. We did not include the other extended
soft constraints in this study.

5.2 Instances with more courses

A hint on the potential of our approach when applied to larger instances is given on data
recently introduced by Cesco et al. (2008). Some of them have a (slightly) larger number of
courses (DDS1 and DDS4), and our integer program performs significantly better than what
was previously known, see Table 6.
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Table 4 Lower bounds (LBs) obtained by Burke et al. (2008a) and with our approach (first stage) for the
extended formulation (Di Gaspero et al. 2007; McCollum et al. 2009). On the left one can see the computation
times to solve the LP relaxation, then the LBs in the root node with our plain formulation, and after adding
CPLEX’ zero-half cuts; finally, the LBs after half an hour computation time. Numbers are taken from a first
draft of (Burke et al. 2008a); updated results are not available to us

Instance Root relaxation (sec.) LB (root) LB (after 30 min.)

(Burke et al. 2008a) us us us w/cuts (Burke et al. 2008a) us

comp01 3.58 0.09 4 4 5 4

comp02 54.90 0.68 0 0 6 8

comp03 49.97 0.59 0 1 43 23

comp04 41.00 0.12 0 11.5 2 26.27

comp05 84.64 1.97 17 92.45 183 100.9

comp06 73.17 0.88 6 7 6 7

comp07 192.35 1.47 0 0 0 0

comp08 43.25 0.61 0 1.16 2 33.2

comp09 48.23 0.51 0 18.2 0 39.84

comp10 105.03 1.00 0 2 0 3.91

comp11 7.69 0.13 0 0 0 0

comp12 134.76 2.92 3 30.25 5 31.29

comp13 37.34 0.67 0 20 0 37

comp14 55.86 0.72 0 39.5 0 41

Table 5 Best solutions for the instances from Di Gaspero and Schaerf (2003, 2006) and the first seven from
ITC2007, with extensions as discussed in Sects. 4 and 5.1.5. Bold face marks optimal solutions

Instance Obj Lower bound Gap Status CPU sec.

test1 217 215 0.97% feasible 150

test2 59 59 0.00% optimal 26.23

test3 127 127 0.00% optimal 125

test4 48 45.47 5.25% feasible 3600

comp01 8 8 0.00% optimal 11.42

comp02 417 35.71 92.12% feasible 3600

comp03 202 59 70.07% feasible 3600

comp04 28 28 0.00% optimal 1183

comp05 418 120.73 71.12% feasible 3600

comp06 96 11.08 88.45% feasible 3600

comp07 407 3 99.26% feasible 3600

5.3 Simulated data from Technical University Berlin

As we have said, our original motivation was to keep hard constraints, if this is possible. At
the Technical University of Berlin, room capacities are considered hard, and a number of fea-
tures have to be provided by a room if requested by a course (Internet access, PC/projector,
blackboard, location, etc.). This gives a much larger number of different room types, but in
general fewer eligible rooms per course. All other soft constraints presented here are not
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Table 6 Slightly larger instances taken from De Cesco et al. (2008); our approach compared to the university
of Udine’s Scheduling and Timetabling Group (SaTT); bold face indicates optimal solutions. Zero-half cuts
are turned on in these computations

Instance Basic formulation Extended formulation (Di Gaspero et al. 2007;

(Di Gaspero and Schaerf 2006) McCollum et al. 2009)

SaTT us SaTT us

DDS1 238 39 1024 132

DDS2 0 0 0 0

DDS3 0 0 0 0

DDS4 233 19 261 68

DDS5 0 0 0 0

DDS6 5 0 11 4

DDS7 0 0 0 0

CPU time units 40 10 40 10

respected, as they are not relevant for this university. Since the used timetabling database
is in an incomplete and inconsistent state, we decided to develop a simulation tool which
is able to create large problem instances with near real-world character. The instances are
available at www.math.tu-berlin.de/ lach/.

We present statistics of three representative instances of different sizes, cf. Table 8. The
key data (not listed here) of the large instance is almost identical to that of Technical Univer-
sity of Berlin (which is a rather large university). We give running times for a preprocessing
step necessary to generate only the actually needed Hall conditions (3), and for the two
decomposition stages. These times are acceptable, even though for an interactive timetable
design, some tuning would be necessary.

6 Perspectives

Formulating a problem as an integer program (IP) is a very powerful modeling tool for for-
mal and precise identification of relevant decisions and constraints. In our view, this has
been the primary use of integer programming in university course timetabling so far, rather
than actually trying to compute optimal solutions with its help. Only recently, researchers
started to exploit the problem’s structure, as in we did in this paper, in order to design non-
standard algorithms for solving the resulting IPs. A recent example besides our decompo-
sition approach presented here is the branch-and-cut algorithm for obtaining lower bounds
in Burke et al. (2008a). Actually, we believe that optimal or high quality solutions for uni-
versity course timetabling, also with the enormous progress made in IP solver technologies,
will not be computed with off-the-shelf solvers, but will call for tailored algorithms. This
requires to further investigate the combinatorial structure hidden in the problem, e.g., in the
soft constraints, and we are encouraged by our good results to pursue such studies in the
future.

Our approach was originally meant to solve instances from Berlin’s technical univer-
sity where all constraints are considered hard, see Lach and Lübbecke (2008). However,
feedback on that approach motivated us to evaluate its suitability for incorporating soft con-
straints, or to obtain lower bounds. We believe it is fair to say that our algorithm certainly
is not best in all possible situations, however, it competes quite well for several different

http://www.math.tu-berlin.de/~lach/
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Table 7 Solution statistics reported separately for the two decomposition stages for the DDS1–7 instances,
in the same way as we did in Table 3. Default parameter settings are used

(a) Overall time limit: 1 CPU time unit

Instance stage 1 (time limit: 300 sec.) stage 2 (time limit: 80 sec.) total

obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj

DDS1 147 42.99 70.75 <240 237 <200 144 60 499 <5 291

DDS2 0 0.00 0.00 <1 60 <1 0 <5 47 <5 0

DDS3 0 0.00 0.00 <1 22 <1 0 60 78 <5 0

DDS4 675 15.00 97.78 300 1067 <300 376 40 484 <5 1051

DDS5 0 0.00 0.00 22 147 <2 42 70 298 <5 42

DDS6 159 0.00 0.00 280 460 <100 27 80 171 <5 186

DDS7 0 0.00 0.00 52 127 <3 4 80 110 <5 4

(b) Overall time limit: 10 CPU time units

Instance stage 1 (time limit: 3300 sec.) stage 2 (time limit: 500 sec.) total

obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj

DDS1 48 48.00 0.00 2000 237 <200 55 800 499 <5 103

DDS2 0 0.00 0.00 <1 60 <1 0 <5 47 <5 0

DDS3 0 0.00 0.00 <1 22 <1 0 60 78 <5 0

DDS4 17 15.00 11.76 700 1067 <300 95 500 484 <5 112

DDS5 0 0.00 0.00 22 147 <2 10 800 298 <5 10

DDS6 4 0.00 100.00 1000 460 <100 5 500 171 <5 9

DDS7 0 0.00 0.00 52 127 <3 0 309 110 <5 0

(c) Overall time limit: 40 CPU time units

Instance stage 1 (time limit: 13000 sec.) stage 2 (time limit: 2200 sec.) total

obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj

DDS1 48 48.00 0.00 2000 237 <200 35 1800 499 <5 83

DDS2 0 0.00 0.00 <1 60 <1 0 <5 47 <5 0

DDS3 0 0.00 0.00 <1 22 <1 0 60 78 <5 0

DDS4 17 15.00 11.76 700 106 <300 75 2000 484 <5 92

DDS5 0 0.00 0.00 22 147 <2 10 700 298 <5 10

DDS6 0 0.00 0.00 3000 460 <100 3 2000 171 <5 3

DDS7 0 0.00 0.00 52 127 <3 0 309 110 <5 0

purposes, as is demonstrated by our computational study. This is even more true since we
do not use any particular tuning to the instances or situation (lower or upper bound). Ad-
ditionally, we are capable of computing feasible solutions which respect constraints which
are listed in the “research agenda in automated timetabling” (McCollum et al. 2009) already
today. In that sense, the proposed approach may serve as a very robust starting point for
more ambitious goals in timetabling.

From a practical point of view, one is interested in warm-starting computations from
previous timetables in such a way, that small changes in the input result in small changes
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Table 8 Statistics and computation times for the simulated instances according to Technical University of
Berlin’s course database

Instance Courses Lectures Rooms Violations Preproc. Stage 1 Stage 2

small 180 420 35 0 45 sec. 9 sec. 3 sec.

medium 950 2100 165 0 307 sec. 52 sec. 6 sec.

large 2100 4640 345 0 1235 sec. 5106 sec. 5 sec.

in the constructed timetable. This other kind of robustness could be considered already in
constructing the first timetable via the framework of robust optimization; however, this will
require entirely new research efforts and is beyond the scope of this paper.
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