
Integrating line planning, timetabling, and vehicle

scheduling
Integer programming formulation and analysis∗

Marco Lübbecke Christian Puchert Philine Schiewe
Anita Schöbel

February 27, 2019

Abstract

Line planning, timetabling, and vehicle scheduling are three important
stages of public transport planning which highly depend on one another.
It is hence beneficial to solve them in an integrated way instead of sequen-
tially. In this paper we present an integer linear programming formulation
for the integrated line planning, timetabling, and vehicle scheduling prob-
lem. Due to the inherent complexity of line planning and timetabling, it is
not possible to solve the integrated model directly. We hence analyze the
structure of the resulting integer program with respect to decomposition
approaches and show that there exist decompositions that are superior
to the canonical decomposition into the planning stages line planning,
timetabling, and vehicle scheduling.

Keywords Line planning - Timetabling - Vehicle scheduling - Integrated
public transport planning - Integer programming - Decomposition

∗This work was partially funded by DFG research unit FOR 2083.

M. Lübbecke, C. Puchert
RWTH Aachen University
Kackertstraße 7
52072 Aachen, Germany
e-mail: luebbecke@or.rwth-aachen.de, puchert@or.rwth-aachen.de

P. Schiewe
University of Goettingen
Lotzestr. 16-18
37083 Göttingen, Germany
e-mail: p.schiewe@math.uni-goettingen.de

A. Schöbel
Technical University of Kaiserslautern
Gottlieb-Daimler-Straße, 67663 Kaiserslautern, Germany
e-mail: schoebel@mathematik.uni-kl.de
and
Fraunhofer Institute for Industrial Mathematics ITWM
Fraunhofer Platz 1
67663 Kaiserslautern, Germany

1

1 Introduction

When planning public transport, three important and well researched stages
are line planning, timetabling, and vehicle scheduling. They are usually solved
sequentially, see, e.g. (Bussieck et al, 1997; Huisman et al, 2005; Desaulniers and
Hickman, 2007; Guihaire and Hao, 2008). Thus, at first a line plan is constructed
that covers the infrastructure network. Afterwards, arrival and departure times
for all lines and all stops are determined in the timetabling stage minimizing
the travel time of the passengers. For the lines and the corresponding timetable
a vehicle schedule is constructed such that the operational costs are minimized.
Due to the nature of the sequential planning process, the solution quality and
even the feasibility of the later problems highly depend on the solution of the
earlier problems and the quality of the resulting public transport supply is very
likely to benefit from an integrated approach. Already in (Bussieck et al, 1997)
it is therefore suggested to consider integrated problems spanning more than
one planning stage.

Recently, integration has been the focus of many publications in public
transport planning. The integration of timetabling and passenger routing is
considered in (Siebert and Goerigk, 2013; Schmidt, 2014; Schmidt and Schöbel,
2015a,b; Borndörfer et al, 2016; Gattermann et al, 2016; Robenek et al, 2017)
while line planning and timetabling are considered integratedly in (Schmidt,
2005; Liebchen, 2008; Rittner and Nachtigall, 2009; Kaspi and Raviv, 2013;
Burggraeve et al, 2017; Schiewe, 2018). Integrating timetabling and vehicle
scheduling is considered in (van den Heuvel et al, 2008; Guihaire and Hao,
2010; Ibarra-Rojas and Rios-Solis, 2011; Cadarso and Maŕın, 2012; Petersen
et al, 2013; Schmid and Ehmke, 2015; Yue et al, 2017; Fonseca et al, 2018).
While the integration of several planning stages leads to better solutions, it
also increases the computational challenge. Therefore, many approaches to in-
tegrating problems in public transport planning are heuristic, such as iterative
approaches in (Kinder, 2008; Siebert and Goerigk, 2013; Burggraeve et al, 2017)
or meta-heuristic ones in (van den Heuvel et al, 2008; Guihaire and Hao, 2010;
Petersen et al, 2013; Schmid and Ehmke, 2015; Robenek et al, 2017; Yue et al,
2017; Fonseca et al, 2018). A general scheme for designing iterative algorithms
for integrating line planning, timetabling, and vehicle scheduling is proposed
in (Schöbel, 2017), of which parts are implemented in (Michaelis and Schöbel,
2009; Pätzold et al, 2017; Schiewe and Schiewe, 2018).

While the integration of two planning stages is subject of ongoing research,
the integration of all three problems line planning, timetabling, and vehicle
scheduling has not been handled before. We propose an integrated formulation
for all three problems which also includes passenger routing in Section 2 of
this paper and consider different decompositions in regard of their solvability in
Section 4.

2 Integrating line planning, timetabling, and ve-
hicle scheduling with passenger routing

In this section we shortly describe the usual sequential approach to public trans-
port planning and introduce an IP model for the integrated problem.

2

2.1 Sequential solution

While the sequential planning stages are thoroughly researched, we only give a
brief introduction to each of them. Note that there are many different models
for each of the planning stages which are described in the overview articles
referenced below.

Line planning. The goal of line planning is to cover an infrastructure network
by lines such that a certain travel quality for the passengers is guaranteed and
the costs for the infrastructure provider is not too high. This is usually done
by routing all passengers along shortest paths and assigning lower and upper
frequency bounds on the edges of the infrastructure network that make sure that
these passengers paths can be realized. For an overview, see (Schöbel, 2012).

Timetabling. We consider periodic timetabling, i.e., the timetable is con-
structed for a fixed period and then repeated. This is usually modeled as peri-
odic event scheduling problem (PESP), as introduced in (Serafini and Ukovich,
1989), which is intrinsically hard to solve, see e.g. (Liebchen, 2007). To avoid in-
tegrating passenger routing, it is often assumed that passengers travel on fixed
paths independently from the timetable. For an overview, see (Lusby et al,
2011).

Vehicle scheduling. In comparison to line planning and timetabling, vehi-
cle scheduling is an easier problem as its basic form can be solved by a flow
formulation. The goal is to minimize the operational costs by scheduling the
operation of lines by vehicles such that additional costs arising from empty re-
location trips between line trips are minimized. It is an aperiodic problem as
vehicle schedules do not need to repeat with the same period as the timetable
does. For an overview, see (Bunte and Kliewer, 2009).

Passenger routing. Passenger routing is used in different stages of the se-
quential approach. It is used to find lower frequency bounds in the line planning
stage as well as for defining weights in the timetabling stage. In the objective
function it is used to evaluate timetables with respect to the passengers’ travel
times. We have to consider passenger routing in the integrated model, because
assigning passengers to transfers beforehand is impossible when no line plan is
fixed.

2.2 Integer programming (IP) model

Our goal is to find a public transport supply consisting of a line plan, a timetable,
a routing of the passengers, and a vehicle schedule that is feasible and minimizes
a weighted sum of the operational costs and the passengers’ travel times. Here,
the operational costs contain duration-based and distance-based costs for trips
covering lines and relocations between them as well as costs depending on the
number of vehicles needed. The structure of the integrated IP model is the
following:

3

objective: minimize β·travel time + γ·operational costs

line planning L
feasibility problem

coupling constraints LP

pass. routing P
flow problem

coupling constraints PT

timetabling T
PESP

coupling constraints TV

vehicle sched. V
flow problem

coupling constraints LT, LV

Figure 1: Structure of the integrated line planning, timetabling, and vehicle
scheduling problem with passenger routing.

We abbreviate the four planning stages by L, P, T and V, and hence classify the
coupling constraints as LP, LT, LV, PT and TV. These classes are again used
in the IP model to simplify the presentation of the constraints.

We now develop the integrated integer program in more detail. In order to keep
the complexity of the model manageable, we introduce the following assump-
tions:

• A public transportation network (PTN) (V,E) consisting of stops V and
direct connections (e.g., tracks) E between the nodes is given.

• Lines are chosen from a fixed line pool L0 and are operated with a fre-
quency of one if used. This is encoded in the Boolean variable fl, l ∈ L0.

• Lower and upper frequency bounds fmin
e , fmax

e on the edges e ∈ E are
provided. The lower frequency bounds fmin

e guarantee a prespecified ser-
vice quality while the upper frequency bounds fmax

e deal with operational
issues such as headway constraints.

• The timetable is periodic with period length T .

• origin-destination (OD) pairs are routed as a unit on shortest paths ac-
cording to the travel time.

• The number of periods considered for vehicle scheduling is pmax, we write
the set of considered periods as P = {1, . . . , pmax}.

• The number of vehicles is not limited.

• There is one fixed depot where all vehicles start and end their journey.

• The minimal turnover time between the last event of line l1 and the first
event of line l2 is given as Ll1,l2 .

4

The model is based on an event-activity network (EAN) N 0 = (E0,A0), see
(Serafini and Ukovich, 1989; Odijk, 1996), which is derived from the PTN and
contains events and activities for all lines in the pool. The events represent
departures and arrivals of vehicles at stops while the activities represent driving
and waiting of vehicles as well as transferring of passengers between different
lines.

E0 = E0
arr ∪ E0

dep where

E0
arr = {(v, l, arr) : v ∈ l ∩ V, l ∈ L0}
E0

dep = {(v, l, dep) : v ∈ l ∩ V, l ∈ L0}
A0 = A0

drive ∪ A0
wait ∪ A0

trans where

A0
drive = {((v1, l, dep), (v2, l, arr)) : {v1, v2} ∈ l ∩ E, l ∈ L0}
A0

wait = {((v, l, arr), (v, l, dep)) : v ∈ l ∩ V, l ∈ L0}
A0

trans = {((v, l1, arr), (v, l2,dep)) : v ∈ l1 ∩ l2 ∩ V, l1, l2 ∈ L0}

These events have to be scheduled according to the lower and upper bounds
La, Ua, respectively, on the duration of the activities a ∈ A0. Therefore, the
variables πi for the periodic time of the events i ∈ E0 and za for the modulo
parameters on the activities a ∈ A0 are introduced. The auxiliary variables
ya are used to decide whether all lines corresponding to activity a ∈ A0 are
operated. Note that A0(l1, l2) is the set of activities a = (i, j) such that event i
belongs to line l1 and event j belongs to line l2 while A0(l) is the set of activities
a = (i, j) such that i or j belongs to l .

To correctly model the passenger routing, the network has to be extended
further to include source and target nodes for all OD pairs which correspond to
nodes in the underlying infrastructure network as well as activities connecting
these special events to the rest of the EAN. These new events need not be sched-
uled in the timetable. Along the lines of (Schmidt, 2014), we get an extended
event-activity network N̄ = (Ē , Ā) with

Ē = E0 ∪ E0
OD

E0
OD = {(u, v, source), (u, v, target) : u, v ∈ V }
Ā = A0 ∪ A0

to ∪ A0
from

A0
to = {((u, v, source), (u, l, dep)) : u ∈ l ∩ V, u, v ∈ V }

A0
from = {((v, l, arr), (u, v, target)) : v ∈ l ∩ V, u, v ∈ V }.

Analogously to the definition of A0(l), we define Ā(l) as the set of activities
a = (i, j) ∈ Ā such that event i or event j belongs to line l.

As passengers are routed in the extended EAN N̄ in a flow model, we intro-
duce a variable pu,va for each combination of OD pair (u, v) with u, v ∈ V and
activity a ∈ Ā indicating whether the OD pair uses the activity.

For vehicle scheduling we introduce Boolean variables x(p1,l1),(p2,l2) to indi-
cate whether the p2-th driving of line l2 is done by the vehicle that directly before
that did the p1-th driving of line l1. Similarly, Boolean variables xdepot,(p,l) in-
dicate whether the p-th driving of line l is done by a new vehicle from the depot
and x(p,l),depot indicates whether the vehicle that did the p-th driving of line l is

5

going to the depot. To correctly describe the p-th driving of line l the following
variables are used: dl is the time it takes in the timetable to get from the first
event in the line (first(l)) to the last event in the line (last(l)), sp,l, ep,l is the
start or end time of the p-th driving of line l, respectively.

The IP model can now be formulated in the following way, specifying the
general structure given in Figure 1.

min β ·
∑

u,v∈V
Cu,v ·

∑
a=(i,j)∈A0

pu,va · (πj − πi + za · T) (1)

+ γ1 ·
∑
l∈L0

fl · dl (2)

+ γ2 ·
∑
l∈L0

fl · lengthl (3)

+ γ3 ·
∑
p1∈P

∑
l1∈L0

(∑
p2∈P

∑
l2∈L0

(
s(p2,l2) − e(p1,l1)

)
· x(p1,l2),(p2,l2)

+ xdepot,(p1,l1) · Ldepot,l1 + x(p1,l1),depot · Ll1,depot

)
(4)

+ γ4 ·
∑
p1∈P

∑
l1∈L0

(∑
p2∈P

∑
l2∈L0

(
x(p1,l1),(p2,l2) ·Dl1,l2

)
+ xdep,(p1,l1) ·Ddep,l1 + x(p1,l1),dep ·Dl1,dep

)
(5)

+ γ5 ·
∑
p∈P

∑
l∈L0

xdepot,(p,l) (6)

6

∑
l∈L0:
e∈l

fl ≥ fmin
e e ∈ E (L1)

∑
l∈L0:
e∈l

fl ≤ fmax
e e ∈ E (L2)

πj − πi + za · T ≥ ya · La a = (i, j) ∈ A0 (T1)

πj − πi + za · T ≤ Ua +M · (1− ya) a = (i, j) ∈ A0 (T2)

ya = fl1 · fl2 a ∈ A0(l1, l2) (LT1)

Au,v · (pu,va)a∈Ā = bu,v u, v ∈ V (P1)

fl ≥ pu,va u, v ∈ V, a ∈ Ā(l) (LP1)

dl =
∑

a=(i,j)∈A0(l,l)

(πj − πi + zaT)l ∈ L0 (TV1)

sp,l = p · T + πfirst(l) p ∈ P, l ∈ L0 (TV2)

ep,l = p · T + πfirst(l) + dl p ∈ P, l ∈ L0 (TV3)

sp2,l2 − ep1,l1 ≥ x(p1,l1),(p2,l2) · Ll1,l2

−M ′ · (1− x(p1,l1),(p2,l2)) p1, p2 ∈ P, l1, l2 ∈ L0 (V1)

fl2 =
∑
p1∈P

∑
l1∈L0

x(p1,l1),(p2,l2)

+ xdepot,(p2,l2) p2 ∈ P, l2 ∈ L0 (LV1)

fl1 =
∑
p2∈P

∑
l2∈L0

x(p1,l1),(p2,l2)

+ x(p1,l1),depot p1 ∈ P, l1 ∈ L0 (LV2)

x(p,l),• ≤ fl p ∈ P, l ∈ L0 (LV3)

x•,(p,l) ≤ fl p ∈ P, l ∈ L0 (LV4)

πi ∈ {0, . . . , T − 1}, za ∈ Z, ya, fl, pu,va ∈ {0, 1}, dl, sp,l, ep,l ∈ N,
x(p1,l1),(p2,l2), xdepot,(p,l), x(p,l),depot ∈ {0, 1}

The objective function, see (1) to (6), minimizes a weighted sum of the travel
time of the passengers, see (1), and the operational costs, see (2) to (6). While
the travel time in (1) is weighted with β, the duration of trips in (2) and their
length in (3) are weighted by γ1 and γ2, respectively. The duration of relocations
between trips in (4) and their length in (5) are weighted by γ3 and γ4, respec-
tively while the number of vehicles in (6) is weighted by γ5. Linearizing the
quadratic terms in (1) and (4) leads to adding further variables and constraints.

Equations (L1) and (L2) are the standard feasibility constraints for line
planning, guaranteeing a prespecified service quality as well as a rough upper
bound on the costs. Equations (T1), (T2), and (LT1) guarantee the feasibility
of the timetable for the lines which are operated. The passenger flow is modeled
by (P1) where a node-arc-incidence matrix is used and equation (LP1) ensures

7

that only arcs belonging to operated lines are used by passengers. Equations
(TV1), (TV2), and (TV3) model the correct (aperiodic) time for the start and
end of the trips which is used in equation (V1) to ensure that the time between
two trips which are operated directly after one another is sufficiently large. The
flow of the vehicles is modeled in equations (LV1) and (LV2) while equations
(LV3) and (LV4) ensure that only trips belonging to operated lines are used.
Note that constraint (LT1) can easily be linearized as product of two Boolean
variables.

Note that the formulation given above can furthermore be extended to in-
clude the time slice model introduced in (Gattermann et al, 2016) in order to
distribute the favored departure times of the passengers. This is omitted here
to not further complicate the model.

3 Dantzig-Wolfe decompositions

In this section we apply a generic column generation approach to the integrated
line planning, timetabling, and vehicle scheduling problem.

The structure presented in Section 2.2 can be exploited using the so-called
Dantzig-Wolfe decomposition (DWD) (Dantzig and Wolfe, 1960): The problem
is reformulated according to the given structure where each block is represented
as a subproblem. Furthermore, a master problem has the task to select feasible
solutions from each subproblem such that the coupling constraints are satisfied.
Due to the exponentially large number of variables, this master problem is
solved by column generation: variables are generated dynamically when solving
the linear relaxation. Embedding this in a branch-and-bound algorithm yields
branch-and-price. For an overview on column generation and branch-and-price,
see e.g., (Desaulniers et al, 2005; Vanderbeck and Wolsey, 2010).

The above problem structure, consisting of the subproblems line planning,
passenger routing, timetabling, and vehicle scheduling, seems to be the “canon-
ical” one for applying a DWD. However, any structure that subdivides the
coefficient matrix into blocks and coupling constraints is theoretically suitable
for DWD. Here, two different blocks are independent from one another as they
neither share variables nor constraints. (If linking variables are present, i.e.,
variables that are shared by two or more blocks, one can reformulate the prob-
lem by adding for each such variable a copy for each block it appears in, and
then introducing coupling constraints that state that the variable copies must
attain the same values, a so-called Langrangian decomposition.) Thus, a broad
variety of structures exist that might be used to decompose the problem. The
questions that arise are:

• What other decomposition structures do exist, apart from the canonical
one?

• Is the canonical structure suited best for applying a DWD and performing
branch-and-price? Or, if there exist other structures, does this decompo-
sition-based solution approach perform better on them?

• Are there any properties that can serve as indicators of a good perfor-
mance?

8

To find other decompositions than the canonical one, we use several structure
detection algorithms, some of them described in (Bergner et al, 2015). Formally,
a structure detection algorithm tries to find a mapping C → N0, where C is the
set of constraints. A constraint that is mapped to 0 is a coupling constraint, i.e.,
a constraint that belongs to no block, and thus is part of the master problem.
Depending on the detection algorithm, the mapping either already guarantees
that constraints mapped to the same integer form a block or blocks have to be
formed by moving variables to the set of linking variables.

A key feature of the detection that we use is that the algorithms are allowed
to determine partial structures C → N0 ∪ {open}; i.e., a constraint can be left
undecided (mapping it to open), and a partial structure that contains unde-
cided constraints can then be completed by another algorithm. In the end, each
complete structure (i.e. a structure with no undecided constraints left) usually
has been detected by a combination of several of these detection algorithms,
see (Gleixner et al, 2018) for more details. This increases the number of found
structures and the chance to find suitable decompositions, but leaves the chal-
lenge to choose a “meaningful” one with which branch-and-price is expected to
perform best.

Very roughly, structure detection proceeds in the following steps:

1. Constraint classifiers determine partitions of C, e.g., according to the
number of variables and their coefficients. With these partitions, potential
candidates for the number of blocks are determined.

2. Then, partial decompositions are built that only assign certain constraints
to be coupling constraints, but leave the remainder open. This is done in
the following ways:

• by the above mentioned constraint classifiers;

• by analyzing the densities of the constraints: Constraints with a high
number of variables are assigned as coupling constraints.

• by graph partitioning : The coefficient matrix A ∈ Rm×n is modeled
as a hypergraph in two different ways:

– hyper row graph: Each node represents a column j, and a hyper-
edge {j : aij 6= 0} for each row i is introduced;

– hyper row-column graph: Each node represents a matrix entry
(i, j) with aij 6= 0, and each row i is represented by a hyperedge
{(i, j) : aij 6= 0} containing its nonzero entries; analogously, there
is a hyperedge for each column j containing its nonzero entries.

Then, graph partitioning algorithms are applied on these graphs.
These graph partitioners yield complete decompositions as well as
partial decompositions which again only assign coupling constraints.

3. The partial decompositions are completed by looking for connected com-
ponents on the remaining constraints.

4. Last, a postprocessing routine checks if coupling constraints can be as-
signed to blocks: If a coupling constraint only contains variables of one
block, it will be moved to this block.

A overview on the detection algorithms we use is given in Table 1.

9

Step Letter Algorithm

1/2 c constraint classification
2 a graph partitioning on the hyper row-column graph
2 r graph partitioning on the hyper row graph

3 C searching connected components
3 d detection by constraint densities

4 p postprocessing

Table 1: Overview on detection algorithms. The algorithms c, a, and r derive
a partial decomposition according to Step 2. They can be followed by the algo-
rithms C and d, see Step 3. The postprocessing algorithm p can be performed
after each of the other algorithms.

4 Computational experiments

The structure detection is implemented in the generic branch-and-price solver
GCG (Gamrath and Lübbecke, 2010) which we use in a development version
based on version 2.1.4. GCG is an extension to SCIP, used in version 4.0, see
(Gleixner et al, 2018), a solver for mixed integer programs that also serves as a
framework for branch-price-and-cut.

We applied the above structure detection scheme on a small example instance
depicted in Figure 2. Since SCIP comes with various presolving routines which
may change the problem formulation and in particular add new constraints, the
detection scheme was applied twice: first on the original IP formulation, then,
after presolving, again on potentially newly added constraints. In total, this
yielded 75 decompositions.

We evaluated each decomposition w.r.t. its computational performance within
branch-and-price: Therefore, we tried to solve the root LP relaxation within a
time limit of one hour. Note that this is the LP relaxation of the master problem,
i.e., the subproblems are solved with integrality constraints but the combination
of columns found by the subproblems to a solution of the master problem can
be rational instead of integral. The computations were performed on an In-
tel(R) Core(TM) i7-2600 CPU at 3.6 GHz, with 16 GB RAM and 8 MB cache,
running on openSUSE Leap 42.2 with Linux kernel 4.4. The results are shown
in Table 2; for each decomposition, it shows the involved algorithms; moreover,
the relative block and border area, the time and number of LP iterations needed
to solve the root LP relaxation, and the gap between the dual bound and the
optimal solution value of the integrated IP. Here, the optimal value of the IP
can be used to compute the gap as the integrated problem is small enough such
that it can be solved to optimality by commercial solvers.

4.1 Canonical decomposition

At first, we consider the “canonical” decomposition structure which uses the
subproblems line planning, timetabling, vehicle scheduling, and passenger rout-
ing from the sequential process as blocks. It is depicted in Figure 3.

Figure 3a is a reordering of the schematic representation of the matrix struc-

10

v1 v2 v3 v4

Figure 2: Data set used for testing. The solid lines represent the infrastructure
network while the dashed lines represent the lines of the line pool.

coupling constraints
LT, TV, LV, LP, TP

line planning L
feasibility prob.

timetabling T
PESP

vehic. sched. V
flow problem

pass. routing P
flow problem

(a) Schematic representation of the matrix structure, reordering of Figure 1.

 0

 2000

 4000

 6000

 8000

 10000
 0 1000 2000 3000 4000 5000

(b) Actual matrix structure. The variables are numbered on the x-axis and the con-
straints on the y-axis. The small blocks (dark green area) represent the subproblems
timetabling, vehicle scheduling, and passenger routing, with an additional block for
line planning which consists of 12 constraints and cannot be seen. The large dark blue
area represents the large number of coupling constraints.

Figure 3: Canonical decomposition of the integrated line planning, timetabling,
and vehicle scheduling problem with passenger routing.

ture given in Figure 1 while Figure 3b represents the actual matrix structure

11

for the instance given in Figure 2. The large area at the top represents the
coupling constraints which clearly make up most of the coefficient matrix thus
making it hard to find subproblems which can be solved independently. Also
note the large number of variables which do not occur in any of the blocks.
These are auxiliary variables used for linearizations of constraints (LT1) and of
the objective and are not explicitly mentioned in the model.

When solving the problem in this canonical form by SCIP, the LP at the
root node of the branch-and-price tree cannot even be solved within the time
limit. Due to the then poor lower bound, the gap is still at 5182.32 % which is
far from optimal.

4.2 Influence of detection algorithms

Therefore, we now consider other decompositions found by GCG. In the fol-
lowing, we denote each combination of detection algorithms by the letters in
Table 1. E.g., apCp means applying graph partitioning and postprocessing
on the un-presolved problem, then searching connected components and again
performing postprocessing on newly added constraints after presolving.

Figure 4 shows the solvability of the matrix structures found by the (combi-
nations of) different algorithms indicated by the gap after solving the root node
of the branch-and-price tree.

a

a
C

a
C
p

a
d
C

a
d
C
p

a
p

a
p
C

a
p
C
p

a
p
d
C

a
p
d
C
p

c
C
p
C
p

c
C
p
d
C
p r

0

1000

2000

3000

4000

5000

g
a
p

in
%

Figure 4: Box and whiskers plot of the performance of the different decompo-
sition algorithms. The algorithms listed on the x-axis are combinations of the
detection algorithms given in Table 1. The boxes mark the 25th to 75th per-
centile while the whiskers mark the minimal and maximal values. The median
is depicted by a red line. Here, the performance is measured as the gap after
solving the root node of the branch-and-price tree which is given on the y-axis.

Figure 4 suggests that graph partitioning algorithms on hyper row-column
graphs combined with connected components are better suited for the integrated

12

line planning, timetabling, and vehicle scheduling problem then algorithms using
constraint classification or graph partitioning on hyper row graphs.

Especially the algorithms apC, apCp, apdC and apdCp lead to good struc-
tures. A typical example of a decomposition found by these algorithms is de-
picted in Figure 5. Such decompositions are called arrowhead matrices due to
their shape. Intuitively, these decompositions seem to be easier to solve due to
the low number of coupling constraints and variables combined with indepen-
dent blocks of reasonable sizes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
 0 500 1000 1500 2000 2500

Figure 5: Example for an arrowhead matrix found by the algorithm apC with
26 blocks. The variables are numbered on the x-axis and the constraints on the
y-axis. The dark blue area represents the coupling constraints, the purple area
represents the linking variables, and the dark green area represents the blocks.

4.3 Influence of the number of blocks

Figure 6 shows the influence of the number of blocks on the solvability. While
good decompositions could be found for a large span of the number of blocks,
high and low numbers of blocks can also lead to bad decompositions while a
medium number of around 20 to 30 blocks is more promising.

13

0 20 40 60 80 100 120

number of blocks

0

1000

2000

3000

4000

5000

g
a
p

in
%

a

aC

aCp

adC

adCp

ap

(a) Algorithms a, aC, aCp, adC, adCp and ap, see Table 1.

5 10 15 20 25 30 35 40

number of blocks

40

60

80

100

120

140

160

180

200

g
a
p

in
%

apC apCp apdC apdCp

(b) Algorithms apC, apCp, apdC, apdCp, see Table 1.

Figure 6: Influence of the number of blocks on the performance of column
generation. Here, the performance is measured as the gap after solving the root
node of the branch-and-price tree which is given on the y-axis.

Note that the scale of Figure 6a and 6b varies as Figure 6b only contains
“good” algorithms which lead to a gap of less than 200 percent. Figure 6a also

14

shows an effect which occurred for all decompositions considered here: The gap
is either acceptably small (up to 200%) or the root node LP could not be solved,
leading to a gap of several thousand percent.

Examples for decompositions with a large gap are given in Figure 7. They
either feature many very small blocks (Figure 7a and 7b) or few large blocks
(Figure 7d) or a combination of both (Figure7c). Medium-sized blocks seem to
be more promising.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
 0 500 1000 1500 2000 2500

(a) Algorithm aCp, 106 blocks.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
 0 500 1000 1500 2000 2500

(b) Algorithm cCpdCp, 77 blocks.
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
 0 500 1000 1500 2000 2500

(c) Algorithm cCpCp, 24 blocks.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
 0 500 1000 1500 2000 2500

(d) Algorithm r, 3 blocks.

Figure 7: Decompositions with a large gap. The variables are numbered on
the x-axis and the constraints on the y-axis. The dark blue areas represent the
coupling constraints, the purple areas represent the linking variables and the
dark green areas represent the blocks.

4.4 Block and border scores

To further characterize the decompositions we consider the block score

block =

∑K
k=1mk · nk
m · n

(7)

and the border score

border =
m0 · n+ (

∑K
k=1mk) · n0

m · n
, (8)

where K is the number of blocks, m and n are the total number of constraints
and variables, respectively, mk and nk are the number of constraints and vari-
ables in block k, respectively, m0 is the number of coupling constraints and n0

the number of linking variables.
In an IP model structure, these two scores indicate the relative block and

border area, respectively. Our expectation is that decompositions with smaller

15

scores lead to a better computational performance, see (Bergner et al, 2015;
Gleixner et al, 2018).

Figure 8 shows the block and border scores for each decomposition. The
canonical decomposition which is depicted by a star differentiates itself by a
very high border score compared to all other decompositions considered here
and one of the lowest block scores. This could already be seen in Figure 3 in
the large number of coupling constraints. Decompositions for which the root
LP can be solved such that the gap is less than 200 % all feature both low
block and border scores. Nevertheless, low block and border scores are only an
indicator and no guarantee for good solvability, see Bergner et al (2015) for a
general discussion of such measures.

0.0 0.1 0.2 0.3 0.4 0.5

block score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b
o
rd

er
sc

o
re

gap < 100 %

gap < 200 %

gap ≥ 900 %

canonical decomposition

Figure 8: Comparing different decompositions regarding the block score and the
border score, see equations (7) and (8), respectively.

5 Outlook

In this paper, we developed an integrated formulation for line planning, time-
tabling, and vehicle scheduling with passenger routing. We analyzed the struc-
ture of the resulting integer program with respect to possible decompositions.

The analysis of different matrix structure and their influence on the solvabil-
ity of the integrated line planning, timetabling, and vehicle scheduling problem
presented here can only be a first step to understanding this problem. Although
we show that the canonical decomposition is far from being an optimal one to

16

solve the integrated problem it is hard to determine which decompositions are
suited better to this end. The best indicator so far is a small block score and a
small border score at the same time. Therefore, extensive computational stud-
ies are needed to confirm this correlation and find further indicators for good
decompositions.

To improve the efficiency of solving different decompositions, the combina-
tion with existing heuristics for problems in public transport planning would be
interesting. Whenever a subproblem is detected that can be interpreted as one
of the problems stemming from the original planning process (i.e., line plan-
ning, timetabling, or vehicle scheduling), well researched specialized heuristics
can be used to solve this subproblem. From this we expect a speed-up of the
computations, leading to better results for solving the integrated problem.

In addition to better understanding the decompositions, it would be inter-
esting to further extend the scope of the integrated problem, e.g., by adding
robustness aspects. It is of particular interest which robustness concept makes
sense in this context (for timetabling, see (Goerigk and Schöbel, 2010) for a
study of different robustness concepts). In our setting, robustness can be con-
sidered from a passengers’ and an operators’ point of view. While robust pas-
senger paths depend mainly on transfers which should not break due to small
delays, robust vehicle schedules need should allow for a certain number of de-
layed vehicles before new ones have to be scheduled.

Furthermore, the integrated model could be extended by additional planning
stages. On the one hand, adding network design aspects such as stop location to
the formulation extends the scope of the model in regard to planning completely
new public transport supplies. On the other hand, adding crew scheduling
leads to an even better approximation of the operational costs. This, however,
increases the computational challenge of the model even more and has to be
combined with solution approaches for reducing the problem size.

Acknowledgements

We would like to thank Michael Bastubbe from RWTH Aachen University for
designing and implementing the structure detection scheme in GCG, as well as
contributing a number of detection algorithms.

Appendix

Det. K block border # LP iters Time (s) Gap (%)

a 2 0.50 0.01 274 3600.00 4784.50
a 4 0.24 0.02 1913 3600.00 4784.50
a 8 0.12 0.03 16564 3600.00 4784.50
a 16 0.06 0.04 29172 223.20 54.30
a 32 0.03 0.05 48081 97.90 54.30
a 3 0.33 0.01 268 3600.00 4784.50
a 10 0.10 0.04 40097 3600.00 4784.50

Continue next page

17

Det. K block border # LP iters Time (s) Gap (%)

a 6 0.16 0.03 18243 3600.00 4784.50
a 20 0.05 0.05 46721 160.80 54.30
a 100 0.01 0.10 1420136 481.10 4784.50

aC 10 0.27 0.06 276 3600.00 4784.50
aC 14 0.13 0.07 147856 2853.20 54.40
aC 22 0.07 0.09 187441 636.70 113.20
aC 38 0.03 0.11 251646 739.30 190.80
aC 9 0.32 0.04 273 3600.00 4784.50
aC 12 0.17 0.12 201955 1415.90 57.20
aC 16 0.10 0.12 544836 904.40 56.80
aC 26 0.05 0.14 2553719 2829.10 59.80
aC 106 0.01 0.18 1589003 1463.90 4784.50

aCp 10 0.27 0.05 276 3600.00 4784.50
aCp 22 0.07 0.09 224273 635.90 113.20
aCp 38 0.03 0.11 265512 727.40 190.80
aCp 9 0.32 0.04 273 3600.00 4784.50
aCp 12 0.17 0.10 290977 1639.60 57.20
aCp 16 0.10 0.11 577623 1019.20 56.60
aCp 26 0.05 0.12 968633 1266.70 59.70
aCp 106 0.01 0.16 3211795 3423.60 4784.50
adC 5 0.27 0.05 271 3600.00 4784.50
adC 9 0.13 0.07 108036 3600.00 4784.50
adC 17 0.07 0.09 138008 585.00 113.20
adC 33 0.03 0.11 206704 609.60 190.80
adC 4 0.32 0.04 268 3600.00 4784.50
adC 7 0.17 0.12 285443 1414.80 57.20
adC 11 0.10 0.12 574388 1030.90 56.80
adC 21 0.05 0.13 1876435 2067.10 59.80
adC 101 0.01 0.18 1232117 1703.80 1064.30

adCp 5 0.27 0.05 271 3600.00 4784.50
adCp 17 0.07 0.09 154553 543.40 113.20
adCp 33 0.03 0.11 259472 805.80 190.80
adCp 4 0.32 0.04 268 3600.00 4784.50
adCp 7 0.17 0.10 283497 1813.00 57.20
adCp 11 0.10 0.10 699098 1081.20 56.50
adCp 21 0.05 0.11 721362 1072.60 59.70
adCp 101 0.01 0.16 2822062 3518.00 1050.20

ap 16 0.06 0.04 33182 234.70 54.30
ap 32 0.03 0.05 44427 99.00 54.30
ap 10 0.10 0.04 38957 2621.40 54.30
ap 6 0.16 0.03 23019 3600.00 4784.50
ap 100 0.01 0.10 326158 385.80 96.70

apC 38 0.03 0.11 212859 620.80 190.80
apC 12 0.17 0.11 303335 1840.00 56.90
apC 16 0.11 0.08 228118 843.70 55.10
apC 26 0.05 0.12 1179709 1773.90 58.80

Continue next page

18

Det. K block border # LP iters Time (s) Gap (%)

apC 106 0.01 0.12 1642579 2619.60 910.40
apCp 38 0.03 0.11 247731 760.40 190.80
apCp 12 0.17 0.10 332521 1776.50 56.90
apCp 26 0.05 0.10 577782 1052.80 58.80
apCp 106 0.01 0.12 1800497 2891.40 910.40
apdC 33 0.03 0.11 235631 670.50 190.80
apdC 7 0.17 0.11 330598 1882.80 56.90
apdC 11 0.11 0.08 348440 836.60 55.10
apdC 21 0.05 0.11 1327333 1828.00 58.80
apdC 101 0.01 0.12 740547 1826.10 910.40

apdCp 7 0.17 0.10 279236 2162.70 56.90
apdCp 11 0.11 0.08 315679 908.80 55.10
apdCp 21 0.05 0.10 571431 978.20 58.80
apdCp 101 0.01 0.12 994508 1950.80 910.40
cCpCp 24 0.50 0.05 292 3600.00 4784.50
cCpCp 24 0.49 0.05 902 3600.00 4784.50
cCpCp 24 0.11 0.15 308 3600.00 4784.50
cCpCp 24 0.49 0.05 472 3600.00 4784.50
cCpCp 24 0.11 0.15 322 3600.00 4784.50

cCpdCp 19 0.10 0.15 392 3600.00 4784.50
cCpdCp 19 0.10 0.15 1460 3600.00 4784.50

r 3 0.22 0.33 10928 3600.00 4784.50

Table 2: Detailed results for each decomposition

References

Bergner M, Caprara A, Ceselli A, Furini F, Lübbecke ME, Malaguti E, Traversi
E (2015) Automatic Dantzig–Wolfe reformulation of mixed integer programs.
Mathematical Programming 149(1-2):391–424

Borndörfer R, Hoppmann H, Karbstein M (2016) Passenger routing for periodic
timetable optimization. Public Transport DOI 10.1007/s12469-016-0132-0

Bunte S, Kliewer N (2009) An overview on vehicle scheduling models. Public
Transport 1(4):299–317

Burggraeve S, Bull S, Vansteenwegen P, Lusby R (2017) Integrating robust
timetabling in line plan optimization for railway systems. Transportation Re-
search Part C: Emerging Technologies 77:134–160

Bussieck M, Winter T, Zimmermann U (1997) Discrete optimization in public
rail transport. Mathematical Programming 79(1-3):415–444

Cadarso L, Maŕın Á (2012) Integration of timetable planning and rolling stock
in rapid transit networks. Annals of Operations Research 199(1):113–135

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Op-
erations Research 8(1):101–111

19

Desaulniers G, Hickman M (2007) Public transit. Handbooks in Operations
Research and Management Science 14:69–127

Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column Generation.
Springer

Fonseca J, van der Hurk E, Roberti R, Larsen A (2018) A matheuristic for
transfer synchronization through integrated timetabling and vehicle schedul-
ing. Transportation Research Part B: Methodological 109:128–149

Gamrath G, Lübbecke ME (2010) Experiments with a generic Dantzig-Wolfe
decomposition for integer programs. In: Experimental Algorithms, Springer,
LNCS, vol 6049, pp 239–252

Gattermann P, Großmann P, Nachtigall K, Schöbel A (2016) Integrating pas-
sengers’ routes in periodic timetabling: A SAT approach. In: ATMOS
2016, OpenAccess Series in Informatics (OASIcs), vol 54, pp 1–15, URL
http://drops.dagstuhl.de/opus/volltexte/2016/6527

Gleixner A, Bastubbe M, Eifler L, Gally T, Gamrath G, Gottwald RL, Hendel
G, Hojny C, Koch T, Lübbecke ME, Maher SJ, Miltenberger M, Müller B,
Pfetsch ME, Puchert C, Rehfeldt D, Schlösser F, Schubert C, Serrano F,
Shinano Y, Viernickel JM, Walter M, Wegscheider F, Witt JT, Witzig J
(2018) The SCIP Optimization Suite 6.0. ZIB-Report 18-26, Zuse-Institute
Berlin

Goerigk M, Schöbel A (2010) An empirical analysis of robustness con-
cepts for timetabling. In: Erlebach T, Lübbecke M (eds) Proceed-
ings of ATMOS10, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, OpenAccess Series in Informatics (OASIcs), vol 14,
pp 100–113, DOI http://dx.doi.org/10.4230/OASIcs.ATMOS.2010.100, URL
http://drops.dagstuhl.de/opus/volltexte/2010/2753

Guihaire V, Hao J (2008) Transit network design and scheduling: A global
review. Transportation Research Part A: Policy and Practice 42(10):1251–
1273

Guihaire V, Hao JK (2010) Transit network timetabling and vehicle assignment
for regulating authorities. Computers & Industrial Engineering 59(1):16–23

van den Heuvel A, van den Akker J, van Kooten M (2008) Integrating
timetabling and vehicle scheduling in public bus transportation. Tech. rep.,
Utrecht University

Huisman D, Kroon L, Lentink R, Vromans M (2005) Operations research in
passenger railway transportation. Statistica Neerlandica 59(4):467–497

Ibarra-Rojas O, Rios-Solis Y (2011) Integrating synchronization bus timetabling
and single-depot single-type vehicle scheduling. In: ORP3 Meeting, Cadiz

Kaspi M, Raviv T (2013) Service-oriented line planning and timetabling for
passenger trains. Transportation Science 47(3):295–311

Kinder M (2008) Models for periodic timetabling. Master’s thesis, Technische
Universität Berlin

20

Liebchen C (2007) Periodic timetable optimization in public transport. Springer

Liebchen C (2008) Linien-, Fahrplan-, Umlauf- und Dienstplanoptimierung: Wie
weit können diese bereits integriert werden? In: Heureka’08

Lusby R, Larsen J, Ehrgott M, Ryan D (2011) Railway track allocation: models
and methods. OR Spectrum 33(4):843–883

Michaelis M, Schöbel A (2009) Integrating line planning, timetabling, and vehi-
cle scheduling: A customer-oriented approach. Public Transport 1(3):211–232

Odijk M (1996) A constraint generation algorithm for the construction of pe-
riodic railway timetables. Transportation Research Part B: Methodological
30(6):455–464

Pätzold J, Schiewe A, Schiewe P, Schöbel A (2017) Look-Ahead Approaches
for Integrated Planning in Public Transportation. In: D’Angelo G, Dollevoet
T (eds) 17th Workshop on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems (ATMOS 2017), Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, OpenAccess Series in Informat-
ics (OASIcs), vol 59, pp 17:1–17:16

Petersen H, Larsen A, Madsen O, Petersen B, Ropke S (2013) The Simultaneous
Vehicle Scheduling and Passenger Service Problem. Transportation Science
47(4):603–616

Rittner M, Nachtigall K (2009) Simultane Liniennetz- und Fahrlagenopti-
mierung. Der Eisenbahningenieur

Robenek T, Azadeh S, Maknoon Y, Bierlaire M (2017) Hybrid cyclicity: Com-
bining the benefits of cyclic and non-cyclic timetables. Transportation Re-
search Part C: Emerging Technologies 75:228–253

Schiewe A, Schiewe P (2018) An Iterative Approach for Integrated Planning
in Public Transportation. Tech. rep., Georg-August-Universität Göttingen,
working Paper

Schiewe P (2018) Integrated optimization in public transport planning. PhD
thesis, Georg-August-Universität Göttingen

Schmid V, Ehmke JF (2015) Integrated timetabling and vehicle scheduling with
balanced departure times. OR Spectrum 37(4):903–928

Schmidt D (2005) Linien- und Taktfahrplanung - Ein integrierter Opti-
mierungsansatz. Master’s thesis, Technische Universität Berlin, in German

Schmidt M (2014) Integrating Routing Decisions in Public Transportation Prob-
lems, Optimization and Its Applications, vol 89. Springer

Schmidt M, Schöbel A (2015a) The complexity of integrating routing decisions
in public transportation models. Networks 65(3):228–243

Schmidt M, Schöbel A (2015b) Timetabling with passenger routing. OR Spec-
trum 37:75–97

21

Schöbel A (2012) Line planning in public transportation: models and methods.
OR Spectrum 34(3):491–510

Schöbel A (2017) An eigenmodel for iterative line planning, timetabling and ve-
hicle scheduling in public transportation. Transportation Research C 74:348–
365

Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling
problems. SIAM Journal on Discrete Mathematics 2(4):550–581

Siebert M, Goerigk M (2013) An experimental comparison of periodic
timetabling models. Computers & Operations Research 40(10):2251–2259

Vanderbeck F, Wolsey LA (2010) Reformulation and decomposition of integer
programs. In: 50 Years of Integer Programming 1958-2008, Springer, pp 431–
502

Yue Y, Han J, Wang S, Liu X (2017) Integrated Train Timetabling and Rolling
Stock Scheduling Model Based on Time-Dependent Demand for Urban Rail
Transit. Computer-Aided Civil and Infrastructure Engineering 32(10):856–
873

22

