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Abstract We report on the selection process leading to the sixth version of the Mixed
Integer Programming Library. Selected from an initial pool of over 5,000 instances, the
new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was
specially selected for benchmarking solver performance. For the first time, the com-
pilation of these sets was done using a data-driven selection process supported by the
solution of a sequence of mixed integer optimization problems, which encoded require-
ments on diversity and balancedness with respect to instance features and performance
data.
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1 Introduction

Computational mixed integer (linear) optimization is an important sub-field of mathe-
matical optimization. Hundreds of papers on the subject are published each year and a
multitude of companies provide tools for modeling and solving mixed integer optimiza-
tion problems (MIPs) based on the state of the art in research. Measuring performance
on benchmark test instances has lain at the heart of computational research since the
early days of mathematical optimization. Hoffman et al. [23] first reported on a computa-
tional experiment comparing implementations of three algorithms for linear optimization
back in 1953. Their observation that “[many] conjectures about the relative merits of
the three methods by various criteria could only be verified by actual trial” seems to hold
even more for MIP algorithms today. The variety and complex interaction of differ-
ent techniques regularly calls for empirical evaluation and motivates the collection and
curation of relevant test instances.

Brought into existence in 1992 by Bixby, Boyd, and Indovina [7], the goal of the
MIPLIB project has been to provide the research community with a curated set of chal-
lenging real-world instances from academic and industrial applications that are suitable

∗Extended author information is available at the end of the paper.
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for testing new algorithms and quantifying performance. It has been updated four
times [1, 8, 3, 25] in order to reflect the increasing diversity and complexity of MIP

models used in practice and the improving performance of available MIP solvers. In
this article, we describe its sixth version, MIPLIB 2017, together with a new selection
methodology developed during this process.

The exceptional algorithmic progress in solving real-world MIP instances over the
last decades is recorded in various articles [6, 26, 27, 25]. It can also be observed on
the previous version, MIPLIB 2010, both in terms of solvability and speed. By the end
of 2018, the number of unsolved instances was reduced by nearly half. Of the 134 in-
stances for which no solution with provable optimality guarantee was initially known,
only 70 instances remain open. Comparable progress in the overall speed of solvers
can be observed in the results of benchmark testing with different versions of available
solvers. Since its release in April 2011, the subset of instances of MIPLIB 2010 that
form the so-called “benchmark set”, consisting of 87 problem instances, has been the
accepted standard for evaluating solvers. Using this benchmark set, Hans Mittelmann
has been evaluating a number of MIP solvers, including CPLEX [10], Gurobi [20], and
Xpress [38]. When MIPLIB 2010 was released, the version numbers of these three com-
mercial solvers were CPLEX 12.2.0.2, Gurobi 4.5.1, and Xpress 7.2. Aggregating the
benchmark results of these three solvers at that time, we can construct results corre-
sponding to a so-called “virtual best” solver and a so-called “virtual worst” solver. These
are hypothetical solvers that, for each instance, produce run times that are equal to the
best and the worst of the three, respectively. Doing this analysis yields shifted geometric
mean runtimes of 36.3 and 113.0 seconds for the virtual best and virtual worst solver,
respectively.1 In December 2018, the solver versions were CPLEX 12.8.0, Gurobi 8.1.0,
and Xpress 8.5.1. On the same hardware (with a newer operating system) the shifted
geometric means of the runtimes had decreased to 13.5 seconds for the virtual best, and
31.3 seconds for the virtual worst solver. This corresponds to speed-up factor of 2.70
and 3.62, respectively, which amounts to roughly 16 % per year, just from improvements
in the algorithms.

It was because of this development that the MIPLIB 2010 benchmark set was no
longer considered to sufficiently reflect the frontier of new challenges in the field and
the process of contructing a new MIPLIB was begun. In November 2016, a public
call for contributions was launched and a group of 21 interested researchers, including
representatives of the development teams of nine MIP solvers formed a committee in
order to steer the process of compiling an updated library.2 As with MIPLIB 2010, the
overall goal was the compilation of two sets of instances. The MIPLIB 2017 benchmark
set was to be suitable, to the extent possible, for performing a meaningful and fair
comparison of the average performance of MIP solvers (and different versions of the
same solver) across a wide range of instances with different properties, in a reasonable
amount of computing time. The larger MIPLIB 2017 collection was to provide additional
instances for a broader coverage without restrictions on the total runtime of the test
set, including unsolved instances (as a challenge for future research) and instances not
suitable for benchmarking due to problematic numerical properties, special constraint
types (such as indicators), or exceptionally large memory requirements.

It should be emphasized that the benchmark set we have scientifically contructed is
designed for the purpose of comparing the overall performance of general purpose solvers
on a wide-ranging set of instances. Average performance on this set is not a suitable
criterion to decide which MIP solver to use in a particular application scenario. For such

1The computations used 12 parallel threads. The corresponding log files can be found at [30]. The
means were computed with a shift of 1 second (see Achterberg [2]).

2The members of the MIPLIB 2017 committee were Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Mary Felenon, Koichi Fujii, Gerald Gamrath, Ambros Gleixner, Gregor
Hendel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans Mittelmann, Derya Ozyurt,
Imre Pólik, Ted Ralphs, Domenico Salvagnin, Yuji Shinano, Franz Wesselmann, and Michael Winkler.
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Submissions (5,721)

Isub (5,666)

Instance cleanup (Section 2.3) and trivial presolving (Section 3.1)

Ground set Ipre
for MIPLIB 2017
collection (2,182)

Diversity preselection for large model groups (Section 4.2)

MIPLIB 2017
collection Icol (1,065)

Selection via collection MIP (Section 4.4)

Ground set Icol ∩ B
for benchmark
selection (499)

Reduction to benchmark-suitable instances (Definition 2)

MIPLIB 2017 bench-
mark set Ibench (240)

Selection via benchmark MIP (Section 4.6)

Figure 1: Outline of the steps involved in the selection of the MIPLIB 2017 collection
and benchmark set. Number of instances remaining are given in parentheses.

decisions, it is important to consider what specific class(es) of instances are relevant,
as well as what criteria beyond the raw speed and the ability to solve a wide range of
problems are of interest. This is also underlined by the fact that each of the eight solvers
that were used to collect performance data (see Section 3.6) proved to be the fastest
solver on at least one instance.

Compiling a representative and meaningful instance library is a nontrivial endeavor.
Compared to previous editions of MIPLIB, the increased number of submissions, the
goals of compiling a significantly larger collection of instances and including a larger
number of representatives of solvers posed new challenges to the selection process. In
addition, MIPLIB 2017 is the first edition to provide supplementary data regarding the
instances, such as the matrix structure and decomposability, as well as the underlying
models from which the instances originated, where available. In order to produce a
well-balanced library in a fair and transparent manner, we designed a new, heavily
data-driven process. The steps applied between the initial submissions and the final
MIPLIB 2017 are outlined in Figure 1. Driven by a diverse set of instance features, our
methodology used multiple clusterings to populate a MIP model that was then solved
to generate suitable candidates for the final library to be presented to the MIPLIB

committee.
We consider this process of selecting instances from a large pool of submissions to be

the main new feature of MIPLIB 2017. By contrast, the instances constituting previous
versions of MIPLIB were manually selected by the members of the committee, depending
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heavily on their expertise in benchmarking to avoid common pitfalls like overrepresenta-
tion of certain problem classes. As one byproduct of this data-driven approach, we are
now able to identify similar instances, which leads to sometimes surprising insights into
connections between different, seemingly unrelated instances in the library. In addition
to the raw feature data, we provide, for each instance, the five most similar instances in
the collection on a newly designed web page (see Section 5.3).

The remainder of this article contains a detailed desciption of the selection process
and its result. It is organized as follows. Section 2 describes the efforts to collect
instances and meta data on their background and solvability. Section 3 details the
collection of feature data for each instance that forms the basis for quantifying similarity
of instances and balancedness of a given selection. In Section 4, we describe how this
data was used as input in order to compute good candidates for the library by solving a
MIP model. Section 5 summarizes the final result. We conclude with our final remarks
and acknowledgements in Section 6.

2 The Collection Process

The first step in the creation of a new MIPLIB version is to collect a large set of candi-
date instances. This section elaborates on the submission process and the origin of the
submitted instances, as well as preparatory steps for the subsequent selection process
like instance cleanup and grouping.

2.1 The Submission Phase

The collection process started with a call for contributions in November 2016, which
was advertised at many conferences, on numerous mailing lists, and in direct commu-
nication with partners from industry. Submissions were accepted until August 1, 2017.
Overall, we received 128 data sets from 66 submitters with 54 different affiliations, 38
of them being academic and 16 industrial. Note that the affiliation of the submitter
alone does not imply anything about the source or type of the model. Several of the
submitters with academic affiliation submitted instances from industry projects and one
submitter from industry submitted instances modeling a combinatorial game. Each sub-
mission was automatically committed as a new subdirectory to the public git repository
https://git.zib.de/miplib2017/submissions. These subdirectories are structured
as follows. In the root of the subdirectory there are two files: a bibtex file with references
to papers related to the instances, if provided by the submitter, and a meta file con-
taining information about the submitter, creator, and owner of the submitted instances,
as well as a description of the instances and licensing information. For the first time,
all contributions were required to be submitted under a license in order to explicitly
grant the right of redistribution, among others. The default license was chosen to be
the Creative Commons CC BY-SA 4.03 license, but it was possible to specify a different
license if desired. In addition to these two files, there are up to three subdirectories. The
instances subdirectory contains the instances themselves (.lp or .mps format, possibly
compressed). The models subdirectory contains associated model files, which contribu-
tors were encouraged to include in order to provide researchers with richer information
on the structure of the instances. Finally, additional information is provided in the misc
subdirectory, ranging from extended descriptions to log files and MIP start files.

In total, 3,670 instances were newly submitted to MIPLIB 2017. Table 1 lists all
submitters and the number of instances they submitted. We arrived at a total of 5,721
instances by adding 2,051 instances that were submitted for inclusion in MIPLIB 2010,

3https://creativecommons.org/licenses/by-sa/4.0/
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Table 1: Submitters of new instances, and number of instances from their submission(s)
after cleanup.

Submitter #

Andrea Arias 360
Dimitri Papageorgiou 300
Pierre Le Bodic 121
Qie He 120
Simon Felix 101

Gleb Belov (except MiniZinc challenge) 100
Simon Bowly 92
Gerald Gamrath 76
Hans Mittelmann 75
Haroldo Gambini Santos 71

Shunji Umetani 60
Matias Soerensen 42
Jordi Castro 34
Toni Sorrell 34
Stephan Beyer 32

Manuel Iori 30
Michael Winkler 28
Cezar Augusto Nascimento e Silva 26
Pelin Damci-Kurt 26
Domenico Salvagnin 22

Michael Bastubbe 19
George Fonseca 18
Sascha Kurz 17
Antonio Frangioni 15
Daniel Heinlein 12

Marc Pfetsch 11
Tamas Terlaky 11
Berk Ustun 10
Philipp Leise 9
Salim Haddadi 9

Dan Hiroshige, Koichi Fujii 8
Christopher Hojny 7
Laurent Sorber 6

Submitter #

Yoshihiro Kanno 6
Andrew Stamps 5
Alexandra M Newman 4
Austin Buchanan 4
Rob Pratt 4

Sean MacDermant 4
Felix Cebulla 3
Irv Lustig 3
Jesus Rodriguez 3
Jeff Linderoth (except NEOS server) 3

Jonathan Eckstein 3
Siwei Sun 3
Felix J L Willamowski 2
Janos Hoener 2
Joshua Friedman 2

Utz-Uwe Haus 2
Andreas Baermann 1
Balabhaskar Balasundaram 1
Christian Liebchen 1
Christopher Daniel Richards 1

Dan Neiman 1
Daniel Bienstock 1
Daniel Rehfeldt 1
Gavin Goodall 1
Gerald Lach 1

Hsiang-Yun Wu 1
Jesse Liu 1
Juan Javier Dominguez Moreno 1
Koichi Fujii 1
Mark Husted 1

Paula Carroll 1
Sujayandra Vaddagiri 1
Timo Berthold 1

keeping their original submission information intact. Those 2,051 comprised most of the
submissions to MIPLIB 2010 except for a few duplicates already present in other MIPLIB

2017 submissions.
Table 2 reports the origin of the submitted instances. It shows that there are two

blocks of new submissions with a high number of instances: the instances submitted to
the NEOS server and MIP models of instances that were part of the MiniZinc Challenges4

from 2012 to 2016. Even excluding those instances, the remaining new contributions
comprise about as many instances as were submitted to MIPLIB 2010, half of which were
collected from publicly available sources back then. Note also that nearly 50 instances
originate from submissions to the user support of two commercial solvers.

2.2 Submissions from the NEOS Server

Before moving on, we briefly discuss how the instances originating from the NEOS Server
were collected, since this was a separate procedure unto itself. The NEOS Server is a
free internet-based service for solving numerical optimization problems hosted by the

4https://www.minizinc.org/challenge.html
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Table 2: Origin of the submitted instances. Each instance is counted only once, in the
first applicable row.

MIPLIB 3 65
MIPLIB 2003 28
MIPLIB 2010 335
MIPLIB 2010 submissions 1,623
new NEOS server submissions 785
MiniZinc challenge 988
new contributions 1,897

Wisconsin Institute for Discovery at the University of Wisconsin in Madison, with remote
solving services provided by various sites, such as Arizona State University. In the
calendar years 2014–2016, more than 1 million MIP instances were solved using NEOS.
A subset of these instances was collected and submitted for inclusion into MIPLIB 2017.

To begin, the 14,571 MIP instances that were modeled through the AMPL [11] lan-
guage and whose solution required more than five minutes of wall clock time to solve
were collected. In discussions with the MIPLIB committee, it was decided that a rep-
resentative, yet diverse, sample of around 700-800 instances would be an appropriate
number of submissions from NEOS. The strategy to select the instances was based on
clustering the instances with similar traits and then selecting instances from the clusters.

All 14,571 of these instances were re-run using CPLEX 12.6 to collect the optimal
solution (if possible within 12 hours) and the solution to the root LP relaxation. For
each instance, the following properties were collected:

− the number of variables, constraints, and nonzeros,

− the percentage of binary variables and of general integer variables,

− the best solution value found by CPLEX, the root gap, and the percentage of frac-
tional variables in the root LP solution.

Instances whose number of nodes or constraints was more than 3 standard deviations
away from the mean were excluded as outliers. In an attempt to eliminate duplicate
instances, only one instance in a group that had the same number of constraints, same
number of variables, and same optimal solution value, as well as the same associated
email address, was retained. After this removal of outliers and suspected duplicates,
6,531 instances remained.

Each of these instances was assigned to a multi-labeled category using three inde-
pendent calls to a k-means clustering algorithm [21] as follows. First, the instances were
divided into four clusters according to properties associated with problem size: the num-
ber of constraints, number of variables, and number of nonzeros. Second, the instances
were again divided into four clusters, this time according to the percentage of binary
and general integer variables in the instance. Finally, the instances were divided into
four more clusters based on two properties of the root LP relaxation: root gap and the
percentage of integer variables whose root LP relaxation value was not integer-valued.

From these clusterings, each of the 6,531 instances was given a label in {0, 1, 2, 3}3,
all in all giving 43 = 64 (possibly empty) clusters. Let Si be the number of instances in
the i-th cluster. The final selections were then made as follows:

− For each cluster with size Si ≤ 2, all instances of the cluster were selected;

− for each cluster with size 3 ≤ Si ≤ 10, d|Si|/2e instances were selected at random;

− for each cluster with size Si > 10, d|Si|/10e instances were selected at random.

This strategy ensured a diverse sample, and resulted in a total of 710 instances to be
considered for inclusion in MIPLIB 2017.
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Separately, Hans Mittelmann also contributed 75 instances submitted to one of the
ASU-hosted servers through the NEOS platform. These servers process requests for the
SCIP, FEASPUMP, PROXY, and Qsopt ex solvers. Using scripts, these user submis-
sions were screened for promising instances with an emphasis on those that contain
model information.

In combination, this resulted in a total of 785 new instances arising from NEOS. In
addition, the instance pool for MIPLIB 2017 contains 391 NEOS instances that have been
either included in previous versions of MIPLIB or were considered during past selection
processes.

2.3 Instance Cleanup

Following the close of submissions, we performed several cleanup steps, as follows.

Instance renaming. While we tried to preserve original file names where possible, some
submissions required renaming to create uniquely identifiable names. For instance, some
submissions contained multiple instances with the same file name that originated from
the same base model populated with different data. We also tried to make the names
as short and expressive as possible, containing only lower-case characters, numbers and
hyphens. After re-naming, the longest instance name was reduced from 151 to 31 char-
acters. Note that submissions for MIPLIB 2010 were renamed to be consistent with the
naming scheme of the final MIPLIB 2010 instances, but no submissions already present
in MIPLIB 2010 were renamed.

Making NEOS instances identifiable. NEOS instances have traditionally been named
neos-xyz, where xyz is a number with up to 7 digits, representing the unique NEOS

instance ID of the submitted instance. In order to allow easier identification of the
instances in papers and personal communications, we compiled a list of river names
from all over the world and appended a river name to the original name, resulting in
names of the form neos-xyz-river. As an example, NEOS instance 3075395 has been
renamed neos-3075395-nile such that it can be colloquially called the “nile instance”.
We excluded river names such as “Amazon” to avoid ambiguous renaming. Note that
we applied this renaming procedure only to the 785 NEOS instances newly submitted
for MIPLIB 2017 (see Section 2.2), leaving all previously available NEOS instances under
their old name to avoid confusion.

Format conversion and cleanup. All instances in the MIPLIB 2017 collection are pro-
vided in MPS format [24, 32]. Therefore, instances submitted in LP format were read into
CPLEX and written out in MPS format. Given that different MIP solvers support dif-
ferent extensions of the MPS format, we ensured that all solvers could read all instances
by restricting the format to a basic version. Maximization problems were turned into
minimization ones by negating objective coefficients; lazy constraint markers were re-
moved so that the constraints are treated as standard constraints; and coefficients stated
as hexadecimal numbers were converted to their decimal equivalent. Additionally, we
added a NAME section or changed the existing one to the updated instance name. For
a small number of instances, it was necessary to change the MPS files because they
contained ambiguous definitions or outright incorrect formatting. In those cases, we
performed the minimally necessary changes to make the instance file adhere to the basic
MPS standard.
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Table 3: Model groups and counts for the different instance sources.

Group Size ∈

Type Groups {1} {2, . . . , 5} {6, . . . , 10} {11, . . . , 360}

MiniZinc 80 0 16 38 26
NEOS 110 8 24 34 44
MIPLIB (excl. NEOS) 241 172 30 16 23
Indiv. submissions 130 81 15 10 24

2.4 Model Groups

In most cases, the instances in a single submission are closely related in the sense that
they originate from the same or a very similar MIP model. Some submissions, how-
ever, contain many instances out of which the instances are mostly unrelated, e.g., the
submissions from the NEOS server or the MiniZinc challenge. Therefore, we introduced
model groups to keep track of this form of meta information that may not be directly
inferable from the submission ID or the numerical instance features described in Sec-
tion 3. A model group represents a set of instances that is based on the same model
or a very similar formulation and only uses different data. This grouping allowed us to
avoid overrepresentation of a particular application or model class in the final library
by limiting the number of instances with known similar model background during the
selection process.

Each instance was assigned to one model group as follows. Initially, a submission of
homogeneous instances was assigned to its own model group. If a submission contained
multiple sets of instances, each implementing a different model for the same problem
and data set, an individual group was created for each of the different model types.
Publicly available instances with known application (including the MiniZinc instances)
were grouped by hand by the authors.

Finally, NEOS instances were grouped in an automated way, since users often submit
multiple, similar instances. In order to group the NEOS instances, a k-means clustering
was computed with respect to the entire instance feature space (see Section 3). The pa-
rameter k = 110 was chosen manually to achieve a clustering with very similar instances
in each NEOS model group. This clustering was applied to all 1,176 NEOS instances
both from new submissions and previously available sources.

Table 3 summarizes the number of resulting model groups and the corresponding
model sizes for the different sources of instances. The largest model group cmflsp com-
prises 360 instances of a capacitated multi-family lot-sizing problem.

3 Feature Computation

The ultimate goal of the selection process was to select a representative sample of all
available instances with respect to problem structure and computational difficulty, while
avoiding overrepresentation of similar models. In the spirit of data-driven decision mak-
ing and in light of related work in the fields of algorithm selection and machine learning,
we based this process both on performance data and on an extensive set of instance
features. The first step in the selection process was simply to determine the features of
interest and to compute the feature vectors associated with each instance. Although this
may seem straightforward, it is important to note that the feature vector corresponding
to an instance can be affected by seemingly irrelevant properties of its representation in
MPS format. For instance, some of the raw MPS instances contained modeling language
artifacts or artifical redundancies. For this reason, the instance features were computed
only after applying some straightforward cleanup steps, which we refer to as trivial pre-
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solving. We first describe this presolving process before describing what features of the
instances were used and how their values were determined for each instance.

3.1 Trivial Presolving

As is traditional for MIPLIB, the submitted instances remain unchanged (except for
MPS format corrections) and have not been replaced by a presolved version. This has
several advantages. Primarily, it means that MIPLIB remains suitable for the bench-
marking of presolving algorithms, which are actively developed and have a high impact
on the performance of a solver (see [4, 16]). Secondarily, model generation procedures
tend to introduce auxiliary variables and constraints or other redundancies that require
appropriate handling by the solvers such that their efficiency in doing so should be part
of the benchmarking as an important part of the overall solution process.

Despite the need to leave instances unchanged in the test set, all MIP solvers do apply
some level of presolving procedures to the instance before the branch-and-bound search
in order to tighten the problem formulation, remove redundant variables and constraints,
and extract additional information about the instance. Consequently, statistics about
the original instance may not correctly reflect the “true” properties of the instance that
is solved after presolving was applied. This includes not only obvious properties, such
as instance size, but less obvious ones, such as the type of constraints and variables
present in the model. A model may, for example, have all variables integer with the
exception of one continuous variable whose value is fixed to 1 and whose purpose is to
model an objective offset. It would be unreasonable to consider such an instance to be
an instance with both integer and continuous variables. At the other extreme, we may
have an instance in which all binary and integer variables are implicitly fixed, leaving a
purely continuous problem after presolving.

While it seems necessary to do some presolving before computing instance features,
the full presolving done by solvers is itself a difficult computational balancing act and
each solver does it differently. Too much presolving before feature computation would
result in a presolved instance with features no more representative of the “true” ones than
the completely unpresolved instance. As a compromise, all instance features introduced
in Sections 3.3–3.5 were collected after applying a reduced set of the most obvious
presolving techniques to the instance, but no more sophisticated techniques.

For this trivial presolving, we used SCIP 5.0, but disabled most presolving tech-
niques, applying only simple ones, such as the removal of redundant constraints and
fixed variables, activity-based bound tightening, and coefficient tightening. In contrast
to standard SCIP presolving, which stops if the problem size could be reduced by only
a small percentage during the last presolving round, we applied the simple presolving
steps until a fixed point was reached. The complete set of SCIP parameters used to
do the presolving is provided on the MIPLIB web page (see Section 5.3) as part of the
feature extractor download.

For 55 of the 5,721 submitted instances, trivial presolving turns the instance into
a pure LP or is even able to solve the instance by fixing all variables. These in-
stances were not considered for inclusion and also serve to emphasize the importance of
this preprocessing step. Overall, trivial presolving reduced the number of variables on
3,782 instances (66 % of the submission pool), sometimes by as much as 93 % (instance
a2864-99blp). For 445 instances (8 %), more than 50 % of the variables were fixed. On
average, trivial presolving reduced the number of variables by 15 %.
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3.2 Canonical Form

Because the feature computation can not only be affected by presolving but by the
exact form in which the instance is represented (equality constraints versus inequality,
etc.), we transformed all presolved instances into the following canonical form, which is
slightly more general than the usual one, prior to feature computation.

Definition 1. A mixed integer optimization problem P with input

− m,n, nb, ni, nc ∈ N, n = nb + ni + nc,

− coefficient matrix A ∈ Qm×n,

− left-hand and right-hand side vectors L,U ∈ Qm
±∞,

− lower and upper bound vectors `, u ∈ Qn
±∞, and

− objective coefficient vector c ∈ Qn

is defined to be an optimization problem of the form

min
{
c>x : L ≤ Ax ≤ U, ` ≤ x ≤ u, x ∈ {0, 1}nb × Zni ×Qnc

}
.

It is important to note that transformation to the canonical form of Definition 1 is
not uniquely determined for each instance. There remain certain degrees of freedom
to formulate equivalent instances by scaling continuous columns, the objective function
c>x, or a constraint Li ≤ a>i x ≤ Ui by a positive scalar s > 0. This may cause problems
with the computation of some features. For example, some features of interest involve
comparison of row coefficients, but this comparison is difficult if rows of the constraint
matrix may have coefficients differing by several orders of magnitude, We address these
issues by normalizing the objective coefficients c and every constraint Li ≤ a>i x ≤ Ui by
their maximum absolute coefficient ‖c‖∞ and ‖ai‖∞, respectively, so that all objective
and matrix coefficients lie in the interval [−1, 1] before computing the feature matrix F
(the downloadable instances are not altered).

It is based on this final presolved canonical representation that we define the Q = 110
features we consider. This results in a feature matrix F ∈ RN×Q, where N is the total
number of instances submitted. Table 4 lists these features, which were divided into
K = 11 feature groups (also listed in the table). Feature groups were used for the
selection process, during which instance clusters were computed for each feature group
individually. Every feature group was chosen to represent a particular aspect of an
instance in the form specified by Definition 1. The computation of features in most
of the groups only requires information that can be extracted directly from the input
of the (trivially presolved) problem. Two exceptions are the constraint classification
and decomposition groups, which need to identify structures in the model. These are
described in Sections 3.4 and 3.5.

3.3 Instance Features

Here, we describe the first nine feature groups in Table 4. We use the shorthand vector
statistics to refer to five values summarizing the entries of a vector v ∈ Rd

±∞. Let
d′ = |{j : |vj | < ∞}| be the number of finite entries of v, which can be smaller than d
in the case of, e.g., bound vectors, and let v′ be the restriction of v to its finite entries.
We assume without loss of generality that v′ is sorted, v′1 ≤ v′2 ≤ · · · ≤ v′d′ . The five
values are

− min : v 7→ v′1,

− max : v 7→ v′d′ ,

10



Table 4: Description of instance features used. Set notation is abbreviated, e.g., {A 6= 0}
denotes {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : ai,j 6= 0}

Group Features Description Scaling

Size 3 size m,n of matrix, nonzero entries
|{A 6= 0}|

log10(x)2

Variable types 3 Proportion of binary, integer, and
continuous variables nb

n ,
ni

n ,
nc

n

Objective nonzero
density

5 Nonzero density of objective func-

tion |{c6=0}|
n both total and by vari-

able type (bin., int., cont.), 0-1
indicator for feasibility problems
without objective

Objective
coefficients

6 vector stats. and dynamism of c c normalized by
‖c‖∞

Variable bounds 12 Finite densities |{|`|<∞}|n , |{|u|<∞}|n
of bounds, vector stats. of upper
bounds u and bound ranges u− `.

vector stats.
scaled by
siglog(x)

Matrix nonzeros 6 vector stats. of nonzero entries
|{ai 6= 0}| by row in A, nonzeros

per column |{A 6=0}|
n

log10(x) for
nonzeros per
column

Matrix
coefficients

24 vector stats. of the coefficient vec-
tor stats. of each row of the matrix

every ai normal-
ized by ‖ai‖∞

Row dynamism 5 vector stats. of row dynamism
‖ai‖∞

minj{|aij |6=0}

log10(x)

Sides 19 vector stats. of left- and right-hand
sides L,U and concatenated (L|U),
nonzero and finite densities of L, U

every ai normal-
ized by ‖ai‖∞

Constraint classi-
fication

17 Proportion of classes of special lin-
ear constraints: singleton, prece-
dence, knapsack, mixed binary (see
Section 3.4)

Decomposition 10 Features describing decomposition
D found by GCG with maxi-
mum area score (see Section 3.5):
areascore(D), k, vector stats. (ex-

cept std) of
(
|Dr

1 |
m , . . . ,

|Dr
k|

m

)>
and(

|Dc
1|

n , . . . ,
|Dc

k|
n

)>
. Not available

for all instances.
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− mean : v 7→ 1
d′

d′∑
j=1

v′j ,

− median : v 7→
(
v′
b d′+1

2 c
+ v′
d d′+1

2 e

)
/2, and

− std : v 7→

√
1
d′

d′∑
j=1

(
v′j −mean(v′)

)2
.

Note that infinite entries can only occur for the variable bound vectors ` and u and
the left- and right-hand side vectors L, U . For a vector v that contains only infinite
entries, i.e., for which d′ = 0, the above vector summaries are not well-defined. If d′ = 0,
the corresponding statistics were set to 0 in the data. Note that even if the original
formulation has infinite bounds on variables, trivial presolving may often infer finite
bounds for those variables.

The dynamism of a vector with finite entries is the ratio of the largest and small-
est absolute entries, i.e., ‖v‖∞/min{|vj | : vj 6= 0}. Note that the dynamism is always at
least 1. If the dynamism in a single constraint exceeds 106, we see this as an indication of
a numerically difficult formulation. Note that the dynamism is invariant to the normal-
ization procedure. Combining the dynamism of each constraint yields an m-dimensional
vector, which can be summarized using vector statistics.

For features such as the row or objective dynamism, which may differ by orders of
magnitude between instances, we used a logarithmic scaling. While logarithmic scaling is
fine for vectors with positive entries, it is not applicable to vectors with potentially neg-
ative entries such as the variable upper bounds u. In those cases, we apply a customized
scaling

siglog : R→ R, x 7→ sig(x) log10(|x|+ 1)

to every entry of the corresponding column in the feature matrix F . The map siglog
preserves the sign of each entry.

The collection of the instance features was performed with a small C++ application
called feature extractor, which extends SCIP by the necessary functionality needed to
report features after trivial presolving and optionally accepts a settings file to modify the
default presolving explained in Section 3.1. The feature extractor is a modified version
of a code used already by [17] and available for download on the MIPLIB 2017 web page
(see Section 5.3).

3.4 Constraint Classification

Table 5 lists the constraint classification types used for the feature group Constraint
classification. A total of 17 types of linear constraints were identified, which often
occur as a subset of the constraints of MIP instances. The table is sorted from most
specific to most general. In case that a constraint belongs to multiple types, the classi-
fication always assigns the most specific, i.e., topmost type that applies. Note that even
empty, free, and singleton constraints are listed. While these types are removed during
trivial presolving, they may well be present in the original formulation.

There are several types of constraints supported by the MPS format [24, 32] that
are not strictly linear as required by Definition 1. A well-known extension are indicator
constraints, which are conditional, linear constraints that only need to be satisfied if a
corresponding binary variable, the so-called indicator variable, is set to 1. It is possible to
linearize such a constraint by employing a sufficiently large coefficient M for the indicator
variable, in which case the reformulation is called a big-M formulation. In many practical
applications, big-M formulations require a very large value of M , which is why they often
lead to numerically difficult models. Directly expressing such constraints as indicator
constraint allows the solver to handle them in a more algorithmically advantageous way.
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Table 5: Classification of linear constraints, sorted from most specific to most general.
A constraint is always assigned the first (topmost) type that applies.

Type Linear constraints . . .

Empty . . . with no variables

Free . . . with no finite side

Singleton . . . with a single variable

Aggregation . . . of the type ax+ by = c

Precedence . . . of the type ax− ay ≤ b where x and y must have the same type

Variable Bound . . . of the form ax+ by ≤ c, x ∈ {0, 1}

Set Partitioning . . . of the form
∑
xi = 1, xi ∈ {0, 1} ∀i

Set Packing . . . of the form
∑
xi ≤ 1, xi ∈ {0, 1} ∀i

Set Covering . . . of the form
∑
xi ≥ 1, xi ∈ {0, 1} ∀i

Cardinality . . . of the form
∑
xi = k, xi ∈ {0, 1} ∀i, k ≥ 2

Invariant Knapsack . . . of the form
∑
xi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Equation Knapsack . . . of the form
∑
aixi = b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Binpacking . . . of the form
∑
aixi + ax ≤ a, x, xi ∈ {0, 1} ∀i, a ∈ N, a ≥ 2

Knapsack . . . of the form
∑
aixi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Integer Knapsack . . . of the form
∑
aixi ≤ b, xi ∈ Z ∀i, b ∈ N

Mixed Binary . . . of the form
∑
aixi +

∑
pjsj {≤,=} b, xi ∈ {0, 1} ∀i, sj ∈ R ∀j

General Linear . . . with no special structure

Indicator constraints were allowed into the MIPLIB 2017 collection, but (as we de-
scribe later) were not allowed in the benchmark set. The only feature used that involves
indicator constraints was their fraction among all constraints. This feature is also part of
the feature group Constraint classification in Table 4. Other features regarding,
e.g., the linear part of the indicator constraint, are not collected. In total, 437 of the
submitted instances contain indicator constraints. Many of them appear in instances of
the MiniZinc submission, which were additionally submitted with big-M formulation.

There are other special types of constraints allowed by MPS, such special-ordered sets
(SOSs), semicontinuous variables, and piecewise linear constraints that not all solvers
support. However, none of the instances submitted used such constraints.

3.5 Block-Structured Decomposition Features

Dantzig-Wolfe reformulation and Lagrangian relaxation are decomposition techniques
that can exploit the presence of logical groupings of constraints and variables in the
model. Classically, one identifies “complicating” or “linking” constraints that, when
removed from the model, result in several subproblems that can be solved indepen-
dently. Concretely, this occurs when the contraint matrix has so-called block angular
structure (defined below). One challenge in applying these techniques within a general
purpose solver is identifying such structure. Standard input formats do not allow in-
formation about these structures to be passed to the solver directly. For this reason,
several decomposition-based solvers have been developed that accept auxiliary input files
indicating this structure when it is present. These include GCG [15], DIP [12, 13, 14],
and DECOMP (a decomposition-based solver that is part of SAS/OR and SAS Optimiza-

13



(a) original (b) decomposition

Figure 2: Instance b1c1s1 after trivial presolving; left the nonzero entries as they appear
in the original constraint matrix; right with rows and columns re-arranged according to
the decomposition produced by GCG.

tion [34]). All three can exploit the identified structure by reformulating the instance
and applying a branch-and-price algorithm to solve it.

Although block structure may be “obvious” in the original model, this structure is
often lost when the model is populated with data and transformed into a format such
as MPS. When information about the block structure is not provided, it can still be
derived algorithmically. This information is thus at a higher level of abstraction than
the other instance features alone. Contributors to MIPLIB 2017 were invited to provide
complementary material, such as model files in GAMS or AMPL format or information
on block-structured decompositions in the .dec file format. While some 20 submitters
accompanied their instances with model files to produce them, no block structure infor-
mation was contributed. Nevertheless, GCG, DIP, and DECOMP are all able to derive
information about the block structure automatically (see, e.g., [18, Sec. 5]).

Given the coefficient matrix A of an instance, we formally characterize a (block
structured) decomposition by a partition of the rows Dr = (Dr

1, . . . , D
r
k, L

r) of A and a
partition of the columns Dc = (Dc

1, . . . , D
c
k, L

c) of A, such that for every entry ai,j 6= 0
of A with i ∈ Dr

`1
and j ∈ Dc

`2
it holds that `1 = `2. We say that such a decomposition

has k blocks. The number k of blocks (normalized by the average number of blocks over
all instances), the vector statistics (except the standard deviation) of the numbers of
rows and columns per block, respectively, and the so-called area score give rise to ten
features related to block-structured decompositions that were derived from the trivially
presolved instances using the detection capabilities of GCG 3.0

The area score for a decomposition D = (Dr, Dc) of A is defined as

areascore(D) = 1−
∑k

b=1|Dr
b ||Dc

b |+ n|Lr|+m|Lc| − |Lr||Lc|
mn

,

which intuitively measures the fraction of the matrix that is “white” in Figure 2b. A
variant of this score is also used by GCG 3.0 to select a decomposition in the case that
several are found (such structure is not uniquely determined). An area score closer
to 1.0 is better. A very low area score indicates that the model does not contain any
substructures that are easily identifiable by GCG 3.0. This does not imply that there is
no such structure, but rather that it is not obvious.

As computing decompositions can be very time consuming, in particular for huge
instances, GCG was run in a minimal detection configuration. In this configuration, GCG

first groups the constraints of A according to (a) their type in SCIP, (b) their MIPLIB

type (see Table 4), and (c) their number of nonzeros. For each respective grouping, the
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Table 6: List of solvers used for performance evaluation.

Solver Version Threads Ref.

CBC 2.9.8 4 [9]
IBM CPLEX 12.7.1 4 [10]
Gurobi 7.5.1 4 [20]
MATLAB R2017b 1 [29]
MOSEK 8.1.0.30 4 [31]
SAS/OR 14.2 4 [34]
SCIP 4.0.0 1 [35]
FICO Xpress 8.2 4 [38]

smallest cardinality groups of constraints are joined until a specified (small) number of
groups remains. From this collection, each subset is potentially selected as the set Lr

of linking constraints of the decomposition. The so-called connected finisher assigns all
remaining rows to as many blocks as possible. It is conceivable that this leads to only
one block, in which case the area score of the resulting decomposition is 0.0. From the
pool of decompositions that are constructed this way, one with maximum area score is
selected for computing the decomposition features of the instance.

3.6 Acquisition of Performance Data

Every submitted instance was processed with each of the eight solvers listed in Table 6
to collect performance data. The experiments were performed on two Linux clusters.
The first one consisted of 32 nodes, each equipped with two 3.20 GHz 4-core Intel Xeon
X5672 CPUs and 48 GB RAM, the second consisted of 16 nodes, each equipped with
two 2.50 GHz 10-core Intel Xeon E5-2670 v2 CPUs and 64 GB RAM. Two such jobs
were run in parallel on the same cluster node, each job using a time limit of 4 hours and
4 threads, except for SCIP and MATLAB5, which are both single-threaded. In total, this
performance evaluation required almost 40 CPU years.

Figure 3a shows for every possible cardinality k = 0, 1, . . . , 8 the number of instances
solved by exactly k solvers. 1,969 of the 5,721 instances (34 %) were not solved by any
solver within 4 hours (an instance was considered solved if there were no inconsistencies
between solvers and the solution was verified to be feasible (see Section 3.7). There were
1,155 instances (20 %) that could be solved by all eight solvers.

To summarize the results of the experiments, we report here the performance mea-
sures for virtual solvers, as described in the introduction. For each instance, a virtual
solver is a summary of all tested solvers by means of an aggregation function such as
min, max, and median, resulting in the best, worst, and median virtual solvers, respec-
tively. The term “virtual” is used to distinguish the presentation from the best (fastest)
or worst (slowest) actual solver over the complete set of instances. The performance
measures collected are the time to optimality and the number of branch and bound
nodes processed.

Figure 3b compares the fraction of instances solved by the virtual best and worst
solvers. A large discrepancy between the curves can be observed. The virtual best
solver finished on about 20 %, 40 %, and 60 % of the submissions within 1 sec., 1 minute,
and 1 hour, respectively. The virtual worst solver required more than a second for any
instance, and solved only 20.2 % of the instances within the time limit of 4 hours. The

5MATLAB was run using the command intlinprog, which is part of the Optimization Toolbox (TM).
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Figure 3: Aggregated results of the performance evaluation on the entire submission.
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virtual best solver solved more instances in 2 seconds than the virtual worst solver was
able to solve in 4 hours. Note that all eight tested solvers contributed to the performance
of the virtual best solver, i.e., each solver was the fastest on at least one instance.

Figure 3c summarizes data about the number of branch and bound nodes processed.
As expected, the number of branch-and-bound nodes varies significantly between in-
stances, but also between solvers on individual instances. In Figure 3c, the minimum
and maximum number of explored nodes are shown. In this figure, we consider only
runs that completed sucessfully. Note that there are differences in how solvers report
the required number of branch-and-bound nodes. Concretely, the solution of an instance
during presolving may be reported as 0 or 1 nodes depending on the solver used. We
therefore normalize the node results so they are always at least 1, i.e., we consider pre-
solving as part of the root node solution process. This is also justified because we only
consider instances that could not be solved completely by trivial presolving. At the
left end of the scale are the instances that could be solved within 1 node. This group
amounts to 1,507 instances, which corresponds to 40 % of the instances that could be
solved at all and 26 % overall. For more than 50 % of the solved instances, the solution
process required less than 1,000 nodes. The maximum number of explored nodes is
considerably larger. Less than 25 % of the considered instances were solved within 1,000
nodes by all solvers that finished within the time limit. Note that for all 385 records
(see Figure 3a) for which only one solver finished within the time limit, the minimum
and maximum number of explored nodes coincide.

3.7 Consistency Check of Solver Results

In order to identify numerically challenging instances and incorrect answers returned
by the solvers, the results of the performance runs were independently verified in two
different ways.

First, the feasibility of every primal solution reported at the end of a solution process
was checked. To accomplish this step, a solution checker, whose purpose is to validate
feasibility of the solutions computed by a given MIP solver against the original model has
been bundled with the MIPLIB scripts since MIPLIB 2010. The checker tries to recognize
incorrect results, while at the same time taking into account that most MIP solvers use
floating-point arithmetic, and thus exact feasibility cannot be expected. The overall
structure of the solution checker has been largely unchanged since MIPLIB 2010. It is
important to emphasize that it only checks feasibility of a given solution, it cannot check
optimality in general. The solution vector returned by the solver is verified against the
original instance in MPS format, with all computations performed using the arbitrary
precision arithmetic package GMP [19]. Feasibility of linear constraints, integrality and
the objective value are all verified according to given tolerances. We refer to the MIPLIB

2010 paper [25] for more details on the solution checker design and limitations.
For MIPLIB 2017, we updated the solution checker such that it uses a more flexible

(and forgiving) definition of violation of a linear constraint. The previous version of the
checker used an absolute tolerance of ε = 10−4, so that when given a linear constraint
a>i x ≤ Ui and a solution x∗, it would have considered the constraint satisfied if and only
if

a>i x
∗ − Ui ≤ ε.

However, this turns out to be too strict if the linear constraint has coefficients with a
large absolute value. At the same time, switching to a purely relative tolerance was not
considered a viable option, as it can lead to a too small effective tolerance when tiny
coefficients are involved. So, in the new version we introduced a different definition of
violation, that tries to combine the strengths of absolute and relative tolerances, and also
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to possibly cope with cancellation effects when evaluating the variable part (activity) of
the constraint. In particular, we split the value a>i x

∗ into its positive and negative parts
as a>i x

∗ = (a>i x
∗)+ − (a>i x

∗)− and consider the linear constraint satisfied if and only if

a>i x
∗ − Ui ≤ ε ·max{(a>i x∗)+, (a>i x∗)−, |Ui|, 1}.

Given the relaxed definition of violation, it was decided to use the stricter value ε = 10−5

as tolerance. The very same logic is applied when checking variable bounds, and when
checking the objective value c∗ reported by the solver—we just treat it as the linear con-
straint c>x∗ = c∗. Note that integrality is still checked with a purely absolute tolerance
of 10−4. Finally, the solution checker was extended to support indicator constraints.

Following the feasibility check, which can be done independently for each solver and
solved instance, the results were compared between solvers to identify discrepancies in
the optimal values reported or inconsistencies in primal and dual bounds. We used the
publicly available tool IPET [22] to parse the solver log files and validate the results. We
considered results inconsistent when solver A reported a verified, feasible solution with
value c∗, while solver B timed out reporting a dual (lower) bound that was higher than
c∗. This included the special case that an instance had been reported infeasible by solver
B. For example, on the instance bc1, seven of eight solvers agreed on an optimal value
of 3.338 after exploring search trees with 3k–20k nodes. The eighth solver, however,
reported a solution of value 3.418 as optimal after 720 nodes. The eighth solver cut off
the optimal solution. Note that while such a behavior can be caused by a bug in the
solver, it is also possible that different optimal values can be “correctly” obtained when
different tolerances are used. Since all MIP solvers rely on floating-point arithmetics and
use feasibility tolerances, the definition of “the optimal objective value” for a problem
instance is ambiguous. In particular for numerically challenging problems, a solver
might return a different optimal objective value as a result of applying slightly stricter
tolerances within the algorithm. Instances exhibiting such ambiguity are not suitable
for benchmarking, since handling this numerical ambiguity can be done in different
ways, requiring different amounts of computational effort. This leads to difficulties in
comparison. Therefore, we disregarded all instances with such inconsistencies during the
selection of the benchmark set (see Section 4.6), unless the inconsistency was obviously
caused by a bug in one solver. 328 instances (5 %) were removed for this reason.

4 Selection Methodology

Due to the vast number of collected instances and the stark overrepresentation of some
problem classes and instance types, it was crucial to reduce the submitted instances
to a carefully chosen selection that provides both researchers and practitioners with a
meaningful basis for experimental comparison. MIPLIB 2017 provides two main instance
sets, namely the benchmark set and the collection. In the following, we discuss the actual
selection process and the obtained result.

We approach this task in the reverse order by first selecting the larger MIPLIB 2017
collection from the submitted instances, and then choosing the MIPLIB 2017 benchmark
set as a subset of the collection. Both the collection and benchmark set should provide a
good coverage of the feature space given by all submissions and should also be balanced.
Note that our aim is explicitly not to represent the composition of instance properties
observed in the set of submitted instances, because this is typically highly unbalanced.
We would like to choose the collection as large as possible in order to obtain a rich and
diverse test set. As explained above, the benchmark selection step is more restrictive.
Here the goal is not only to choose the largest set possible, but also to favor instances
that are currently hard for all solvers.

It seems quite natural to formulate this task as an optimization problem. In fact, we
approach the generation of MIPLIB 2017 with a sequence of optimization problems: a
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set of diversity preselection MIPs, the collection MIP, and finally, the benchmark MIP.
After an initial cleanup, large model groups (see Section 2.4) are cut down to a handful
of diverse instances by the application of the diversity preselection model described in
Section 4.2. The main purpose of the first selection procedure is to avoid overrepresen-
tation of instance types from large and very homogeneous submissions that do not add
to the diversity of the instance library. Sections 4.3 and 4.5 introduce the clustering
procedures to partition the instances based on instance features and performance data,
respectively. Sections 4.4 and 4.6 describe the mixed integer optimization models used
to compute the MIPLIB 2017 collection and benchmark sets.

Before the selection steps outlined here, the submission pool of 5,721 instances was
already reduced to 5,666 instances by the removal of LPs (no discrete variables) and
instances that are empty after a trivial presolving (see Section 3.1). Furthermore, we
removed pairs of duplicate instances identified during the selection process.

4.1 Benchmark Suitability

The following definition characterizes the requirements for an instance to be in the
benchmark set of MIPLIB 2017.

Definition 2 (Benchmark-suitable instance). We call an instance i ∈ I benchmark-
suitable if

(B.1) it can be solved by at least one considered solver within 4 hours;

(B.2) it requires at least 10 seconds with 50 % of the solvers;

(B.3) it has a constraint and objective dynamism of at most 106 (see Section 3.3);

(B.4) the absolute value of each matrix coefficient is smaller than 1010;

(B.5) the results of all solvers on i are consistent (see Section 3.7);

(B.6) it has no indicator constraints (see Section 3.4);

(B.7) it is bounded;

(B.8) the solution (objective) value of i is smaller than 1010;

(B.9) it has at most 106 nonzero entries.

The subset of benchmark-suitable instances from the ground set Isub is denoted by B.

(B.2) eliminates instances from the benchmark selection that are too easy. Con-
versely, (B.1) ensures that benchmark instances can be solved by at least one solver, as
already done for MIPLIB 2010. This avoids the situation of MIPLIB 2003, for which four
instances still remain unsolved 15 years after the release of the test set. The criteria
(B.3), (B.4), (B.5), (B.8) ensure that the benchmark set does not contain numerically
difficult instances for which results may be ambiguous. Furthermore, benchmark in-
stances should not contain special constructs that are not supported by all solvers. As
noted in Section 3.4, the only special constraint type in the submissions are constraints
of indicator type, which are excluded from the benchmark set via (B.6). For two reasons,
(B.7) excludes unbounded instances from the benchmark set. First, a feasible, rational
MIP is unbounded if and only if its LP relaxation is unbounded, rendering detection of
unboundedness more a continuous than a discrete problem. Second, there is currently
no clear consensus on the expected behavior and output of MIP solvers. Note that in
contrast, infeasible instances are deliberately not excluded. Finally, (B.9) reduces the
hardware requirements to perform tests with the benchmark set.

Table 7 lists for each criterion the number of excluded instances. Note that an
instance may be excluded for several reasons. In total, 3,407 instances were labeled as
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Table 7: Number of instances considered not benchmark-suitable (Isub\B), as described
in Section 4. The column “Crit.” refers to the corresponding criterion in Definition 2.
The ground set is the set of 5,666 instances available before preselection.

Crit. Exclusion reason Instances

(B.1) Too hard: min. solver time > 4 hours 1,958
(B.2) Too easy: median solver performance ≤ 10 seconds 741
(B.3) Objective or constraint dynamism too large 552
(B.4) Absolute matrix coefficients > 1010 525
(B.6) Presence of indicator constraints 437
(B.5) Instances excluded for inconsistent results 334
(B.7) Unbounded instances 87
(B.8) Best known solution exceeds 1010 80
(B.9) Too many (> 106) nonzeros 40

not benchmark-suitable, the majority of them because no solver solved them within the
time limit of four hours.

The larger MIPLIB 2017 collection covers a broader range of MIP instances. It in-
cludes at least one instance from each submitter, a constraint that cannot be enforced
for the benchmark set due to runtime considerations. It may contain instances that
are considered too easy or too hard for the benchmark set. It may contain instances
with more dubious numerics suited for testing the robustness of solvers in general and
techniques that explicitly aim at increasing numerical robustness. It may contain un-
bounded instances and instances with indicator constraints. It may contain up to five
instances from each model group.

4.2 Diversity Preselection

As with previous editions of MIPLIB, the number of instances varies significantly between
different submissions and, more importantly, also between the model groups described
in Section 2.4. While some model groups contain a single MIP instance that represents
an optimization problem on a specific data set, other model groups contain hundreds of
instances using the same underlying model for different data. Hence, for larger model
groups, we preselect a diverse subset of instances as follows.

Let I = Isub denote the index set of submitted instances and let B ⊆ Isub be the
subset of benchmark-suitable instances according to Definition 2. The choice of a subset
can be naturally encoded using binary variables xi equal to one if and only if instance
i ∈ I is selected. For two instances i, j ∈ I, di,j denotes the Euclidean distance of
their feature vectors. Then for a given model group G ⊂ I of instances and specified
κ, we wish to choose κ instances maximally diverse in the sense that the minimum
distance between two selected instances becomes maximal. If the model group contains
benchmark-suitable instances, at least one of these should be included in the preselection.
Such a preselection can be performed by solving the mixed binary optimization problem

max z (1a)

s.t. z ≤ (di,j −D)xixj +D for all i, j ∈ G, i 6= j (1b)∑
i∈G

xi = κ (1c)∑
i∈G∩B

xi ≥ 1 if G ∩ B 6= ∅ (1d)
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Diversity Preselection MIPLIB 2017 Collection MIPLIB 2017 Benchmark Set

Figure 4: The results of diversity preselection for the model group “drayage”, which
contains a total of 165 instances, in a multi-dimensional scaling plot. A red diamond
indicates that the instance has been selected for the corresponding set.

x ∈ {0, 1}G , z ∈ [0, D] (1e)

An instance i ∈ G is preselected if and only if the corresponding binary variable xi
equals one. The value D := max{di,j : i, j ∈ G} acts as big-M in Constraint (1b). In
order to solve this optimization problem with a MIP solver, the bilinear product xixj
in (1b) must be linearized by replacing it with an auxiliary binary variable wi,j under
the additional constraints wi,j ≤ xi, wi,j ≤ xj , and wi,j ≥ xi + xj − 1 for all pairs
i 6= j ∈ G.

This preselection was performed for each model group exceeding five instances. The
value of κ used was κG = 5 for groups with 6 ≤ |G| ≤ 10 and κG = 10 for larger groups.
The number of variables and constraints of the preselection model depends on the size of
the corresponding model group. For the largest model group “cmflsp”, which comprises
360 instances of a capacitated multi-family lot-sizing problem, the diversity preselection
instance has 129,242 rows, 64,981 columns, and 323,485 nonzeros. Except for this largest
model group, which required approx. 800 seconds, all preselection problems could be
solved to optimality within a time limit of 500 seconds using Gurobi 7.5.1.

As an example, Figure 4 depicts the results of the preselection procedure for the
model group “drayage”, which consists of 165 instances in total. The plot shows the
instances from this group three times. The x and y-coordinates are computed using mul-
tidimensional scaling (MDS) [33, 28], which tries to approximately preserve distances
between pairs of points in the original, unprojected feature space. The leftmost plot
highlights the optimal solution of the corresponding diversity preselection instance. Vi-
sually, the selected solution for this group is scattered evenly across the feature space
of this group. The middle and right plot show the instances from this group that are
selected for the collection and benchmark set, respectively, for which stricter cardinal-
ity restrictions on model groups apply. While the five instances in the collection are
also spread evenly across the depicted space, the two instances in the benchmark set,
namely drayage-100-23 and drayage-25-23 are located relatively close together in the
picture. However, a look at the performance results, which are taken into account for
the selection of the benchmark set, reveal that the two selected instances vary substan-
tially regarding solution time. The easier of the two instances, namely drayage-100-23

could be solved by seven solvers with a median running time of 40 seconds. The harder

21



instance drayage-25-23 on the other hand could only be solved by three solvers and
hence has a median running time of four hours. The three other instances lie in between.
In total, diversity preselection reduces the instance set from 5,666 to 2,182 instances.

The preselected instances form a reduced index set Ipre, which serves as input for
the selection of the MIPLIB 2017 collection. Although the following selection procedure
could have been applied to the entire set of submissions, we noticed several benefits of
preselection empirically. It improves the results of the k-means clustering heuristic in
the next Section 4.3, reduces the size and difficulty of the selection MIPs to be solved,
and finally leads to a larger collection and benchmark set.

4.3 Preparing Multiple Clusterings

One major challenge in selecting a test set is how to navigate the trade-off of good cov-
erage of all observed instance properties against a balanced selection that avoids over-
representation. The first goal is certainly achieved best by simply selecting all suitable
instances, while balancedness explicitly asks for removing instances from overrepresented
problem classes.

A straightforward method would be to compute one clustering according to the
entire feature matrix and pick instances uniformly from each cluster. When applied
in a high-dimensional feature space, as in our setting, this näıve approach suffers from
several problems well-known in data analysis, such as the curse of dimensionality [5] and
the relative scaling of numerical features. The first term refers to the fact that with
increasing dimensionality of the feature space, the difference of distances of one point to
its nearest and to its farthest neighbor becomes smaller in relative terms. Hence, similar
instances cannot be identified reliably. Conversely, depending on scaling, the distance
with respect to one crucial feature may be dominated by less useful features, such that
different instances cannot be distinguished reliably.

We counteract these effects by using multiple clusterings of the entire preselected
instance set Ipre according to disjoint groups of features. Subsequently, we select in-
stances such that they are balanced with respect to each of these clusterings. This
selection process is more complex and cannot be achieved by simply picking uniformly
from each cluster of each clustering. Instead, we formulate a mixed integer optimization
problem with approximate balancing constraints for each of the multiple clusterings.

Formally, for a given index set I of instances we have K different clusterings, i.e.,

I = Ck,1 ∪ · · · ∪ Ck,Lk
(2)

for k ∈ K = {1, . . . ,K}, with disjoint Ck,1, . . . , Ck,Lk
being a partition of the index set

I for every k. The number of clusters Lk is allowed to vary, since different subsets of
features may require a different number of clusters to achieve a high-quality clustering.
We denote the index set of all clusters by C := {(k, `) : k = 1, . . . ,K, ` = 1, . . . , Lk}.
Furthermore, the cluster sizes contain outliers, which need special treatment in order
to avoid limiting the size of the resulting test set too much. Hence, we partition the
set of clusters into small, medium (regular-sized), and large clusters and denote the
respective index sets by S, M, and L ⊆ C, as follows. A cluster Ck,l is denoted small if
its size is less than half the average size of Ck,1, . . . , Ck,Lk

. On the other hand, a cluster
is treated as large if it is displayed as an outlier in a typical boxplot. Concretely, Ck,l is
considered large if its size exceeds the 75 % quantile among Ck,1, . . . , Ck,Lk

by more than
1.5 interquartiles.

For the selection of the MIPLIB 2017 collection, we use one clustering for each of the
K = 11 groups of instance features listed in Table 4. The clusterings of all preselected
instances (2,182 instances) are computed using a k-means heuristic [21], which yields a
first family of clusterings denoted by K1 = {1, . . . , 11}.
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Table 8: Clustering statistics for the collection MIP in Section 4.4.

δk,p

Feature group Quality [%] Lk Small Large Min. Max.

Variable bounds 91.28 23 7 1 6.57 22.03
Matrix coefficients 87.73 41 2 1 5.33 13.95
Matrix nonzeros 89.10 33 3 0 5.86 16.70
Decomposition 99.99 9 1 1 11.54 15.53
Row dynamism 91.70 17 3 3 9.85 18.12
Constraint classification 87.77 35 6 1 6.63 12.92
Objective nonzero density 93.17 9 0 1 9.95 14.01
Objective coefficients 96.51 43 2 3 4.39 23.05
Sides 98.33 35 10 0 1.00 18.77
Size 87.46 9 2 0 10.95 15.01
Variable types 95.26 7 0 1 8.89 13.54

Table 8 gives insight into the result of this clustering process. It shows the total
number of clusters (value of Lk) for each feature group clustering. The individual value
of Lk has been manually selected for every feature group. The quality column describes
the percentage of the total feature group distance between clusters. More formally, for
a clustering k ∈ {1, . . . ,K} of instances, the quality of this clustering is

∑
i 6=j∈I

di,j −
Lk∑̀
=1

∑
i 6=j∈Ck,`

di,j∑
i6=j∈I

di,j
.

The quality of a clustering always lies in the interval [0, 1]. A clustering has a high
quality if long distances between instances are between different clusters. Note that
for the distance computation for the quality measure, only features contained in the
corresponding feature group were considered. The table shows that the quality of the
clustering was at least 87 % and often significantly above 90 %, yielding an average
quality of 92 %. In addition to the value of Lk, the table presents the individual number
of small and large parts, which are constrained less strictly than the normal parts, see
Constraints (4a) and (4b). All parts that are neither small nor large are constrained with
both an upper and lower limit on the selection. Finally, the minimum and maximum
total dissimilarity per feature group, which are used for the right-hand side of the above
constraints, are also shown in Table 8.

For the selection of the benchmark set, we additionally use performance data to hand-
craft three clusterings for each of the eight participating solvers, which yields additional
clusterings K2 = {12, . . . , 35}, see Section 4.5 below.

4.4 Selection of the MIPLIB 2017 Collection

In the following, we describe linear formulations to enforce the requirements specified
by the committee. At this stage, the instance set is limited to the instances I = Ipre
left after the diversity preselection procedure. The set of clusterings K = K1 is the one
determined using the instance feature groups from Table 4.

To express balancedness, consider one clustering I = Ck,1 ∪ · · · ∪ Ck,Lk
. Näıvely, we

would like to pick the same number of instances from each cluster, i.e.,
∑

i∈Ck,`
xi ≈ yk

for an auxiliary variable yk ≥ 0. However, enforcing this for all clusterings is highly
restrictive. Furthermore, while the instances in each of the clusters Ck,1, . . . , Ck,Lk

should
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be homogeneous with respect to the features that were used to compute clustering k,
they may be heterogeneous with respect to the entire feature vector. This interaction
between different clusterings must be taken into account.

Therefore, for each cluster (k, `) ∈ C a measure δk,` ≥ 1 for the total dissimilarity
of its instances with respect to the entire feature space is used. Concretely, the vector
of pairwise Euclidean distances {di,j : i < j ∈ Ck,`} available after trivial presolving is
aggregated into δk,` using a shifted geometric mean, to which we add 1. The smallest
possible value of δk,` is therefore 1 which only occurs for clusters containing exactly 1
element, or clusters that contain only instances which are indistinguishable in the feature
space. Arguably, from clusters with higher total dissimilarity, more instances should be
picked, i.e.,

∑
i∈Ck,`

xi ≈ δk,`yk. Introducing a tolerance parameter ε, 0 < ε < 1, we
arrive at the balancedness constraints

(1− ε)δk,`yk ≤
∑

i∈Ck,`

xi ≤ (1 + ε)δk,`yk. (3)

In practice, we discard the left inequality for small clusters and the right inequality for
large clusters and use∑

i∈Ck,`

xi ≥ (1− ε)δk,`yk for all (k, `) ∈ C \S, (4a)

∑
i∈Ck,`

xi ≤ (1 + ε)δk,`yk for all (k, `) ∈ C \ L. (4b)

Additionally, if two instances have identical feature vectors, then at most one of them
should be chosen , i.e.,

xi + xj ≤ 1 for all i, j ∈ I × I with i < j, di,j = 0. (4c)

At most five instances should be selected from each model group. If the model group
contains benchmark-suitable instances, at least one of those should be included into the
MIPLIB 2017 collection. Let I = G1 ∪ . . . ∪ GP denote the partition of instances into
different model groups, then this condition reads∑

i∈Gp

xi ≤ 5 for all p = 1, . . . , P, (4d)

∑
i∈Gp∩B

xi ≥ 1 for all p = 1, . . . , P with Gp ∩ B 6= ∅. (4e)

Furthermore, from each submitter at least one instance should be selected, i.e.,∑
i∈Ss

xi ≥ 1 for all s = 1, . . . , S, (4f)

where I = S1 ∪ . . .∪SS denotes the partition of instances with respect to S submitters.
Finally, we imposed relative limits on a small number of specific subsets of instances,

Rr ⊂ I, by requiring∑
i∈Rr

xi ≤ ρr
∑
i∈I

xi for all r ∈ {NEOS, MiniZinc, BP, small, medium}. (4g)

The concrete values for ρr are given in Table 9. The numbers in parentheses show the
size of respective ground sets Ipre and Icol ∩ B, from which instances were selected.
The amount of instances from the NEOS server was limited by the committee because
of the lack of reliable information on their application and model background. Purely
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Table 9: Instance sets for which relative limits on the selection apply, with limits shown
for the collection and benchmark MIPs individually. The Size columns show the size of
this set within the respective ground set the selection is based on. The parameter ρk
is a relative limit on the allowed instances from this set in a solution as specified by
Constraint (4g).

Coll. MIP (2182) Bench. MIP (499)

k Sets Size ρk Size ρk

1 MiniZinc instances 484 0.05 14 0.05
2 NEOS instances 696 0.33 182 1.00
3 small (n ≤ 2k) 691 0.20 124 0.20
4 medium (n ≤ 10k) 1,309 0.50 290 0.50
5 binary problems (n = nb) 422 0.20 109 0.20

binary problems were limited because they often represent academic applications such
as combinatorial puzzles, but less often occur in industrial, “real-world” instances. The
limit ensures that enough actual mixed integer instances are selected for the collection
and benchmark sets. For the groups in Table 9 that refer to instance features, the
features are always evaluated after trivial presolving.

Subject to those constraints, our objective was to include as many instances as
possible, preferring benchmark-suitable instances. Hence, we formulate the collection
MIP as the mixed binary optimization problem

max
{∑

i

βixi : (4a)− (4g), x ∈ {0, 1}I
pre

, y ∈ RK≥0
}
, (5)

with objective cofficients β to prefer benchmark-suitable instances,

βi =

{
2, if i ∈ B,

1, otherwise.

We solved the collection MIP over the ground set Ipre of 2,182 instances (after diversity
preselection). Despite our efforts to remove obvious duplicates, there remained 48 pairs
of instances in Ipre with a feature distance of zero. From each such pair, at most one
instance was selected for Icol because of Constraint (4c). We obtained the MIPLIB 2017
collection Icol, which comprises 1,065 instances, 499 of which are benchmark-suitable.

4.5 Performance Clusterings

In addition to instance features that depend exclusively on instance data, computational
difficulty is an important aspect to consider for the benchmark set. We assessed the
computational difficulty of every instance empirically by considering the performance
data of the eight tested solvers (see Section 3.6). To quantify performance, we considered
a matrix of running times tw,i > 0 for each solver w ∈ W := {1, . . . ,W} and instance i ∈
I. If w could not solve the instance i, tw,i was set to the time limit of four hours. We
denote by Iw ⊆ I the set of instances that were solved by w within the time limit.

For each of the participating solvers, we created three different clusterings of the
instances to capture different aspects of performance. The base set I for these clusterings
are the 499 benchmark-suitable instances within the MIPLIB 2017 collection, i.e., I =
Icol ∩B. The overall goal was to avoid a biased selection of instances, i.e., to avoid that
the absolute and relative performance of a solver on the benchmark set appears different
than on Icol. Each of the three clusterings avoids a different bias.
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Absolute performance clustering. The first clustering uses an absolute performance
ranking. For each solver w, we sorted the instances in Iw according to increasing run-
ning time tw,i. For a fixed number of clusters B, which we set to B = 11, we grouped
the instances in Iw into B equally-sized clusters w.r.t. increasing rank, i.e., we assigned
the instances solved fastest to the first cluster, the next fastest set of instances to the
second cluster, . . . , and the slowest instances to the last cluster, so that each cluster
contained approximately |Iw|/B instances.

The instances in I \ Iw that could not be solved by solver w seem indistinguishable
with respect to performance. However, it could be that the solution process was ter-
minated only seconds prior to concluding the proof of optimality, or that the solution
process would have continued unfinished for days or even months. We took this into
account by inspecting the performance of the other solvers and formed two more clusters
from those instances: instances that could be solved by exactly one solver and instances
that could be solved by more than one solver. The case that instances could be solved
by no other solver does not appear since such instances are not benchmark-suitable
(Definition 2, Criterion (B.1)).

Relative performance clustering. In contrast to the absolute performance clustering,
the instances were ranked based on relative solver performance for a second clustering
as follows. To this end, we defined the relative performance of solver w on instance i
with respect to the other solvers as

trelw,i :=
tw,i + σ

min
w′ 6=w

tw′,i + σ
, (6)

where σ ∈ R≥0 is a nonnegative shift as in the computation of shifted geometric means.
Relative performance locates the individual solver performance relative to all other
solvers on an instance, regardless of the absolute scale. The motivation is that solvers
and solver improvements are traditionally measured by the shifted geometric mean in-
stead of the arithmetic mean. For the instances that could be solved by this solver, we
used this ranking to define B equally-sized clusters in the same fashion as with the ab-
solute performance ranking. The timeout instances were again divided into two further
clusters of instances that could be solved by exactly one and by more than one other
solver, respectively.

Binned absolute performance clustering. The third clustering uses absolute solving time
directly, partitioning possible solving times into B′ = 7 intervals

[T0 = 0, T1), [T1, T2), . . . , [TB′−1, TB′), (7)

whose breakpoints are equal for all solvers. The concrete bin width used grows expo-
nentially as follows.

Tj = 10−3.5+0.5j · 14400, j = 1, . . . , 7.

Hence, the righmost bin T7 has the time limit of four hours as right breakpoint. Then
for each solver w ∈ W we formed B′ clusters {i ∈ Iw : tw,i ∈ [Tj−1, Tj)}, j = 1, . . . , B′.
Empty clusters were discarded. This is different from the absolute and relative perfor-
mance clusterings in that it partitions the instances solved by a solver into clusters that
differ in size. The instances in I \Iw, which could not be solved by solver w, were again
treated as two further clusters as above.

All in all, this led to 24 clusterings, K2 = {12, . . . , 35}. The ranking-based clusterings
yield approximately equal cluster sizes over Iw, but these cluster sizes may differ to the
ones on I \ Iw. The binned absolute performance clustering does not control cluster
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size and may yield very unequally sized clusters. In the following benchmark MIP we
picked from the performance clusters according to their size, i.e., we use δk,` = |Ck,`| for
all k ∈ K2 in Constraint (4a) and (4b).

In the case of SCIP, as an example of an absolute performance clustering, each of the
11 parts contained between 20 and 22 instances, and the remaining 263 instances were
split into 58 instances which could only be solved by one solver, and 205 instances solved
by at least two solvers. Although the absolute and relative performance clusters were,
by design, almost equal in size, we observed quite different partitions of the ground set.
An example is the fastest relative performance cluster for SCIP, which shares 8 of its 21
instances with the fastest absolute cluster. The remaining 13 instances, for which SCIP

was particularly fast compared to its competitors, were spread across 8 of 10 possible
absolute clusters. This shows that to some extent, the two suggested clusterings exhibit
an almost orthogonal instance partition.

4.6 Selecting the MIPLIB 2017 Benchmark Set

The benchmark set was selected from the ground set of benchmark-suitable instances in
the MIPLIB 2017 collection, I = Icol ∩ B. The balancedness constraints (4a) and (4b)
are now defined using instance feature and performance clusterings, K = K1 ∪ K2. The
rationale is that the current performance of solvers in the collection should be reflected
by the performance on the benchmark set in order to avoid any unintentional bias
towards a solver during the selection of instances. The relative limit constraints (4g)
are kept, but the restriction on instances from the same model group is reduced to
one instance from NEOS groups and two instances, otherwise. The stricter limit on
NEOS instances is imposed because little information is available for these anonymously
submitted instances and the chance for duplicate instances in the same model group is
deemed higher.

In addition, executing one benchmark run on this test set should be possible within
a reasonable time frame on modern hardware, possibly a compute cluster. We spec-
ified a total time limit τ of 32 days for running the benchmark set with a hypo-
thetical solver with median running times capped to a time limit of two hours, i.e.,
t̄i := min{median{tw,i : w ∈ W}, 7200}. The resulting benchmark MIP reads

max
∑
i

βixi (8a)

s. t. (4a), (4b), (4g),∑
i∈Gp

xi ≤

{
1

2

for all p = 1, . . . , P from NEOS,

otherwise,
(8b)

∑
i∈I

t̄ixi ≤ τ, (8c)

x ∈ {0, 1}I , (8d)

y ∈ RK≥0. (8e)

This approach also has a potential drawback. Representing current solver perfor-
mance may overly favor instances that are tractable by current solver technology. Op-
posed to this, one main goal of the MIPLIB project is to provide a test bed that drives
solver development forward. Hence, we used the objective coefficient

βi := 1 +
1

20

√
min
w∈W

tw,i (9)
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for instance i ∈ I. This favors instances that are challenging even for the virtual best
solver. The concrete choice of the square root was empirically motivated.

Using Icol ∩B containing 499 instances as ground set, we solved the benchmark MIP

that respects all feature group and performance clusterings. The solution to the bench-
mark MIP contained 240 instances and now constitutes the MIPLIB 2017 benchmark set
Ibench. We note that the imposed running time constraint (8c) was not tight on our
performance data. A solver with median running times and a time limit of two hours
would take about 14 days to process all benchmark instances sequentially.

We also note that for several reasons, the goal of representing computational difficulty
in the reduced benchmark set cannot be achieved perfectly and is not even well-defined:
The performance data is only a snapshot of current algorithms. It was gathered using
a time limit, performance variability and parallel scalability were not captured, and
correctness was only enforced approximately with respect to the tolerance parameter ε.
Last but not least, the different performance clusterings may even contradict each other.
However, we hope that it helps to avoid unintentionally and unconsciously introducing
a bias both towards instances of a particular difficulty and towards any of the solvers.

5 The Final Collection and Benchmark Sets

The MIPLIB 2017 collection Icol has been compiled with a focus on a balanced and
diverse representation/coverage of the feature space. The benchmark set Ibench incor-
porates similar requirements also for the performance data. This section discusses the
feature and performance aspects of the compiled sets. We also assess the descriptive
power of the feature space by (re-)detecting known model group associations.

5.1 Representation in Feature Space

A frequent question during the discussions about the MIPLIB 2017 compilation process
was whether the choice of features and their scaling is able to distinguish instances in
a useful way. Ideally, two instances based on the same model for the same application,
but with different data, should be close to each other in the feature space, regardless
of variations of, e.g., the size of the matrix. For MIPLIB 2017, we have two sources
to assess similarity between instances, namely their distances in feature space and the
model groups G from Section 2.4. In this paragraph, we evaluate the descriptive power of
the feature space by comparing similarity in feature space and model group association
of instances.

Let X denote the instances in the MIPLIB 2017 collection (|X| = 1065). The com-

plete graph KX = (X,E) on the vertex set X has |E| =
(|X|

2

)
= 566580 edges. Now

consider two subsets of the edges. Let EG denote edges between instances from the same
model group. Furthermore, let for every x ∈ X, Sx ⊂ X \{x} denote the set of five most
similar instances to x in the collection (most similar w.r.t. the distance in the scaled
feature space). With the sets Sx, we define ES to be the set of similarity edges as

ES := {(x, y) ∈ E : x ∈ Sy or y ∈ Sx}.

Note that x ∈ Sy does not necessarily imply the opposite containment y ∈ Sx, but holds
in many cases. The actual cardinalities of the two sets are |EG | = 1327 and |ES | = 3747
and hence comprise less than 1 % of the total edge set. Indeed, computing the probability
for an edge e that was selected uniformly at random from E to be a similarity edge is

P(e ∈ ES) =
|ES |
|E|

≈ 0.007
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MIPLIB 2017

Benchmark Set (240)

Benchmark−suitable (499)

Collection (1065)

Figure 5: Location of instances in the feature space using multidimensional scaling.

Now what is the probability that a group edge is also a similarity edge? This question
can be answered by computing the conditional probability

P(e ∈ ES | e ∈ EG) =
P(e ∈ ES ∩ EG)

P(e ∈ EG)
=
|ES ∩ EG |
|EG |

=
974

1327
≈ 0.734.

The majority of group edges is contained in the similarity set, and the probability for a
group edge to be a similarity edge is more than 100 times higher than for a randomly
selected edge.

Recall from Section 2.4 that the model groups have been partially derived from the
feature data. For submissions from the NEOS server, which have an unknown origin,
clustering has been used to group similar NEOS instances into pseudogroups. If we omit
all NEOS instances from the above computations (by considering the complete graph
KX\XNEOS

with 714 vertices), the probability for an edge to be a similarity edge is about
the same, P(e ∈ ES) ≈ 0.008, whereas the conditional probability of a group edge to be
a similarity edge is ≈ 0.815 and hence even higher than for KX .

From this observation, we conclude that the feature space has been designed suf-
ficiently well for the clustering approach. In fact, the used feature space recovers the
model group data better than we expected. Even for an instance that does not belong
to a dedicated model group or lacks bibliographical information, the similarity to other
model groups can yield interesting hints at the type and application of this instance.
Therefore, the web page of MIPLIB 2017 (see also Section 5.3) allows to browse the five
most similar instances for every instance of the MIPLIB 2017 collection.

Figure 5 uses MDS [33, 28] to give a spatial impression of the locations of the MIPLIB

2017 benchmark set, the benchmark-suitable instances, and the collection, relative to
each other in feature space. The distance computation is based on the feature vectors
after they have been scaled over the entire set of submissions. Note that there is a subset
relation for those sets, i.e.,

Benchmark Set ( Benchmark-suitable ( Collection,

such that the plot only shows the innermost set membership for every instance. 27
collection instances lie outside of the plotted region to improve visibility, 5 of which
are in the benchmark set, and 8 of which are benchmark-suitable. Figure 5 mainly
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Figure 6: Minimum solving time in seconds of the benchmark sets of MIPLIB 2010 and
MIPLIB 2017.

shows that benchmark-suitable instances cover the majority of the feature space that is
comprised by the collection.

5.2 Solver Performance

One of the goals of MIPLIB has always been to provide a representative set to measure
and compare solver performance. In this section, we analyze the solver performance
on the collection, and in particular on the new benchmark set of 240 instances. For
this analysis, we use the computational results obtained during 4-hour runs conducted
for the selection process. Note, however, that in this article, solver performance is not
reported directly for several reasons. One reason is that due to hardware restrictions,
not all runs could be performed exclusively on the same hardware, and should hence
not be reported in a way that could be confused for an actual benchmark. Again, the
individual results are aggregated into the virtual best solver, i.e., a solver that always
finishes as fast as the fastest actual solver for each individual problem instance.

In Figure 6, we compare the performance of this virtual best solver on the benchmark
sets of MIPLIB 2010 and 2017. One of the motivations for the creation of MIPLIB 2017
was the demand for a harder benchmark set. As a consequence of Definition 2, the
virtual best solver solves all instances within 4 hours (or 14400 seconds) as this is one
of the criteria for benchmark suitability. The plot shows that the majority of the old
benchmark set can be solved by the virtual best solver in less than 100 seconds, and
that there is no instance left where the virtual best solver requires one hour or more. In
contrast, the benchmark set of MIPLIB 2017 is much more demanding, as a significant
portion of instances lies at the right end of the scale. Due to its increased size, the bars for
the MIPLIB 2017 benchmark set lie almost consistently above the ones for the previous
set. The MIPLIB 2017 benchmark set covers much more of the relevant performance
scale than its predecessor covers nowadays. Note that the MIPLIB 2010 benchmark set
appearing easy is an impressive result of 7 years of continuous solver improvements.

Table 10 shows the percentage of instances of the respective benchmark set (2010
or 2017) for which the virtual best solver takes longer than a certain time threshold,
which we vary between 1 and 4 hours. As mentioned before, all instances of the 2010
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virtual median virtual best

2010 2017 2010 2017

> 1 h 17.2 % 66.7 % 0 % 19.6 %
> 2 h 12.6 % 61.7 % 0 % 8.8 %
> 3 h 6.9 % 51.2 % 0 % 4.2 %
> 4 h 5.7 % 48.3 % 0 % 0.0 %

Table 10: Percentage of benchmark instances that could not be solved within 1–4 hours
by the virtual best and median solvers. The percentages are relative to the individual
benchmark sets (2010: 87 instances, 2017: 240 instances).

benchmark set could be solved within one hour by the virtual best solver. The table
shows that among the new benchmark set, almost 20 % of the instances cannot be solved
within one hour by the virtual best solver. Along with the virtual best solver, Table 10
also shows the performance of the virtual median solver, based on the median solution
time over the eight involved solvers. Since the number of involved solvers is even, the
median is computed by averaging the timing result of the two solvers ranking 4th and 5th
for each instance individually. Therefore, the virtual median solver is faster than half of
the solvers. On the MIPLIB 2010 benchmark set, 17.2 % of the instances are not solved
within one hour by the virtual median solver. In contrast to the virtual best solver, the
virtual median solver still times out after 4 hours on 5.7 % (5 of 87) instances even on
the 2010 benchmark set. On the MIPLIB 2017 benchmark set, the virtual median solver
needs more than one hour on two thirds of the instances, and still needs more than four
hours of solving time on almost 50 % of the instances.

In Figure 7, the fraction of instances solved by the virtual median solver as a function
of time is shown. The figure shows the corresponding curves for the MIPLIB 2017
collection of 1,065 instances, the set Icol ∩ B of 499 benchmark-suitable instances, and
the MIPLIB 2017 benchmark set (240 instances). Recall that an instance is only a
candidate for the benchmark set if it takes the virtual median solver at least 10 seconds
to solve it, which is also visible from the plot. As minimum for any time measurement,
0.5 seconds were used, which is visible in the curve of the MIPLIB 2017 collection. The
objective function for the benchmark set was designed to prefer harder instances. The
effect of this design choice is visible in the figure, in which the percentage of solved
instances of the benchmark set consistently lies below the curve for the 499 benchmark-
suitable instances. The slope of the curve for the collection is approximately linear for
about 90 % of the visible area. Due to the logarithmic scaling of the horizontal (time)
axis, this suggests that to a certain extent, the solving behavior of the virtual median
solver can be approximated by fitting a logarithmic function. Note that the clear change
in behavior of the curves, which are otherwise almost logarithmic, towards the right end
of the scale is an artifact from the median computation, which weighs in as soon as
the 4th solver could still solve the instance, but the 5th solver couldn’t. Their timings
can even be very different. On the instance blp-ic98, the four best performing solvers
finish within 1,700 seconds, while the fifth solver times out after four hours. The median
solver therefore has a performance of 8,050 seconds. All individual curves of the actual
solvers tested have a similar, almost logarithmic shape without the median artifact.

Statistically speaking, the curves in Figure 7 describe empirical cumulative density
functions (CDF) of the random variable that represents median solving time for an
instance. The Kolmogorov-Smirnov (KS) test is a statistical approach to measuring
the similarity between a pair of CDF F1, F2. To this end, the KS test measures the
maximum vertical distance6 D between F1 and F2. With increasing D, the likelihood

6This distance D is the supremum norm supx∈R |F1(x)− F2(x)|.
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Figure 7: Virtual median solver performance on subsets of the MIPLIB 2017 collection.

decreases that F1 and F2 represent samples from the same distribution. In order to
further quantify the hardness of the benchmark set, a KS test has been performed for
every solver, comparing its individual CDF pair on the benchmark set and the set of
benchmark-suitable instances. As alternative serves the hypothesis that the CDF of the
benchmark set lies below the CDF of the larger set.

For the performance of the virtual median solver as depicted in Figure 7, the distance
D is approximately 0.10, which results in a p-value of 0.04. A much smaller p-value of
6.513 · 10−5 is obtained for the virtual best solver at a distance of D = 0.17. For four
of the actual solvers, the maximum D is larger than 0.1, and the accompanying p-value
is smaller than 1 %. This is significant evidence that for those solvers, the benchmark
set has been selected as a particularly hard selection among all suitable instances. For
the other four solvers, the value of D is smaller, which in turn results in larger p-values
(each greater than 0.1). Note that even here, the curves of the CDF on the benchmark
set tends to undercut the CDF of the set of suitable instances, but this discrepancy is
not large enough to render the KS test significant. Hence, for those four solvers, the
performance curve is more or less representative of the CDF over all suitable instances.
The results show that the selection methodology has achieved both its conflicting goals,
hardness and representability, with respect to the solver performance, equally well.

5.3 The MIPLIB 2017 Web Page

For the release of MIPLIB 2017, the web page miplib.zib.de has been written from
scratch and received a modern design. The main page shows the current status of
instances regarding the categories easy, hard, and open. The two main tables list the
instances of the MIPLIB 2017 collection and benchmark set together with some key
properties, their model group, and their optimal or best known objective value. All
tables use tags on the instances to highlight certain properties that may be interesting
for researchers, such as pure feasibility instances with no objective function, instances
for which good decompositions are known, instances with critical numerics, the presence
of indicator constraints, etc. It is possible to search and filter for instances by name,
status, model group, or tag, or to sort the table by column.
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The individual instance pages offer a short description of this instance and biblio-
graphical information. Also, more information on the constraint mix for this instance
before and after presolving is displayed, as well as decomposition information, if avail-
able. Finally, the optimal or best known solutions for every instance are displayed, as
well as the five most similar instances as explained in Section 5.1. The web page also
offers additional downloadable content, including

− the MIPLIB 2017 collection and benchmark sets,

− lists of instances with certain tags,

− available solutions,

− optimal/best known objective values for all instances,

− the collection and benchmark MIPs,

− the feature extractor, and

− bash scripts to run and validate solver performance experiments.

Some of the tags may change over time, such as the instances that fall into the
categories easy, medium, and hard. Also, best known objective values are naturally
changing or eventually proven to be optimal. Therefore, we provide versioned files for
accurate referencing. The versioned files are periodically updated. All downloadable
solutions are checked for feasibility with the solution checker from Section 3.7. Also,
their exact solution values after fixing all integer variables are computed using SoPlex
with iterative refinement. The actual collection and benchmark MIPs are also available
for download. Obviously, these instances cannot be part of the actual collection and
benchmark sets, respectively, since their presence would alter the feature space and hence
their own formulation. Contributions in terms of updated bibliographic information
or corrections to the instance descriptions are very welcome. In particular, we are
constantly accepting and checking improving solutions to the open instances of the
MIPLIB 2017 collection. In contrast to previous MIPLIB’s, not only new optimal, but
any improving solution will be considered for the periodic update of the page data.
Improving solutions should be sent to the maintainers of the page, together with a
description of how they have been obtained. Note that every submitted solution must
adhere to the format accepted by the MIPLIB solution checker (Section 3.7), which is
also available on the web page.

6 Conclusion

The sixth version of MIPLIB has, as was the case in previous updates, significantly
increased in size compared to its predecessors. The distinction between a dedicated
benchmark set and the entire collection, which was introduced with MIPLIB 2010, has
been preserved. These sets now contain 240 and 1,065 instances, respectively. The
process of how to reduce the initial submission pool of over 5000 instances to a bal-
anced selection of this size, however, has been completely redesigned. Beyond the new
MIPLIB 2017 itself, the development of this fully data-driven and optimization-based
methodology is the main contribution of this paper.

We propose two related MIP models that have successfully provided decision support
for the selection process to the MIPLIB committee. One key ingredient of this approach
is the definition of a feature space covering more than a hundred different dimensions
for characterizing a MIP instance. In order to ensure a balanced selection with respect
to these features and, for the benchmark set, with respect to performance data, we
advocate the use of multiple instance clusterings over partitions of the feature vector.
A comparison with manually assigned model groups available from meta data of the
submissions shows the high descriptive power of the used feature space. By approaching
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the selection problem as a MIP that encodes a balanced, simultaneous selection from each
such clustering, the collection and benchmark MIPs provide the flexibility to incorporate
both feature coverage and performance requirements as well as other restrictions from
the comittee. Besides improving the final outcome, this formalization of the selection
criteria has served to increase the transparency of the selection process.

While the selection methodology proposed here is not intended as a general blueprint
for contruction of test sets, we hope that parts of the process of constructing the MIPLIB

instance sets may apply to the curation of other test sets in the future. Certainly, many
variations and adjustments of the approach are possible. Not only the chosen constants
or heuristic clustering methods can be adapted, but also the role of objective function and
constraints may be redefined. Furthermore, the interplay between the main selection
models and the diversity preselection offers potential for variation. For example, a
different approach may directly select and fix a number of instances with maximum
diversity from each large model group for the collection and afterwards complete the
collection with instances from smaller groups and instances with no known model group
association. In light of these degrees of freedom and many ad hoc decisions that had to
be made in advance, the final result is clearly only one of many possible and justified
outcomes. However, we believe that the collection and benchmark sets presented in this
paper are a profound attempt to provide the research community with test sets that
represent the versatility of MIP.

One of the main characteristics of the benchmark set is that it provides a snapshot
of current solver performance. Our hope is that the performance of solvers on this
benchmark set will serve as a sort of bellwether for progress in the field of mixed integer
optimization as a whole in the coming years. As future work, we propose to assess the
performance representability of the benchmark set from hindsight, i.e., by comparing
speed-ups for entire model groups as well as for the selected instances. Such data will
finally allow to better compare different (pre-)selection models such as, e.g., the one
presented here that favors diversity to a different one that selects nearest neighbors and
maximizes representability.

Another benefit of our MIP-based selection process is the fact that the MIP models
can be used to approach further questions beyond the initial creation of the test set.
One example is the following case, in which it occurred that benchmark instances needed
to be replaced over time as new computational data became available. Despite all
the care that was taken to exclude numerically critical instances from the benchmark
set, problematic numerical properties of the two instances neos-5075914-elvire and
neos-3754224-navua remained undetected during the selection process.7 A variant of
the benchmark selection MIP was employed in order to compute a minimal update of the
benchmark set that exchanges the discussed instances while preserving the balancedness
requirements. An accordingly updated version of the benchmark set was published in
June 2019.

Finally, by the time of this writing, the challenges of MIPLIB 2017 collection have
already attracted a wide audience. In fact, we have received many new solutions to
previously open instances. While some of those optimality or infeasibility proofs have
been obtained by the use of massively parallel codes such as the Ubiquity Generator
framework [36, 37], other instances inspired the development of customized cutting plane
approaches, or even a rigid mathematical proof of infeasibility without any code in the
case of the instance fhnw-sq3. In total, 30 originally open instances have already been
solved.8 We are looking forward to further contributions and many more years (and

7Both instances are at the border between feasibility and infeasibility, but at the time of collecting
solution data no inconsistencies could be observed. For the first instance, two solvers agree on the
optimal solution value although the instance should mathematically be infeasible. The second instance
has only been declared infeasible by one solver during the selectiong process; we received a solution that
is feasible within tolerances half a year after the original publication of the benchmark set.

8Compare the downloadable files open-v1.test and open-v7.test
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versions) of MIPLIB to come.
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