
Selective Maximum Coverage and Set Packing

Felix J. L. Willamowski1∗ and Björn F. Tauer2†

1 Lehrstuhl für Operations Research
RWTH Aachen University

willamowski@or.rwth-aachen.de
2 Lehrstuhl für Management Science

RWTH Aachen University
tauer@algo.rwth-aachen.de

Abstract. In this paper we introduce the selective maximum coverage
and the selective maximum set packing problem and variants of them.
Both problems are strongly related to well studied problems such as
maximum coverage, set packing, and (bipartite) hypergraph matching.
The two problems are given by a collection of subsets of a ground set
and index subsets of the indices of these subsets. Additionally, there are
weights either for each element of the ground set or each subset for each
index subset. The goal is to find at most one index per index subset
such that the total weight of covered elements or of disjoint subsets is
maximum. Applications arise in transportation, e.g., dispatching for ride-
sharing services. We prove strong intractability results for the problems
and provide almost best possible approximation guarantees.

1 Introduction and Preliminaries

We introduce the selective maximum coverage problem (smc) generalizing the
weighted maximum k coverage problem (wmkc) which is given by a finite ground
set X with weights w : X → Q≥0, a finite collection S of subsets of X, and an
integer k ∈ Z≥0. The goal is to find a subcollection S ′ ⊆ S containing at most k
subsets and maximizing the total weight of covered elements

∑
x∈X′ w(x) with

X ′ = ∪S∈S′S. For unit weights, w ≡ 1, the problem is called maximum k
coverage problem (mkc).

With the smc we have a collection of index subsets of the subsets of the
ground set instead of a parameter k, where we can choose at most one index
of each index subset. Formally, smc is given by a finite ground set of elements
U = {ui}i∈[n] with weights w : U → Q≥0, a finite collection of subsets C =
{Ci}i∈[m] of U , a finite index set L, and a finite collection of index subsets of the
subset indices {I`}`∈L, i.e., I` ⊆ [m] for each ` ∈ L. The goal is to find an index
subset L∗ ⊆ L and one index i∗` ∈ I` for each ` ∈ L∗ such that

∑
u∈C∗ w(u) is

maximum, where C∗ = ∪`∈L∗Ci∗`
are the covered elements. See Figure 1 for a

∗Corresponding author.
†We want to thank the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) – UnRAVeL-Research Training Group 2236/1 for funding this research.

mailto:willamowski@or.rwth-aachen.de

C2

C1

C3 I1 = {1, 2}
I2 = {2, 3}

u3 u2 u1

u4 u5

Fig. 1. smc/ssp instance with five elements
U = {u1, . . . , u5} and three ground set sub-
sets C1 = {1, 2, 3}, C2 = {3, 4, 5}, and C3 =
{4, 5} and two index subsets I1 and I2.

`1 `2

u1 u2 u3 u4 u5

Fig. 2. Bipartite hypergraph matching
problem instance with hypergraph H =
(L ∪̇U, E), |U | + |L| = 7 vertices, and∑

`∈L|I`| = 4 hyperedges.

visualization. We refer to the problem as disjoint (dsmc), if {Ci∗`
}`∈L∗ has to be

pairwise disjoint. Note, that the special case of smc with I` ≡ [m] corresponds
to a maximum coverage problem with k = |L|.

The second problem we are considering is the selective set packing problem
(ssp) generalizing the weighted set packing problem wsp. which is given by
a finite ground set X and a finite collection of subsets S of X with weights
w : S → Q≥0. The goal is to find a disjoint subcollection S ′ ⊆ S of maximum
total weight, i.e., each pair of subsets S′1 6= S′2 ∈ S ′ is disjoint, S′1 ∩ S′2 = ∅, and∑

S∈S′ w(S) is maximum. In the case that each subset S ∈ S has size k ∈ Z≥0,
i.e., |S| = k, the problem is called weighted k set packing problem (wksp).

With the ssp we have (again) a collection of index subsets of the subsets of
the ground set, where we can choose at most one index of each index subset. You
can think of the ssp as dsmc only with a different objective function, instead
of each element having a weight, all subsets have a weight that also depends on
the index subset it was chosen from. Formally, we have weights w` : I` → Q≥0

for each subset and each index ` ∈ L and the goal is to maximize
∑

`∈L∗ w`(i
∗
`).

See Figure 1 for a visualization. Note, that the special case of ssp with L = [m]
and I` = {`} for each ` ∈ L corresponds to the weighted set packing problem.

Context The dsmc problem as well as the ssp problem can be applied during
the controlling of a dynamic ride-sharing service, i.e., during the assignment pro-
cess of passengers to vehicles. Especially the ssp setting models the assignment
problem described in [1]. Within [1], the assignment problem is solved via an
MILP-solver. The interpretation of the formal notation is as follows:
Each ground element u ∈ U corresponds to a potential passenger of a ride-
sharing service and the fleet of the operator consists of L vehicle. An upper
bound on the size of Ci, i ∈ [m], corresponds to a maximal passenger capac-
ity k ∈ Z≥1 of each vehicle of the fleet. Depending on several constraints, the
passenger pick up and desired drop off locations as well as the vehicle positions
are analyzed and feasible tours are proposed. For our purpose it is sufficient to
handle this feasible tour generator as black-box, hence we assume that the set
of potential passenger vehicle combination is given. Accordingly, the collection
of subsets C corresponds to the set of all feasible tours and the index subsets

2

{I`}`∈L describe all feasible tours of vehicle ` ∈ L. Hence, except the fact that
a passenger can only be assigned once, all other constraints are satisfied via the
given input.

Both, dsmc and ssp cover different strategies of a ride-sharing operator.
While dsmc corresponds to a revenue maximizing approach (e.g. each trans-
ported passenger pays her weight as service fee to the operator), the ssp version
considers a profit maximizing approach. For example, w`(i

∗
`) could involve the

distances of all relevant locations of a tour Ci∗`
as well as the initial position of

vehicle ` and thus reduces the passenger dependent income by the corresponding
travel costs.

1.1 Related Work

As already pointed out, most relevant to the results of this paper are the maxi-
mum covering problem as well as the weighted set packing problem, since dsmc
(respectively ssp) are generalizations of those. Moreover, the problem to find a
maximal matching in a hypergraph is connatural.

Maximum Covering The maximum covering problem, also called maximum cov-
erage problem, is a widely studied problem. Due to the fact that already the
unweighted version is NP-hard [6], approximation algorithms were investigated.
It can be approximated within (1 − 1

e) via a classical greedy approach that se-
lects always the set that covers the maximum number of uncovered elements
until k sets are selected. Due to Feige, this greedy algorithm is essentially the
best possible in terms of the approximation guarantee, since he proofed an in-
approximation bound of (1− 1

e + ε) [6].

Hypergraph Matching A bipartite matching is one of the fundamental tools for
assignment processes in theory as well as in applications. The importance of
this problem is underlined by various research in theoretical computer science
to improve the running time of algorithms that compute a maximum matching
in bipartite graphs within the last decades, e.g., see [14, 17, 19].

More related to our setup is the problem of computing a maximum matching
in the hypergraph setting. An r-uniform bipartite hypergraph H = (X ∪̇W, E)
consists out of two disjoint vertex sets X and W and a set of hyperedges E ,
where each edge contains exactly one vertex from X and r− 1 vertices from W .
Here, a (left-)perfect matching is a subset of disjoint edges such that each vertex
in X is covered exactly ones. Annamalai proved the existence of an efficient
algorithm to find these perfect matching whenever a stronger version of Haxell’s
condition holds [2]. Note that we can transform a maximum bipartite hypergrah
matching instance (H, w) with w : E → Q≥0 into a ssp instance as follows. Set
U = W , L = X, S = {Si = ei ∩X | ei ∈ E}, I` = {i | ` ∈ ei} for each ` ∈ L,
and w`(i) = w(ei) for ` ∈ L and i ∈ I`. The optimal value of the resulting ssp
instance corresponds to the value of a maximum matching in H. If all weights are
set to one and the optimal value is |X| the solution can be trivially transformed
into a left-perfect matching of H. See Figure 1 and Figure 2 for a comparison.

3

Set-Packing The general set packing problem is one of the classical NP-complete
problems [8] and has been studied for decades. Due to H̊astad and Zuckerman
it is known that there is no |X|ε−1/2-approximation algorithm, unless P = NP,
where X denotes the finite ground set of elements.

There exist several approximation algorithm for k set packing based on local
improvements [4, 5, 7, 10, 16, 20], where the best known result to date is a
3/(k + 1 + ε)-approximation due to Cygan. On contrary, there is no O(ln(k)/k)
to approximation algorithm, unless NP = P [13].

Note that one can transform a (weighted) set packing instance into a (weighted)
independent set instance with m = |S| vertices [11]. Lehmann et al. showed that
wsp admits a polynomial time n−1/2-approximation, n = |X|, which is realized
via a greedy approach [11, 18], while Gonen and Lehmann showed that no greedy
algorithm can obtain a better solution.

To contrast dsmc and ssp with set packing it is worth to reconsider the
underlying application. In contrast to wmkc and wsp, not every vehicle can
perform every tour (due to its initial position), and hence the tours can not be
selected arbitrary. On contrary, if all vehicles are placed at the same location,
the index subsets of all vehicle would be identical and hence wmkc and wksp
are special cases of dsmc and ssp.

Observe that one can transform an instance of dsmc as well as an instance
of ssp into an instance of the weighted set packing problem. Therefore, we
define a new ground set X ′ = U ∪ L and set the element weight w(`) = 0
for all ` ∈ L. For each subset Ci ∈ C, i ∈ [n], contained in I`, ` ∈ L, we
create a new subset S′ = C ∪ {`} and define the weight of this set equivalent to∑

u∈S′ w(u) for the transformation of a dsmc instance and to w`(Ci) for ssp,
respectively. Both described transformation are possible in polynomial time. Due
to this transformation, one could solve dsmc and ssp via the methods known for
wsp [11]. But due to the increase of the ground set (equally to the increase in
Figure 2), the correspondent greedy approaches perform worse compared with
the algorithms presented in this paper. The corresponding approximation factors
applied on the transformed wsp instance are presented within Table 1.

1.2 Our contribution

Motivated by a ride-sharing application we present natural extensions of the
weighted maximum k coverage problem as well as the weighted set packing
problem. We prove strong intractability results for smc, dsmc and ssp in Sec-
tion 2 and provide almost best possible approximation guarantees in Section 3.
The corresponding bounds are presented in Table 1.

4

Instance
non-disjoint disjoint

smc dsmc ssp

in-approximation (1− 1/e + ε) O(ln(k)/k) (k ∈ Z≥3) nε−1/2

guarantee Theorem 1 Theorem 2 Theorem 3

approximation factor 1
2

1

2(
√
n+1)

1

2(
√
n+1)

greedy Theorem 7 Algorithm 3 Algorithm 3

reformulation – 1(√
n+|L|

) 1(√
n+|L|

)
wsp [11, Theorem 3.3] [11, Theorem 3.3]

Table 1. Overview of in-/approximation results for smc, dsmc and ssp. The first line
states that it is hard to approximate the corresponding problem in polynomial time
within a factor as denoted. The second line presents the approximation ratios of classic
greedy approaches. Moreover, n denotes the number of elements of the ground set U ,
ε > 0 and e represents Euler’s number.

2 Computational Complexity

In this section, we show the intractability of our problems. We show that there
is no (1 − 1/e + ε)-approximation algorithm for smc for every ε > 0 even if
restricting to instances with unit weights, unless P = NP. As we pointed out,
smc is a generalization of mkc. We now prove this formally in the context of
computational complexity by a reduction from mkc.

Theorem 1. For any ε > 0, there is no (1− 1/e+ ε)-approximation algorithm
for smc, unless P = NP, even if restricting to instances with I` = {1, 2, . . . ,m}
for ` ∈ L and w ≡ 1.

Proof. We reduce from mkc, which is known to be (1 − 1/e + ε)-hard to ap-
proximate for every ε > 0, unless NP = P [6]. Let X = {1, 2, . . . , q} be the
ground set, S = {S1, S2, . . . , Sp} be the collection of subsets, and k ∈ Z≥0 be
the maximum number of subsets of a mkc instance. We construct an instance
of smc as follows. We create the ground set U = X, the subcollection of subsets
C = S, L = {1, 2, . . . , k}, I` = {1, 2, . . . , p} for ` ∈ L, and w ≡ 1. Given a
feasible solution of the mkc instance with subcollection S ′ = {Sji}i∈[k], we cre-
ate a feasible solution to the smc instance as follows. Note that we can assume
w.l.o.g. that the subcolection has exactly k subsets, since otherwise we could add
subsets without decreasing the number of covered elements and still be feasible
or if there are not more than k′ < k elements the solution is optimal and we
could reduce k. We then set the index set to L∗ = {1, 2, . . . , k}, each index to
i∗` = j` (∈ I`) for ` ∈ L∗, Thus, we have a feasible solution to the smc instance
with value |∪`∈L∗Ci∗`

| = |∪i∈[k]Sji |. Since this holds for every feasible solution of
the mkc instance, we have optsmc ≥ optmkc, where optmkc and optsmc denote
the optimal values of the mkc and the smc instance, respectively.

Let us assume that there is a (1− 1/e+ ε)-approximation algorithm for smc
for some ε > 0. We then get a solution with index subset L∗ and indices i∗` for

5

` ∈ L∗. This solution induces a solution to the mkc instance as follows. For
` ∈ L∗ add Si∗`

to the solution. Since, |L∗| ≤ |L| = k this is a feasible solution to
the mkc instance. The number of covered elements is |∪`∈L∗Si∗`

| = |∪`∈L∗Ci∗`
|,

which is bounded from below by (1− 1/e+ ε) · optsmc. Then, the total number
of covered elements in the constructed mkc solution is∣∣ ⋃

`∈L∗
Si∗`

∣∣ =
∣∣ ⋃
`∈L∗

Ci∗`

∣∣ ≥ (1− 1/e+ ε) · optsmc ≥ (1− 1/e+ ε) · optmkc.

Thus, there is an (1− 1/e+ ε)-approximation algorithm for mkc, implying P =
NP. It remains to note that the reduction is polynomial in the input size. ut

We now show that the dsmc is even harder to approximate, i.e., there is
no O(ln(k)/k)-approximation algorithm for every constant k ∈ Z≥3 for dsmc,
unless P = NP. We prove this results by a reduction from wksp.

Theorem 2. For any constant k ≥ 3, there is no O(ln(k)/k)-approximation
algorithm for dsmc, unless P = NP, even if restricting to instances with w ≡ 1.

Proof. We reduce from wksp with unit weights, which is known to beO(ln(k)/k)-
hard to approximate, unless NP = P [13]. Let X = {1, 2, . . . , q} be the ground
set, S = {S1, S2, . . . , Sp} be the collection of subsets, w ≡ 1 be the weights,
and k ∈ Z≥3 be the integer of a wksp instance. We construct an instance of
dsmc as follows. We create the ground set U = X, the subcollection of sub-
sets C = S, L = {1, 2, . . . , p}, I` = {1, 2, . . . , p} for ` ∈ L, and w(u) = 1
for each element u ∈ U . Given a feasible solution of the wksp instance with
subcollection S ′ = {Sji}i∈[p′] we create a feasible solution to the dsmc in-
stance as follows. We set the index set to L∗ = {1, 2, . . . , p′}, each index to
i∗` = j` (∈ I`) for ` ∈ L∗. Obviously, {Ci∗`

}`∈L∗ is pairwise disjoint. Thus, we
have a feasible solution to the dsmc instance with cost

∑
e∈C∗ w(e) = k · |S ′|

with C∗ = ∪`∈L∗Ci∗`
. Since this holds for every feasible solution of the wksp

instance, we have optdsmc ≥ k · optwksp, where optwksp and optdsmc denote
the optimal values of the wksp and the dsmc instance, respectively.

Let us assume that there is a O(ln(k)/k)-approximation algorithm for dsmc.
We then get a solution with index subset L∗, indices i∗` for ` ∈ L∗. This solution
induces a solution to the wksp instance as follows. For ` ∈ L∗ add Si∗`

to the
solution. Since {Ci∗`

}`∈L∗ is pairwise disjoint, {Si∗`
}`∈L∗ is also pairwise disjoint

and this is a feasible solution to the wksp instance. The number of sets of this
wksp solution is |L∗| = 1/k ·

∑
`∈L∗ w(Ci∗`

). Then, the total number of covered
elements in the constructed wksp solution is

|L∗|
optwksp

=
1/k ·

∑
`∈L∗ w(Ci∗`

)

optwksp
≥
∑

`∈L∗ w(Ci∗`
)

optdsmc
∈ O(ln(k)/k).

Thus, there is an O(ln(k)/k)-approximation algorithm for wksp, implying P =
NP. It remains to note that the reduction is clearly polynomial. ut

In the next theorem we show that there is no nε−1/2-approximation algorithm
for every ε > 0 for ssp by a reduction from the maximum independent set

6

problem (mis). The maximum independent set problem is given by an undirected
graph G = (V,E). The goal is to find a subset of nodes S ⊆ V of maximum
cardinality such that {u, v} /∈ E for each pair of node u, v ∈ S.

Theorem 3. For any ε > 0, there is no nε−1/2-approximation algorithm for
ssp, unless P = NP, even if restricting to instances with one index per index
subset, |I`| = 1 for ` ∈ L, and weights w`(i) = 1 for ` ∈ L and i ∈ I`.

Proof. We reduce from mis, which is known to be |V |ε−1-hard to approximate for
every ε > 0, unless NP = P [15, 21], by a standard reduction from the maximum
clique problem. LetG = (V,E) be the graph of a mis instance. We assume w.l.o.g.
that each node is incident to at least one edge, i.e., |{v ∈ e | e ∈ E}| ≥ 1 for each
v ∈ V , since otherwise we could remove these nodes and solve the problem on
the new instance and add them afterwards to the solution. We construct an
instance of ssp as follows. We create the ground set U = E, for each v ∈ V a
subset Cv = {e ∈ E | v ∈ e}, the index subset L = V , I` = {`} for ` ∈ L, and
w`(i`) = 1 for ` ∈ L and i` ∈ I`. Given a feasible solution of the mis instance with
nodes V ′, we create a feasible solution to the ssp instance as follows. We set the
index set to L∗ = V ′, and each index to i∗` = ` (∈ I`) for ` ∈ L∗. The collection
of subsets {Ci∗`

}`∈L∗ is pairwise disjoint, since otherwise there would be two
sets Cv1 and Cv2 with v1 6= v2 ∈ V ′ sharing an edge. Thus, we have a feasible
solution to the ssp instance with cost

∑
`∈L∗ w`(i

∗
`) = |L∗| = |V ′|. This holds for

every feasible solution of the mis instance, thus we have optssp ≥ optmis, where
optmis and optssp denote the optimal values of the mis and the ssp instance,
respectively.

Let us assume that there is a nε−1/2-approximation algorithm for ssp for
some ε > 0. We then get a solution with index subset L∗, and indices i∗` for
` ∈ L∗. This solution induces a solution to the mis instance as follows. Since,
{Ci∗`
}`∈L∗ is pairwise disjoint V ′ = L∗ is a feasible solution to the mis instance.

Thus the number of vertices in this solution is |V ′| =
∑

`∈L∗ w`(i
∗
`). This is

bounded from below by nε−1/2 · optssp. Then, the total number of vertices in
the constructed mis solution is

|V ′| =
∑
e∈C∗

w(e) ≥ nε−1/2 · optssp ≥ |V |ε
′−1 · optmis

with ε′ = 2·ε. Thus, there is a |V |ε′−1-approximation algorithm for mis, implying
P = NP. It remains to note that the reduction is clearly polynomial. ut

Corollary 4. For any ε > 0, there is no mε−1-approximation algorithm for
ssp, unless P = NP, even if restricting to instances with one index per index
subset, |I`| = 1 for ` ∈ L, and weights w`(i) = 1 for ` ∈ L and i ∈ I`.

Proof. This is easy to see, since in the previous construction |V | = |C| = m. ut

We introduce a variant of ssp which is relevant in practice, the selective set
packing problem with lower sets (sspl). In this problem we can not only select
given sets, but also each subset of these sets. Formally, we have weights for each

7

subset w`
i : 2Ci → Q≥0 for i ∈ I` for ` ∈ L and the goal is to find an index

subset L∗ ⊆ L, one index i∗` ∈ I` for each ` ∈ L∗, and subsets C∗` ⊆ Ci∗`
such

that {C∗` }`∈L∗ are pairwise disjoint, i.e., C∗` ∩ C∗¯̀ = ∅ for all ` 6= ¯̀ ∈ L∗, and∑
`∈L∗ w

`
i∗`

(C∗`) is maximum. In the following theorem we show that this version

is as hard as ssp.

Theorem 5. If there is an α(n)-approximation algorithm for sspl, then there
is an α(n)-approximation algorithm for ssp.

Proof. Let U be the ground set, C the collection of subsets, {I`}`∈L the index
subsets, and w` : I` → Q≥0 for ` ∈ L the weights of a ssp instance. We construct
an instance of sspl as follows. We take the ssp instance as sspl instance except
that we create weights w`

i (Ci) = w`(i) for ` ∈ L and i ∈ I` and w`
i (C) = 0 for

` ∈ L, i ∈ I`, and C (Ci. Each feasible solution of the ssp instance with index
subset L∗ and indices i∗` for ` ∈ L∗ directly transfers to a solution with the same
objective value by setting C∗` = Ci∗`

for ` ∈ L∗. Thus we have optsspl ≥ optssp,
where optssp and optsspl denote the optimal values of the ssp and the sspl
instance, respectively.

Let us assume that there is an α(n)-approximation algorithm for sspl. We
then get a solution with index subset L∗, indices i∗` for ` ∈ L∗, and subsets
C∗` ⊆ Ci∗`

for ` ∈ L∗. This solution induces a solution to the ssp instance as

follows. Let L∗+ = {` ∈ L∗ | w`
i∗`

(C∗`) > 0}. Since {C∗` }`∈L∗+ is pairwise disjoint

and C∗` = Ci∗`
for ` ∈ L∗+, we have that (L∗+, {i∗`}`∈L∗+) is a feasible solution to

the ssp instance with objective value
∑

`∈L∗+
w`(i

∗
`) =

∑
`∈L∗ w

`
i (C
∗
`) which is

bounded from below by α(n) · optsspl. Thus we have a solution for ssp with
objective value∑

`∈L∗+

w`(i
∗
`) =

∑
`∈L∗

w`
i∗`

(C∗`) ≥ α(n) · optsspl ≥ α(n) · optssp.

It remains to note that the reduction is polynomial in the input size, since
the weight function of the sspl instance has only polynomial many non-zero
values and so is polynomial-time computable. The weights for every subset are
not stated explicitly, and thus the used approximation algorithm runs in time
polynomial in the input size. ut

Corollary 6. For any ε > 0, there is no nε−1/2-approximation algorithm for
sspl, unless P = NP, even if restricting to instances with one index per index
subset, |I`| = 1 for ` ∈ L, and weights w : 2Ci → {0, 1} for ` ∈ L and i ∈ I`.

Proof. Using Theorem 3 and Theorem 5 and following the constructions in the
proofs, the result follows immediately. ut

3 Approximation Algorithms

Within this chapter we consider various greedy approaches for our problem vari-
ants. We start with an algorithm for the smc problem. Due to the fact that

8

the collection of selected subsets has not to be pairwise disjoint, there exist two
variants of this algorithm, one in which for each ` ∈ L a subset is chosen and the
other one that stops as soon as adding any new subset would not increase the
target value. Note that independent of the improvement check both algorithm
return the same target values. Thus we focus in our analysis to the one without
improvement check, since here it holds L′ = L = L∗.

Algorithm 1: Greedy for smc

1 I′ ← ∅, L′ ← ∅, C′ ← ∅
2 while |L′| < |L| do
3 `, i∗` ← argmax

`∈L\L′,i∈I`
w(Ci ∪ C′)

4 I′ ← I′ ∪ {i∗`}, L′ ← L′ ∪ {`}, C′ ← C′ ∪ Ci′
`

5 end
6 return (L′, I′)

Theorem 7. Greedy for smc is an 1
2 -approximation algorithm for smc.

Proof. Let (L∗, {i∗`}`∈L∗) be an optimal solution with C∗ = ∪`∈L∗Ci∗`
and

(L′, {i′`}`∈L′) the solution produced by the greedy algorithm with C ′ = ∪`∈L′Ci′`
.

Furthermore, let {Ci∗`1
, Ci∗`2

, . . . , Ci∗`p
} be a cardinality minimal collection of sub-

sets of the optimal solution covering the elements not covered by the greedy al-
gorithm, i.e., C∗ \C ′. Furthermore, let C ′t be the elements covered after iteration
t ∈ {1, 2, . . . , |L′|} by the algorithm, and t(`) the iteration in which a subset is
selected for index ` ∈ L′. Since, L′ = L, we have {`1, `2, . . . , `p} ⊆ L′. Then,

w(Ci′`j
\ C ′t(`j)−1) = max

i∈I`j
w(Ci \ C ′t(`j)−1) ≥ max

i∈I`j
w(Ci \ C ′) ≥ w(Ci∗`j

\ C ′)

holds for every index j ∈ [p]. Therefore, we have

w(C ′) ≥
∑
j∈[p]

w(Ci′`j
\ C ′t(`j)) ≥

∑
j∈[p]

w(Ci∗`j
\ C ′) = w(C∗ \ C ′).

Due to non negative weights also w(C ′) ≥ w(C ′∩C∗) holds and thus we conclude

w(C ′) ≥ 1
2w(C∗ \ C ′) + 1

2w(C∗ ∩ C ′) = 1
2w(C∗).

ut

The analysis of the Greedy for smc is tight. Consider the smc instance given by
the ground set U = {1, 2}, subsets C1 = {1} and C2 = {2}, index set L = {1, 2},
index subsets I1 = {1, 2}, I2 = {1}, and weights w(1) = w(2) = 1. Then the
greedy algorithm (could) select L′ = {1, 2}, i′1 = 1, and i′2 = 1 with objective
value 1, but 2 is optimal with L∗ = {1, 2}, i∗1 = 2, and i∗2 = 1.

9

We can overcome the difficulty that we select a subset from a “wrong”
index subset, by computing a weighted maximum matching. We state this in
the MatchingGreedy for smc. Nevertheless, this algorithm does not give a bet-
ter approximation ratio. Consider the smc instance given by the ground set
U = {1, 2, 3, 4}, subsets C1 = {1, 2}, C2 = {3, 4}, C3 = {1}, C4 = {2}, index set
L = {1, 2, 3}, index subsets I1 = {1, 2}, I2 = {3}, I3 = {4}, and weights w ≡ 1.
Then, the MatchingGreedy for smc (could) select L′ = {1, 2, 3}, i′1 = 1, i′2 = 3,
and i′2 = 4 with objective value 2, but 4 is optimal with L∗ = {1, 2, 3}, i∗1 = 2,
i∗2 = 3, and i∗2 = 4.

Algorithm 2: MatchingGreedy for smc

1 I′ ← ∅ and C′ ← ∅
2 while |i ∈ [m] | ` ∈| do
3 V ← I′ ∪ vnew

4 E ← {{`, v} | ` ∈ L, v ∈ V, v ∈ I`}
5 c(`, vnew)← max

i∈I`\I′
w(Ci \ C′) ∀ ` ∈ L

6 c(e)← 0 ∀ e ∈ E with e ∩ vnew = ∅
7 Compute a maximum weighted matching M on (L ∪ V,E, c).
8 if c(M) = 0 or |M | ≤ then break
9 Let ¯̀∈ L matched with vnew in M and i′¯̀ ∈ I¯̀ \ I′ with w(Ci′¯̀

) = c(M).

10 I′ ← I′ ∪ {i′¯̀}
11 C′ ← C′ ∪ Ci′¯̀

12 end
13 L′ ← L∩M
14 return (L′, I′)

The greedy algorithm for ssp, which is a modification of [11] and [12], initially
removes all sets of cardinality

√
n or more. Afterwards, indexes ` and i′` are

greedily selected, such that w`(Ci′`
) is maximum and ` as well as Ci′`

are disjoint
form the previous selected indexes/sets.

Theorem 8. Greedy for ssp is an 1
2
√
n+1

-approximation algorithm for ssp.

Proof. Let (L∗, {i∗`}`∈L∗) be an optimal solution with C∗ = ∪`∈L∗Ci∗`
and

(L′, {i′`}`∈L′) the solution produced by the greedy algorithm with C ′ = ∪`∈L′Ci′`
.

Furthermore, for each iteration t ∈ {1, 2, . . . , |L′|} let `(t) be the index subset
selected by the greedy algorithm and L(t) = ∪tj=1`(t). Consider the indices re-
moved in some iteration t, r(t) = {i | ` ∈ L\L(t), i ∈ I`\R(t−1), Ci∩Ci′

`(t)
6= ∅}

and R(t) = ∪tj=1r(t) with R(0) = ∅. Note that due to the pre-selection of small
subsets of the greedy algorithm |Ci′

`(t)
| <
√
n holds and therefore r(t) contains at

most
√
n indices of the optimal solution, because for i ∈ R(t) the set Ci shares

at least one unique element with Ci′
`(t)

.

10

Algorithm 3: Greedy for ssp

1 I′ ← ∅, L′ ← ∅, R← {i ∈ [m] | |Ci| ≥
√
n}

2 while |{i ∈ [m] | ` ∈ L \ L′, i ∈ I` \R}| ≥ 1 do
3 `, i′` ← argmax

`∈L\L′,i∈I`\R
w`(Ci)

4 I′ ← I′ ∪ {i′`}, L′ ← L′ ∪ {`}, R← R ∪ {i ∈ [m] | Ci ∩ Ci′
`
6= ∅}

5 end
6 ¯̀, ī← argmax

`∈L,i∈I`,|Ci|≥
√
n

w`(C)

7 if w¯̀(Cī) ≥
∑

`∈L′ w`(Ci′
`
) then

8 return ({¯̀}, {̄i})
9 else

10 return (L′, I′)
11 end

Consider an arbitrary iteration t. The greedy approach may prevent optimal
decisions for sets with at most

√
n elements twofold. First, the selected subset

overlaps with at most
√
n optimal subsets Ci∗`

with i∗` ∈ r(t). Second, there could
exist an optimal set that does not belong to L\L(t). Thus, this subset is also no
longer accessible, even if it is disjoint with all remaining subsets. If `(t) is also
selected in the optimal solution, we denote the corresponding index with i∗`(t). In

the following estimation we consider those optimal indices only if |Ci∗
`(t)
| <
√
n

and so we have(√
n+ 1

)
· w`(t)(Ci(t)) =

(√
n+ 1

)
·
(

max
`∈L\L(t−1),i∈I`\R(t−1)

w`(Ci)

)
≥
√
n ·
(

max
`∈L\L(t−1),i∈I`\R(t−1)

w`(Ci)

)
+ w`(t)(Ci∗

`(t)
)

≥
∑

`∈L∗,i∗`∈r(t)

w`(Ci∗`
) + w`(t)(Ci∗

`(t)
)

and thus(√
n+ 1

)
·

∑
t∈{1,2,...,|L′|}

w`(t)(Ci(t)) ≥
∑

t∈{1,2,...,|L′|}

∑
i∗`∈r(t)

w`(Ci∗`
) + w`(t)(Ci∗

`(t)
)

≥
∑

`∈L∗,|Ci∗
`
|<
√
n

w`(Ci∗`
).

Note that there are at most
√
n optimal indices in {i ∈ [m] | |Ci| ≥

√
n} and

that the objective value of the greedy algorithm is at least as large as the value
of the set with the largest weight. Hence

√
n ·

∑
t∈{1,2,...,|L′|}

w`(t)(Ci(t)) ≥
∑

`∈L∗,|Ci∗
`
|≥
√
n

w`(Ci∗`
).

11

Therefore we can conclude that the greedy solution has value of∑
t∈{1,2,...,|L′|}

w`(t)(Ci(t)) ≥
1

2
√
n+ 1

∑
`∈L∗

w`(Ci∗`
)

ut

Based on the similarities of our problem formulation to k set packing, we
can benefit of the quasi polynomial time the 2/(k + 1 + ε)-approximation of
Berman [3] for the weighted case and the 3/(k+1+ε)-approximation of Cygan [4]
for the unweighted case and achieve also an approximation algorithm based on
the maximal size of the subsets Ci, i ∈ [m].

Corollary 9. For any ε > 0, there exist a 2/(k+2+ε)-approximation algorithm
for ssp, if |Ci| ≤ k, k ∈ Z≥1, for all i ∈ [m].

Corollary 10. For any ε > 0, there is a quasi polynomial time 3/(k + 2 + ε)-
approximation for ssp with unit weights, if |Ci| ≤ k, k ∈ Z≥1, for all i ∈ [m].

Proof. Reconsider the connection of ssp and set packing as introduced earlier.
The presented transformation adds a single element from L to each copy of
subset Ci. Thus, if the cardinality of each subset of the ssp is upper bounded
by k, the cardinality of each subset in a k set packing is upper bounded by
k+ 1. Note that the ground set of elements in this k set packing instance is also
increased, but due to the fact that the k set packing approximation guarantee
in [3] is independent of the cardinality of the ground set, we can apply the same
algorithm and get the desired approximation guarantee also for ssp.

12

Bibliography

[1] Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment.
Proc. Natl. Acad. Sci. U.S.A. 114(3), 462–467 (2017), doi:10.1073/pnas.
1611675114, URL https://doi.org/10.1073/pnas.1611675114

[2] Annamalai, C.: Finding perfect matchings in bipartite hypergraphs. In:
Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pp. 1814–1823, SIAM (2016), ISBN 978-1-
61197-433-1, doi:10.1137/1.9781611974331.ch126, URL https://doi.org/

10.1137/1.9781611974331.ch126
[3] Berman, P.: A d/2 approximation for maximum weight independent set in d-

claw free graphs. In: Algorithm Theory - SWAT 2000, pp. 214–219, Springer
Berlin Heidelberg, Berlin, Heidelberg (2000), ISBN 978-3-540-44985-0

[4] Cygan, M.: Improved approximation for 3-dimensional matching via
bounded pathwidth local search. In: 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pp. 509–518, IEEE (2013)

[5] Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: The hy-
permatching assignment problem. In: Proceedings of the twenty-fourth an-
nual ACM-SIAM symposium on Discrete algorithms, pp. 342–351, SIAM
(2013)

[6] Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4),
634–652 (July 1998), ISSN 0004-5411, doi:10.1145/285055.285059, URL
http://doi.acm.org/10.1145/285055.285059

[7] Fürer, M., Yu, H.: Approximating the k-set packing problem by local im-
provements. In: Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R., Paschos,
V.T. (eds.) Combinatorial Optimization - Third International Symposium,
ISCO 2014, Lisbon, Portugal, March 5-7, 2014, Revised Selected Papers,
Lecture Notes in Computer Science, vol. 8596, pp. 408–420, Springer
(2014), ISBN 978-3-319-09173-0, doi:10.1007/978-3-319-09174-7\ 35, URL
https://doi.org/10.1007/978-3-319-09174-7_35

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA
(1979)

[9] Gonen, R., Lehmann, D.: Optimal solutions for multi-unit combinatorial
auctions: Branch and bound heuristics. CoRR cs.GT/0202032 (2002),
URL https://arxiv.org/abs/cs/0202032

[10] Halldórsson, M.M.: Approximating discrete collections via local improve-
ments. In: SODA, vol. 95, pp. 160–169 (1995)

[11] Halldórsson, M.M.: Approximations of weighted independent set and hered-
itary subset problems. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.i.,
Tokuyama, T. (eds.) Computing and Combinatorics, pp. 261–270, Springer
Berlin Heidelberg, Berlin, Heidelberg (1999), ISBN 978-3-540-48686-2

https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1137/1.9781611974331.ch126
https://doi.org/10.1137/1.9781611974331.ch126
http://doi.acm.org/10.1145/285055.285059
https://doi.org/10.1007/978-3-319-09174-7_35
https://arxiv.org/abs/cs/0202032

[12] Halldórsson, M.M., Kratochvı́ıl, J., Telle, J.A.: Independent sets with
domination constraints. Discrete Applied Mathematics 99(1), 39 –
54 (2000), ISSN 0166-218X, doi:https://doi.org/10.1016/S0166-218X(99)
00124-9, URL http://www.sciencedirect.com/science/article/pii/

S0166218X99001249

[13] Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating
k-set packing. Comput. Complex. 15(1), 20–39 (May 2006), ISSN 1016-
3328, doi:10.1007/s00037-006-0205-6, URL https://doi.org/10.1007/

s00037-006-0205-6

[14] Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973), doi:10.1137/
0202019, URL https://doi.org/10.1137/0202019

[15] H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math.
182(1), 105–142 (1999), doi:10.1007/BF02392825, URL https://doi.org/

10.1007/BF02392825

[16] Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of
which have an sdr, with an application to the worst-case ratio of heuristics
for packing problems. SIAM Journal on Discrete Mathematics 2(1), 68–72
(1989)

[17] Karzanov, A.V.: O nakhozhdenii maksimal’nogo potoka v setyakh spet-
sial’nogo vida i nekotorykh prilozheniyakh. Mathematicheskie Voprosy Up-
ravleniya Proizvodstvom (1973)

[18] Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in approxi-
mately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002), doi:
10.1145/585265.585266, URL https://doi.org/10.1145/585265.585266

[19] Madry, A.: Navigating central path with electrical flows: from flows to
matchings, and back. CoRR abs/1307.2205 (2013), URL http://arxiv.

org/abs/1307.2205

[20] Sviridenko, M., Ward, J.: Large neighborhood local search for the maxi-
mum set packing problem. In: International Colloquium on Automata, Lan-
guages, and Programming, pp. 792–803, Springer (2013)

[21] Zuckerman, D.: Linear degree extractors and the inapproximability of
max clique and chromatic number. In: Proceedings of the Thirty-Eighth
Annual ACM Symposium on Theory of Computing, p. 681–690, STOC
’06, Association for Computing Machinery, New York, NY, USA (2006),
ISBN 1595931341, doi:10.1145/1132516.1132612, URL https://doi.org/

10.1145/1132516.1132612

14

http://www.sciencedirect.com/science/article/pii/S0166218X99001249
http://www.sciencedirect.com/science/article/pii/S0166218X99001249
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1137/0202019
https://doi.org/10.1007/BF02392825
https://doi.org/10.1007/BF02392825
https://doi.org/10.1145/585265.585266
http://arxiv.org/abs/1307.2205
http://arxiv.org/abs/1307.2205
https://doi.org/10.1145/1132516.1132612
https://doi.org/10.1145/1132516.1132612

	Selective Maximum Coverage and Set Packing

