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Abstract

The Nemhauser-Trotter theorem states that the standard linear programming (LP) formulation for
the stable set problem has a remarkable property, also known as (weak) persistency: for every optimal
LP solution that assigns integer values to some variables, there exists an optimal integer solution in
which these variables retain the same values. While the standard LP is defined by only non-negativity
and edge constraints, a variety of stronger LP formulations have been studied and one may wonder
whether any of them is persistent as well. We show that any stronger LP formulation that satisfies
mild conditions cannot be persistent on all graphs, unless it is always equal to the stable-set polytope.

1 Introduction

Given an undirected graph G with node set V (G) and edge set E(G), and node weights w ∈ RV (G),
the (weighted) stable-set problem asks for finding a stable set S in G that maximizes

∑
v∈S wv, where

a set S is called stable if G contains no edge with both endpoints in S. While the stable-set problem is
NP-hard, it is a common approach to maximize wᵀx over the edge relaxation

Redge
stab (G) :=

{
x ∈ [0, 1]V (G) | xv + xw ≤ 1 for each edge {v, w} ∈ E(G)

}
and use optimal (fractional) solutions to gain insights about optimal 0/1-solutions. Note that the
0/1-points in the edge relaxation are precisely the characteristic vectors of stable sets in G, and that
maximizing a linear objective over the edge relaxation is a linear program that can be solved efficiently.
Given an optimal solution of this linear program, its objective value is clearly an upper bound on the
value of any 0/1-solution and its entries may guide initial decisions in a branch-and-bound algorithm.
While this is also the case for general polyhedral relaxations, it turns out that optimal solutions of the
edge relaxation have a remarkable property that allows to reduce the size of the problem by fixing
some variables to provable optimal integer values.

Definition 1 (Persistency). We say that a polytope P ⊆ [0, 1]n has the persistency property if for every
objective vector c ∈ Rn and every c-maximal point x ∈ P , there exists a c-maximal integer point
y ∈ P ∩ {0, 1}n such that xi = yi for each i ∈ {1, 2, . . . , n} with xi ∈ {0, 1}.

Proposition 2 (Nemhauser & Trotter [9]). The edge relaxation Redge
stab (G) has the persistency property for

every graph G.
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In other words, the result of Nemhauser & Trotter [9] states that if x? is an optimal solution for
the edge relaxation, then there exists an optimal stable set S? satisfying V1 ⊆ S? ⊆ V (G) \ V0, where
Vi := {v ∈ V (G) | x?v = i} for i = 0, 1. In this case, the nodes in V0 ∪ V1 can be deleted and the search
only has to be performed on the remaining graph. Clearly, this reduction is significant if x? assigns
integer values to many nodes.

Hammer, Hansen and Simeone [5] provided a reduction of (Unconstrained) Quadratic Binary Pro-
gramming (QBP) to the stable set problem and showed that weak persistency holds for (QBP) as well.
Boros et al. [1] provided an algorithm to compute the largest possible set of variables to fix via persis-
tencies in a quadratic binary program in polynomial time. This algorithm has been successfully used
in practice to solve problems of millions of variables in the field of computer vision by reducing the
problem dimension using persistencies [8, 6, 3].

In general, dual bounds obtained from the edge relaxation are quite weak, and several families of
additional inequalities have been studied in order to strengthen this formulation. Examples are the
clique inequalities [11], (lifted) odd-cycle inequalities [11] and clique-family inequalities [10]. Most of
these families were discovered by systematically studying the facets of the stable-set polytope Pstab(G),
which is the convex hull of the characteristic vectors of stable sets in G. The stable-set polytope itself
is known to be a complicated polytope. In particular, one cannot expect to be able to completely
characterize its facial structure [7]. Thus, the following question is natural.

Do there exist stronger linear programming formulations for the stable set problem that also
have the persistency property for every graph G?

In this paper, we answer the question negatively. More precisely, we show that an LP formulation
(satisfying mild conditions) that is stronger than the edge formulation cannot be persistent on all
graphs, unless it always yields the stable set polytope.

Outline. The paper is structured as follows. We start by introducing the conditions we impose on
the LP formulation in Section 2. Our main result and its consequences are presented in Section 3.
Section 4 is dedicated to the proof of the main result. The paper is concluded in Section 5, where we
discuss open problems.

2 LP formulations for stable set

It is clear that, for a single non-bipartite graph G, one can artificially construct polytopes strictly be-
tween Redge

stab (G) and Pstab(G) that have the persistency property. For instance, if x ∈ Redge
stab (G)\Pstab(G)

is any point that has only fractional coordinates, then the polytope conv(Pstab(G) ∪ x) has the persis-
tency property for trivial reasons. In this work, however, we consider relaxations defined for every
graph that arise in a more structured way.

To this end, let G denote the set of finite undirected simple graphs. We regard an LP formulation
for the stable set problem as a map that assigns to every graph G ∈ G a polytope Rstab(G) ⊇ Pstab(G).
As an example, the edge formulation assigns Redge

stab (G) to every graph G. Next, let us specify some
natural conditions that are satisfied by all prominent formulations and under which our main result
holds. Each of these conditions is defined for a formulation Rstab.

Condition (A). The formulation Rstab is at least as strong as the edge formulation. Formally,

for each G ∈ G, we have Pstab(G) ⊆ Rstab(G) ⊆ Redge
stab (G). (A)

Condition (B). The inequalities defining Rstab are derived from facets of Pstab. Formally,
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for each G ∈ G, each inequality with support U ⊆ V (G) that is facet-defining for
Rstab(G) is also facet-defining for Pstab(G[U ]),

(B)

where G[U ] denotes the subgraph induced by U . Note that inequalities need to define facets only on
their support graph. In particular, odd-cycle inequalities satisfy (B) although in general they do not
define facets [11].

Condition (C). For every graph G ∈ G, validity of facet-defining inequalities of Rstab(G) is inherited
by induced subgraphs. Formally,

for each G ∈ G, each inequality with support U ⊆ V (G) that is facet-defining for
Rstab(G) is valid (although not necessarily facet-defining) for Rstab(G[U ]).

(C)

This requirement ensures that if an (irredundant) inequality arises for some graph then it must (at
least implicitly) occur for all induced subgraphs for which it is defined. The reverse implication is
imposed by the fourth condition, although in a more structured way. For this, we need the following
definitions.

Let G1, G2 ∈ G and let v1 ∈ V (G1), v2 ∈ V (G2). Then the 1-sum of G1 and G2 at v1 and v2, de-
noted by G1 ⊕v1v2 G2 is the graph obtained from the disjoint union of G1 and G2 by identifying v1 with
v2. Moreover, let P ⊆ Rm and Q ⊆ Rn be polytopes and let i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.
The 1-sum of P and Q at coordinates i and j, denoted by P ⊕ij Q, is defined as the projection of
conv({(x, y) ∈ P ×Q | xi = yj}) onto all variables except for yj . Notice that this projection is an iso-
morphism since the variables xi and yj are equal.

Condition (D). For every pair of graphs G1, G2 ∈ G, validity of inequalities is acquired by their
1-sum. Formally,

Rstab(G1 ⊕v1v2 G2) ⊆ Rstab(G1) ⊕v1v2 Rstab(G2) holds for all G1, G2 ∈ G and all nodes
v1 ∈ V (G1) and v2 ∈ V (G2).

(D)

Also this condition is very natural since every inequality that is valid for Rstab(G1) is also valid for
Pstab(G1 ⊕v1v2 G2), and hence its participation in Rstab(G1 ⊕v1v2 G2) is reasonable.

Before we state our main result, let us mention immediate observations, which are summarized
below.

Proposition 3.

(i) Redge
stab and Pstab satisfy (A)–(D).

(ii) LetRstab be any formulation satisfying (B) and (C). ThenRstab(G1⊕v1v2G2) ⊇ Rstab(G1)⊕v1v2Rstab(G2)
holds for all G1, G2 ∈ G and all nodes v1 ∈ V (G1) and v2 ∈ V (G2).

(iii) If R1
stab and R2

stab satisfy (A)–(D), then {R1
stab(G) ∩R2

stab(G)}G∈G also satisfies (A)–(D).

In other words, the second observation states that the reverse inclusion of (D) is implied by (B)
and (C), and the last observation is that our conditions are closed under intersection of relaxations.

Proof. It is clear that Redge
stab satisfies (A)–(D), and that Pstab satisfies (A) and (C). Chvátal proved

Property (D) for Pstab by showing that the stable-set polytope of a clique-sum of two graphs is obtained
from the stable-set polytopes of these two graphs without adding inequalities (see Theorem 4.1 in [2]).
To see Property (B) for Pstab, observe that the stable-set polytope of an induced subgraph is isomorphic
to a face defined by the nonnegativity constraints of the removed nodes. This shows (i).

3



To see (ii), let G = G1 ⊕v1v2 G2, and consider an inequality that is facet-defining for Rstab(G) and
has support on U ⊆ V (G). By (B), it is facet-defining for Pstab(G[U ]). By (i), Pstab(G[U ]) satisfies (D),
that is, the support U has to satisfy U ⊆ V (G1) or U ⊆ V (G2). By (C), the inequality must be valid for
Rstab(G1) or Rstab(G2), which concludes the proof.

For (iii), Property (A) is trivially satisfied, while the other three properties can be shown by inspec-
tion of individual inequalities of R1

stab and R2
stab.

3 Results

We say that two formulations R1
stab and R2

stab are equivalent if R1
stab(G) = R2

stab(G) holds for every
G ∈ G, in which case we write R1

stab ≡ R2
stab. We can now state our main result.

Theorem 4. Let Rstab be a formulation satisfying (A)–(D). Then Rstab(G) has the persistency property for
all graphs G ∈ G if and only if Rstab ≡ Redge

stab or Rstab ≡ Pstab.

Sufficiency follows from Proposition 2 and from the fact that Pstab is an integral polytope. Before
we prove necessity in Section 4, let us mention some direct implications of Theorem 4 for known
relaxations.

Corollary 5. The clique relaxation

Rclq
stab(G) =

{
x ∈ RV (G) | x(V (C)) ≤ 1 for each clique C of G

}
does not have the persistency property for all graphs G ∈ G.

Proof. It is easy to see that Rclq
stab satisfies Properties (A) and (D). For Properties (B) and (C), consider

a clique C of some graph G ∈ G. Clearly, C is also a clique of G[V (C)] and the inequality is known to
be facet-defining for Pstab(G[V (C)]) (see Theorem 2.4 in [11]).

Also the relaxation based on odd-cycle inequalities satisfies these properties, although the inequal-
ities are generally not facet-defining.

Corollary 6. The odd-cycle relaxation

Roc
stab(G) =

{
x ∈ Redge

stab (G) | x(V (C)) ≤ |V (C)| − 1

2
for each chordless odd cycle C of G

}
does not have the persistency property for all graphs G ∈ G.

Proof. It is easy to see that Roc
stab satisfies Properties (A) and (D). For Properties (B) and (C), consider

a chordless odd cycle C of some graph G ∈ G. Clearly, C is also a chordless odd cycle of G[V (C)], and
the odd-cycle inequality is facet-defining for Pstab(G[V (C)]) (see Theorem 3.3 in [11]).

Using Proposition 3 (iii), we obtain the same result for their intersection.

Corollary 7. The intersection of the clique and the odd-cycle relaxations

Rstab(G) = Rclq
stab(G) ∩Roc

stab(G)

does not have the persistency property for all graphs G ∈ G.

Strong persistency. Hammer, Hansen and Simeone [4] considered a variant of the persistency prop-
erty that considers coordinates that are fixed to the same integer for all optimal solutions. For every
graph G and objective vector c ∈ RV (G) they showed the following. If there is a node i ∈ V (G) to-
gether with a value b ∈ {0, 1} for which every c-maximal solution x ∈ Redge

stab (G) satisfies xi = b, then
also every c-maximal solution y ∈ Pstab∩{0, 1}V (G) satisfies yi = b. In the pseudo-Boolean optimization
literature this is also referred as the strong persistency property of the edge relaxation. The necessity
proof of Theorem 4 will show that our main result also holds for this notion of persistency.
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Vertex cover. A vertex cover in a graph G = (V,E) is a set C ⊆ V such that C contains at least one
endnode of each edge of G. Clearly, C is a vertex cover in G if and only if V \ C is a stable set in G.
One consequence of this observation is that the map π : V → V defined via π(x)v = 1 − xv for each
v ∈ V maps Pstab(G) to the vertex cover polytope, which is defined as the convex hull of characteristic
vectors of vertex covers in G. Similarly, a natural linear programming relaxation for vertex cover is
π(Redge

stab (G)), which can for instance be strengthened by inequalities that correspond to cliques or odd
cycles. Since also persistency is maintained under the map π, all our results also hold for vertex cover.

4 Proof of the main result

Let us fix any formulation Rstab over G satisfying Properties (A)–(D). To prove the “only if” implication
of Theorem 4 we have to verify that if Rstab 6≡ Redge

stab and Rstab 6≡ Pstab, then Rstab(G) does not have the
persistency property for all graphs G ∈ G. Equivalently, we have to prove the following:

If there exist graphs G1, G2 ∈ G with Rstab(G1) 6= Redge
stab (G1) and Rstab(G2) 6= Pstab(G2),

then there exists a graph G? for which the polytope Rstab(G?) does not have the persis-
tency property.

(♦)

Given G1 and G2, we will provide an explicit construction of G? and show that Rstab(G?) does not have
the persistency property. To see the latter, we will give an objective vector c? ∈ RV (G?) such that every
c?-maximal solution over Rstab(G?) has a certain coordinate equal to zero while every c?-maximal
stable set in G? contains the corresponding node.

The graph G? will consist of an “inner” graph Gin with Rstab(Gin) 6= Redge
stab (Gin) and |V (Gin)| − 1

copies of an “outer” graph Gout with Rstab(Gout) 6= Pstab(Gout). Each copy of Gout is attached to a vertex
of Gin via the 1-sum operation. Note that such graphs Gin, Gout exist due to the hypothesis of (♦).
Among all such graphs, we will make particular choices satisfying some additional properties that we
specify in the next sections.

We will illustrate our definitions and the steps of the proof by providing two running examples.

Example 1. Consider the formulation Roc5
stab defined via

Roc5
stab(G) =

{
x ∈ Redge

stab (G) | x(V (C)) ≤ |V (C)| − 1

2

for each chordless odd cycle C of G with at least 5 nodes
}
.

The hypothesis of (♦) is satisfied for Roc5
stab because the odd cycle C5 is such that Roc

stab(C5) 6= Redge
stab (C5)

and the complete graph K3 is such that Roc5
stab(K3) 6= Pstab(K3).

Example 2. Consider the odd-cycle formulation Roc
stab. The hypothesis of (♦) is satisfied for Roc

stab

because the odd cycle C3 is such that Roc
stab(C3) 6= Redge

stab (C3) and the complete graph K4 is such that
Roc

stab(K4) 6= Pstab(K4).

4.1 The graph Gout

In the definition of the auxiliary graph Gout we will make use of the following lemma. In what follows,
for a polytope P ⊆ Rn and a vector c ∈ Rn, let us denote the optimal face of P induced by c by
opt(P, c) := arg max {cᵀx | x ∈ P}.

Lemma 8. Let P,Q ⊆ Rn be polytopes. If there exists a vector c ∈ Rn such that dim(opt(Q, c)) <
dim(opt(P, c)), then there exists a vector c′ ∈ Rn such that opt(Q, c′) is a vertex of Q, while opt(P, c′) is
not a vertex of P .

Proof. See Appendix A.
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The graph Gout is now defined through the following statement.

Claim 9. There exists a graph Gout ∈ G, a vector cout ∈ RV (Gout) and a node vout ∈ V (Gout) such
that opt(Rstab(Gout), cout) = {x̂} holds with x̂vout ≥ 1

2 and such that opt(Pstab(G), cout) contains a vertex

x̄ ∈ {0, 1}V (Gout) with x̄vout = 0.

Proof. Let G ∈ G be such that Rstab(G) 6= Pstab(G). Such a graph exists by hypothesis of (♦). By
Property (A), there exists an inequality aᵀx ≤ δ that is facet-defining for Pstab(G), but not valid for
Rstab(G).

We claim that the face opt(Rstab(G), a) is not a facet of Rstab(G). Assume for a contradiction that
opt(Rstab(G), a) is a facet of Rstab(G) and define δ′ := max {aᵀx | x ∈ Rstab(G)}. Since aᵀx ≤ δ is
not valid for Rstab(G), we have δ′ > δ. Property (B) implies that aᵀx ≤ δ′ is facet-defining for
Pstab(G[supp(a)]), and in particular, equality holds for the characteristic vector of some stable set
S ⊆ V (G[supp(a)]). Since S is also a stable set in G, this contradicts the assumption that aᵀx ≤ δ
is valid for Pstab(G).

By Lemma 8, there exists a vector c ∈ Rn such that opt(Rstab(G), c) = {x̂} and opt(Pstab(G), c) has
(at least) two vertices x̄1, x̄2 ∈ {0, 1}V (G). Since x̄1 6= x̄2, there exists a coordinate u ∈ V (G) at which
they differ and we can assume x̄1u = 0 and x̄2u = 1 without loss of generality. If x̂u ≥ 1

2 , we can choose
Gout := G, cout := c and vout := u. Together with x̂ and x̄1, they satisfy the requirements of the lemma.

Otherwise, let G′ be the graph G with an additional edge {u, u′} attached at u. Formally, let G′′

be the graph consisting of a single edge {u, u′} and let G′ := G ⊕uu G′′. By Property (D), Rstab(G′) =

Rstab(G)⊕uuRstab(G′′) holds. Since G′′ is a single edge, Redge
stab (G′′) = Pstab(G′′) holds. Thus, Rstab(G′) is

described by all inequalities that are valid for Rstab(G) together with xu′ ≥ 0 and xu + xu′ ≤ 1. Hence,
for a sufficiently small ε > 0 and the objective vector c′ ∈ RV (G′) with c′u′ = ε, c′u = cu+2ε and c′v = cv
for all v ∈ V (G) \ {u}, the maximization of c′ over Rstab(G′) yields a unique optimum x̂′ ∈ RV (G′) with
x̂′v = x̂v for all v ∈ V (G) and x̂′u′ = 1− x̂′u > 1

2 , while the maximization of c′ over Pstab(G′) admits an
optimum x̄′ ∈ RV (G′) with x̄′u = 1 and x̄′u′ = 0. Now, Gout := G′, cout := c′ and vout := u′ together with
x̂′ and x̄′ satisfy the requirements of the lemma.

Example 1 (Continued). For Roc5
stab, choose G in the proof of Claim 9 to be K3, the complete graph

on nodes {A,B,C}. We assume that vectors in RV (G) are indexed in the order A, B, C. The clique
inequality xA + xB + xC ≤ 1 is facet-defining for Pstab(G) but not valid for Roc5

stab(G). Moreover, for
c = (1, 1, 1)ᵀ, opt(Roc

stab(G), c) = {x̂} with x̂ = ( 1
2 ,

1
2 ,

1
2 )ᵀ while opt(Pstab(G), c) contains the three stable

sets defined by selecting a single node in G, and hence has dimension 2. Consider x̄1 = (0, 1, 0)ᵀ and
x̄2 = (1, 0, 0)ᵀ and choose u = A. Following the proof of Claim 9, we obtain Gout = G, vout = A and
cout = c as depicted in Figure 1a.

Example 2 (Continued). For Roc
stab, choose G in the proof of Claim 9 to be K4, the complete graph

on nodes {A,B,C,D}. We assume that vectors in RV (G) are indexed in the order A, B, C, D. The
clique inequality xA + xB + xC + xD ≤ 1 is facet-defining for Pstab(G) but not valid for Roc

stab(G).
Moreover, for c = (1, 1, 1, 1)ᵀ, opt(Roc

stab(G), c) = {x̂} with x̂ = ( 1
3 ,

1
3 ,

1
3 ,

1
3 )ᵀ while opt(Pstab(G), c)

contains the four stable sets defined by selecting a single node in G, and hence has dimension 3.
Consider x̄1 = (0, 1, 0, 0)ᵀ and x̄2 = (1, 0, 0, 0)ᵀ and choose u = A. Since x̂u < 1

2 , we introduce an
additional edge {u, u′} = {A,A′} and the graph G′′ consisting of these two nodes and the single edge.
Following the proof of Claim 9, Gout = G ⊕AA G′′ and vout = A′. Finally, cout can be defined by setting
ε = 1

3 . Figure 1b illustrates Gout and cout. The unique optimum of maximizing cout over Roc
stab(Gout) is

x̂v = 1
3 for v ∈ {A,B,C,D} and x̂A′ = 2

3 , while selecting only node A is an optimal stable set for cout.

4.2 The graph Gin

Among all graphs G ∈ G with Rstab(G) 6= Redge
stab (G) we choose Gin to have a minimum number of

nodes. Note that Gin exists by hypothesis of (♦). We assume V (Gin) = {1, 2, . . . , n}. Let Ax ≤ b (with
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A1 B 1

C1

(a) Gout and cout for Example 1.

A′

1

3

A

5

3

B 1

C 1D1

(b) Gout and cout for Example 2.

Figure 1: Illustrations of graph Gout and objective vector cout for the two running examples.

A ∈ Zm×n and b ∈ Zm) be the system containing inequalities for all facets of Rstab(Gin) that are not
valid for Redge

stab (Gin). Note that m ≥ 1 and n ≥ 3 hold by assumption on Gin.

Claim 10. Ai,j ≥ 1 holds for every i ∈ {1, 2, . . . ,m} and every j ∈ {1, 2, . . . , n}.

Proof. It is a basic fact that every facet-defining inequality of a stable-set polytope that is not a non-
negativity constraint is of the form aᵀx ≤ β for some nonnegative vector a ∈ Rn (see Section 9.3
in [12]). Assume, Ai,j = 0 holds for some indices i, j. By Property (C), Ai,?x ≤ bi is valid for
Rstab(G[supp(Ai,?)]), while it is not valid for Redge

stab (Gin[supp(Ai,?)]). This contradicts the minimality
assumption for Gin.

For both our examples, Claim 10 is easy to verify.

Example 1 (Continued). For Roc5
stab, choose Gin = C5 to be a cycle on nodes {1, 2, 3, 4, 5}. The system

Ax ≤ b consists of just the odd-cycle inequality x1 + x2 + x3 + x4 + x5 ≤ 2.

Example 2 (Continued). For Roc
stab, choose Gin = C3 to be a triangle on nodes {1, 2, 3}. The system

Ax ≤ b consists of just the triangle inequality x1 + x2 + x3 ≤ 1.

4.3 The graph G?

For each j ∈ {2, 3, . . . , n} let Gj be an isomorphic copy of Gout such that V (Gj)∩V (Gk) = ∅ whenever
j 6= k. Let cj ∈ RV (Gj) and vj ∈ V (Gj) be the vector and node corresponding to cout and vout in Claim 9,
respectively. Now G? is defined as the 1-sum of Gin with all Gj at the respective nodes j ∈ V (Gin) and
vj ∈ V (Gj), i.e., G? := Gin ⊕2

v2 G
2 ⊕3

v3 · · · ⊕nvn Gn, where the ⊕-operator has to be applied from left to
right. Note that we have

Rstab(G?) = Rstab(Gin)⊕2
v2 Rstab(G2)⊕3

v3 · · · ⊕nvn Rstab(Gn)

by Property (D).

Example 1 (Continued). For Roc5
stab, G? consists of Gin = C5 and Gj = Kj

3 for j ∈ {2, 3, 4, 5} as
depicted in Figure 2a.

Example 2 (Continued). For Roc
stab, G? consists of Gin = C3 and Gj = Kj

4 ⊕A
j

Aj K
j
2 for j ∈ {2, 3} as

depicted in Figure 2b.

4.4 The objective vector

It remains to construct an objective vector c? ∈ RV (G?) that shows that Rstab(G?) does not have the
persistency property. Let A, b be as in the previous section, and denote by a := A1,? the first row of A.
We will define c? via

c?1 := ε and c?v := aj · cjv for all v ∈ V (Gj), j ∈ {2, 3, . . . , n} ,

where ε > 0 is a positive constant that we will define later. Our first claim is independent of the specific
choice of ε.
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1

2

34

5

A2
B2

C2

⊕

A3

B3

C3

⊕
A4B4

C4

⊕

A5

B5

C5

⊕

(a) Construction of G? for Example 1.

1

23 A′2
⊕

A2 B2

C2D2

A′3
⊕

A3

B3C3

D3

(b) Construction of G? for Example 2.

Figure 2: Construction of graph G? for the two running examples as a 1-sum of Gin and copies of Gout.
Pairs of nodes that are identified in the 1-sums are connected by dotted lines.

Claim 11. Every c?-maximal stable set in G? contains node 1 ∈ V (Gin).

Proof. By Claim 9 there exists, for each j ∈ {2, 3, . . . , n}, a cj-maximal stable set Sj ⊆ V (Gj) that does
not use vj . Thus, the maximum objective value obtained on V (G? \ {1}) is

∑n
j=2 ajc

j(Sj), which is
equal to the maximum objective value for all stable sets that do not contain node 1. Since vj /∈ Sj

for each j, the set S? :=
⋃n
j=2 S

j ∪ {1} is a stable set in G? with objective value ε +
∑n
j=2 ajc

j(Sj) >∑n
j=2 ajc

j(Sj), which proves the claim.

Again, we verify Claim 11 for our two running examples.

Example 1 (Continued). For Roc5
stab, Ax ≤ b consists only of the odd-cycle inequality x1 + x2 + x3 +

x4 +x5 ≤ 1, we have aj = 1 for j ∈ {2, 3, 4, 5}. Hence, the objective vector is defined via c?1 = ε, c?v = 1
for all other nodes v ∈ V (G?)\{1}, where a specific value of ε still has to be defined. Each c?-maximal
stable set in G? must contain node 1 since otherwise it would contain nodes A2 or A3, which we could
replace by B2 or B3 without a decrease of the objective value. This in turn allows to include node 1 as
well.

Example 2 (Continued). For Roc
stab, Ax ≤ b consists only of the triangle inequality x1 + x2 + x3 ≤ 1,

we have aj = 1 for j ∈ {2, 3}. Hence, the objective vector is defined via c?1 = ε, c?j = 1
3 , c?Aj = 1 + 2

3
and c?Bj = c?Cj = c?Dj = 1 for j ∈ {2, 3}, where a specific value of ε still has to be defined. It is easy to
see that {1, A2, A3} is the unique c?-maximal stable set in G?.

To see that Rstab(G?) does not have the persistency property, it suffices to establish the following
claim, which then yields Theorem 4.

Claim 12. For ε > 0 small enough, every c?-optimal point x? ∈ Rstab(G?) satisfies x?1 = 0.

Let x? be any c?-optimal point in Rstab(G?). Observe that for each j ∈ {2, . . . , n} the sum of the
c?-weights on the nodes in V (Gj) only depends on the value of x?vj . In order to understand these
contributions in terms of x?vj , let us introduce the function f : [0, 1]→ R defined via

f(y) := max
{
cj

ᵀ
x | x ∈ Rstab(Gj) and xvj = y

}
,

Note that the definition is independent of j since all (Gj , cj , vj) are identical up to indexing. We
observe that the restriction of x? onto the coordinates corresponding to V (Gin) is an optimal solution
for

max
{
c′(x) | x ∈ Rstab(Gin)

}
= max

{
c′(x) | x ∈ Redge

stab (Gin), Ax ≤ b
}
, (1)

where c′(x) := εx1+
∑n
j=2 ajf(xj). Thus, we see that Claim 12 immediately follows from the following

result.
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Claim 13. For ε > 0 small enough, every c′-optimal point x ∈ Rstab(Gin) satisfies x1 = 0.

Example 1 (Continued). For Roc5
stab, we have

f(xj) = max
{
xAj + xBj + xCj | x ∈ Roc5

stab(Kj
3) and xAj = xj

}
for j = 2, 3, 4, 5, and due to Roc5

stab(Kj
3) = Redge

stab (Kj
3) it follows that f attains its unique maximum

at xj = 1
2 . Consequently, any vector xLP ∈ Rstab(G?) with xLP

v = 1
2 for all v ∈ V (G?) \ {1} is c?-

maximal if we ignore the objective contribution of ε ·x1 (see Figure 4a for an illustration). Now, setting
x2 = x3 = x4 = x5 = 1

2 leaves no slack in the odd-cycle inequality x1 + x2 + x3 + x4 + x5 ≤ 2. Hence,
a positive x1-variable would require a reduction of xj for some j ∈ {2, 3, 4, 5}, which in turn reduced
f(xj). Hence, for sufficiently small ε > 0, such a reduction is not profitable, which proves Claim 13 for
this example. Figure 4a depicts G?, c?, a c?-optimal point x? ∈ Rstab(G?) and a c?-maximal stable set
for ε = 1

20 .

Actually, the fact that there is no slack in the odd cycle inequality to set x1 > 0 in Example 1 is not
a coincidence, it follows from the following result by Sewell on the defect of facets of the stable-set
polytope.

Proposition 14 (Corollary 3.4.3 in [13]). Let
∑n
j=1 ajxj ≤ b1 be a facet-defining inequality for the

stable set polytope of a graph on n nodes that is neither a bound nor an edge inequality. Then we have

a1 ≤
n∑
j=1

aj − 2b1.

Example 2 (Continued). For Roc
stab, we have

f(xj) = max

{
1

3
xA′j +

5

3
xAj + xBj + xCj + xDj | x ∈ Roc

stab(Gj) and xA′j = xj

}
,

for j = 2, 3, where Gj = Kj
4 ⊕A

j

Aj K
j
2 , and for each j, f attains its unique maximum at x̂v = 1

3 for
v ∈ {Aj , Bj , Cj , Dj} and x̂A′j = 2

3 . However, in this case, setting xj = 2
3 for j = 2, 3 results in

an infeasible solution of optimization problem (1), hence Claim 13 does not follow as easily as for
Example 1.

As illustrated by Example 2, the general proof of Claim 13 is a bit more technical than for Example 1
since we have to ensure that all inequalities Ax ≤ b and all edge inequalities are satisfied, which is not
always the case for the optimal solutions obtained when considering f(xj) separately for each j. To
overcome this difficulty for the first inequality aᵀx ≤ b1 of the system Ax ≤ b, it will be convenient to
consider the function g : [0,∞]→ R defined via

g(z) := max


n∑
j=2

ajf(xj) | aᵀx ≤ z, x ∈ Redge
stab (Gin)

 .

The intuition behind the proof of Claim 13 is the following: First, note that c′(x) is the sum of εx1
and the objective function defining g. Function g(z) represents the contribution to the objective value
of Gj for j = 2, . . . , n as a function of the right-hand-side of the inequality aᵀx ≤ z, and reaches its
maximum precisely at the value b1, which defines the first “missing facet”, that is, the first inequality
in Ax ≤ b. Hence, the contribution of the graphs Gj for j = 2, . . . , n will be maximized when the
missing inequality aᵀx ≤ b1 is satisfied. Moreover, by Proposition 14, we know that there is no slack,
meaning that any feasible solution with x1 > 0 comes at the cost of decreasing the value of one of the
xj variables, which is not profitable if ε is small enough. The formalization of the fact that increasing
x1 is not profitable is the following claim.
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Claim 15. The functions f and g are concave. Moreover, g is strictly monotonically increasing on [0, b1].

Example 2 (Continued). For Roc
stab, we have

g(z) := max

 ∑
j∈{2,3}

f(xj) | x1 + x2 + x3 ≤ z, x ∈ Redge
stab (C3)

 .

Function g is illustrated in Figure 3. It is clearly concave, and linear and strictly monotonically increas-
ing on [0, b1] = [0, 1], hence Claim 15 is satisfied.

z

g(z)

0 1

21
6

20
6

Figure 3: Illustration of function g(z) for Example 2.

Proof of Claim 13. Letting

γ := min {x1 | x vertex of Rstab(G?) with x1 > 0} ∈ (0, 1], and

λ := min {γ/(Ai,1 + · · ·+Ai,n) | i ∈ {1, 2, . . . ,m}} ∈ (0, 1),

we claim that every choice of ε with

0 < ε < λ(g(b1)− g(b1 − a1γ))

satisfies the assertion. First, we need to verify that the right-hand side is positive. To this end, note
that a1 ≤ b1 and hence 0 ≤ b1 − a1γ < b1. So, by Claim 15 we have

g(b1 − a1γ) < g(b1), (2)

which yields positivity of the right-hand side.
Next, let ε be as above. For the sake of contradiction, assume that there exists a c′-optimal solution

x? ∈ Rstab(Gin) with x?1 > 0. Note that x? can be extended to a c?-optimal solution over Rstab(G?),
which we may assume to be a vertex of Rstab(G?), and hence x?1 ≥ γ. Let x̂0 ∈ Rstab(Gin) be equal to
x?, except for x̂01 := 0. Moreover, let x̂1 ∈ RV (Gin) be a maximizer of g(b1), which may not be contained
in Rstab(Gin). Now consider the vector x̂λ := (1− λ)x̂0 + λx̂1. To obtain the desired contradiction, we
will show that x̂λ is contained in Rstab(Gin) and that c′(x̂λ) > c′(x?).

Since x̂0 and x̂1 both lie in Redge
stab (Gin), also xλ lies in Redge

stab (Gin). Let i ∈ {1, 2, . . . ,m}. By Claim 10,
Ai,1 ≥ 1 holds, which implies Ai,?x̂0 ≤ Ai,?x? − γ ≤ bi − γ. We obtain

Ai,?x̂
λ = Ai,?x̂

0 + λAi,?(x̂
1 − x̂0) ≤ bi − γ + λ(Ai,1 + · · ·+Ai,n) ≤ bi,

where the second inequality follows from the fact that each coordinate of x̂1− x̂0 is bounded by 1, and
the last inequality holds by the definition of λ. This shows that x̂λ is contained in Rstab(Gin).

For the objective value of x̂1 we clearly have c′(x̂1) ≥ g(b1). Moreover, since x̂01 = 0 we have

c′(x̂0) ≤ g(aᵀx̂0) ≤ g(b1 − a1γ) < g(b1),

10



where the latter two inequalities again follow from Claim 15 and (2). Observe that concavity of f and
nonnegativity of a imply concavity of c′(x), which yields c′(x̂λ) ≥ (1− λ)c′(x̂0) + λc′(x̂1). We obtain

c′(x?)− c′(x̂λ) ≤
(
ε+ c′(x̂0)

)
−
(
c′(x̂0)− λ(c′(x̂0)− c′(x̂1))

)
= ε+ λ(c′(x̂0)− c′(x̂1))

≤ ε+ λ(g(b1 − a1γ)− g(b1)) < 0,

where the last inequality holds by definition of ε and due to (2).

Example 2 (Continued). For Roc
stab, one can check (for example with a computer program) that γ = 1

3
and λ = 1

9 . For every 0 < ε < 1
9

(
g(1)− g(1− 1

3 )
)

= 1
9

(
7
2 −

31
9

)
= 1

162 , Claim 13 is satisfied. Figure 4b
depicts G?, c?, a c?-optimal point x? ∈ Rstab(G?) and a c?-maximal stable set for ε = 1

300 .
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(a) G?, c? and LP/IP maxima for Example 1.
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(b) G?, c? and LP/IP maxima for Example 2.

Figure 4: Illustration of G? for our running examples. For each node v ∈ V (G?), the triple c?v;x
LP
v ;xIP

v

denotes the corresponding coefficient in c?, the value of component v in a c?-maximal solution over
Rstab(G?) and the value in the unique c?-maximal stable set, respectively.

To conclude the proof of Theorem 4, it remains to prove Claim 15. The fact that f and g are
concave is a simple consequence of the next basic lemma.

Lemma 16. Let P ⊆ Rn be a non-empty polytope, let c, a ∈ Rn and let ` := min {aᵀx | x ∈ P}.
The functions h=, h≤ : [`,∞) → R defined via h=(β) = max {cᵀx | x ∈ P, aᵀx = β} and h≤(β) =
max {cᵀx | x ∈ P, aᵀx ≤ β} are concave. Moreover, there exists a number β? ∈ [`,∞) such that h= and
h≤ are identical and strictly monotocially increasing on the interval [`, β?], and h≤ is constant on the
interval [β?,∞).

Proof. See Appendix A.

Proof of Claim 15. From Lemma 16 it is clear that f is concave. By rewriting

g(z) = max


n∑
j=2

aj ·
∑

v∈V (Gj)

cjvxv |
n∑
j=1

ajxj ≤ z, x ∈ Redge
stab (Gin)⊕2

v2 Rstab(G2)⊕3
v3 · · · ⊕nvn Rstab(Gn)

 ,

we also see that g is concave. Moreover, again by Lemma 16, there exists some β? ≥ 0 such that g is
strictly monotonically increasing on the interval [0, β?], and constant on [β?,∞). It suffices to show
that β? ≥ b1. To this end, let us get back to our initial definition of g, and let x̂ ∈ Redge

stab (Gin) be
a maximizer for g(∞). Note that β? ≥ aᵀx̂ by definition of β?, and hence we have to show that x̂
satisfies aᵀx̂ ≥ b1.
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Since the objective value of x̂ does not depend on x̂1, we may assume that x̂1 = 0. By the construc-
tion of Gj and cj , we know that f attains its unique maximum at y? ≥ 1

2 . This implies 0 ≤ x̂j ≤ y? for
j = 2, 3, . . . , n. Moreover, we claim that also x̂j ≥ 1 − y? holds. Suppose not, then none of the edge
inequalities involving xj is tight. Then x̂j < 1 − y? ≤ y? shows that increasing x̂j would improve the
objective value, which in turn contradicts optimality of x̂. Consequently, even 1 − y? ≤ x̂j ≤ y? holds
for j = 2, 3, . . . , n.

Let J(α) := {2 ≤ j ≤ n | x̂j = α} for α ∈ [1 − y?, y?]. We will show that a(J(α)) ≥ a(J(1 − α))
holds for all α ∈ (1/2, y?], where a(J(α)) shall denote

∑
j∈J(α) aj . Note that this implies the claim

since for each α ∈ (1/2, y?] we then have

∑
j∈J(α)

aj x̂j +
∑

j∈J(1−α)

aj x̂j =
∑

j∈J(α)

ajα+
∑

j∈J(1−α)

aj(1− α)

= α · [a(J(α))− a(J(1− α))︸ ︷︷ ︸
≥0

] + a(J(1− α))

≥ 1
2 · [a(J(α))− a(J(1− α))] + a(J(1− α))

=
∑

j∈J(α)

aj
1
2 +

∑
j∈J(1−α)

aj
1
2

and hence

aᵀx̂ =

n∑
j=2

aj x̂j =
∑

j∈J(1/2)

aj x̂j +
∑

α∈(1/2,y?]

( ∑
j∈J(α)

aj x̂j +
∑

j∈J(1−α)

aj x̂j
)

≥
∑

j∈J(1/2)

aj
1
2 +

∑
α∈(1/2,y?]

( ∑
j∈J(α)

aj
1
2 +

∑
j∈J(1−α)

aj
1
2

)
= 1

2

n∑
j=2

aj ≥ b1,

where the last inequality follows from Proposition 14.
For the sake of contradiction, assume that a(J(α)) < a(J(1− α)) holds for some α ∈ (1/2, y?]. For

a sufficiently small ε′ > 0, the solution x̂′ ∈ RV (Gin) defined via

x̂′j :=


x̂j + ε′ if j ∈ J(1− α)

x̂j − ε′ if j ∈ J(α)

x̂j otherwise
for j = 1, 2, . . . , n

is still contained in Redge
stab (Gin). To see this, observe that x̂′j ≥ 0 holds for all j ∈ V (Gin) since we only

decrease entries that are at least 1/2. Moreover, edge inequalities that are tight for x̂ remain tight for
x̂′, since either none or both of its two node values are modified, where in the latter case, the value is
increased by ε′ for one node and decreased by ε′ for the other. Finally, edge inequalities that are not
tight for x̂ will not be violated if we choose ε′ sufficiently small. For the objective values we obtain

n∑
j=2

aj(f(x̂′j)− f(x̂j)) =
∑

j∈J(1−α)

aj(f(x̂′j)− f(x̂j)) +
∑

j∈J(α)

aj(f(x̂′j)− f(x̂j))

= a(J(1− α)) ·
(
f(1− α+ ε′)− f(1− α)

)
+ a(J(α)) ·

(
f(α− ε′)− f(α)

)
.

We also assume that ε′ is small enough to guarantee 1 − α + ε′ < α − ε′. Since f is concave and
monotonically increasing in [0, y?], we obtain f(1 − α + ε′) − f(1 − α) ≥ f(α) − f(α − ε′). Together
with the assumption a(J(1 − α)) > a(J(α)), this shows that the objective value of x̂′ is strictly larger
than that of x̂, a contradiction to the optimality of x̂ (see Figure 5 for an illustration).
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Figure 5: Illustration of modifications in the proof of Claim 15.

5 Concluding remarks

We have shown that persistency is an exceptional property for linear programming stable-set relax-
ations. Apart from studying nonlinear relaxations (such as those stemming from semidefinite relax-
ations), it is natural to ask whether this is also the case for other polytopes for which persistency was
established.

The most interesting candidate is certainly the unconstrained quadratic binary programming prob-
lem, which is equivalent to the maximum cut problem. The standard McCormick relaxation also has
the (weak and strong) persistency property [5]. In fact, there is a strong relationship to the stable-set
problem as both problems can be easily reduced to each other. Polyhedrally speaking, each polytope
(relaxation or integer hull) can be obtained as a face of the polytope of the other problem, potentially
after removing constraints that are redundant for a given objective vector [5]. Although this was used
to show that the McCormick relaxation has the persistency property, the non-existence of the property
for tighter relaxations does not carry over in a straight-forward manner. Thus, we leave the resolution
of this question as an open problem.
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A Deferred proofs

We repeat the statements of Lemma 8 and Lemma 16 provide their proofs.

Lemma 8. Let P,Q ⊆ Rn be polytopes. If there exists a vector c ∈ Rn such that dim(opt(Q, c)) <
dim(opt(P, c)), then there exists a vector c′ ∈ Rn such that opt(Q, c′) is a vertex of Q, while opt(P, c′) is
not a vertex of P .

Proof. Let c′ ∈ Rn be such that dim(opt(Q, c′)) < dim(opt(P, c′)) holds, and among those, such that
dim(opt(Q, c′)) is minimum. Clearly, c′ is well-defined since c′ := c satisfies the conditions.

Assume, for the sake of contradiction, that dim(opt(Q, c′)) > 0. Let F := opt(P, c′) and G :=
opt(Q, c′). Let F1, F2, . . . , Fk be the facets of F . By n(F, Fi) we denote the set of vectors w ∈ Rn such
that opt(F,w) ⊇ Fi. Since F is a polytope,

⋃
i∈{1,2,...,k} n(F, Fi) contains a basis U of Rn. Moreover,

not all vectors u ∈ U can lie in aff(G)⊥, the orthogonal complement of aff(G), since then aff(G)⊥ = Rn
would hold, contradicting dim(G) > 0. Let u ∈ U \ aff(G)⊥.

Now, for a sufficiently small ε > 0, opt(P, c′+εu) ⊇ Fi for some i ∈ {1, 2, . . . , k}, and opt(Q, c′+εu)
is a proper face of G. Thus, c′ + εu satisfies the requirements at the beginning of the proof. However,
dim(opt(Q, c′ + εu)) < dim(G) contradicts the minimality assumption, which concludes the proof.

Lemma 16. Let P ⊆ Rn be a non-empty polytope, let c, a ∈ Rn and let ` := min {aᵀx | x ∈ P}.
The functions h=, h≤ : [`,∞) → R defined via h=(β) = max {cᵀx | x ∈ P, aᵀx = β} and h≤(β) =
max {cᵀx | x ∈ P, aᵀx ≤ β} are concave. Moreover, there exists a number β? ∈ [`,∞) such that h= and
h≤ are identical and strictly monotocially increasing on the interval [`, β?], and h≤ is constant on the
interval [β?,∞).

Proof. Let Q := {( y1y2 ) | ∃x ∈ P : aᵀx = y1, c
ᵀx = y2} ⊆ R2 be the projection of P along a and c. By

construction, h≤(β) = max {y2 | y ∈ Q, y1 ≤ β} holds. Considering that Q is a polytope of dimension
at most 2, the claimed properties of h≤ and h= are obvious (see Figure 6).
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Figure 6: Illustration of Lemma 16. The graph of h≤ is highlighted in red, while that of h= is high-
lighted in blue.
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