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Abstract. We present a nested local search algorithm to approximate
several variants of metric two-stage stochastic facility location problems.
These problems are generalizations of the well-studied metric uncapac-
itated facility location problem, taking uncertainties in demand values
and costs into account. The proposed nested local search procedure uses
three facility operations: adding, dropping, and swapping. To the best of
our knowledge, this is the first constant-factor local search approxima-
tion for two-stage stochastic facility location problems.

Besides traditional direct assignments from clients to facilities, we
also investigate shared connections via capacitated trees and tours. We
obtain the first constant-factor approximation algorithms for both con-
nection types in the setting of two-stage stochastic optimization. Our algo-
rithms admit order-preserving metrics and thus significantly generalize
and improve the allowed mutability of the metric in comparison to pre-
vious algorithms, which only allow scenario-dependent inflation factors.

1 Introduction

In this paper we study stochastic generalizations of the metric uncapacitated
facility location (UFL) problem. The UFL problem was introduced in the early
1960’s and is one of the most studied problems in the discrete optimization
literature. The first constant-factor approximation algorithm for the metric case,
where the assignment costs satisfy the triangle inequality, was presented in the
late 1990’s by Shmoys et al. [12]. From that time onward, many other constant-
factor approximations have been developed, decreasing the approximation factor
rapidly to 1.488, the currently best known proposed by Li [9]. Ye and Zhang [16]
observed that so far each algorithm for approximating the metric UFL problem
uses at least one of the following three paradigms: LP rounding, primal-dual,
or local search techniques. LP rounding and primal-dual techniques were also
applied to the two-stage stochastic version of the problem, but, to the best of
our knowledge, no pure local search approaches have been used. One purpose
of this paper is to close this gap, especially because local search turned out to
be a powerful tool for approximating capacitated location problems. Moreover,
the proposed local search approach allows more mutability of the metrics than
previous approaches and it is very easy to implement in practice.
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The metric two-stage stochastic uncapacitated facility location (tsUFL) prob-
lem was introduced in 2004 by Ravi and Sinha [10]. It models the task of locating
facilities to serve demands of clients as a two-stage stochastic optimization prob-
lem with recourse, where a set of scenarios depict the possible outcomes of the
future. The decision making process, essentially deciding which facilities to open,
is divided into two stages. In a first stage, decisions are made with incomplete
knowledge about the future, i.e., only the probability distribution of the scenar-
ios with their parameters is known. In a second (recourse) stage, information is
revealed about which scenario is realized and additional recourse decisions are
made. The goal is to minimize the fixed first-stage and the expected second-
stage cost. There are two main concepts to express the probability distribution
of the scenarios in the literature. In the scenario model each scenario with its
parameters and its associated probability is explicitly given as part of the input.
An assumption commonly made in this model is that the number of scenarios
is polynomial bounded by the other input parameters (e.g., number of facilities
and clients). In the black-box model, the probability distribution is only given
implicitly by an algorithm that draws independent samples of the distribution.
Although the black-box model is more general than the scenario model, Charikar
et al. [3] were able to show that, under reasonable assumptions on the distrib-
ution and losing only a factor (1 + O(ε)) in the objective, the black-box model
reduces to the scenario model with only a polynomial number of samples. For
this reason, we only consider the scenario model.

In the tsUFL problem we assume that the facilities opened in the first stage
are present in each scenario, whereas facilities opened in the second stage exist
only for their specific scenario. For each scenario, the clients have to be served
by either an open facility of the first stage or by a facility opened in the second
stage for this specific scenario. The service costs form a metric. Clearly, the
approximability depends on how much the metric varies over the scenarios. We
will extend the (rather restrictive) concept of scenario-dependent inflation factors
used in previous works to a more general scenario-dependentmutable metric. The
currently best known approximation algorithm for tsUFL with inflation factors
is given by Ye and Zhang [16] with a factor of 1.86.

Formally, an instance of the tsUFL problem with mutable metric is given
by a complete graph G = (V,E) on the node set V = C ∪ F of clients C and
facilities F , first-stage facility opening costs fi ∈ Q≥0, i ∈ F , and a set of m
possible scenarios. For the sake of simplicity, we index the scenarios by k ∈
[m] := {1, . . . , m} and say scenario k instead of scenario indexed by k. Scenario
k occurs with probability pk and is defined by second-stage facility opening costs
fk

i ∈ Q≥0, i ∈ F , a metric service cost function ck : E → Q≥0, and client
demands dk

j ∈ Q≥0, j ∈ C. The goal is to find a set of first-stage facilities
F ⊆ F , which is independent of the realization of the scenario, and, for each
scenario k ∈ [m], a set of second-stage facilities F k ⊆ F and an assignment
σk : C → F ∪ F k, which minimize first-stage and expected second-stage costs
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∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

j∈C
dk

j · ck(σk(j), j)
)
.

In order to appropriately model problem variants where multiple clients may
share parts of a network that connect them to the facilities, we introduce the
two-stage stochastic facility location problem with tree-connections (tsUFL-T).
Formally, this problem is defined as follows. The graph, the first-stage facility
opening costs, and the set of m possible scenarios with their parameters are
given as in the tsUFL problem. Additionally, let Ck

+ := {j ∈ C | dk
j > 0} denote

the set of clients with positive demand in scenario k. The goal is to find a set
of first-stage facilities F ⊆ F and, for each scenario k, a set of second-stage
facilities F k ⊆ F and a set T k of trees in G[F ∪ F k ∪ Ck

+] such that each tree
contains exactly one facility, i.e., |V (T ) ∩

(
F ∪ F k

)
| = 1 for all T ∈ T k, and all

clients with positive demand are served, i.e., Ck
+ ⊆

⋃
T∈T k V (T ), which minimize

∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

T∈T k

∑

e∈E(T )

ck(e)
)
.

As an intermediate step towards approximation algorithms for problems with
capacitated trees and tours later in the paper, we first combine the connection
types of tsUFL and tsUFL-T and study the two-stage stochastic uncapacitated
facility location problem with direct and tree-connections (tsUFL-DT), where
each client is served twice, directly and via a shared tree. This problem also may
be of independent interest for some applications.

Since in many applications the connection network cannot handle unlimited
amounts of flow, we examine capacitated network connection types like the met-
ric two-stage stochastic capacitated-cable facility location (tsCCFL) problem.
In this problem, we additionally need to select edge capacities that permit to
route the clients’ demands simultaneously to the open facilities. Formally, an
instance of the tsCCFL problem is given by a complete graph G = (V,E) with
F ∪ C ⊆ V . The first-stage facility opening costs and the set of scenarios with
their parameters are defined as in the tsUFL problem. Additionally, there is a
cable capacity u ∈ Z>0 limiting the demand flow. The task is to choose a set
of first-stage facilities F ⊆ F and, for each scenario k, a set of second-stage
facilities F k ⊆ F , a set T k of trees in G such that each tree is rooted at an open
facility and each client with positive demand is served, and a number of cables
zk
e ∈ Z≥0 for each edge e ∈

⋃
T∈T k E(T ) such that the flow given by routing all

demands simultaneously via the tree edges to the open facilities does not exceed
the edge capacities zk

e · u. As before, we wish to minimize the expected costs

∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

T∈T k

∑

e∈E(T )

zk
e · ck(e)

)
.

As the second problem with a capacitated connection we consider the two-
stage stochastic capacitated location routing (tsCLR) problem. It combines the
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tsUFL problem with the well-studied capacitated vehicle routing problem. For-
mally, an instance of tsCLR is given by a complete graph, first-stage facility
opening costs, and a set of scenarios with parameters as in the tsUFL problem.
Additionally, there is a vehicle capacity u ∈ Z>0. The task is to find a set of
first-stage facilities F ⊆ F and, for each scenario k, a set of second-stage facil-
ities F k ⊆ F , a set of tours T k with demand assignment xk : C × T k → Q≥0

such that each tour is routed at a facility, i.e., |V (T ) ∩ (F ∪ F k)| = 1, each
client is served, i.e.,

∑
T∈T k:j∈V (T ) xk(j, T ) = dk

j for all j ∈ C, and the capacity
constraints

∑
j∈C xk(j, T ) ≤ u are satisfied for all T ∈ T k. The objective is to

minimize the sum of fixed first-stage and expected second-stage costs

∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

T∈T k

∑

e∈E(T )

ck(e)
)
.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
the complexity of the presented problems and introduce the type of service cost
mutability that our local search approach can handle. Afterwards, in Sect. 3, we
present our Nested Local Search algorithm for tsUFL, tsUFL-T, and tsUFL-DT
and prove its constant approximation guarantees. In Sects. 4 and 5 we construct
constant-factor approximations for tsCCFL and tsCLR by applying our local
search to instances of the tsUFL-DT problem. Concluding remarks are given in
Sect. 6. All omitted proofs can be found in a full version [15].

2 Hardness of Approximation

The tsUFL, tsCCFL, and tsCLR problem generalize the metric UFL problem
with uniform demands. So, all hardness results are preserved and these problems
are strongly NP-hard. In particular, the inapproximability results of Guha and
Khuller [7] and Sviridenko [13] carry over. Hence, there is no 1.463-approximation
algorithm for the problems, even when restricted to instances with a fixed metric
and service cost 1 and 3, unless P = NP. The tsCLR problem also generalizes
the capacitated vehicle routing problem, which is not approximable within a
factor less than 1.5, unless P = NP [6]. By a reduction from UFL we obtain the
following inapproximability result for tsUFL-T and tsUFL-DT.

Theorem 1. There is no 1.463-factor approximation algorithm for the tsUFL-T
and the tsUFL-DT problem, unless P = NP.

The approximability of the stochastic problems depends on the mutability of
the metric, since the hardness result for minimum set cover [5] carries over.

Theorem 2. For ε > 0, there is no (1 − ε) ln(m)-approximation algorithm for
tsUFL(-T, -DT), tsCCFL, and tsCLR with a general mutable metric, if P �= NP.
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We show in Sect. 3 that the following class of metrics allows constant-factor
approximations for the tsUFL, tsUFL-T, and tsUFL-DT problem.

Definition 3. A family of metrics (ck : (C ∪ F)2 → Q≥0)k∈[m] is called order-
preserving, if for each facility i ∈ F there exists an ordered list of F \ {i} that
is (simultaneously) non-decreasingly sorted w.r.t. ck(i, ·) for each scenario k.

Note that order-preserving metrics restrict only the distances among the facil-
ities to form scenario-independent orders. Distances between clients and facilities
may vary heavily from one scenario to another. In particular, the closest (open)
facility from any client may change from one scenario to another. This generalizes
the concept of inflation factors.

3 Nested Local Search Algorithm

In this section we present our Nested Local Search for the tsUFL, tsUFL-T, and
tsUFL-DT problem. Given a feasible solution for one of these problems, we say
a feasible move is an operation that adds an unchosen, deletes a chosen, swaps
a chosen with an unchosen facility, or maintains the given facilities, and results
in a feasible solution. Speaking of a first-stage or second-stage feasible move, we
refer to these operations on first-stage or second-stage facilities, respectively.

Without any bounds on the cost reduction, local search algorithms may have
exponential running time. To avoid this, we use the concept of δ-locally optimal
solutions. If we guarantee a cost reduction by a factor of 0 < (1− δ) < 1 in each
iteration and choose δ appropriately, we prove a polynomial running time.

Definition 4. A solution is denoted as δ-locally optimal, if no feasible first-
stage move linked with any feasible second-stage move in each scenario decreases
the total cost by more than a factor 0 < (1 − δ) < 1.

3.1 Algorithm

As the scenarios are linked only to the first stage, we can consider them sequen-
tially, exploring only polynomial many moves in total. Combining all described
ideas, we get Nested Local Search illustrated below. The (re-)assignment of the
clients to the chosen facilities is done optimally in all solution update steps. We
may also assume that the sets of chosen first-stage and second-stage facilities are
disjoint. Let solution be a feasible solution for one of the problems and denote
the total cost by C(solution). We call a feasible first-stage move unexplored if
this move was not even attempted to apply to solution. A feasible second-stage
move is called cost-reducing, if applying the move does not increase the cost.
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Input: Constant 0 < δ < 1 and a feasible solution solution.
Output: δ-locally optimal solution solution.
while unexplored first-stage move of solution exists do

Select unexplored first-stage move, create solution current.
Select most cost-reducing move for each scenario, update current.
while C(current) ≤ (1 − δ) · C(solution) do

solution := current
Select most cost-reducing move for each scenario, update current.

return solution
Nested Local Search

Testing each unexplored move without changing the solution stops the algo-
rithm. Therefore, the algorithm terminates with solution. Also, every feasible
first-stage move has been evaluated in combination with a most cost-reducing
second-stage move for each scenario, but the cost reduction was less than a factor
of (1 − δ). By definition, solution thus is δ-locally optimal.

3.2 Analysis

Applying any feasible move to a δ-locally optimal solution does not decrease the
cost by more than a factor of (1− δ), even if all clients are reassigned optimally
afterwards. We use this observation to create new solutions. By comparison of
costs we get bounds on the service and the facility cost.

Lemma 5. Let CS, C∗
S denote the service costs and CF , C∗

F the facility costs
of a δ-locally optimal and an arbitrary feasible solution, respectively. Then

CS − δm · |F| · (CF + CS) ≤ C∗
F + C∗

S .

Lemma 6. Let CS, C∗
S denote the service costs and CF , C∗

F the facility costs
of a δ-locally optimal and an arbitrary feasible solution, respectively. Then

CF − δm · |F| · (CF + CS) ≤ C∗
F + 2 · C∗

S .

Theorem 7. Let 0 < ε ≤ 1. Then, Nested Local Search is a polynomial-time
(3 + ε)-approximation for tsUFL(-T, -DT) with order-preserving metrics.

Proof. The number of feasible first-stage and second-stage moves in each scenario
is bounded by |F|2 + |F| each. Updating a solution and finding a most cost-
reducing move runs in polynomial time. Choosing δ := ε/(8m·|F|) and 0 < ε ≤ 1
results in a polynomial running time. With Lemmas 5 and 6 we obtain the bound
CF + CS ≤ 3/(1 − ε/4) · (C∗

F + C∗
S) and the claim follows.

This result is tight, since Arya et al. [1] showed it for the UFL problem.
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3.3 Improvements via Cost-Scaling and Greedy Augmentation

The cost-scaling technique introduced by Charikar and Guha [4] can be applied
to the problems in a straightforward way (cf. [15]). Applying this technique, we
obtain the following strengthened version of Theorem7.

Theorem 8. Let 0 < ε ≤ 1. Then, Nested Local Search with cost-scaling is
a (1+

√
2+ε)-approximation for tsUFL(-T, -DT) with order-preserving metrics.

Also, the well-known greedy augmentation technique for facility location
problems can be applied in a straightforward way in combination with our Nested
Local Search (cf. [15]). Combining all three techniques local search, cost-scaling,
and greedy augmentation, we obtain the following stronger result.

Theorem 9. Let 0 < ε ≤ 1. Then, Nested Local Search with cost-scaling
and greedy augmentation is a (2.375+ε)-approximation algorithm for the tsUFL,
tsUFL-T, and tsUFL-DT problem with order-preserving metrics.

4 Two-Stage Capacitated-Cable Facility Location

In this section we introduce an approximation algorithm for tsCCFL. Initially,
we transform an instance of tsCCFL to an instance of tsUFL-DT and show that
the costs of a tsUFL-DT solution can be bounded by the costs of a tsCCFL
solution. We then transform a solution to tsUFL-DT to one for tsCCFL.

Lemma 10. Consider an instance I of tsCCFL and the instance J of
tsUFL-DT obtained by scaling the demand values with 1/u, omitting the
capacity, and restricting the problem to G[F ∪ C]. Then, for each solution
of I with costs C∗

F + C∗
S there is a solution of J with costs C ′

F + C ′
S

that C ′
F ≤ C∗

F and C ′
S ≤ 3 · C∗

S.

4.1 Algorithm tsCCFL

We introduce at first an approximation algorithm for the tsCCFL problem with
unit demands which we extend to general demand values later. We transform
an instance of tsCCFL to an instance of tsUFL-DT as stated in Lemma10.
Then, we apply Nested Local Search with cost-scaling (β = 6.67) and greedy
augmentation, open all obtained facilities and install one unit of capacity on each
edge of the obtained trees. If a tree’s demand exceeds the capacity we have to
relieve this tree. Therefore, we adapt a procedure to relieve overloaded trees used
by Ravi and Sinha [11] to approximate a deterministic version of the problem.

In detail, consider each node x where the subtrees of its children have demand
at most u and the total demand of the (sub-)tree Tx is greater than u. To
relieve overloaded trees, we choose the clients in the subtree of the children of
x which are closest to an open facility F ∪ F k and install unit capacity on each
edge of the 
|Dx|/u� closest (w.r.t. ck) client-facility pairs, but at most one
per subtree. Considering one of those client-facility pairs (j�, i�) we reroute the
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Input: Instance I of tsCCFL with unit demands and order-preserving metrics.
Output: Approximated solution of the tsCCFL instance I.
Obtain tsUFL-DT instance J from I by scaling demand values with 1/u.
Apply scaling (β = 6.67), Nested Local Search, and greedy augmentation to J .
Obtain solution

(
F, F 1, . . . , F m, σ, T

)
and open all facilities

(
F, F 1, . . . , F m

)
.

for all scenarios k do

Let Tx be the subtree of T ∈ T k rooted at x ∈ V (T ) and Dx := V (Tx) ∩ C.
for all facilities i ∈ F ∪ F k do

Install one copy of the cable on each edge in E(Ti).
while |Di| > u do

Let V ′ := {x ∈ V (Ti) | |Dx| > u and |D�| ≤ u for each child � of x}.
for all x ∈ V ′ do

Let (j�, i�) := argminj′∈D�,i′∈F∪F k ck(j′, i′) if � is child of x.

Install one cable on each edge (j�, i�) for the �|Dx|/u� cheapest
pairs (at most one for each child subtree of x).

Route the whole demand in T� to i� via j�.
Route remaining demand (in other subtrees T� of children of x)

to a chosen pair or to x such that all new cables are saturated.
Remove demands in Di which are satisfied through a new cable.

Remove all cables with flow value zero and all facilities which serve no demand.

Algorithm tsCCFL

demand |D�| ≤ u of the subtree T� to the facility i�. If a newly installed cable is
not saturated, this means the demand flow on the arc is less than u, we reroute
not satisfied demand of sibling subtrees via x to this facility. We repeat the
relieve procedure, until the remaining demand assigned to any x is at most u. In
the end, we clean up our solution by removing all unused cables and facilities.

4.2 Analysis

Theorem 11. Let ε > 0. Then,AlgorithmtsCCFL is a (3.9+ε)-approximation
algorithm for tsCCFL with unit demands and order-preserving metrics.

Proof. First, we show that the solution produced by Algorithm tsCCFL is feasi-
ble. Consider a subtree Ti with |Di| > u in scenario k and let x ∈ V ′. We add as
many additional cables and reroute demand in subtrees as long as the remaining
demand assigned to x is at most u. Hence, V ′ decreases and therefore |Di| does.
In the end, all edges of the subtrees fulfill the capacity constraint. However, we
maybe reroute some demand via a client j� to a facility i�. And so we have to
ensure that on these paths no capacity constraint is violated. It is maybe the
case that after routing demand (via j�) to i� and using an arc (j, x), in a further
step demand is routed using the arc (x, j). We use flow cancellation to reassign
demand flow properly. In particular, flow cancellation only reduces flow in the
direction toward the root of a considered tree. If any cable in a scenario k has
flow toward the root, its value is, like mentioned before, at most u. Flow away
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from the root on a cable is only routed once and all the clients in the involved
subtree are removed afterwards. The flow value is also at most u, ensuring sat-
isfied cable capacities. The demand routed to a newly installed cable is exactly
u. Each client whose demand is assigned to one new cable has a distance to any
open facility of at least the length of the new cable. The cost of these cables can
be bounded by the cost of the direct connections by aggregating demand. Hence,
the total cable cost is bounded by the service costs of the tsUFL-DT solution.

Let C∗
F denote the facility costs and C∗

S the service costs of an optimal
solution to an instance of tsCCFL. We know from Lemma10 that there is a
solution to the transformed tsUFL-DT instance with cost C ′

F + C ′
S such that

C ′
F ≤ C∗

F and C ′
S ≤ 3 · C∗

S . Since our analysis for Nested Local Search permits
us to bound the costs by an arbitrary solution, we obtain with Lemmas 5 and 6,
rescaling (β = 6.67), and greedy augmentation a solution with costs

CF + CS ≤ (2 + ln(6.67) + ε′) · C ′
F +

(
1 +

2
6.67

+ ε′
)

· C ′
S

≤ (3.9 + ε) · (C∗
F + C∗

S).

The best known guarantee for the deterministic version of the problem is
(ρUFL+ρST ) ≤ 2.88 [11], with the currently best approximation ratios of Steiner
tree [2] and UFL [9]. If we consider the problem spanning only clients with posi-
tive demand values, our algorithm (β = 3.33) yields a (3.203+ε)-approximation.

4.3 General Demands

Theorem 12. Let ε > 0. There is a (6.236 + ε)-approximation algorithm for
the tsCCFL problem with general demands and order-preserving metrics.

Proof. The modification of Algorithm tsCCFL to deal with general demand
values can be adapted from [11]. In the following we outline briefly the main
changes in order to analyze the modifications. Again, we transform the tsCCFL
instance as in Lemma10 and apply rescaling (β = 25.43), Nested Local Search,
and greedy augmentation. For each client which exceeds the capacity (dk

j > u)
we install �dk

j /u cables on the edge {j, σk(j)} and route its complete demand
directly to the facility σk(j). The service cost for each of these clients can be
bounded by twice the costs of their direct connections. The remaining demands
are processed as before except that we now accumulate demand to lie in between
u and 2u. Instead of installing one cable, we now install two copies of a cable and
route the demand to the corresponding facility. Hence, we now can bound these
costs by twice the direct connection costs. Since after greedy augmentation we
have CS ≤ C ′

S +C ′
F , we obtain a solution for the tsCCFL problem with general

demand values and order-preserving metrics with costs

CF + 2 · CS ≤ (3 + ln(25.43) + ε′) · C ′
F +

(
2 +

2
25.43

+ ε′
)

· C ′
S

≤ (6.236 + ε) · (C∗
F + C∗

S).
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The best guarantee in the deterministic case is (2ρUFL+ρST ) ≤ 4.37 [2,9,11].
If we consider the problem spanning only clients with positive demand values,
our algorithm (β = 5.572) yields a (4.718 + ε)-approximation.

5 Two-Stage Capacitated Location Routing

In this section we introduce an approximation algorithm for the tsCLR problem.
Initially, we transform a tsCLR instance to one of tsUFL-DT and show that the
costs of a tsUFL-DT solution can be bounded by the costs of a tsCLR solution.
We then use a solution to tsUFL-DT to build one for tsCLR.

Lemma 13. Consider an instance I of tsCLR and the instance J of tsUFL-DT
obtained by scaling the demand values with 2/u and omitting the vehicle capacity.
Then, for each solution of I with costs C∗

F +C∗
S there exists a solution of J with

costs C ′
F + C ′

S such that C ′
F ≤ C∗

F and C ′
S ≤ 2 · C∗

S.

5.1 Algorithm

We introduce an approximation algorithm for tsCLR by using our Nested Local
Search with scaling (β = 5.572) and greedy augmentation on the tsUFL-DT
instance obtained by the transformation described in Lemma13. Consider a tree
Ti with demand value Di routed at facility i ∈ F ∪F k. If the total demand of the
tree satisfies the capacity constraint we obtain a feasible tour by doubling the
edges and short-cutting. Otherwise, we relieve the tree by adapting a procedure
by Harks et al. [8] for approximating a deterministic version of the problem.

In more detail, we open all obtained facilities. For each client j with demand
value at least u we create �dk

j /u times the tour (σk(j), j, σk(j)). Consider a node
v where each children’s subtree has demand at most u and the total demand of
the tree Tv is greater than u. Find a partition I = I0∪̇ . . . ∪̇Iq of the children’s
subtrees such that the trees of each part obey the capacity constraint and all
parts except I0 have total demand greater than u/2. Note that the (sub-)tree
structures remain unchanged while generating the partition. Such a partition
can be found by a greedy algorithm. Consider a part Ip (p ≥ 1) and let j be
the client in Ip with the smallest distance to an open facility. We construct a
tour by doubling the edge {σk(j), j} and all edges contained in Ip and short-
cutting. In the end there is only part I0 with total demand at most u. Again,
we create a tour by doubling the edges and short-cutting. Finally, we remove
unused facilities to save costs.

5.2 Analysis

Theorem 14. Let ε > 0. Then, Algorithm tsCLR is a (4.718+ε)-approxima-
tion algorithm for the tsCLR problem with order-preserving metrics.
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Input: Instance I of the tsCLR problem.
Output: Approximated solution of the tsCLR instance I.
Obtain tsUFL-DT instance J from I by scaling demand values with 2/u.
Apply scaling (β = 5.572), Nested Local Search, and greedy augmentation to J .
Obtain solution

(
F, F 1, . . . , F m, σ, T

)
and open all facilities

(
F, F 1, . . . , F m

)
.

for all scenarios k do

for all j ∈ C with dk
j ≥ u do

Add 	dk
j /u
 copies of the tour (σk(j), j, σk(j)) and remove dk

j .

Let Tx be the subtree of T ∈ T k rooted at x, and Dx :=
∑

j∈C∩V (Tx) dk
j .

for all facilities i ∈ F ∪ F k do
while Di > u do

Let v ∈ {x ∈ V (Ti) | Dx > u, D� ≤ u for all children � of x}.
Let I = {V (T�) | � is child of v} ∪ {{v}}.
Find a partition of the trees I = I0∪̇ . . . ∪̇Iq such that
∑

x∈Ip
dk

x ≤ u for all p ∈ {0, . . . , q} and
∑

x∈Ip
dk

x > u/2 for all p ∈ {1, . . . , q}.
for all p ∈ {1, . . . , q} do

Let (i�, x�) := argmini′∈F∪F k,x′∈V (Ip) ck(i′, x′).
Construct a tour containing all clients in Ip and facility i� by

doubling (i�, x�) and edges of all trees in Ip and short-cutting.
Add the tour to the solution and remove corresponding subtrees.

Construct a tour from Ti by doubling all edges and short-cutting.
Add the tour to the solution.

Remove all facilities that are not contained in any tour.

Algorithm tsCLR

Proof. For all clients j with demand value dk
j ≥ u in some scenario k we add

�dk
j /u copies of the tour (σk(j), j, σk(j)). Such a tour containing client j in

scenario k has costs of at most pk ·
⌈
dk

j /u
⌉

· 2 · ck(σk(j), j). Since
⌈
dk

j /u
⌉
is

bounded by 2 · dk
j /u for dk

j ≥ u, the costs for these clients are bounded by twice
the direct connection costs of of these clients.

Consider a tour T ∈ T k in scenario k containing facility i� and clients in
Ip. The costs for T are at most 2 · ck(i�, x�) plus twice the costs of the cor-
responding subtrees. Since the choice of (i�, x�) was minimal w.r.t. ck and the
whole demand in T is at least u/2 we obtain

∑
x∈V (T ) 2 · dk

x/u · ck(σk(x), x) ≥
ck(i�, x�)·

∑
x∈V (T ) 2 · dk

x/u ≥ ck(i�, x�). Hence, the clients, carried by such tours,
contribute to the costs with at most twice their direct connection costs and twice
the costs of the corresponding subtrees. All other tours are built by doubling the
edges of corresponding subtrees and short-cutting. These tours contribute to the
costs with at most twice the costs of the corresponding subtrees. Summation
over all scenarios and clients shows that the tour costs are bounded by twice the
direct and twice the tree-connection costs in the constructed solution.
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Let C∗
F denote the facility costs and C∗

S the service costs of an optimal
solution to an instance of tsCLR.We know with Lemma13 that there is a solution
to the transformed tsUFL-DT instance with costs C ′

F +C ′
S such that C ′

F ≤ C∗
F

and C ′
S ≤ 2 · C∗

S . Since our analysis for Nested Local Search permits us to
bound the costs by an arbitrary solution and CS ≤ C ′

S + C ′
F holds after greedy

augmentation, we obtain with cost-scaling (β = 5.572), Lemmas 5 and 6, and
greedy augmentation a solution with costs

CF + 2 · CS ≤ (3 + ln(5.572) + ε′) · C ′
F +

(
2 +

2
5.572

+ ε′
)

· C ′
S

≤ (4.718 + ε) · (C∗
F + C∗

S).

The best known approximation algorithm for the deterministic problem has
a guarantee of 4.38 and is due to Harks et al. [8]. So our algorithm produces
only a slightly worse approximation factor in the two-stage stochastic case.

6 Conclusion

In this paper we introduced Nested Local Search, showing that pure local search
applies to metric two-stage stochastic facility location problems. Our analysis
lead to a tight (3 + ε)-approximation for the pure local search and to a (2.375 +
ε)-factor approximation algorithm for local search combined with rescaling and
greedy augmentation techniques. Moreover Nested Local Search allows us to
generalize the mutability of the metric in contrast to previous algorithms, which
only permit scenario-dependent inflation factors, to order-preserving metrics.
Furthermore, we obtained the first constant-factor approximation algorithms for
tsCCFL and tsCLR with guarantees (6.236 + ε) and (4.718 + ε), respectively.

It would be interesting to know if our new approach combining direct and
tree-connections in one facility location problem could lead to improved approx-
imation ratios also for the deterministic problems. Moreover, it would be inter-
esting to study local search techniques for variants of two-stage stochastic capac-
itated facility location problems, as they proved to be very useful in the deter-
ministic case.
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