The Multi-Stop Station Location Problem: Exact
Approaches

Erik Mithmer*!, Miriam Ganz', Marco E. Liibbecke!, and Felix J. L. Willamowski®

'RWTH Aachen University, Chair of Operations Research, Kackertstr. 7,
D-52072 Aachen, Germany

Abstract

The multi-stop station location problem (MSLP) aims to place stations such that a set of
trips is feasible with respect to length bounds while minimizing cost. Each trip consists of a
sequence of stops that must be visited in a given order, and a length bound that controls the
maximum length that is possible without visiting a station. Installing stations and detours
cause costs that are to be minimized. The MSLP relates to problems in transportation and
telecommunications where strategic decisions (such as the placement of charging stations)
depend on operational considerations (such as offering a certain set of planned trips). In this
paper, we introduce exact approaches to solve the MSLP to optimality. First, we introduce
an arc-based mixed-integer program (MIP) that captures the problem and can be solved with
any MIP solver. In addition, we propose pattern-based formulations that we solve by branch-
price-and-cut. We conduct experiments on randomly generated instances to evaluate the
performance of our approaches and show that the pattern-based formulations outperform the
compact MIP formulation. In addition, we show that a nested branch-price-and-cut approach
is able to solve a practically relevant instance in the context of siting charging stations for an
intercity bus service.

Keywords: Multi-Stop Station Location - Charging Station Placement - Branch-Price-and-
Cut

1 Introduction

In this paper, we present exact approaches to the (directed) multi-stop station location problem
(MSLP) [62]. The MSLP can be seen as an optimization problem on a graph. It consists of a
location part and a pathfinding (or routing) part. The task is to enable trips, given by sequences
of nodes (stops), with respect to length bounds while minimizing cost. For each trip the max-
imum distance that can be traveled through the graph without visiting special nodes (stations)
is bounded. The feasibility of trips can be ensured by visiting stations between stops of a trip,
where the traveled distances are reset. This means that we assume full charging in the context of
electromobility and charging stations. In addition to the feasibility aspect, the cost of traversing
edges and selecting stations must be minimized. Potential stations have costs that must be paid
once if they are selected in a solution.

The MSLP is primarily motivated by the need to install charging stations for electric vehicles
(EVs). Greenhouse gas emissions from the mobility sector alone have more than doubled since
1970, with 80 percent of that coming from road vehicles alone [16]. One way to reduce greenhouse
gas emissions is to switch from combustion engine vehicles to zero-emission alternatives, such
as battery-powered vehicles. However, switching to alternative fuels like electricity requires an
appropriate refueling infrastructure such as charging stations. While the range of EVs without
recharging may be sufficient for intracity travel, long-distance travel is more challenging. For
example, an intercity bus service that wants to electrify its fleet needs to ensure that all of the

*Corresponding author; e-mail: muehmer@or.rwth-aachen.de

trips it offers can be realized with respect to the ranges of the EVs. In particular, it is desirable
to install charging infrastructure in a cost-effective manner while minimizing detours for charging.
The MSLP captures this problem in an abstract and formal way. Locating charging or alternative
fuel stations has become a hot topic in recent years. Much of the research typically considers
origin-destination flows. In contrast, the MSLP focuses on (but is not limited to) long distance
trips consisting of multiple fixed stops.

In this paper, we propose several approaches to solve the MSLP. First, we introduce an arc-based
mixed-integer program (MIP) that mathematically captures the MSLP and can be solved by any
standard MIP solver. However, even small instances result in large MIPs, so solvers struggle to
solve larger instances. Therefore, we propose pattern-based formulations. At first, we identify a
pattern-based formulation that assigns a complete path to each trip. Secondly, we describe an
alternative formulation that assigns paths to parts (segments) of a trip. The latter formulation
leads to efficiently solvable shortest path pricing problems. Finally, we combine both pattern-based
formulations to a nested approach. The pattern-based formulations are solved using branch-price-
and-cut. To achieve integrality, we rely on traditional and problem specific branching strategies.
In addition, we develop cuts that significantly speed up the solving process of the second pattern-
based formulation. The implementation relies on SCIP [4]. We conduct experiments on randomly
generated instances to evaluate the performance of all proposed formulations. We also show that
we are able to solve a large real-world instance to optimality.

The remainder of this paper is organized as follows. In Section [[.I} we discuss the existing
literature that is related to this work. In Section [2] we formally define the MSLP and introduce
an arc-based formulation (Section as well as pattern-based formulations (Section [2.2)). The
algorithmic components we use to solve the pattern-based formulations with branch-price-and-cut
are described in Section [3] In Section [} we present our experiments and discuss their results.
Finally, in Section[5] we conclude our work and discuss possible extensions and research directions.

1.1 Related Work

Problems related to electromobility or other alternative fuels have received more and more atten-
tion in recent years. On the one hand, the limited ranges and the scarcity of the necessary refueling
infrastructure, such as charging stations, have been incorporated into existing and well-studied
problems (e.g., vehicle routing). On the other hand, new problems and models have emerged and
been studied. In the following, we focus on related work that locates stations in a network to
ensure feasibility with respect to length, distance, or similar constraints.

Kuby and Lim [32] introduce the Flow-refueling Location Problem (FRLP). For given origin-
destination pairs with assigned flow volumes they want to locate refueling stations on a network
such that the total (refueled) flow volume is maximized. Each flow is assumed to follow a fixed
shortest path from origin to destination. This problem received much attention in the literature
and several extensions and adaptations have been studied |7} [31] [33} [38], |40} 48], |49} [57} |58}, [59].
Kim and Kuby [29] propose an extension that allows flows to deviate from the assigned shortest
path to refuel. The authors propose a mixed-integer program that requires precomputation of
possible detour paths. Since this precomputation step for these detour paths is very expensive,
Kim and Kuby [28] also propose heuristic approaches. Again, many alternative approaches as
well as extensions were studied [19, 24} 25| [39] |44} |66]. Yildiz, Arslan, and Karasan [66] propose a
branch-and-price approach to an extension that respects a distance threshold that limits the length
of a deviation path. Subsequently, Gopfert and Bock [19] present a branch-and-cut approach to
the problem and compare the performance with the results of Yildiz, Arslan, and Karagan [66].
Most works in this area have in common that they consider origin-destination pairs without any
intermediate (fixed) stops, and that a fixed number of stations have to be located while maximizing
flow. In contrast, the MSLP considers given trips with multiple stops and costs of stations that
are part of the objective function.

Moreover, other papers study the problem of charging station placement and are not based on the
FRLP. Many of them consider some kind of coverage-based approach |18 |30, 54, 60, |61}, 68]. For
a given network, stations are placed such that all nodes of certain node sets are reachable from

each other with respect to the limited range. The objective function varies, but typically takes
into account the infrastructure cost. Kinay, Gzara, and Alumur [30] consider origin-destination
round trips and minimize the total required charging in addition to the infrastructure cost. This
objective function is similar to the MSLP objective function, but does not consider intermediate
stops. Kunith, Mendelevitch, and Goehlich [34] aim to electrify a city bus network. Among
other things, they locate charging infrastructure for the electric buses. Charging stations can
be located at bus stops to ensure that all fixed routes (i.e., no detours are allowed) are feasible
and infrastructure costs are minimized. A similar problem is studied by Tzamakos, Iliopoulou,
and Kepaptsoglou [56]. Other approaches focus on minimizing vehicle-related objective functions.
For example, Hess et al. |22] minimize the average travel time of EVs (including charging and
queuing times) given a limited budget for station placement. Furthermore, some authors include
temporal considerations such as charging times or time-dependent demand [14} |27, [55]. Such
papers typically focus on smaller areas, such as cities and urban areas. Kang and Recker [27]
aim to locate hydrogen refueling stations with respect to activities assigned to households. They
minimize infrastructure costs while keeping travel time below a threshold.

Routing problems with intermediate stops, for instance vehicle routing or location routing related
problems, are also related to the MSLP. For an extensive overview we refer to the work of Schiffer
et al. [51]. Vehicle routing problems (VRPs) with intermediate stops are related to the MSLP as
the stations are inserted into trips as intermediate stops. Related problems were studied, e.g., by
Conrad and Figliozzi [11], Crevier, Cordeau, and Laporte [12], Desaulniers et al. [15], Erdogan
and Miller-Hooks [17], Muter, Cordeau, and Laporte [42], and Schneider, Stenger, and Goeke
[52]. However, those problems consider only the routing part. Location routing problems (LRP)
combine the routing of vehicles and the placement of stations (for intermediate stops). In the
recent years, many works dealing with location routing problems and solution approaches were
published |2} [6 10} 23} |50} |64, 65]. In contrast to those problems, the MSLP does not consider
depots or vehicles that have to be assigned to customers, i.e., in the context of the MSLP customers
are already assigned to vehicles (in a fixed order). Hence, the routing part of the MSLP differs as
it allows only routing to stations between two stops.

Another class of related problems, not motivated by alternative fuel infrastructure design, are
network design problems that aim to locate special vertices or arcs that, for example, refresh a
signal. Cabral et al. [5] introduce the network design problem with relays. Given an undirected
graph with edge costs and lengths, one must select edges and locate relays at vertices such that
given origin-destination pairs are connected by a path that does not violate a length constraint on
the travel distance of a signal without passing through a relay. The sum of the edge and relay costs
is minimized, where each selected edge and relay just have to be payed once. Many variations
of the problem have been studied, e.g., in the context of optical networks [8 |9, [21], or in the
presence of multiple commodities and other additional constraints [26] 37]. While many heuristic
approaches have been proposed, recent work also presents exact approaches based on branch-and-
cut and branch-and-price [35} 136, |37} 43}, 67]. In addition, Zheng et al. |[69] studied an extension
of the network design problem with relays in the context of placing capacitated charging stations.
In contrast to such network design problems, the MSLP considers trips defined by multiple stops.
Furthermore, the distance traveled is considered in the objective function for each trip.

Willamowski, Ganz, and Mithmer [62] introduce the MSLP, which, in contrast to the previously
discussed problems, aims to plan charging stations for trips with fixed stops. The authors discuss
theoretical results and propose an approximation algorithm to solve the MSLP. In this paper,
we focus on exact approaches that use mixed-integer programming and branch-price-and-cut.
However, we integrate the idea of their approximation algorithm into our approaches.

2 Formulations

Before introducing mathematical formulations to capture the MSLP, we first formally define the
problem [62]. The directed multi-stop station location problem is given by a directed graph
G = (V,E), edge costs cf : E — Q>0, edge lengths ¢ : E — Q>¢, a set F C V of nodes at which
stations can be placed, station costs ¢t : F' — QR>0, and a set of trips T'. Each trip ¢t € T' is given

by a sequence of stops S; = (v1,...,Um,) € V™ for my € N> and a length bound b, € Q>¢.
Let S,[i] with ¢ € [my] := {1,...,m;} denote the i-th element of S;. For convenience, we use the
abbreviation ¢[i] := S:[i]. Each trip ¢ consists of segments S; := [m; — 1], which are implicitly
given by the stops, i.e., the start and the end of a segment correspond to two consecutive stops of
the trip. The goal is to select stations F* C F' and for each trip ¢t € T' a path

1 1 k
Pt:(vlafla"'v 1 7’023f2a"'7 2 7"~7Umt71afmt_17“~, m:Lillavmt)

with v; = t[i] and fF* € F* for all i € [m,] and k, € {0,...,|F*|} with s € S;. The path P;
contains exactly the ordered stops of ¢t and additional stops at stations. Between two consecutive
stops of t the path P, must only visit stations f € F* that are used to reset the remaining range
to by (i.e., in the context of electromobility, we assume full charging). Since each P; has to obey
the length bound, the lengths of the paths between the first stop and the first station stop, any
two consecutive station stops (there could be planned stops of ¢ in between), the last station stop
and the last stop, or, if P, = S;, between the first stop and the last stop, must be within b;. We
assume that G is complete and that the triangle inequality holds for ¢”, which ensures that it is
not advantageous to visit a station to reduce the path cost. The objective is to minimize the sum
of the station costs and the path costs

Y FN+Y FP)

feF* teT

Additionally, we introduce useful definitions for the multi-stop station location problem. Often we
need to refer to specific edges depending of the trip and its segments. Therefore, we distinguish
different types of edges. We can enter a segment, i.e., we move from a stop of a trip (the start of
the segment) to a station node. If we are in a segment, we can move to other stations or leave the
segment again by moving to the next stop of the trip. Moreover, we can omit any additional stops
in a segment by moving directly from the start to the end of the segment (i.e., we do not visit a
station between two consecutive stops). Thus, for a trip t € T and a segment s € S, we define

. gt,s,f = L(t[s], f) Vf € F (the length of the entering edge (v, f) connecting the start node
of s and station f),

o Uy := U(t[s],t[s + 1]) (the length of the traversing edge (v1,vs) connecting the start node
and the end node of s), and

. gt,s’f = L(f,t[s+1]) Vf € F (the length of the leaving edge (f,v) connecting station f and
the end node of s).

Analogously, concerning the edge costs, we define for a trip t € T and a segment s € S,

e Gongi=cP(Uls),) VS € F,
o ¢1s = cE(t[s],t[s +1]), and
o G i=cP(fit[s+1]) VfeEF.

2.1 Arc-based Formulation

The MSLP can be described mathematically by an arc-based compact formulation, which allows
us to solve a MSLP instance as a mixed-integer program (MIP) using a standard MIP solver. We
call this approach Ax. Let Fy, == {f | f € F,v # f,{(v, f) < b} be the set of all stations that
are directly reachable from v € V with respect to the length bound b, of trip t € T. We use
different types of x-variables to model the possible arcs of each trip. The binary variable x; s, ;
indicates whether station j is visited directly after station ¢ within segment s of trip ¢. Similarly,
the binary variables 2 ,; and Z; s ; indicate whether a station 7 is visited as first or last station in
a segment s of trip ¢, respectively. The binary variable z; , is used to decide whether no station
is used at all (set to 1) for a segment s of trip t. Additionally, the binary variable y; indicates
whether a station should be installed and the continuous variable r; 5 is used to keep track of the

remaining distance when leaving segment s of trip ¢. We model the directed multi-stop station
location problem as follows:

min Z cF(f)yf + Z Ct,sTt,s + Z Ct,s,iTt,s,i + Ct,s,iTt,s,i + Z CE(i,j)It,s,i,j (1)
feF teT, i€F JEF:

seSt

s.t. i't,s,j + Z Tisij = .i‘tysyj + Z Tt,s,j, VteT, Vs € St, VjeF (2)
iEF: ISy

JEFL ;

T+ Y dusy =1 VteT, Vs € S, (3)
fer

Brag+ Z Troif <Yy VteT, Vs€ S, VfeF (4)

i€Fy 5

_ R by, ifs=1
Et,sft,s + Zﬁt,s,fjt,s,f < { ‘ YVt € /_T'7 Vs € St (5)
rts—1, else
fer ’
Zt,sft,s + th,s,fjt,s,f < by —T,s VteT, Vs € S (6)
fer
- 2by, ifs=1
re,s + (bt + li,s)Te,s < ‘ ne VteT, Vs € S (7
by +1res—1, else

Zt,s,,5 € {0,1} VteT, Vse€ Sy,i € Fj€Fy; (8)
jt,s € {O, 1} Vt c T, VS € St (9)
2,6 € {0,1} VteT, Vs €Sy, Vie F (10)
Z,s: € {0,1} VteT, Vs€ S, Vie F (11)
yr €{0,1} VfeF (12)
res >0 VteT, Vs € St (13)

The objective function minimizes the cost of installing new stations and the path cost of all trips.
For each segment of a trip, the flow constraint (2|) ensures that a node of a station is entered
and left if visited. In addition, the constraint (3|) ensures that each trip is completely planned
and that no segment is omitted. The constraint (4]) ensures that a station must be opened if it is
visited in at least one segment of a trip. Finally, the following constraints implement the range
restrictions. In a segment we only have the option of either going directly from the start node of
the segment to the end node of the segment, or visiting one or more stations from the start node
before reaching the end node of the segment. The z-variables are defined only for the edges for
which £(i, 7) < b, where i,j € F. This ensures that the range restrictions for edges connecting two
stations are not violated. The constraints and @ limit the available range at the end of each
segment of a trip. Constraint corresponds to the case where the remaining range after the
previous segment must be large enough to enter the next segment. Supplementing this, constraint
(@ ensures that the remaining range at the end of a segment takes into account the last step to
reach the end of the segment. Constraint @ links the r-variable of a segment to the r-variable of
the previous segment if no station is visited. Finally, the constraint ensures that the range is
not exceeded for any trip.

2.2 Pattern-based Formulations

The arc-based formulation allows us to solve instances of the multi-stop station location problem
using a MIP solver. However, for large instances, the size of the formulation grows rapidly because
it uses O(N2M) variables and O(NM) constraints with N = [V| and M =}, [S;|. Thus, we
propose multiple decompositions that result in pattern-based formulations. These are then solved
with branch-price-and-cut.

(a) trip patterns (b) segment patterns

Figure 1: The two exploited structures of a MSLP instance are visualized by the rearranged
coefficient matrices of the arc-based formulation. Black dots correspond to non-zero entries. The
dark blue boxes represent the master problems and the light blue boxes represent the pricing
problems.

2.2.1 Trip Patterns

The first formulation (denoted by At) decomposes the problem by its trips, as visualized in Figure
It is similar to the reformulation obtained by performing a Dantzig-Wolfe decomposition [13]
of the arc-based formulation by keeping only constraint in the master problem. Let P; be
the set of all possible (and valid) patterns for trip ¢ € T. A pattern p € P, corresponds to a
valid path for trip ¢, i.e., all stops are visited in the correct order and the length bounds are not
violated by visiting stations if necessary. The cost ¢, of p is the sum of the costs of all edges used
by the pattern. This formulation assigns such a pattern p € P, to each trip ¢ by using pattern
variables. Since this would result in too many variables, we use column generation to solve the
linear relaxation of the master problem. Its restricted version contains only a (small) subset of
these pattern variables. New pattern variables are generated by several pricing problems in an
iterative process until the master problem is solved. While the master problem consists of only
two different types of constraints, the pricing problems are much more complex.

Master Problem The master problem of the trip-pattern-based formulation has to select a
pattern for each trip and compute the total costs. This is realized with pattern variables A, € {0,1}
with p € P, and station variables y; € {0,1} with f € F, which we already know from the arc-
based formulation. We denote the set of stations visited by a pattern p by Fj,.

min ZCF(f)yf + Z CpAp (14)
feEF teT,
PEP
s.t. > a1 VteT [m > 0] (15)
PEP;
> <y VteT, VfeF [me,r < 0] (16)
PEPy:
fer,
A € {0,1} VteT, Vpe P, (17)
yr € {0,1} VfeF (18)
(19)

The objective function minimizes the costs of all selected patterns and the costs of the selected
stations. The constraint ensures that a pattern is selected for each trip and the constraint
pushes the station variables to 1 if the stations are visited by any trip. For constraints containing
pattern variables, the corresponding dual variables are given (in brackets) as we need them to
formulate the pricing problems.

Pricing Problems To generate new pattern variables, we define pricing problems that are
solved during the pricing phase. As mentioned earlier, each pattern variable corresponds to a
specific path for a trip. We use one pricing problem for each trip ¢t € T

min —m; — Zm Fyr+ Z Ct,sTt,s + Z Ctys, fTt,5,f + Crys, fTt,s,f + Z Ve p.p0 (20)

feF teT, feF fleF ¢
sSESt
s.t. Ttos,f + Z Tis,f/,f = Tt,s,f + Z Ti,s,f,f! Vs €Sy, VfEF (21)
f'eFr fleF
Trot+ Y duey > 1 Vs € S, (22)
feFr
Brost Y. Teaps < s Vs€ S, VfEF (23)
f'€F 5
_ N by, ifs=1
by sZe,s + Z&t,s,f«’it,s,f < { ¢ Vs € S (24)
rts—1, else
fer ’
Zt,si‘t,s + Z Zt,s,ffi‘t,s,f S bt — Tt,s Vs S St (25)
feF
_ 2b;, ifs=1
Tt,s + (bt + gt,s)i’t,s < ¢ Vs € S (26)
be +11,5-1, else
Tt,s,ij € {07 1} Vi € F7.7 S Ft,i (27)
Tys € {0,1} Vs € S (28)
2,55 € {0,1} Vie F (29)
Z,s: € {0,1} Vie F (30)
yr € {0,1} Vfer (31)
res > 0 Vs € St (32)

The objective function minimizes the reduced cost of a pattern variable that belongs to the pattern
described by the variables of the pricing problem. The constraints of the pricing problem are the
same as the constraints of the arc-based formulation, but limited to a single trip.

2.2.2 Segment Patterns

The second pattern-based formulation (referred to as Ag) decomposes the problem by its seg-
ments. It is basically the result of performing a Dantzig-Wolfe decomposition [13] of the arc-based
formulation by moving the constraints and into the pricing problems (one problem per
segment), except that we explicitly keep the Z-variables @ in the master problem. Figure
visualizes the exploited structure. The segment-pattern-based formulation uses binary pattern
variables that represent paths through a specific segment using at least one station. As with the
previous formulation, this would result in too many variables, and we use column generation. We
chose this formulation because the resulting pricing problems can be solved very efficiently.

Master Problem The master problem of the segment-pattern-based formulation is more com-
plex, since it must ensure that the patterns selected for the segments of a trip are compatible with
respect to the length bounds. The main difference is that the segment-pattern-based formulation
uses patterns p € P, ; that describe a (valid) path through a segment s € S; of a trip ¢ € T with
cost ¢,. For a given pattern p, the new parameters Ep € Q>0 and Ep € Q>0 specify the length of
the edge from the start of the segment to the first station and from the last station to the end
of the ~segment, respectively. That is, for a pattern p belonging to a segment s of trip ¢, we have
é = Et s, and E =/ .s,; where ¢ € F' is the first station visited and j € F' is the last station
v1s1ted accordlng to pattern p. Moreover, variables and constraints responsible for finding a path
through a segment in the arc-based formulation are removed.

min ZCF(f)nyrZ Ct,sTt,s + Z Cpp (33)

fEF teT, PEP: s
sESt
s.t. Tre+ Z Ap > 1 VteT, Vs €S, [mes > 0] (34)
PEP: s
> W<y VtET, Vs€ S, VfEF [ma.s;<0] (35)
pEP: s
fEF,
_ R be, if s =1 R
UyaZrs + Z Ay < VteT, Vs €S, [, <0 (36)
rts—1, else
Pept,s !
lists+ D Ay <bi—mi VtET, Vs €S, [7es <0] (37)
PEP: s
_ 2b,, if s =1
Pos 4 (b + bo,s)Frs < { ' v VEET, Vs € S (38)
bt + 7,s-1, else
Ap €{0,1} VteT, Vs €Sy, Vp € Py s (39)
z,s € {0,1} VteT, Vse S, (40)
yr € {0,1} VfeF (41)
Tt,s > 0 VYt € T, Vs € St (42)

The constraint corresponds to the constraint , to , to , to @, and
to @ of the arc-based formulation. For constraints containing pattern variables the corresponding
dual variables are given in brackets.

Pricing Problems FEach pattern variable corresponds to a particular path through a segment
of a trip that visits at least one station. We use a pricing problem for each segment s € S; and
each trip t € T

min —ms + Z(ét,s,i — Ttssi — Tt,sles)Be,si + (Crysyi — T,slt,s)Ttys,i (43)
i€F
3D TP 0) —)T (44)
i€F jeFy ;
s.t. Tt,s,5 + Z Tt,s,i,j = Lt,s,5 + Z Tt,s,j,i VjeF (45)
Qe i€Fy,
JEF i
D ey =1 (46)
fer
Tt,s,i5 € {O, 1} Vi e F,j S Ft,i (47)
Zt,5,0 € {0,1} VieF (48)
#rei € 10,1} Vie F (49)

As before, the objective function minimizes the reduced cost of a pattern variable that belongs to
the pattern described by the variables of the pricing problem. The constraint (45)) corresponds to
the constraint of the arc-based formulation. In addition, the constraint (corresponding
to the constraint) ensures that a path is computed by forcing to leave the first node of the
segment. Note that every pricing problem is a shortest path problem and can be solved efficiently.
Therefore, we create a graph G4(V;, Es) to solve the pricing problem of segment s. The node
set V, contains all possible stations F', an artificial source node, and an artificial sink node. The
source node corresponds to the start node of the segment and the sink node corresponds to the
end node of the segment. The source has only outgoing edges to station nodes and the sink has

Figure 2: A pricing problem modeled as a shortest path problem. The left circle represents the
start node and the right circle represents the end node of the considered paths.

Figure 3: The nested structure of a MSLP instance is visualized using rearranged coefficient
matrices. Black dots correspond to non-zero entries, the dark blue boxes represent the master
problems, and the light blue boxes represent the pricing problems. On the left is the structure
exploited by the outer trip-pattern-based formulation, and on the right is the structure of a single
pricing problem exploited by the inner segment-pattern-based formulation.

only incoming edges from station nodes. Furthermore, E; C E contains all edges between possible
stations that do not violate the length bound. As a result, all paths between two stations in G
are valid with respect to the length bound. A feasible solution to a pricing problem is a path
through the modified graph starting at the source and ending at the sink. The coefficients of
the objective function are used to calculate the edge lengths such that the length of a path from
the source to the sink is equal to the second part (the sum) of the objective function. Since all
coeflicients of the variables in the objective function are greater than or equal to zero, we do not
have to worry about edges with negative lengths or negative cycles. We can calculate the reduced
cost of a variable represented by a path through the graph by subtracting . s from the length of
the path. Figure [2] depicts a small example.

2.2.3 Nested Decomposition Approach

As mentioned in Section the trip-pattern-based formulation At uses pricing problems that
solve the MSLP with respect to a trip and a modified objective function. Hence, we can again
exploit the structure of these pricing problems by decomposing them into segments. Figure [3]
visualizes how a pricing problem is decomposed. This is equivalent to applying the segment-
pattern-based formulation Ag to a single trip instance. Instead of the actual cost value of a
charging station f € F, we use the negative value of the dual variable 7 ; (constraint) as

the cost value for f. We obtain the reduced cost value by subtracting m; (constraint) from
the objective value. This approach is called Ay.

3 Algorithmic Components

In the previous sections, we introduced several formulations that allow us to solve MSLP instances.
The arc-based formulation (Section can be solved with a standard MIP solver, while the
pattern-based formulations presented in Section Section 2:2.2] and Section [2.2.3] require
branch-and-price algorithms. Our approaches are based on SCIP [4], an open-source solver. In
the following sections, we introduce all important algorithmic parts of our branch-and-price and
branch-price-and-cut approaches.

3.1 Primal Heuristic

We use a problem specific primal heuristic that works on the original problem. The main idea is
to transform the problem into a shortest path problem for each trip by constructing a new graph
using a given set of allowed stations. If the constructed graphs are connected, a shortest feasible
path is computed for each trip. We have adapted the construction used by the approximation
algorithm presented by Willamowski, Ganz, and Mithmer [62]. Instead of using the actual station
costs, we set all station costs to 0. To prevent the heuristic from computing the same solution every
time, we restrict the set of stations based on the current fractional solution to the restricted master
problem. Note that for a given fixed set of stations (i.e., F** is known in advance), the primal
heuristic computes an optimal solution if a feasible solution exists. This is easy to see because the
given stations can be used at no additional cost, and by construction a shortest path is computed
for each trip such that the length bound is not violated. Thus, the path costs of the trips are
minimal with respect to the provided stations. After the primal heuristic is finished, a solution
to the master problem is created. Since the heuristic works on the original problem, it may find
solutions that cannot be represented by the current variables of the restricted master problem. In
this case, we generate them and add them to the restricted master problem. Additionally, SCIP’s
(default) primal heuristics are enabled and work on the restricted master problem.

3.2 Pricing

The following sections describe how new variables are created by the pricing process. First, Farkas
pricing [1] is used whenever our current LP is infeasible. This can happen at the root node (if
there is no trivial solution) or after branching. Then, if necessary, the current node is solved by
iteratively solving the restricted master LP and pricing new variables with standard (reduced)
cost pricing [1].

3.2.1 Farkas Pricing

Farkas pricing allows new variables to be priced if the restricted master problem is currently
infeasible. Instead of using the textbook Farkas pricing procedure, we use the algorithm described
in Section [3.1] since it produces a feasible solution if and only if the problem instance is feasible.
We distinguish two cases. First, if the restricted master problem does not contain any priced
variables at the beginning of the solving process. In this case, we run the algorithm with multiple
configurations to generate a set of initial patterns. We use static station costs (set to 0 and to
the actual costs) as well as dynamic station costs, which are iteratively set to 0 (see Willamowski,
Ganz, and Mithmer [62]). For each subsequent call to the Farkas pricing procedure, the primal
heuristic is run with all stations that are not disabled (e.g., by branching) and costs set to 0. After
that, we know either that the current node is infeasible, or which patterns we can add to make
the LP feasible.

10

3.2.2 Reduced Cost Pricing

Depending on the used pattern-based formulation, the reduced cost pricing procedure differs in
whether the primal heuristic (see Section is called. When we solve a problem using At or
An, the primal heuristic is called at each pricing iteration at the root node. In contrast, when we
use Ag, we run the primal heuristic once at each node of the branch-and-price tree. We decided
to distinguish these cases because preliminary experiments show that using Ag typically results
in larger trees and was able to benefit from solutions found by the heuristic during branching. In
contrast, At and Ay result in smaller trees and much higher single node processing times. Running
the primal heuristic later in the tree did not improve performance when using these formulations.
For all formulations, we select the allowed stations provided to the heuristic by evaluating the
current solution to the restricted master LP. All stations whose variables have a value of at least
T € Q>0 in the current LP solution can be selected by the heuristic. Preliminary tests have
shown that invoking the heuristic with the threshold 7 = 0.5 yields comparable results to other
thresholds or even multiple invocations with different thresholds. If the heuristic is successful
(i.e., the heuristic found a valid solution) and we need new pattern variables, they are added
to the restricted master problem and the primal bound is updated if necessary. Moreover, if all
station variables are fixed, we do not need to price new variables since the heuristic computes an
optimal solution for the specific set of stations. Otherwise, we price new variables by solving the
pricing problems using the current dual information. Then, the priced variables are added to the
restricted master problem and we update the current lower bound by computing the Lagrangian
lower bound using the results of the pricing problems and the current objective value of the LP
relaxation.

Outline of the main pricing procedure:

1. Run the heuristic with the allowed edges and all stations that currently have a solution value
of at least 7. Do this

e once at every tree node for Ag or
« only at the root node for At and Ax.
2. Check whether all stations are fixed (e.g., due to branching).

e If so, no pricing is required. The result of the heuristic is processed and the node is
marked as solved.

3. Solve the pricing problems parameterized with the current dual information.

4. Update the current lower bound based on this iteration.

3.3 Branching

In addition to the column generation approach, we have implemented multiple branching strategies
so that branch-and-price can be applied. At every tree node we decide which branching strategy
should be used. This is done by static rules and a pseudo cost branching scheme. First, we
introduce all types of branching candidates. Then, we explain how a branching candidate is
selected.

3.3.1 Branching on Station Variables

The first type of branching candidates is used by Ar, Ag, and Ay. All fractional station variables
yr with f € F are branching candidates. When such a candidate is selected, we branch directly on
the corresponding variable. Since these are binary variables, the branching decisions correspond
to selecting or forbidding the station f, i.e., the variable is fixed to 1 or 0 in the master problem.
In addition, the pricing problems can no longer use this station if it is forbidden. This can be
achieved by fixing the corresponding variables (of the pricing problems) to 0 or by removing the
corresponding node from the graph so that it cannot be selected by the shortest path algorithm.
For Ar and Ay it is sufficient to branch on station variables. We can verify this claim by
considering the case where we have a fractional solution in which all station variables are integer.

11

This means that at least for one trip + € T' we have a set of fractional pattern variables Afac.
Furthermore, because of , it holds that |[Af2| > 1. The objective coefficient of all pattern
variables in A" have to be the same as otherwise we would get a better solution by choosing the
pattern variable with the smallest cost coeflicient and setting it to 1 and the others to 0. This
is possible without losing feasibility or increasing other costs because the station variables are
already equal to 1 for all used stations. Hence, we can construct an alternative feasible solution
that has the same cost by setting one variable of A" to 1 and all the others to 0. We can
repeat this procedure for all affected trips to get an integer solution with the same objective value.
However, this does not hold for Ag. Branching on station variables would be sufficient even for
Ag if we also branch on integer but unfixed variables because the primal heuristic computes an
optimal solution for the active branch when all station variables are fixed (as stated in Section
. However, branching on variables that are already integer is very inefficient. Only if no other
branching candidate is available, we branch on unfixed (integer) station variables, which we call
fallback branching.

3.3.2 Branching on Shortcut Variables

In addition to fractional station variables, .A4s may encounter fractional shortcut variables Z; s
with t € T, s € S;. Therefore, we also use these variables as branching candidates. When such
a candidate is selected, we branch directly on the corresponding variable. Since these are binary
variables, the branching decisions correspond to forbidding any station or enforcing at least one
station in the segment s, i.e., the variable is fixed to 1 or 0 in the master problem. The pricing
problem of the corresponding segment does not need to be called anymore if the shortcut variable
is fixed to 1 (and all pattern variables of this segment can be fixed to 0).

3.3.3 Branching on Distances

The last branching candidates, used exclusively by Ag, are related to fractional pattern variables
Ap withp € P, t €T, and s € S;. We have found that fractional master variables often help
to satisfy the range constraints. So, we look for a fractional path (for a fixed trip ¢) that would
violate the range in the integer case. Such a path starts with leaving a segment s; € S; and ends
with entering a segment sy € Sy with s; < so. All segments between s; and sy must not visit any
station, i.e., for all segments s’ € S; with 51 < s’ < s the variable Z; s must be fixed to 1. Figure
[4 shows an example of such a situation and visualizes the idea of these branching candidates. We
assume that we have found such a path starting with pattern p; € P, 5, and ending with pattern

P2 € Pt,sz- Let
Cisisn = thas/

s’€;‘5t:
§1<8 <582
be the length of the segments between s; and sy. The branching is realized by creating two child
nodes and each node forbids a set of pattern variables. We calculate two length bounds and
to define the two sets By = {\, | p € P, A Zp <bi}and By ={\, | p € Prs, N < Do}
such that \,, € B1, Ay, € Ba, and \p,, Ay, ¢ B1 N Bs.

. Y/ - “ _
bl = Epl - ﬁ (ZPI + epz + gt,81732 - bt) (50)
P1 P2
by = by — b1 — lr5, 5, (51)

Figure [5| depicts the branching decision (in the master problem). No feasible solution is excluded
because we have by = by + by —4—&’51752 and, thus, solutions that do not belong to any branch would
violate the length bound. In the pricing problem, we need to ensure that we do not generate
patterns that violate these bounds. Therefore, we remove all edges from the graph that do not
satisfy the branching decision, i.e., all starting or ending edges that are too long. As a result, we
can still use our shortest path approach to generate new patterns.

12

segment ¢ o segment ¢ + 1 segment ¢ + 2 o segment ¢ + 3

0 O O
SR
G,
@.,//
(1.0%,2) (1.0%,1)
———————————————————— @
G
2y

O a

Figure 4: A part of a fractional solution is visualized. The graph shown is not the underlying
instance graph. The circles represent stops of a trip (two consecutive stops belong to a segment as
start and end). The rectangles are copies of station nodes. For each segment all possible stations
are available (here we have 2 stations). The edges show the (fractional) path used by the current
solution. A tuple (a,b) corresponds to the (fractional) value a of the solution variable and to the
length b of the edge. Solution values marked with a * are fixed to this value. The dashed edges
belong to a path that would be invalid in the integer case. In this example the length bound b; is
7.

current node

pEB1 pEB2
child 1 child 2

Figure 5: The nodes created with respect to a distance branching candidate are shown. The
constraint of each branch can be enforced by fixing the affected pattern variables to 0.

3.3.4 Selection of a Branching Candidate

At each node that requires branching, we must decide which branching candidate should be used.
All approaches rely on a branching score calculated using strong branching [1] and pseudo cost
[1]. We use a hierarchical selection process that works as follows:

1. Select a best station variable branching candidate according to the calculated branching
score.

2. If no fractional station variable is available, select a best available branching candidate based
on the branching score.

3. If no branching candidate is available, perform fallback branching.

The approaches Ar, Ag, and Ayx only need to perform the first step because a fractional solution
always contains a fractional station variable. In contrast, Ag may need to perform the other steps
as well. We prefer branching on station variables because we observed that fixing station variables
helps the primal heuristic (see Section . This is plausible since the algorithm relies heavily
on the provided set of stations. As a result, the overall solving process can benefit from a strong
primal bound during branching. If no fractional station variable is available, we consider the other
branching candidates.

To select a branching candidate, we rely on pseudo cost values [1]. For all branching candidates,
pseudo cost values are maintained that are used to predict the objective gains if we branch on

13

a candidate. Let j € {1,2} be a branch’s direction (first or second branch). Then, the pseudo
cost value 1y, ; is the normalized objective gain we expect when we branch on candidate h. For
a branch, we know the fractional part d;, ; of the solution values restricted by that branch. For
example, if we branch on a station variable with value 0.4, the fractional parts are 0.4 and 0.6
(first branch and second branch). Using these values, we can calculate the predicted objective
gain of a branch.

Gh,j = Vhj " Onj (52)

Whenever we have to decide between branching candidates, we calculate the branching score
Oh = Gh,1 " 9h,2 (53)

for each branching candidate h. We choose the candidate with the highest branching score. After
branching we need to update the pseudo cost values. The experienced objective value gain is used
to update the pseudo cost values by calculating

1 Zlchﬂd _ learent
W p
Uhg = Yhgt oy <5h - — - d’hu‘) : (54)
where k is the number of branchings performed on branching candidate h and 23" and zﬁfrcnt are

the objective values of the master problem’s relaxation of the child and parent nodes, respectively.
If we have branched only a few times (or not at all) on a branching candidate, we have no reliable
pseudo cost values available (all are initially zero). Then, strong branching is used to compute
the objective gains. If we have branched at least five times on that candidate, we use the pseudo
cost values to predict the objective gains.

It may happen that no branching candidate (of the previously introduced types) is available at
all. In this case, we fix an unfixed station variable to 0 and 1. This is always possible since we can
compute the optimal objective value for a fixed set of (selected) stations (see Section , ie., if
all station variables are fixed we do not need to branch.

3.4 Cutting Planes

We use cuts in the master problem of Ag that follow the idea described in Section [3.3.3] and are
similar to knapsack cover cuts |1]. The cuts exploit (fractional) paths that would be infeasible in
the integer case. We assume that (for a fixed trip ¢) we have found a fractional path starting at
segment s; using variable A,, and ending at segment s, using variable A, with

gt,sl,sz = § gt,s’-

s/e/St:
51<8 <82
If
Uy 4y + Lrsysn > by
and

Mot Xy + 3 T > s €5, [< <o} -1,

s’ €S;:
s1<s'<s2
we can add the valid cut .
App + A, + > e S’ €S [s1<8 <sp}|— 1 (55)
s'€Sy:
51<8’ <59

In addition to A,, and)A,,, we can include other pattern variables belonging to s; and s3 in the
cut if the corresponding patterns would also violate the length bound. Hence, we generalize this
cut to by choosing the bounds b; and by such that by + ba + 44 5, 5, > by

SNHY Mt+d Ta <SS E€S s <8 <sp}—1 (56)

PEP: 511 PEP: syt s'€S;:

Iy>by £y>by 51<8'<s2

14

Finally, a path can start or end with a shortcut instead of a pattern. Let

b1,b2
t,81,82

= {jt,s’ | s’ c St, 51 < s < 52} U {:it751 | Emsl > bl} U {i’mSQ | Et752 > b2}

be the set of all shortcut variables relevant for this extension. We can then generalize to .

SNAY MY g eS| <s <s}|—1 (57)
PEP sy ngt,SQ: iGXf}s’fiQ

£,>by £p>by
These cuts are valid and do not cut any feasible integer solution because for every feasible integer
solution there exists a segment s € S; with s < s < s, for which all related variables in the cut are
zero since otherwise the range bound would be violated. Thus, the sum of the variable values of
any cut is at most [{s’ € S; | s1 < s' < s3}| — 1. Since these cuts are added to the master problem,
the pricing problems must handle the new dual values corresponding to the added master cuts.
Let 7, be the associated dual value of cut r, which is added as a new row to the master problem.
We need to add

- Z ert,sl N

i€F:

Le,sq,0>b1

to the objective function of the pricing problem of s; and

- E TrLt,s9,i

. 1€F":
Lt sq,i>ba

to the objective function of the pricing problem of sy (see Section . Therefore, in the graph
used to solve a pricing problem, we must adapt the lengths of the edges entering the sink or leaving
the source if they violate the length bounds b; or by, respectively. This modification cannot lead
to negative distances in the graph because 7, < 0. Thus, we do not need to worry about negative
lengths when solving a pricing problem even in the presence of these cuts.

Note that these cuts can also be obtained by combining constraints of the types , , and
and using an idea described by Wolsey [63]. For a trip ¢ € T' and two segments $1, S3 € St
with s; < s9, we obtain a knapsack constraint by combining the constraint of type of segment
s1, the constraints of type of all segments s’ € S; with s; < s’ < s5, and the constraint of
type (36) of segment so. Due to the constraints , any sum of pattern and shortcut variables
of a segment is bounded from above by 1. Thus, we can apply the idea described by Wolsey [63]
to the obtained knapsack constraint with respect to the upper bounds implied by .

Furthermore, the cuts can also be translated to the arc-based formulation. By replacing the

pattern variables in , we get .
D Erapt Y Gty B €S 51 <8 <so}| -1 (58)

feF: fEF: ieXbl’b2
~ 5 t,51,89
L sq,p>b1 Lt so,>b2

Thus, we can separate the cuts while solving the arc-based formulation as well as while solving
the pricing problems of Ar.

The cuts are separated at each tree node and the separation is done heuristically for each trip. To
find a violated cut, we move a start and end segment of a potential cut through the trip such that
the path between them violates the length bound of the trip. The total length of the path between
the start and end segment is computed using the (start and end) patterns that add the largest
edge lengths and belong to a variable that is assigned a nonzero value in the current solution. For
each potential cut found, we check if the cut is actually violated and add it if so. Note that this
procedure may miss violated cuts.

15

3.5 Preprocessing

Finally, we added a preprocessing step to reduce the size of the original problem instance by
removing constraints of types , , and that will not be active in an optimal solution.
ILe., if the trip does not use the station in any optimal solution, we can forbid this assignment. This
preprocessing exploits the triangle inequality with respect to c¢®. We identify such trip-station
pairs by using a solution provided by the heuristic, which is run at the beginning of the solving
process. The preprocessing considers each trip separately. The idea is that assigning a station to
a distant segment can cause such high detour costs so that the path of a known solution for that
trip dominates all possible paths that use this assignment, even if no other trip uses any of the
selected stations. IL.e., if the minimum cost of a path visiting a station in a particular segment is
greater than the sum of the installation costs of the used stations and the cost of a path used in
another (valid) solution (with respect to a single trip), we can forbid that station for this segment.
If this is true for all segments of a trip, we can forbid the station for the entire trip.

3.6 Implementation

We solve the arc-based formulation using Gurobi 9.5.2 [20]. Gurobi’s C++ interface allows us
to create and solve models without any further technical hurdles. For our branch-price-and-cut
implementation we heavily rely on SCIP 8.0.2 4], which provides a C/C++ API. SCIP is an
open-source solver for mixed-integer linear and nonlinear programming, among others. Our solver
was built on Debian 11 using g++ 10.2.1.

For all implemented approaches, we exclude all variables belonging to edges that violate the length
bound of the trip. In addition, we rely on presolving provided by Gurobi and SCIP. Thus, the
formulations are strengthened by the specific solver or framework before the main solving process
starts. For example, redundant variables, such as the range variables assigned to the last segment
of a trip, are removed.

We added our primal heuristic and our problem specific cuts to Gurobi. Therefore, we implemented
a callback and registered it with Gurobi. The heuristic is run once at every tree node and the cut
separation is run whenever Gurobi has solved the LP relaxation to optimality.

For our branch-and-price implementation, we use SCIP because it provides a branch-price-and-cut
framework that allows us to focus on the important and problem specific parts. SCIP consists of
plugins that add functionality to the solver. For instance, we can implement our own pricer plugin
and add it to SCIP. Moreover, we use the Boost Graph Library [53] (version 1.75) to implement
the shortest path pricing problems and the heuristic. Parts of our implementation are parallelized
using OpenMP [45]. In the following, we describe the main parts of our implementation.

Our implementation works with a SCIP object that manages the (restricted) master problem, i.e.,
we do not maintain any SCIP structures for the original problem. We include all default plugins
but disable SCIP’s separation functionality. Additionally, we use several plugins to inject our
implementation into SCIP’s solving process. The main component is our pricer, which performs
Farkas and reduced cost pricing. It manages the pricing of new variables by invoking the pricing
problem. During the solving process, the pricer plugin is called by SCIP via designated callbacks.

As described before, we do not use SCIP’s default branching strategy. Therefore, we register a
branching rule with SCIP that is called before SCIP’s default branching rules are executed. Our
implementation uses SCIP’s strong branching and pseudo cost features, i.e., we evaluate multiple
branching candidates by using SCIP’s branching score, which is computed based on previous
branching decisions and strong branching evaluations. After selecting a branching candidate, the
branching rule creates new tree nodes accordingly and attaches branching constraints to each new
node. SCIP cannot handle these branching constraints by itself. Therefore, we have implemented
a constraint handler that is responsible for enforcing the constraints. SCIP tells the constraint
handler which constraints are activated or deactivated. This allows us to fix variables and change
the pricing problems accordingly.

SCIP uses so-called separators to generate cutting planes to strengthen the LP relaxation. As

16

mentioned before, we have disabled all default separators and only use our own cuts. These cuts
are separated by our separator, which searches for possible cuts. The separator works on multiple
trips in parallel and is called at each node of the tree.

The implementation of Ag maintains data structures for all pricing problems. Each pricing prob-
lem is represented by a graph and a shortest-path algorithm is used to compute the objective of
the pricing problem (using the Boost Graph Library). By default, each graph is cached and only
modified for each pricing iteration. For large problems caching can be disabled to lower memory
requirements. Since the shortest-path algorithm computes only one path, every pricing problem
generates at most one new variable. In addition, since the pricing problems are solved in parallel,
we ensure that new variables are added to the master problem in a deterministic way so that run-
time variations do not affect the solving process. For the implementation of the pricing problems
used by A, we use the implementation of Ay, i.e., the pricing problems are solved by Gurobi
using the arc-based formulation, the primal heuristic, and the cuts. Similarly, the implementation
of An uses Ag as solver for the pricing problems.

The primal heuristic we use is registered as a plugin in SCIP and implements the corresponding
callbacks. Since the heuristic can find solutions that cannot be represented with the current set
of variables of the restricted master problem, it is not run when SCIP calls it, but only makes
previously found solutions available to SCIP. Instead, our pricer calls the heuristic during the
pricing so that we can add missing variables. The heuristic processes multiple trips in parallel if
possible (i.e., if static station costs are used).

4 Experiments

We conducted experiments to compare the performance of the arc-based formulation and the
extended formulation solved with branch-price-and-cut. In addition, we investigate to what extent
the problem specific cuts of the extended formulation affect the performance. First, we present
the instance sets and the platforms used. We then evaluate and discuss the results.

4.1 Platform and Instances

For our experiments, we generated random instances based on instances of the TSPLIB [47],
excluding instances with more than 500 nodes. We processed the TSP instances using the Python
library tsplib95 (version 0.7.1). Each instance inherits the graph of the corresponding TSP instance
and the cost of an edge is equal to its length, so ¢ = ¢¥. A station can be placed at any node
(e, F =V). Let cuips = Y _ser Zsest ¢t,s be the total cost of all trips without detours. Then,
we balance the trip and station costs such that the cost of building 20% of the stations is equal to
Cerips (1-€., 20% of the stations are worth the same as a detour that doubles the trip cost). Hence,
we set the installation cost of all stations f € F to

F Ctrips
" (f)=5 P
We have created two instance sets, Iy and I,. Both instance sets contain the same number of
instances with the same sizes (in terms of number of nodes and number of trips): for each TSP
instance we created instances with 10, 20, 30, and 40 trips. In addition, for both instance sets and
for each trip, the number of stops was chosen uniformly at random from [2, /|V|]. For instances
of I, a stop of a trip was chosen uniformly at random from the set of all nodes without its direct
predecessor. In contrast, for instances of I5, a (new) stop of a trip was chosen based on a normal
distribution and based on the distances to the last three (already chosen) stops. Let £y,ips be the
total length of all trips, i.e., lirips = Ctrips- We use the same length bound

b, — 2 etrips
p= |
3T
for all trips ¢ € T', which ensures that a trip of average length cannot be completed without visiting
at least one station. We ran these experiments on Debian 11 computing nodes equipped with two

17

Intel Xeon L5630 processors (providing 16 logical processors in total) and 128 GB of DDR3 RAM.
We enforced a time limit of one hour.

Moreover, we created a large instance based on real-world data. For this purpose, we used public
GTFS data [|41], containing (public) transportation schedules (including stops, routes, etc.). We
decided to use data of an intercity bus service. The data contain trips offered in Europe from
January to March 2020. Since the raw data are not suitable for our purpose, we preprocessed the
data. First, we clustered the stops based on their zip code and distance to each other, so that
we ended up with 1644 nodes. We also removed trips that are completely contained within other
trips and trips that are shorter than the length bound. After preprocessing, we were left with
2408 trips and 17405 segments in total. Furthermore, all nodes are possible locations for stations.
We computed shortest paths between all nodes in terms of travel time. The lengths £ of the edges
correspond to the length (in kilometers) of such a shortest path and the costs ¢ to the travel
time in minutes. Furthermore, we balanced station cost against trip cost by setting the cost of
one station to 15% of the average length (in terms of travel time) of all trips, i.e.,

F(f) = {0.15?"# =65

for all stations f € F. Thus, if the travel time of a trip would increase higher than this value, it
is beneficial to install a proper station (which does not imply a detour). For all pairs of nodes,
we computed a route that connects these nodes and minimizes the travel time. We set the length
of an edge between two nodes to the length of the route and the cost of the edge to the travel
time. The distances between the nodes correspond to their actual distances in kilometers. Since
the range of electric buses is roughly between 90 and 550 kilometers [3| 46|, we set the length
bound to 250 kilometers. We ran this instance (without a time limit) on a Debian 11 workstation
equipped with an Intel i7-8700 processor (providing 12 logical processors in total) and 32 GB of
DDR4 RAM.

4.2 Results and Discussion

In the following, we present and discuss the results of the conducted experiments. The raw data
and detailed figures for each instance set and size category can be found in Appendix [A] In
addition to the presented approaches, we evaluated the performance of Ag without separating the
cuts presented in Section 3.4l By doing so, we want to investigate the effect of our cuts on the
performance. We refer to Ag without cut separation as Ag. Furthermore, we checked whether our
primal heuristic and cuts help Gurobi by disabling both features. We call this modification A, .
Since our experiments show that Gurobi benefits from our heuristic and cuts, we do not include
the results of A/, in this section, but they are included in Appendix [A] In the following, all box
plots show the first, second, and third quartiles of the data. Moreover, the whiskers in a box
plot visualize the range of all data points that fall within the range of the first quartile minus 1.5
times the interquartile range and the third quartile plus 1.5 times the interquartile range. Outliers
are not shown unless otherwise stated. Figure [f] shows the performance profiles with respect to
the solving time and Figure [7| shows the aggregated achieved relative gaps (after an approach
terminated). The relative gap is defined as
Z—z
gap =)
z

where Zz is the best found primal bound and z is the best computed dual bound. If instances are
infeasible and the solver detected this within the time limit, the gap is recorded in the data as

0%.

The results show that Ay and Ag outperform the other approaches, as they typically terminated
earlier with an optimal solution or achieved a smaller gap when the time limit was reached. Ag
was the fastest approach on the largest number of instances (45.5%), followed by An (40.0%).
However, Ax outperforms Ag in terms of increasing performance ratios. In particular, it solved
most of the instances to optimality within the time limit (80.5%). This indicates that Ay behaves

18

100%

80%

60%

40%

proportion of instances

20%

0%
1 20 40 60 80 100
performance ratio

Figure 6: Performance profile with respect to the solving times. The x-axis is truncated for
better readability. The right dot of each line corresponds to the proportion of instances solved to
optimality within the time limit.

more “stable,” i.e., its performance does not vary as much across instances of the same size. In
addition, the results show that the cuts contribute greatly to the performance of Ag. Without
cut separation, At and Ax outperform Ag (except for small performance ratios). Note that
Ay (arc-based formulation without our primal heuristic and cuts) also outperforms Ag, but the
difference is smaller. The picture is similar if we look at the remaining gaps when the approach
terminated (either optimal or when the time limit was reached). Figure |8| shows the distribution
of the remaining gaps for all approaches. Both approaches, Ax and Ag, achieve better results even
when the time limit was reached. Moreover, At typically terminated with a smaller remaining
relative gap compared to Aa and Ag. This is consistent with the fact that Ar managed to solve
more instances to optimality within the time limit than A, and A§. Note that the maximum
remaining gap achieved by A, is infinite, since it was unable to compute the required bounds for
some instances.

In the following, we compare the qualities of the primal and dual bounds. Since cutting planes cut
off fractional points that do not belong to the integer solution space, it is reasonable that the dual
bounds computed by Ag are worse than those computed by Ag, while the primal bounds computed
by Ag may still be of high quality. To verify this intuition, we computed (for all instances for
which we know the optimal objective value) the fraction of (what we call) the primal part of the
total gap

*

I

pp =

z—z'

where z* denotes the optimal objective value. Thus, a small value (pp < 0.5) indicates that
the primal bound is of better quality than the computed dual bound. Figure [shows box plots
summarizing the achieved fractions. Note that the purpose of this visualization is to compare the
qualities of the primal and dual bounds of a single approach, not to compare two approaches. All
approaches tend to compute better primal bounds than dual bounds. In particular, the fractions
achieved by Ag and A§ are very small and the computed primal bounds are typically very close to
the optimal objective value. When we relate this to the achieved gaps, we see that Ag finds very

19

8.0%

6.0%

relative gap

4.0%

2.0%

0.0% _ _
An At As Ay AL

Figure 7: The gaps achieved after the approaches terminated are summarized by a box plot for
each approach.

good or close to optimal solutions, but fails to compute good dual bounds to prove optimality.

To take a closer look at this phenomenon, Figure[I0|shows the distributions of the applied branch-
ing strategies and Figure shows the total number of tree nodes (for the approaches Ag and
Ag). The visualized data shows that Ag created most of the tree nodes by branching on fractional
station variables. Much smaller proportions of nodes were created by branching on shortcut vari-
ables, followed by branching on distances. The proportions shift a bit to branching on shortcut
variables and distances when the number of trips increases. In contrast, when no cuts were sepa-
rated, shortcut variable branching, distance branching, and even fallback branching were needed
more often. While A§ branched on shortcut variables or distances more often than Ag for the
majority of instances, fallback branching was only applied for a few instances. However, when
fallback branching was used, it was used for a significant fraction of branching decisions. For more
details, see Figure [I7) and Figure [I8 which show the results for each instance. In summary, the
presented results show that the cuts introduced in Section [3:4] help to drastically reduce the size
of the branch-and-price tree and lead to faster solving times.

Finally, we evaluated our approaches on a real-world instance. Preliminary experiments with large
real-world instances showed that Ay performs best among all our presented approaches, which
is consistent with the results presented earlier. In particular, the memory requirements of Ax
are so large that we were not able to run it on large real-world instances. On such instances,
even the restricted master problem of Ag dominates the runtime, so that the advantage of the
fast pricing problems vanishes. Therefore, we only evaluated An on the real-world instance. The
solving process terminated after 62.9 hours with an optimal and feasible solution. The instance
and the found optimal solution are visualized in Figure [I2] A total of 297 stations are selected in
the solution. Figure [I3]shows two box plots summarizing detour statistics over all trips. The first
box plot summarizes the detour cost factors, i.e., the factors by which the cost of a trip (i.e., the
travel time) in the solution increased relative to the cost without visiting a station. The second
box plot refers to the total values by which the cost of a trip increased. On average, the cost
of a trip increased by 1.0% (median 1.0%), for a total cost increase of 6.0 minutes (median 1.0
minutes). Furthermore, decision makers may want to investigate which trips deviate significantly
from their cost without visiting stations. As the figures show, the majority of trips have only

20

20.0%

% A
% At '
17.5%
A As
o Ay
15.0% vV A S
12.5% ‘
Q.
(1]
V0] +t
2 100% 2
& &
L { v"

7.5% ﬁ,f" T
b i
+

- et
o Sy, v ity »
+ 5 4 ° AR 3
5.0% A L R A
v
L - +* V' d Ay
el AN TIN A A" o 0
% PRI AN Lo+ P
- N 1
gl BT L P) + A A
"""Z! +V0 Y +‘1:'i & 4“"1;, +y Ay, ALHL §41,
9 I v ot W Aty AR Y TS o ol
2.5% R A S L s A e S ey
. v, +* vy
e I +‘v3'v‘ Vd'n o vv ve * L Mg,
s R & e) A SN o ° &V
1 v Ve A y .
'v!‘#v# P Ter 4h o o Tawd . © A A oy Al
v ',.,v LY e o R 0 & ° o ° A AN

0.0%

Figure 8: Achieved gaps after the approaches terminated. Each column corresponds to a single
instance. The columns are sorted according to the gaps. For readability, we excluded entries with
a gap larger than 20%.

a small increase in travel time. However, there are outliers with high detour cost factors. For
example, the travel time of one trip increased to 200% (a total of 331 minutes) of the original
travel time. This is caused by missing opportunities to install stations. As a result, the trip has to
be rerouted between stations, which means a large detour. Therefore, the decision maker should
consider adding candidate stations in this area so that the trip can be completed with less detour
costs.

5 Conclusion

In this paper, we study exact approaches to the (directed) multi-stop location problem. First, we
present an arc-based mixed-integer formulation that can be solved with any MIP solver. Then,
we propose several pattern-based formulations solved by branch-price-and-cut. On the one hand,
a pattern-based formulation that assigns a complete path to each trip, and a formulation that
assigns paths to the segments of a trip. Our approaches use a problem-specific primal heuristic
and branching strategies, as well as problem-specific cuts. We conduct experiments using randomly
generated instances based on instances of the TSPLIB. Our experiments show that the segment-
pattern-based formulation significantly outperforms the trip-pattern-based formulation and the
arc-based formulation. In particular, the cuts help to speed up the solving process by keeping
the branch-and-price tree small. Furthermore, combining the two pattern-based formulations by
solving the pricing problems of the trip-pattern-based formulation with the segment-pattern-based
formulation significantly improves the performance, so that this nested approach outperforms all
other proposed ones. Moreover, we create a large instance using real-world data of an intercity
bus service to demonstrate the practical usefulness of our approaches. In fact, the nested branch-
price-and-cut approach is able to solve this instance to optimality in less than three days.

Future work could look at extensions and how they affect performance. For example, one might
want to weight trips differently. In terms of implementation, such an extension should be easy
to incorporate into our approach. Other extensions require more work, such as an upper bound
on the extra costs caused by detours. Nevertheless, our approaches can serve as a promising
foundation for further work on this problem.

21

1.0

0.8

0.6

proportion

0.4

0.2

0.0

x
x
x
x
—x—
x
x
*
x
I i
Aa At As An AL

Figure 9: The proportions of the primal parts of the overall gaps are summarized by a box plot.
Outliers are represented by X’s.

References

Tobias Achterberg. “Constraint Integer Programming”. PhD thesis. Technical University of
Berlin, 2007.

Abdullah Almouhanna et al. “The location routing problem using electric vehicles with
constrained distance”. In: Computers & Operations Research 115 (Mar. 2020), p. 104864.
ISSN: 03050548. DOI: 10.1016/j.cor.2019.104864.

Automotive World Ltd. MAN sets the standard for range: Fully electric bus breaks the 550
kilometre barrier. 2021. URL: https://www.automotiveworld.com/news-releases/man-
sets-the-standard-for-range-fully-electric-bus-breaks-the-550-kilometre-
barrier/ (visited on 04/03/2023).

Ksenia Bestuzheva et al. The SCIP Optimization Suite 8.0. 2021. DOI: 10.48550/ARXIV.
2112.08872.

Edgar Alberto Cabral et al. “The network design problem with relays”. In: European Journal
of Operational Research 180.2 (2007), pp. 834-844.

Hatice Calik et al. “The electric location-routing problem: Formulation and Benders decom-
position approach”. In: (2018).

Ismail Capar and Michael Kuby. “An efficient formulation of the flow refueling location
model for alternative-fuel stations”. In: IIE Transactions 44.8 (Aug. 1, 2012), pp. 622-636.
1ssN: 0740-817X. DOI1: [10.1080/0740817X.2011.635175.

Si Chen, Ivana Ljubi¢, and S. Raghavan. “The Generalized Regenerator Location Problem”.
In: INFORMS Journal on Computing 27.2 (Apr. 2015), pp. 204-220. 1SsN: 1091-9856, 1526~
5528. DOI: 110.1287/ijoc.2014.0621.

Si Chen, Ivana Ljubi¢, and S. Raghavan. “The regenerator location problem”. In: Networks
55.3 (2010), pp. 205-220.

Yanru Chen et al. “Solving the battery swap station location-routing problem with a mixed
fleet of electric and conventional vehicles using a heuristic branch-and-price algorithm with
an adaptive selection scheme”. In: Expert Systems with Applications 186 (Dec. 30, 2021),
p. 115683. 1SSN: 0957-4174. DOI: [10.1016/j.eswa.2021.115683.

22

https://doi.org/10.1016/j.cor.2019.104864
https://www.automotiveworld.com/news-releases/man-sets-the-standard-for-range-fully-electric-bus-breaks-the-550-kilometre-barrier/
https://www.automotiveworld.com/news-releases/man-sets-the-standard-for-range-fully-electric-bus-breaks-the-550-kilometre-barrier/
https://www.automotiveworld.com/news-releases/man-sets-the-standard-for-range-fully-electric-bus-breaks-the-550-kilometre-barrier/
https://doi.org/10.48550/ARXIV.2112.08872
https://doi.org/10.48550/ARXIV.2112.08872
https://doi.org/10.1080/0740817X.2011.635175
https://doi.org/10.1287/ijoc.2014.0621
https://doi.org/10.1016/j.eswa.2021.115683

100%

fraction of branching nodes

[17]

[18]

10 trips 20 trips 30 trips 40 trips

N\~

NN7ZZzZz3ll
N\

\\zz= |

—
I
N1
D
60% /

40%

20%

D% %%

748 station IS shortcut INEI distance == fallback

2\
N
g\
N

Ag

Figure 10: The fractions of tree node types created by Ag and Asg.

Ryan G Conrad and Miguel Andres Figliozzi. “The Recharging Vehicle Routing Problem”.
In: Proceedings of the 2011 Industrial Engineering Research Conference (2011).

Benoit Crevier, Jean-Frangois Cordeau, and Gilbert Laporte. “The multi-depot vehicle rout-
ing problem with inter-depot routes”. In: European Journal of Operational Research 176.2
(Jan. 2007), pp. 756-773. 1SSN: 03772217. DOI: 10.1016/j.ejor.2005.08.015.

George B. Dantzig and Philip Wolfe. “Decomposition Principle for Linear Programs”. In:
Operations Research 8.1 (Feb. 1960), pp. 101-111. 1ssN: 0030-364X, 1526-5463. DOI: |10 .
1287/opre.8.1.101.

Amarjit Datta, Brian K Ledbetter, and M. Ashiqur Rahman. “Optimal Deployment of
Charging Stations for Electric Vehicles: A Formal Approach”. In: 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems Workshops (ICDCSW). 2017 IEEE
37th International Conference on Distributed Computing Systems Workshops (ICDCSW).
June 2017, pp. 83-90. DOI: [10.1109/ICDCSW.2017 . 26.

Guy Desaulniers et al. “Exact Algorithms for Electric Vehicle-Routing Problems with Time
Windows”. In: Operations Research 64.6 (Dec. 2016), pp. 1388-1405. 1sSN: 0030-364X, 1526-
5463. DOI: [10.1287/opre.2016.1535.

O. Edenhofer et al. Climate Change 2014: Mitigation of Climate Change. Contribution of
Working Group III to the Fifth Assessment Report of the Intergovern- mental Panel on
Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K.
Seyboth, A. Adler, I. Baum, S. Brunner, P. Fickemeier, B. Kriemann, J. Savolainen, S.
Schiomer, C. von Stechow, T. Zwickel and J.C. Minz (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2014. Chap. Transport.

Sevgi Erdogan and Elise Miller-Hooks. “A Green Vehicle Routing Problem”. In: Transporta-
tion Research Part E: Logistics and Transportation Review 48.1 (Jan. 2012), pp. 100-114.
ISSN: 13665545. DOI: [10.1016/j.tre.2011.08.001.

Stefan Funke, Andre Nusser, and Sabine Storandt. “Placement of Loading Stations for
Electric Vehicles: No Detours Necessary!” In: Journal of Artificial Intelligence Research 53
(Aug. 12, 2015), pp. 633-658. 1SSN: 1076-9757. DOI: |10.1613/jair.4688.

23

https://doi.org/10.1016/j.ejor.2005.08.015
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.1109/ICDCSW.2017.26
https://doi.org/10.1287/opre.2016.1535
https://doi.org/10.1016/j.tre.2011.08.001
https://doi.org/10.1613/jair.4688

10 trips 20 trips 30 trips 40 trips

200000

175000

150000

125000

100000

75000

number of branching nodes

50000

25000

o Le== — == T == T = _

As AL As Al As AL As AL

Figure 11: The total numbers of tree nodes created by Ag and As.

[19] Paul Gopfert and Stefan Bock. “A Branch&Cut approach to recharging and refueling in-
frastructure planning”. In: European Journal of Operational Research 279.3 (Dec. 16, 2019),
pp- 808-823. 1ssN: 0377-2217. DOI: 10.1016/j.ejor.2019.06.031.

[20] Gurobi Optimization, LLC. Gurobi Optimizer. 2023. URL: https ://www . gurobi . com/
solutions/gurobi-optimizer/| (visited on 04/03/2023).

[21] Itamar Hartstein, Mordechai Shalom, and Shmuel Zaks. “On the complexity of the regener-
ator location problem treewidth and other parameters”. In: Discrete Applied Mathematics
199 (Jan. 2016), pp. 199-225. 1SsN: 0166218X. DOI: [10.1016/j.dam.2015.01.036.

[22] Andrea Hess et al. “Optimal deployment of charging stations for electric vehicular networks”.
In: Proceedings of the first workshop on Urban networking - UrbaNe ’12. the first workshop.
Nice, France: ACM Press, 2012, p. 1. 1SBN: 978-1-4503-1781-8. DO1: [10.1145/2413236 .
2413238l

[23] Julian Hof, Michael Schneider, and Dominik Goeke. “Solving the battery swap station
location-routing problem with capacitated electric vehicles using an AVNS algorithm for
vehicle-routing problems with intermediate stops”. In: Transportation Research Part B:
Methodological 97 (Mar. 1, 2017), pp. 102-112. 1ssN: 0191-2615. DOI: [10. 1016/ 5 . trb.
2016.11.009.

[24] M. Hosseini, S.A. MirHassani, and F. Hooshmand. “Deviation-flow refueling location prob-
lem with capacitated facilities: Model and algorithm”. In: Transportation Research Part D:
Transport and Environment 54 (July 2017), pp. 269-281. 1SsN: 13619209. DOTI: [10.1016/j .
trd.2017.05.015.

[25] Yongxi Huang, Shengyin Li, and Zhen Sean Qian. “Optimal Deployment of Alternative
Fueling Stations on Transportation Networks Considering Deviation Paths”. In: Networks
and Spatial Economics 15.1 (Mar. 1, 2015), pp. 183-204. 1ssN: 1572-9427. poI: 10. 1007/
s11067-014-9275-1.

[26] Ozgur Kabadurmus and Alice E. Smith. “Multi-commodity k-splittable survivable network
design problems with relays”. In: Telecommunication Systems 62.1 (May 2016), pp. 123-133.
ISSN: 1018-4864. DOI: |10.1007/511235-015-0067-9.

24

https://doi.org/10.1016/j.ejor.2019.06.031
https://www.gurobi.com/solutions/gurobi-optimizer/
https://www.gurobi.com/solutions/gurobi-optimizer/
https://doi.org/10.1016/j.dam.2015.01.036
https://doi.org/10.1145/2413236.2413238
https://doi.org/10.1145/2413236.2413238
https://doi.org/10.1016/j.trb.2016.11.009
https://doi.org/10.1016/j.trb.2016.11.009
https://doi.org/10.1016/j.trd.2017.05.015
https://doi.org/10.1016/j.trd.2017.05.015
https://doi.org/10.1007/s11067-014-9275-1
https://doi.org/10.1007/s11067-014-9275-1
https://doi.org/10.1007/s11235-015-0067-9

(a) instance (b) solution

Figure 12: The real-world instance (left) and the best found solution (right) are visualized. Trips
are represented by blue lines and stations by red dots. The visualization relies on data licensed
under the Open Data Commons Open Database License (ODbL)) by the OpenStreetMap Founda-
tion.

15 90
x
x
x
80
¥
14
x 70
x
¥
x
60 x
x x
13
= x
€ 50
5 : ;
5] * -
B @ g
g 40
12 o
x
30 §
x
20
11 — &
10
1.0 L 1 0
(a) cost factors (b) total detour costs

Figure 13: The detour cost factors (left side) and the total detour costs (right side, additional
travel time in minutes) are summarized over all trips by box plots. Outliers are represented by
X’s. For readability, we exclude outliers corresponding to cost factors larger than 1.5 and total
detour costs larger than 90 minutes in the left and right plot, respectively.

25

http://www.openstreetmap.org/copyright

28]

[29]

[35]

[36]

[37]

[40]

[41]

[42]

Jee Eun Kang and Will Recker. “Strategic Hydrogen Refueling Station Locations with
Scheduling and Routing Considerations of Individual Vehicles”. In: Transportation Science
49.4 (Nov. 2015), pp. 767-783. 1SSN: 0041-1655, 1526-5447. DOI: [10.1287/trsc.2014.0519.
Jong-Geun Kim and Michael Kuby. “A network transformation heuristic approach for the
deviation flow refueling location model”. In: Computers & Operations Research 40.4 (Apr.
2013), pp. 1122-1131. 18sN: 03050548. DOIL: 110.1016/j.cor.2012.10.021.

Jong-Geun Kim and Michael Kuby. “The deviation-flow refueling location model for opti-
mizing a network of refueling stations”. In: International Journal of Hydrogen Energy 37.6
(Mar. 2012), pp. 5406-5420. 1sSN: 03603199. DOI: |10.1016/j.1ijhydene.2011.08.108.
Omer Burak Kimay, Fatma Gzara, and Sibel A Alumur. “Full cover charging station location
problem with routing”. In: Transportation Research Part B: Methodological 144 (Feb. 1,
2021), pp. 1-22. 1ssN: 0191-2615. DOI: 10.1016/j.trb.2020.12.001.

Michael Kuby and Seow Lim. “Location of Alternative-Fuel Stations Using the Flow-Refueling
Location Model and Dispersion of Candidate Sites on Arcs”. In: Networks and Spatial Eco-
nomics 7.2 (Apr. 3, 2007), pp. 129-152. 1SsN: 1566-113X, 1572-9427. DOI: [10.1007/s11067~
006-9003-6.

Michael Kuby and Seow Lim. “The flow-refueling location problem for alternative-fuel vehi-
cles”. In: Socio-Economic Planning Sciences 39.2 (June 2005), pp. 125-145. 1sSN: 00380121.
DOI: |10.1016/j.seps.2004.03.001.

Michael Kuby et al. “Optimization of hydrogen stations in Florida using the Flow-Refueling
Location Model”. In: International Journal of Hydrogen Energy 34.15 (Aug. 2009), pp. 6045—
6064. 1SSN: 03603199. DOI: [10.1016/5 .1 jhydene.2009. 05 . 050!

Alexander Kunith, Roman Mendelevitch, and Dietmar Goehlich. “Electrification of a city
bus network—An optimization model for cost-effective placing of charging infrastructure and
battery sizing of fast-charging electric bus systems”. In: International Journal of Sustainable
Transportation 11.10 (Nov. 26, 2017), pp. 707-720. 1sSN: 1556-8318, 1556-8334. DOI: |10 .
1080/15568318.2017.1310962.

Markus Leitner et al. “Exact approaches for network design problems with relays”. In:
INFORMS Journal on Computing 31.1 (2019), pp. 171-192. 1sSN: 15265528. DOI: [10.1287/
1joc.2018.0820.

Markus Leitner et al. “Exact approaches for the directed network design problem with
relays”. In: Omega 91 (2020), p. 102005.

Xiangyong Li et al. “Models and column generation approach for the resource-constrained
minimum cost path problem with relays”. In: Omega 66 (Jan. 2017), pp. 79-90. ISSN:
03050483. DoI: [10.1016/7 . omega.2016.01.012.

Seow Lim and Michael Kuby. “Heuristic algorithms for siting alternative-fuel stations using
the Flow-Refueling Location Model”. In: Furopean Journal of Operational Research 204.1
(July 2010), pp. 51-61. 1sSN: 03772217. DOI: |10.1016/j.ejor.2009.09.032.
Cheng-Chang Lin and Chuan-Chih Lin. “The p-center flow-refueling facility location prob-
lem”. In: Transportation Research Part B: Methodological 118 (Dec. 2018), pp. 124-142.
ISSN: 01912615. DOI: [10.1016/j.trb.2018.10.008.

S. A. MirHassani and R. Ebrazi. “A Flexible Reformulation of the Refueling Station Location
Problem”. In: Transportation Science 47.4 (Nov. 2013), pp. 617-628. 1sSN: 0041-1655, 1526-
5447. DOI: 110.1287/trsc.1120.0430.

MobilityData. General Transit Feed Specification Reference. 2019. URL: https://gtfs.org/
reference/static| (visited on 04/03/2023).

Ibrahim Muter, Jean-Francois Cordeau, and Gilbert Laporte. “A Branch-and-Price Algo-
rithm for the Multidepot Vehicle Routing Problem with Interdepot Routes”. In: Trans-
portation Science 48.3 (Aug. 2014), pp. 425-441. 15SN: 0041-1655, 1526-5447. DOI: [10.1287/
trsc.2013.0489.

Ashutosh Nigam and Yogesh K. Agarwal. “Optimal relay node placement in delay con-
strained wireless sensor network design”. In: Furopean Journal of Operational Research 233.1
(Feb. 2014), pp. 220-233. 1sSN: 03772217. DOI: 10.1016/j.ejor.2013.08.031.

Nicholas Nordlund, Leandros Tassiulas, and Jan-Hendrik Lange. Optimization methods for
the capacitated refueling station location problem with routing. en. arXiv:2310.05569 [math].
Oct. 2023. URL: http://arxiv.org/abs/2310.05569 (visited on 10/12/2023).

26

https://doi.org/10.1287/trsc.2014.0519
https://doi.org/10.1016/j.cor.2012.10.021
https://doi.org/10.1016/j.ijhydene.2011.08.108
https://doi.org/10.1016/j.trb.2020.12.001
https://doi.org/10.1007/s11067-006-9003-6
https://doi.org/10.1007/s11067-006-9003-6
https://doi.org/10.1016/j.seps.2004.03.001
https://doi.org/10.1016/j.ijhydene.2009.05.050
https://doi.org/10.1080/15568318.2017.1310962
https://doi.org/10.1080/15568318.2017.1310962
https://doi.org/10.1287/ijoc.2018.0820
https://doi.org/10.1287/ijoc.2018.0820
https://doi.org/10.1016/j.omega.2016.01.012
https://doi.org/10.1016/j.ejor.2009.09.032
https://doi.org/10.1016/j.trb.2018.10.008
https://doi.org/10.1287/trsc.1120.0430
https://gtfs.org/reference/static
https://gtfs.org/reference/static
https://doi.org/10.1287/trsc.2013.0489
https://doi.org/10.1287/trsc.2013.0489
https://doi.org/10.1016/j.ejor.2013.08.031
http://arxiv.org/abs/2310.05569

[51]

[52]

[57]

[58]

OpenMP Architecture Review Board. OpenMP Application Programming Interface. 2018.
URL: https://www . openmp . org/wp- content /uploads/OpenMP-API-Specification-
5.0.pdf| (visited on 04/03/2023).

Shyam S.G. Perumal, Richard M. Lusby, and Jesper Larsen. “Electric bus planning &
scheduling: A review of related problems and methodologies”. In: European Journal of Op-
erational Research 301.2 (Sept. 2022), pp. 395—413. 1ssN: 03772217. DOI: |10.1016/j.ejor.
2021.10.058.

Gerhard Reinelt. “TSPLIB—A Traveling Salesman Problem Library”. In: ORSA Journal
on Computing 3.4 (Nov. 1991), pp. 376-384. 1SSN: 0899-1499. DO1: 10.1287/ijoc.3.4.376.
Philipp K. Rose et al. “Optimal development of alternative fuel station networks considering
node capacity restrictions”. In: Transportation Research Part D: Transport and Environment
78 (Jan. 1, 2020), p. 102189. 1sSN: 1361-9209. pOI1: [10.1016/j.trd.2019.11.018.

Barbara Scheiper, Maximilian Schiffer, and Grit Walther. “The flow refueling location prob-
lem with load flow control”. In: Omega 83 (Mar. 2019), pp. 50-69. 1sSN: 03050483. DOI:
10.1016/j.omega.2018.02.003.

Maximilian Schiffer and Grit Walther. “The electric location routing problem with time
windows and partial recharging”. In: Furopean Journal of Operational Research 260.3 (Aug.
2017), pp. 995-1013. 18sN: 03772217. DOI: [10.1016/j.ejor.2017.01.011.

Maximilian Schiffer et al. “Vehicle Routing and Location Routing with Intermediate Stops:
A Review”. In: Transportation Science 53.2 (Mar. 2019), pp. 319-343. 1SsN: 0041-1655. DOIL:
10.1287/trsc.2018.0836.

Michael Schneider, Andreas Stenger, and Dominik Goeke. “The Electric Vehicle-Routing
Problem with Time Windows and Recharging Stations”. In: Transportation Science 48.4
(Nov. 2014), pp. 500-520. 1sSN: 0041-1655, 1526-5447. DOI: [10.1287/trsc.2013. 0490,
Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library (BGL). 2001.
URL: https://www.boost.org/doc/1libs/1_75_0/1libs/graph/doc/index.html| (visited
on 04/03/2023).

Sabine Storandt and Stefab Funke. “Enabling E-Mobility: Facility Location for Battery
Loading Stations”. In: Proceedings of the AAAI Conference on Artificial Intelligence 27.1
(June 29, 2013), pp. 1341-1347. 1ssN: 2374-3468, 2159-5399. DOI: 10.1609/aaai . v27il.
8478.

Wei Tu et al. “Optimizing the locations of electric taxi charging stations: A spatial-temporal
demand coverage approach”. In: Transportation Research Part C: Emerging Technologies 65
(Apr. 2016), pp. 172-189. 15sN: 0968090X. DOI: 10.1016/j.trc.2015.10.004.

Dionysios Tzamakos, Christina Iliopoulou, and Konstantinos Kepaptsoglou. “Electric bus
charging station location optimization considering queues”. en. In: International Journal of
Transportation Science and Technology 12.1 (Mar. 2023), pp. 291-300. 1SSN: 20460430. DOI:
10.1016/j.ijtst.2022.02.007. URL: https://linkinghub.elsevier.com/retrieve/
pii/S2046043022000259 (visited on 12/04/2023).

Christopher Upchurch and Michael Kuby. “Comparing the p-median and flow-refueling mod-
els for locating alternative-fuel stations”. In: Journal of Transport Geography 18.6 (Nov.
2010), pp. 750-758. 1ssN: 09666923. DOI: |10.1016/j . jtrangeo.2010.06.015.

Christopher Upchurch, Michael Kuby, and Seow Lim. “A Model for Location of Capacitated
Alternative-Fuel Stations”. In: Geographical Analysis 41.1 (Jan. 2009), pp. 85—106. ISSN:
00167363. DOI:|10.1111/7.15638-4632.2009.00744.x.

Harwin de Vries and Evelot Duijzer. “Incorporating driving range variability in network
design for refueling facilities”. In: Omega 69 (June 2017), pp. 102-114. 1ssN: 03050483. DOI:
10.1016/j.omega.2016.08.005.

Ying-Wei Wang and Chuah-Chih Lin. “Locating road-vehicle refueling stations”. In: Trans-
portation Research Part E: Logistics and Transportation Review 45.5 (Sept. 1, 2009), pp. 821—
829. 18SN: 1366-5545. DOI: 110.1016/j.tre.2009.03.002.

Ying-Wei Wang and Chuan-Ren Wang. “Locating passenger vehicle refueling stations”. In:
Transportation Research Part E: Logistics and Transportation Review 46.5 (Sept. 1, 2010),
pp- 791-801. 1SSN: 1366-5545. DOI: 10.1016/j.tre.2009.12.001.

Felix J L Willamowski, Miriam Ganz, and Erik Mihmer. The Multi-Stop Station Location
Problem. repORt 2020-60. Lehrstuhl fiir Operations Research, RWTH Aachen University,

27

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1016/j.ejor.2021.10.058
https://doi.org/10.1016/j.ejor.2021.10.058
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1016/j.trd.2019.11.018
https://doi.org/10.1016/j.omega.2018.02.003
https://doi.org/10.1016/j.ejor.2017.01.011
https://doi.org/10.1287/trsc.2018.0836
https://doi.org/10.1287/trsc.2013.0490
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/index.html
https://doi.org/10.1609/aaai.v27i1.8478
https://doi.org/10.1609/aaai.v27i1.8478
https://doi.org/10.1016/j.trc.2015.10.004
https://doi.org/10.1016/j.ijtst.2022.02.007
https://linkinghub.elsevier.com/retrieve/pii/S2046043022000259
https://linkinghub.elsevier.com/retrieve/pii/S2046043022000259
https://doi.org/10.1016/j.jtrangeo.2010.06.015
https://doi.org/10.1111/j.1538-4632.2009.00744.x
https://doi.org/10.1016/j.omega.2016.08.005
https://doi.org/10.1016/j.tre.2009.03.002
https://doi.org/10.1016/j.tre.2009.12.001

[68]

[69]

A

Apr. 25, 2020. URL: https://or.rwth-aachen.de/files/research/repORt/mslp _
theory_v2.pdf.

Laurence A. Wolsey. “Valid inequalities for 0—1 knapsacks and mips with generalised upper
bound constraints”. In: Discrete Applied Mathematics 29.2 (Dec. 1990), pp. 251-261. ISSN:
0166218X. DOI: |10.1016/0166-218X(90)90148-6l

Owen Worley, Diego Klabjan, and Timothy M. Sweda. “Simultaneous vehicle routing and
charging station siting for commercial electric vehicles”. In: 2012 IEEE International Electric
Vehicle Conference. IEEE. 2012, pp. 1-3.

Jun Yang and Hao Sun. “Battery swap station location-routing problem with capacitated
electric vehicles”. In: Computers € Operations Research 55 (Mar. 2015), pp. 217-232. ISSN:
03050548. DOI: |10.1016/j.cor.2014.07.003.

Barig Yildiz, Okan Arslan, and Oya Ekin Karasan. “A branch and price approach for routing
and refueling station location model”. In: Furopean Journal of Operational Research 248.3
(Feb. 2016), pp. 815-826. 1ssN: 03772217. DOI: [10.1016/j.ejor.2015.05.021]

Barig Yildiz, Oya Ekin Karasan, and Hande Yaman. “Branch-and-price approaches for the
network design problem with relays”. In: Computers and Operations Research 92 (2018),
pp- 155-169. 18sN: 03050548. DOI: [10.1016/j.cor.2018.01.004!.

Peng-Sheng You and Yi-Chih Hsieh. “A hybrid heuristic approach to the problem of the
location of vehicle charging stations”. In: Computers & Industrial Engineering 70 (Apr. 1,
2014), pp. 195-204. 1ssN: 0360-8352. DOI: 110.1016/j.cie.2014.02.001.

Hong Zheng et al. “Traffic Equilibrium and Charging Facility Locations for Electric Vehi-
cles”. In: Networks and Spatial Economics 17.2 (June 2017), pp. 435-457. 1SsN: 1566-113X.
DOI: 10.1007/s11067-016-9332-z.

Appendix

28

https://or.rwth-aachen.de/files/research/repORt/mslp_theory_v2.pdf
https://or.rwth-aachen.de/files/research/repORt/mslp_theory_v2.pdf
https://doi.org/10.1016/0166-218X(90)90148-6
https://doi.org/10.1016/j.cor.2014.07.003
https://doi.org/10.1016/j.ejor.2015.05.021
https://doi.org/10.1016/j.cor.2018.01.004
https://doi.org/10.1016/j.cie.2014.02.001
https://doi.org/10.1007/s11067-016-9332-z

6¢

Table Al: Achieved times (in seconds) for each instance of I; and approach.

10 trips 20 trips 30 trips 40 trips

Instances

Aa At As An o Ay Aa A Asg An A Ay Aa At As An A Ay Aa At As An A Ay
a280 2446 3601 301 1872 3600 3602 3601 3602 1229 3616 3600 3607 3602 3603 1953 3613 3600 3603 3604 3600 2956 3602 3600 3629
att48 7 66 1 9 2 11 80 173 36 39 690 101 211 259 41 33 3600 140 492 653 157 183 3600 683
bayg29 1 23 1 5 1 2 17 61 10 4 81 21 19 24 15 5 106 17 35 45 29 22 1525 100
bays29 6 9 1 2 2 6 5 8 2 2 3 6 32 15 19 3 730 22 85 14 40 2 1605 28
berlin52 62 88 10 7 57 73 361 186 57 25 2086 251 278 1336 74 98 3600 776 959 525 154 134 3600 736
bier127 2439 3601 126 1750 431 2886 3604 3601 783 1739 3600 3609 3603 3601 685 1591 3600 3600 3601 3601 1534 2091 3600 3604
brazil58 60 127 6 10 11 41 285 1210 42 79 1075 738 605 694 184 108 3600 1312 465 1822 105 173 3600 1087
brgl180 152 798 10 498 11 142 347 1100 42 344 52 335 531 3301 93 559 73 495 534 3601 66 782 57 493
burmal4 O 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
ch130 628 846 61 446 619 813 1277 2235 127 451 3600 2970 1941 3601 183 957 3600 3606 3604 3601 487 1130 3600 3601
ch150 966 3306 69 252 370 2623 3600 3601 888 2548 3600 3605 3601 3601 426 1476 3600 3602 3602 3601 1968 2319 3600 3601
d198 3604 3601 311 1766 3600 3610 3656 3601 3361 3259 3600 3623 3602 3602 3219 3605 3600 3601 3603 3602 1905 3606 3600 3603
d493 3602 3609 1467 3619 3600 3606 3626 3605 3600 3625 3600 3619 3600 3604 3600 3605 3600 3600 3600 3609 3600 3605 3601 3600
dantzigd2 15 41 3 6 6 14 35 119 13 11 39 28 135 191 28 18 3257 85 80 197 T 48 3600 153
eill01 295 1302 13 107 70 297 1286 2468 84 152 595 3002 3601 3600 142 617 3600 3601 3601 3601 203 409 3600 3601
eil51 36 418 15 20 42 35 123 380 23 49 257 153 140 330 29 52 200 583 282 684 65 76 3600 912
eil76 116 752 14 45 72 200 349 641 41 73 287 400 996 2563 119 148 3600 3600 2087 3473 207 105 3600 3601
fl417 3605 3602 3600 3612 3600 3606 3620 3603 3600 3603 3600 3621 3674 3609 3600 3612 3600 3658 3600 3606 3600 3609 3601 3600
fri26 8 2 1 1 2 7 11 31 3 4 17 10 13 25 12 4 482 21 32 36 6 7 1379 27
gil262 3604 3602 1110 2680 3600 3601 3602 3602 1393 3602 3600 3604 3605 3601 3600 3614 3600 3602 3611 3600 3600 3600 3600 3602
gr120 393 1597 24 91 206 1088 1844 3600 164 283 3600 2819 3601 3601 275 888 3600 3603 2646 3600 1433 2750 3600 3601
grl37 104 1142 43 223 55 306 3601 3601 279 881 3600 3601 2351 3601 347 2348 3600 3602 3604 3601 1841 3600 3600 3601
grl7 0 0 0 0 0 0 1 1 0 0 1 2 1 2 0 1 1 1 4 5 1 1 32 5
gr202 2626 3602 240 1795 1035 2788 3602 3601 744 3601 3600 3604 3601 3602 3600 3603 3600 3602 3603 3603 3600 3612 3600 3604
gr2l 0 1 0 0 0 0 2 6 1 1 3 2 8 5 7 1 12 8 8 9 8 3 10 8
gr229 2387 3601 209 855 1002 2640 3603 3601 2292 3604 3600 3631 3602 3602 3600 3605 3600 3601 3602 3601 3600 3604 3600 3602
gr24 2 2 1 1 2 2 11 8 5 2 16 8 12 5 6 1 14 8 14 19 9 5 26 14
grd31 3604 3602 2403 3619 3600 3605 3615 3609 3600 3602 3600 3628 3611 3609 3600 3603 3601 3613 3600 3608 3600 3605 3600 3600
gras8 18 99 2 8 4 21 62 430 8 51 43 73 95 79 12 15 1259 106 641 290 41 32 3600 555
gro6 87 1620 14 116 28 136 596 577 74 86 313 3407 3600 1579 147 298 2592 3600 3602 3600 3342 595 3600 3601
hk48 29 70 3 6 12 27 53 156 33 19 102 58 118 322 57 69 3600 118 165 193 130 89 3600 505
kroA100 143 1069 14 71 72 259 985 649 45 94 1982 3548 3600 3600 182 761 3600 3600 3604 3601 276 578 3600 3600
kroA150 319 3601 45 2366 217 228 3604 3601 729 1203 3600 3600 3601 3601 343 930 3600 3602 3601 3601 691 1595 3600 3601
kroA200 1188 2847 133 733 1392 2268 2075 3601 203 1777 2490 3601 3601 3601 698 3603 3600 3602 3601 3602 1900 3601 3600 3775
kroB100 218 1053 14 71 62 227 615 1161 71 192 304 3472 3601 3600 242 546 3600 3600 3600 3600 325 548 3600 3624
kroB150 3601 3592 79 418 1397 3604 1483 3601 180 658 1676 3602 3603 3601 436 3132 3600 3604 3606 3601 959 1744 3600 3604
kroB200 1801 3601 134 2240 3600 2587 3602 3602 422 3218 3600 3643 3601 3602 882 3602 3600 3602 3603 3600 3398 3608 3600 3601
kroC100 341 1018 36 104 193 597 1958 3600 79 464 540 3609 2405 3381 144 312 3600 3611 3606 3601 514 1556 3600 3600
kroD100 173 330 11 45 55 395 686 1283 57 205 1592 1124 978 1878 159 254 3600 3602 3601 3601 449 1103 3600 3602
kroE100 225 586 27 97 105 353 2055 2273 198 450 1586 3601 759 3600 84 189 3600 3600 3604 3540 316 623 3600 3608
lin105 65 2050 12 1233 81 159 1794 1580 165 308 3600 3606 3600 3600 159 463 3600 3604 3601 3600 271 1375 3600 3601
1in318 3604 3602 949 3601 3600 3601 3605 3605 3347 3603 3600 3602 3618 3603 3600 3600 3600 3605 3635 3603 3600 3603 3600 3621
linhp318 3609 3602 696 2426 3600 3605 3613 3604 3600 3601 3600 3604 3611 3602 2610 3605 3600 3629 3626 3600 3600 3602 3600 3612
pcb442 3604 3606 1136 3601 3600 3604 3675 3604 3600 3614 3600 3616 3600 3610 3600 3614 3600 3600 3600 3610 3600 3606 3600 3600

Continued on next page

0€

Table Al: Achieved times (in seconds) for each instance of I; and approach.

10 trips 20 trips 30 trips 40 trips

Instances

Aa At As An o Ay Aa A Asg An A Ay Aa At As An A Ay Aa At As An A Ay
prl07 801 3600 101 794 965 1954 3601 3601 360 571 3600 3600 3605 3601 489 3601 3600 3604 3605 3601 1224 1324 3600 3604
prl24 347 1262 23 282 262 591 3602 3601 472 2469 3600 3600 3604 3601 1357 658 3600 3601 3603 3601 559 907 3600 3605
prl36 522 2879 47 214 285 516 3602 3601 410 3601 3600 3602 3608 3601 696 879 3601 3603 3602 3601 484 1388 3600 3602
prl44 2767 3033 216 410 3060 3601 3604 3601 748 3609 3600 3602 3601 3601 360 792 3600 3604 3603 3601 1866 3614 3600 3603
prl52 259 1013 45 255 260 343 1204 3601 126 637 2057 3606 3602 3601 791 1761 3600 3604 3601 3601 617 1282 3600 3601
pr226 3604 3602 2637 3603 3600 3603 3630 3601 2363 3611 3600 3631 3605 3602 1965 3604 3600 3601 3602 3602 3600 3605 3600 3602
pr264 3608 3602 821 1935 3600 3601 3602 3603 3600 3605 3600 3602 3602 3604 3600 3604 3600 3602 3603 3603 3600 3603 3600 3604
pr299 1758 3601 239 3604 3600 3602 3606 3602 807 3618 3600 3601 3602 3601 2246 3604 3600 3603 3605 3604 2913 3603 3600 3602
pr439 3056 3602 836 3603 3600 3606 3604 3602 3600 3601 3600 3626 3637 3604 3600 3603 3600 3615 3634 3600 3601 3611 3600 3619
pr76 60 1275 13 100 206 47 610 827 70 53 3600 1785 3601 2256 182 131 3600 3600 3473 3117 298 191 3600 3601
rat195 358 3601 81 606 118 543 3614 3601 1242 2208 3600 3638 3603 3601 460 3616 3600 3618 3601 3602 1474 3605 3600 3602
rat99 154 624 12 59 74 182 1144 3242 116 163 852 3618 1044 3600 112 215 3600 3600 3601 3600 327 751 3600 3627
rd100 876 3600 59 273 345 963 3600 3600 133 480 1267 3600 3600 3601 138 592 2076 3601 3602 3601 179 454 3600 3603
rd400 3601 3601 555 3605 3600 3607 3617 3603 2545 3617 3600 3654 3652 3606 3600 3622 3600 3670 3600 3611 3600 3610 3600 3600
sil75 2570 3601 231 1514 3600 3601 3607 3602 635 3190 3600 3601 3615 3602 965 3600 3600 3606 3607 3602 2106 3601 3600 3604
st70 81 309 9 30 57 88 280 1853 55 172 286 1160 1443 3600 75 174 538 804 3600 2509 209 226 3600 3600
swiss42 20 88 7 13 25 18 68 106 43 16 134 128 101 234 63 27 2234 112 129 276 128 48 3600 431
ts225 3643 3601 338 880 3600 3605 3602 3602 569 1586 3600 3603 3603 3600 1119 3612 3600 3603 3602 3602 1468 3601 3600 3602
tsp225 975 3601 113 464 1986 1650 3603 3602 504 3127 3600 3608 3639 3602 3200 3603 3600 3633 3602 3601 3162 3602 3600 3604
uls9 641 966 39 171 398 857 3601 3601 198 419 2602 3601 3601 3601 346 1629 3600 3601 3603 3601 479 2666 3600 3601
ulyssesl6 O 0
ulysses22 3 10 1 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1€

Table A2: Achieved gaps (as percentages) for each instance of I; and approach.

10 trips 20 trips 30 trips 40 trips

Instances

Aaxn Ar As Ax § ALY Aa Ar As Ax § ALY Aa Ar As Ax s Al An Ar As An 5 Al
a280 0.0 20 0.0 0.0 0.2 1.2 21 37 0.0 08 1.8 26 3.0 36 0.0 23 1.7 3.0 - 3.7 0.0 17 1.7 -
att48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 06 0.0 0.0 0.0 0.0 0.0 04 0.0
bayg29 0.0
bays29 0.0
berlin52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 0.0 0.0 0.0 0.0 0.0 3.7 0.0
bier127 0.0 1.8 0.0 0.0 0.0 0.0 46 33 00 00 32 59 21 126 0.0 0.0 2.1 5.5 34 6.0 0.0 0.0 27 7.2
brazil58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 05 0.0 0.0 0.0 0.0 0.0 1.6 0.0
brgl180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0
burmal4 0.0
ch130 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 03 0.0 0.0 05 0.0 0.0 14 4.1 22 06 0.0 0.0 1.8 3.7
ch150 0.0 0.0 0.0 0.0 0.0 0.0 28 36 0.0 0.0 29 38 24 47 0.0 0.0 14 3.8 3.0 1.7 0.0 0.0 24 4.0
d198 09 24 00 00 04 24 21 46 00 00 22 27 25 69 0.0 04 1.7 3.0 3.2 49 0.0 1.2 23 3.7
d493 1.8 12 0.0 12 0.1 1.8 - 2.1 1.1 1.9 1.0 - - 4.5 1.5 39 16 - - 36 1.1 36 16 -
dantzig4d2 0.0 0.5 0.0
eil1l01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 15 40 0.0 0.0 1.1 22 1.8 04 0.0 0.0 19 44
eil51 0.0 0.7 0.0
€il76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 4.8 0.0 0.0 0.0 0.0 1.7 4.8
fl417 1.5 28 0.7 21 1.1 20 - 53 0.8 25 1.3 - - 27 05 25 10 - - 26 0.6 26 1.1 -
fri26 0.0
gil262 22 25 00 00 12 27 19 43 0.0 01 07 22 20 5.1 1.4 33 21 238 30 76 04 14 22 31
grl20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 04 00 20 1.0 0.0 0.0 1.5 5.0 0.0 72 0.0 0.0 2.7 23
grl37 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 ©0.0 0.0 07 16 0.0 03 0.0 0.0 05 0.6 3.3 54 0.0 0.0 42 6.7
grl? 0.0
gr202 0.0 23 0.0 0.0 0.0 0.0 33 11.1 0.0 125 23 41 23 65 0.8 3.6 24 338 3.7 6.3 2.0 50 31 45
gr2l 0.0
gr229 0.0 09 0.0 0.0 0.0 0.0 24 47 0.0 48 27 29 28 49 1.5 2.7 25 5.6 73 83 2.8 96 4.1 6.4
gr24 0.0
gr431 06 29 0.0 1.0 01 1.0 - 1.9 0.5 1.8 1.0 - - 49 33 38 20 - - 33 1.0 33 16 -
grd8 0.0 2.1 0.0
gro6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22 0.0 0.0 0.0 0.0 4.3 44 24 0.0 0.0 53 8.2
hk48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 0.0 0.0 0.0 0.0 0.0 2.0 0.0
kroA100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30 0.0 0.0 0.0 07 3.7 22 04 0.0 0.0 25 5.0
kroA150 0.0 0.1 0.0 0.0 0.0 0.0 32 38 0.0 0.0 27 40 1.0 93 0.0 0.0 1.0 43 1.3 1.6 0.0 0.0 05 28
kroA200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 07 29 41 0.0 0.0 06 3.5 27 36 0.0 7.7 28 35
kroB100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22 04 0.0 0.0 2.7 4.6 09 0.0 0.0 00 1.1 1.6
kroB150 1.1 0.0 0.0 0.0 0.0 29 0.0 05 ©00 0O 00 06 22 19 0.0 0.0 1.7 39 1.4 46 0.0 0.0 1.1 3.
kroB200 0.0 1.0 0.0 0.0 03 0.0 04 21 00 00 03 15 25 34 0.0 05 03 37 28 85 0.0 0.1 27 3.8
kroC100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 00 1.8 0.0 0.0 0.0 0.0 05 1.1 41 08 0.0 0.0 34 54
kroD100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 09 1.7 25 33 0.0 00 19 59
kroE100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39 0.0 0.0 0.0 0.0 04 0.8 1.9 0.0 0.0 0.0 21 5.0
lin105 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .1 25 10 0.0 0.0 0.0 16 1.6 0.8 1.3 0.0 0.0 09 4.5
1in318 1.1 1.2 0.0 01 06 1.8 27 29 0.0 20 1.4 3.0 - 3.8 1.5 33 1.5 - - 4.7 1.3 2.7 1.8 -
linhp318 1.5 2.0 0.0 0.0 09 20 19 24 1.4 33 1.5 25 - 33 0.0 38 1.5 2488 - 34 09 1.7 19 -
pcb442 1.4 23 0.0 09 03 1.7 - 1.6 0.4 1.5 1.0 - - 3.2 1.3 3.1 14 - - 53 1.3 52 1.3 -

Continued on next page

48

Table A2: Achieved gaps (as percentages) for each instance of I; and approach.

10 trips 20 trips 30 trips 40 trips

Instances

Aaxn Ar As Ax § ALY Aa Ar As Ax § ALY Aa Ar As Ax s Al An Ar As An 5 Al
prlo7 0.0 35 0.0 0.0 0.0 0.0 29 34 00 00 25 53 33 24 0.0 0.0 3.7 5.1 4.0 126 0.0 0.0 42 54
prl24 0.0 0.0 0.0 0.0 0.0 0.0 37 53 00 00 29 51 34 1.3 0.0 0.0 21 5.1 24 39 0.0 00 1.8 5.1
prl36 0.0 0.0 0.0 0.0 0.0 0.0 28 14 00 06 06 35 27 1.5 0.0 0.0 24 49 1.8 75 0.0 0.0 1.8 3.2
prl44 0.0 0.0 0.0 0.0 0.0 31 34 22 00 04 29 40 16 0.0 0.0 0.0 12 33 34 27 0.0 09 25 4.1
prl52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 05 1.8 33 0.0 0.0 31 35 1.7 2.1 0.0 0.0 1.1 3.6
pr226 28 21 0.0 03 20 28 24 38 0.0 0.2 1.9 27 40 72 0.0 52 28 3.1 26 6.2 2.2 67 28 34
pr264 1.9 07 0.0 00 10 1.8 24 49 1.0 5.9 1.7 4.0 4.1 9.6 1.8 9.8 25 4.7 50 6.8 0.8 7.3 22 5.0
pr299 0.0 1.5 0.0 0.1 08 08 09 26 0.0 1.8 1.3 14 28 36 0.0 15 02 238 42 56 0.0 6.0 1.7 4.2
pr439 0.0 22 0.0 02 07 1.1 - 2.5 1.0 2.0 1.8 - - 3.9 1.5 34 21 - - 46 1.6 3.7 23 -
pr76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 07 00 10 0.0 0.0 0.0 20 22 0.0 0.0 0.0 0.0 26 74
rat195 0.0 29 0.0 0.0 0.0 0.0 29 48 00 0.0 16 35 04 27 0.0 0.0 03 0.6 3.0 52 0.0 02 24 23
rat99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 1.8 0.0 0.0 0.0 0.0 05 14 3.1 0.0 0.0 0.0 3.0 4.0
rd100 0.0 78 0.0 0.0 0.0 0.0 20 06 00 0.0 00 34 11 0.0 0.0 0.0 0.0 1.6 1.8 0.0 0.0 0.0 1.6 4.1
rd400 06 26 0.0 05 04 1.8 - 1.9 0.0 15 1.1 - - 4.5 1.3 36 1.7 - - 2.5 1.1 23 1.8 -
sil75 0.0 31 0.0 00 72 39 27 36 00 00 75 58 29 48 0.0 0.1 69 5.6 25 6.1 0.0 0.3 6.1 5.6
st70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 1.1 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 52 3.0
swiss42 0.0 1.6 0.0
ts225 20 02 00 00 05 27 12 10 00 00 07 20 26 31 0.0 0.0 06 34 43 48 0.0 06 0.7 3.2
tsp225 0.0 0.0 0.0 0.0 0.0 0.0 06 30 00 00 06 27 23 71 00 01 27 238 26 6.8 0.0 45 26 3.3
uls9 0.0 0.0 0.0 0.0 0.0 0.0 1.3 08 00 0.0 00 25 14 47 0.0 0.0 1.8 4.1 1.2 14 0.0 0.0 1.0 29
ulyssesl6 0.0
ulysses22 0.0

€¢

Table A3: Achieved times (in seconds) for

each instance of Iy and approach.

10 trips 20 trips 30 trips 40 trips

Instances

A .AT As .AN 'A/S .Aj\ .AA .AT .As .AN ,S .AfA‘ .AA .AT As .AN A/S .Aj\ .AA -AT -AS -AN ,S -AfA‘
a280 1015 2984 546 232 3600 3219 3601 3602 3600 741 3600 3601 3601 3603 3600 2818 3600 3602 3602 3602 3600 3616 3600 3603
att48 13 59 4 4 27 19 25 103 13 16 46 65 226 88 65 8 3600 716 246 109 127 20 3600 561
bayg29 3 4 1 1 5 4 8 5 5 3 11 8 33 43 41 7 1868 28 34 26 16 9 3571 43
bays29 4 2 1 1 2 4 13 19 8 3 26 13 21 27 13 7 109 19 25 16 17 2 115 31
berlin52 9 27 2 6 2 10 595 167 30 15 606 440 359 264 232 40 3600 636 768 157 252 29 3600 682
bier127 443 3600 55 347 894 694 1635 3601 147 485 3600 3601 3604 3601 3600 838 3600 3603 3601 3601 316 334 3600 3601
brazil58 29 205 5 10 37 23 93 138 49 20 2862 114 497 297 84 31 3600 1140 967 439 165 49 3600 1332
brgl80 551 2251 34 129 3600 946 3606 1685 101 195 3600 3607 3614 3601 1109 501 3600 3637 3604 3601 2183 538 3600 3622
burmald O 0
ch130 186 302 55 46 3600 304 3603 2271 370 228 3600 3603 3617 3601 3600 349 3600 3603 3601 3541 864 212 3600 3602
ch150 218 284 66 49 3600 327 3602 1485 3600 156 3600 3607 3602 3601 3320 222 3600 3601 3602 3201 3600 504 3600 3602
d198 1446 3234 149 441 1396 3601 3606 3601 3600 1038 3600 3607 3603 3601 2256 3605 3600 3601 3603 3601 3600 1360 3600 3601
d493 3601 3602 3600 3605 3600 3609 3627 3602 3600 3614 3600 3618 3654 3608 3600 3601 3600 3610 3600 3616 3600 3603 3601 3600
dantzigd2 2 19 0 1 1 3 36 109 31 11 85 150 118 103 49 13 3011 112 144 168 85 12 3600 283
eil101 477 726 104 70 1817 1572 3600 1181 329 71 3600 3622 3601 1944 397 182 3600 3600 3601 3601 3600 247 3600 3601
€il51 30 198 5 18 43 30 151 170 44 24 1746 472 424 198 85 22 3600 810 1045 287 309 32 3600 1253
€il76 61 30 7 6 137 68 463 568 54 36 1374 648 3601 1059 281 148 3600 3600 3601 1774 2311 143 3600 3600
1417 2386 3600 3600 729 3600 3322 3613 3601 3600 1306 3600 3608 3604 3602 3600 3601 3600 3601 3603 3601 3600 3605 3600 3601
fri26 5 16 1 2 2 5 9 17 3 2 17 12 15 4 5 2 28 16 26 31 23 5 2716 33
gil262 3619 2071 3600 294 3600 3600 3624 3602 3600 1626 3600 3607 3602 3600 3600 3606 3600 3605 3647 3602 3600 1637 3600 3604
grl20 130 380 11 45 192 162 1770 436 196 56 3600 3618 3602 1617 350 103 3600 3624 3601 3601 1582 667 3600 3602
grl37 570 1939 84 322 497 842 3309 1316 271 319 3600 3602 3603 1825 891 245 3600 3601 3601 3601 3600 3601 3600 3602
grl7 0 1 0 0 0 0 1 7 0 1 1 1 0 1 0 0 1 0 1 2 0 1 5 1
gr202 943 3601 78 424 3600 745 3604 3601 1107 2407 3600 3605 3602 3601 3600 3609 3600 3603 3603 3602 3600 3601 3600 3603
gr21l 0 1 0 0 0 0 3 3 1 1 2 3 4 10 3 1 19 4 14 12 14 2 26 11
gr229 3605 3602 2210 1639 3600 3602 3641 3602 3600 2590 3600 3616 3602 3602 3600 1922 3600 3602 3604 3602 3600 3432 3600 3603
gr24 3 6 1 1 2 3 1 1 0 0 2 2 3 2 3 0 18 3 15 13 7 2 50 13
gr431 3601 3601 3600 3615 3600 3606 3607 3603 3600 3615 3600 3604 3609 3606 3601 3603 3600 3619 3666 3607 3600 3602 3600 3634
gra8 27 78 5 12 50 33 95 151 27 28 284 111 193 113 100 10 3600 489 738 212 462 21 3600 763
gro6 81 175 20 24 1200 137 3600 2373 307 320 3600 3601 3601 2299 489 183 3600 3601 3604 2873 2544 121 3600 3617
hk48 19 61 3 5 62 14 57 278 17 17 135 67 390 398 131 82 3600 477 338 153 282 23 3600 337
kroA100 257 1062 54 100 3600 970 653 2046 85 387 2444 3324 3600 1327 491 111 3600 3616 3600 1374 2769 246 3600 3602
kroA150 125 252 112 46 3600 322 3603 1748 709 271 3600 3605 3600 3601 1655 514 3600 3604 3603 3095 3600 403 3600 3651
kroA200 2677 766 1028 96 3600 3422 3607 2758 367 381 3600 3626 3602 3601 3600 1365 3600 3630 3603 3602 3600 1129 3600 3603
kroB100 184 236 21 47 534 224 1581 852 151 42 3600 3601 3600 1256 1309 108 3600 3601 3601 1007 463 83 3600 3600
kroB150 2791 545 1391 83 3600 3601 3603 3601 719 853 3600 3602 3601 1922 2832 243 3600 3604 3609 3601 3600 601 3600 3605
kroB200 2236 3600 157 454 3600 1284 3603 3601 3600 416 3600 3600 3604 3601 3600 608 3600 3601 3602 3602 3600 1064 3600 3601
kroC100 86 286 9 19 133 149 952 320 59 47 3600 3601 3600 602 325 70 3600 3601 3600 3140 1090 215 3600 3609
kroD100 93 354 13 42 328 135 3600 1808 901 124 3600 3601 3602 669 478 148 3600 3600 3605 3550 1566 170 3600 3601
kroE100 174 543 151 84 3600 883 3602 1000 856 122 3600 3600 3600 1071 500 94 3600 3600 3603 1321 3600 184 3600 3606
lin105 161 332 37 42 1901 153 3603 1343 760 221 3600 3602 3600 1245 633 183 3600 3612 3601 3601 862 534 3600 3601
1in318 2741 2982 2857 397 3600 3600 3643 3603 3600 886 3600 3640 3602 3605 3600 2914 3600 3603 3609 3607 3600 2785 3600 3604
linhp318 3601 1355 2837 678 3600 3606 3601 3602 3600 3600 3600 3663 3602 3605 3600 3603 3600 3602 3607 3603 3600 3615 3600 3610
pcb442 3613 3168 3600 830 3600 3626 3610 3603 3600 2685 3600 3601 3608 3610 3600 3603 3600 3609 3667 3612 3600 3605 3600 3639

Continued on next page

¥e

Table A3: Achieved times (in seconds) for

each instance of Iy and approach.

10 trips 20 trips 30 trips 40 trips

Instances

Aa At As An A Ay Aa At As An A Ay Aa At As An A Ay Aa At As An A Ay
prl07 8 0 0 0 0 8 180 618 38 38 668 484 26 1 1 1 1 26 44 1 1 1 1 41
prl24 1241 879 409 218 3600 1176 3602 1420 3190 193 3600 3600 3604 3600 3600 797 3600 3608 3602 2336 3600 241 3600 3603
prl36 377 289 50 58 1814 451 1398 544 134 550 3600 2795 3601 2311 1482 232 3600 3603 3602 1235 2410 383 3600 3602
prl44 3601 470 1934 73 3600 3601 3602 1315 1244 72 3600 3601 3601 3601 2853 312 3600 3648 3604 2308 3600 294 3600 3601
prls2 80 585 1012 37 3600 181 3600 3600 610 156 3600 3600 3604 3601 3600 1624 3600 3601 3603 3601 3600 3605 3600 3601
pr226 288 610 3600 62 3600 898 3601 3600 3600 229 3600 3603 3610 3601 3600 1408 3600 3602 3601 3602 3600 1061 3600 3601
pr264 501 1949 546 365 3600 419 3602 3600 3600 521 3600 3606 3605 3601 3600 3604 3600 3601 3601 3601 3600 1942 3600 3712
pr299 1049 3601 2088 542 3600 3601 3610 3603 3600 2530 3600 3601 3604 3603 3600 3145 3600 3604 3617 3603 3600 3604 3600 3608
pr439 3603 3602 3600 1709 3600 3602 3604 3604 3600 3613 3600 3611 3618 3605 3600 3610 3600 3609 3629 3602 3600 3602 3600 3629
pr76 73 2679 27 388 578 283 1853 825 105 106 3600 3084 948 377 263 48 1403 3600 3601 3600 517 595 3600 3600
rat195 682 547 650 121 3600 3019 3610 1193 274 202 3600 3602 3606 3601 3600 2425 3600 3603 3605 3601 3600 1469 3600 3601
rat99 189 256 32 21 816 247 3601 756 236 56 3600 3601 3601 1545 822 114 3600 3601 3601 3600 338 410 3600 3604
rd100 490 236 82 19 3567 1820 1359 563 139 63 3600 3600 3615 1097 996 75 3600 3610 3602 1482 2710 136 3600 3600
rd400 3606 3601 3600 1872 3600 3600 3618 3608 3600 2560 3600 3627 3619 3608 3600 3601 3600 3633 3641 3610 3600 3603 3601 3634
sil75 902 1189 249 157 3600 1200 3607 3601 3600 466 3600 3605 3617 3603 3600 639 3600 3606 3601 3603 3600 799 3600 3626
st70 102 525 28 52 552 90 1082 669 72 110 3600 1577 919 585 115 114 3600 3600 3099 633 889 84 3600 3600
swiss42 32 67 7 9 52 31 44 44 20 8 242 129 65 78 33 16 612 193 550 90 148 8 3600 498
ts225 77T 1479 140 351 3600 1136 3601 3601 1209 928 3600 3606 3603 3602 3600 959 3600 3609 3603 3602 3600 3601 3600 3603
tsp225 827 3280 798 356 3600 1134 3601 3602 3600 1882 3600 3612 3602 3602 3600 2164 3600 3627 3602 3602 3600 3005 3600 3602
ulb59 612 537 130 48 3600 3097 3601 3601 1768 388 3600 3601 3602 3600 3600 423 3600 3617 3603 3601 3600 643 3600 3602
ulyssesl6 O 1 0
ulysses22 1 2 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18

Table A4: Achieved gaps (as percentages) for each instance of Iy and approach.

10 trips 20 trips 30 trips 40 trips

Instances

Aa Ar As Ax s " Aa At As Ay § Ay Aa Ar As Ax o W Aa At As Ax N
a280 0.0 0.0 0.0 0.0 26 0.0 34 04 18 0.0 44 52 5.2 58 35 0.0 54 59 9.1 53 4.2 0.0 57 9.1
att48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 1.1 0.0
bayg29 0.0 o0.0
bays29 0.0
berlin52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50 0.0 0.0 0.0 0.0 0.0 55 0.0
bier127 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 06 22 6.8 60 09 00 67 92 08 02 0.0 0.0 08 33
brazil58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 04 00 00 0.0 0.0 0.0 7.0 o0.0
brgl180 0.0 0.0 0.0 0.0 43 0.0 1.7 0.0 0.0 0.0 7.1 4.3 6.0 1.8 0.0 0.0 9.5 9.3 5.5 1.0 0.0 0.0 9.2 83
burmal4 0.0
ch130 0.0 0.0 0.0 0.0 25 0.0 4.4 0 0.0 0.0 58 4.7 49 04 08 0.0 6.5 77 4.1 0.0 0.0 0.0 55 6.6
ch150 0.0 0.0 0.0 0.0 36 0.0 52 0.0 24 0.0 59 6.3 64 0.9 0.0 0.0 6.2 8.5 57 0.0 27 00 74 74
d198 0.0 0.0 0.0 0.0 0.0 1.3 34 07 31 0.0 4.1 5.6 3.8 43 0.0 0.0 20 22 44 54 36 0.0 4.1 5.2
d493 1.6 18 0.7 21 19 18 - 29 1.1 18 20 - - 34 1.5 2.7 25 - - 3.2 1.7 28 28 -
dantzig42 0.0 25 0.0
eil101 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.0 0.0 5.0 77 3.1 0.0 0.0 0.0 6.0 57 6.6 27 35 0.0 92 88
€il51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35 0.0 0.0 0.0 0.0 0.0 6.8 0.0
€il76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 58 49 6.3 0.0 0.0 0.0 7.5 7.0
fl417 0.0 1.2 13 0.0 25 00 25 20 14 0.0 30 23 29 50 24 03 39 3.1 49 63 40 0.1 54 53
fri26 0.0
gil262 1.7 0.0 20 0.0 43 38 53 50 22 0.0 48 66 4.3 3.7 1.8 0.3 4.7 4.3 70 56 34 0.0 57 99
grl20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44 4.2 2.8 0.0 0.0 0.0 59 47 50 55 0.0 0.0 6.0 6.0
grl37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 47 34 0.0 0.0 0.0 48 6.0 3.1 0.2 09 0.0 45 6.1
grl7 0.0
gr202 0.0 0.0 0.0 0.0 0.7 0.0 19 35 0.0 0.0 35 28 3.0 34 14 0.0 3.1 4.6 28 55 1.9 04 34 55
gr2l 0.0
gr229 28 34 00 00 31 31 50 15 24 0.0 3.1 4.2 1.5 3.2 1.0 0.0 2.1 28 47 29 26 0.0 53 7.6
gr24 0.0 o0.0
gr431 19 21 08 07 16 24 27 45 1.8 1.8 30 36 - 54 0.7 46 28 - - 4.8 2.8 42 37 -
gra8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 55 0.0
gro6 0.0 0.0 0.0 0.0 0.0 0.0 31 0.0 0.0 0.0 56 5.5 39 0.0 0.0 0.0 6.7 5.3 57 0.0 0.0 0.0 66 9.6
hk48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 1.7 0.0
kroA100 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 57 85 48 0.0 0.0 0.0 6.0 9.7
kroA150 0.0 0.0 0.0 0.0 42 0.0 40 0.0 0.0 0.0 42 5.7 43 0.1 0.0 00 56 69 60 00 39 0.0 52 86
kroA200 0.0 0.0 0.0 0.0 31 0.0 23 0.0 0.0 00 22 24 72 29 24 00 48 6.6 97 35 3.7 0.0 53 11.4
kroB100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 5.7 5.7 0.0 0.0 0.0 7.5 8.2 56 0.0 0.0 0.0 46 7.7
kroB150 0.0 0.0 0.0 0.0 55 1.3 36 01 0.0 0.0 39 56 5.2 0.0 0.0 0.0 64 7.2 5.5 1.0 2.6 0.0 6.1 8.0
kroB200 0.0 0.1 0.0 0.0 20 0.0 39 01 31 0.0 49 6.8 4.0 0.3 0.7 0.0 3.8 7.0 57 06 34 0.0 54 84
kroC100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 08 3.2 0.0 0.0 0.0 6.2 82 6.1 0.0 0.0 0.0 6.3 10.0
kroD100 0.0 0.0 0.0 0.0 0.0 0.0 38 0.0 0.0 0.0 52 5.7 3.7 0.0 0.0 0.0 6.0 6.2 52 0.0 0.0 0.0 8.3 7.1
kroE100 0.0 0.0 0.0 0.0 40 0.0 25 0.0 0.0 00 79 59 3.7 0.0 0.0 0.0 55 6.5 59 0.0 28 0.0 7.6 7.4
lin105 0.0 0.0 0.0 0.0 0.0 0.0 16 0.0 0.0 0.0 32 36 4.2 0.0 0.0 0.0 54 52 38 03 0.0 0.0 53 6.3
lin318 0.0 0.0 0.0 0.0 32 13 57 21 30 0.0 55 59 83 23 40 0.0 56 8.3 73 50 3.1 0.0 6.1 8.1
linhp318 1.2 0.0 0.0 0.0 22 22 45 20 26 0.1 46 4.0 83 54 45 0.2 54 83 95 60 33 0.1 49 95
pcb442 1.3 0.0 10 0.0 27 21 34 34 29 0.0 52 4.1 5.8 45 32 1.0 48 58 - 6.1 36 3.1 50 -

Continued on next page

9¢

Table A4: Achieved gaps (as percentages) for each instance of Iy and approach.
10 trips 20 trips 30 trips 40 trips

Instances

As Ar As Ax Al Ay Ax Ar As An A, AL Ax Ar As Ax AL AL Ax Ar As Any AL A,
prio7 0.0
pri24 0.0 0.0 0.0 0.0 49 0.0 40 0.0 0.0 0.0 60 39 67 0.0 32 00 72 60 83 0.0 42 0.0 7.8 88
pri36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 48 0.0 0.0 0.0 50 64 50 0.0 0.0 0.0 64 638
pridd 08 0.0 0.0 00 55 08 52 0.0 00 00 48 49 58 00 0.0 0.0 66 65 7.5 0.0 34 00 72 9.3
pris52 0.0 0.0 0.0 0.0 42 0.0 16 0.0 0.0 00 38 46 61 37 24 0.0 54 72 108 32 52 0.0 80 115
pr226 0.0 0.0 1.4 0.0 41 0.0 54 26 42 00 7.1 62 44 10 3.0 0.0 50 56 67 58 44 0.0 61 8.9
pr264 0.0 0.0 0.0 0.0 1.6 0.0 29 03 1.8 0.0 31 20 32 53 15 02 30 37 55 91 33 0.0 53 7.4
pr299 0.0 0.0 0.0 0.0 23 07 25 08 12 00 32 41 40 20 20 0.0 33 49 63 92 24 1.6 44 6.3
prd39 1.0 12 1.0 0.0 20 24 36 36 21 04 31 41 2076 30 23 1.1 38 - - 3.7 2.7 2.4 36 -
pr76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37 0.0 0.0 00 0.0 0.0 00 52 52 01 0.0 00 56 7.4
rat195 0.0 0.0 0.0 0.0 42 0.0 17 0.0 0.0 00 2.0 25 44 51 21 0.0 50 73 50 26 15 0.0 52 5.2
rat99 0.0 0.0 0.0 0.0 0.0 0.0 23 0.0 0.0 0.0 57 56 42 0.0 0.0 0.0 57 47 27 0.0 0.0 0.0 48 59
rd100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44 6.1 60 0.0 0.0 0.0 82 115 57 0.0 0.0 0.0 81 10.1
rd400 08 03 14 0.0 30 1.7 33 08 23 00 43 47 56 30 27 1.7 42 56 - 60 39 2.8 53 -
si175 0.0 0.0 0.0 0.0 69 0.0 84 31 34 0.0 147 128 109 7.6 53 0.0 184 164 9.6 9.0 3.8 0.0 152 146
St70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 35 19 0.0 0.0 0.0 00 7.3 6.3
swissd2 0.0 1.6 0.0
t5225 0.0 0.0 0.0 00 1.6 0.0 18 03 0.0 00 38 37 52 53 22 0.0 40 68 60 68 22 0.0 54 6.3
tsp225 0.0 0.0 0.0 0.0 25 0.0 48 33 27 00 52 57 49 79 29 0.0 57 65 69 91 32 00 51 85
u159 0.0 0.0 0.0 0.0 14 0.0 28 44 0.0 00 40 50 43 03 14 0.0 48 55 39 0.1 22 0.0 49 6.1
ulyssesl6 0.0
ulysses22 0.0

8
2
8
£
s
:
S
s
g
2
g
w @ w w om w w
performance ratio
(a) I, 10 trips
100%
!
0%
;
b
'
8 1
= !
S o60%
£ i
50
5 !
|
g. 40% |
g
s !
i
! I o S !
SO S yp——
0%
' » " 0 . 20
performance ratio
(¢) I1, 30 trips
100%
0%
.
3
g
¢
5 60%
5 O OO OO ION EOOPRORY NI SO
8 T
5w
H
3
&
20%
T A
0%
» . o s 50 s
performance ratio
(e) Iz, 10 trips
100%
.
80% 1
8
g
¢
5 60%
z
s
:
2
é' 40%
2
g

20%

0%

performance ratio

(g) I2, 30 trips

8
g
]
£
s . N
H
H
g
£
— A
Ar
—
—= Ay
A
“ “ “ “ " =
performance ratio
(b) I, 20 trips
100%
80%
8
g
5 o p—y
e
s .
3 == Ay
£ ’
g 0% mm Ag
g
&
20%
l
0%
: w0 zm) w0 w ww o -
performance ratio
(d) I, 40 trips
100%
E
r
K
0% '
§
¢
S 60%
5
T |
5
g
g b
g
£
1
1
4
20%
; A
0%
) » w “ " w0 - o
performance ratio
(f) I2, 20 trips
100%
— A
ar
T
80% i ————Ay |
| “
g
g
:
S 60%
z
s i 3
5 i
5w 4
g I3
g
|
:
i
;
;
0% ¥
;
;
E
b

0%

performance ratio

(h) Iz, 40 trips

Figure 14: Performance profiles with respect to the solving times.

37

8.0%
12.0%
7.0%
10.0%
6.0%
2 8.0%
% 5.0% g
¢ g
H 2
3 =
B 40% 5w
e
3.0% o
2.0%
2.0%
1.0%
0.0%
(a) I, 10 trips
e
* A
® Ar 120%
120% A A
® An
v 4 T00%
10.0%
o 8.0%
o 80% %
g
¢ 2
¢ E
.ﬁ © 60%
T 60%
4.0%
4.0%
2.0%
2.0%
0.0%
0.0%

40> nd

osion

(b) I, 20 trips

pmmmm
& As
® Ar

| A As
® Ay
v A

(¢) I1, 30 trips

16.0%
7.0% o
6.0% .
o 10.0%
g
g :
o 40% 2 so%
E] E
: g
g
= 3.0% 6.0%
2.0% 4.0%
2.0%
1.0%
0.0%

0.0%

(e) I2, 10 trips

200% oo
* As
” % Ar .
e 1.0
A As
® An
0% | W Ag o
125% o 100%
& g
¢ 2
£ 100% E 0%
3 2
T
75% 6.0%
0%
50%
20%
25%
00%
00%

(g) I2, 30 trips

Figure 15: Achieved gaps.

38

(d) Ih, 40 trips

(f) Iz, 20 trips

KX

A
At
As

Ay

(h) Iz, 40 trips

proportion

proportion

proportion

proportion

025

020

015

010

1 —

Ar As An L

(a) I, 10 trips

- -
Ar As An y

(¢) I, 30 trips

(e) Iz, 10 trips

Ar As An a4

proportion

proportion

proportion

proportion

An

Il

Ar

(b) I, 20 trips

Ax

1

Ar

(d) I, 40 trips

As

4s

—

Ar

(f) I2, 20 trips

——
Ar

As

As

i
An AL
An AL
= ———
E AL
An AL

(g) Iz, 30 trips (h) I, 40 trips

Figure 16: Primal parts of the achieved gaps.

39

5 shortcut
fallback
5 shortcut
fallback

IEE distance

IEE distance
-

W station
.

L]

W station
.

VA station

@4 station

16000
14000
12000

%) 9] n
o oY o,
= B R
o o =
+ + e
o (e} o
— [a\] o
- - - e
< = <
— . —~ —
e} EEEEEEEEEEEEEERARREEN ko) &
= - = =
~
o
"~
Y
-
e —
58 i <
£s 32 2
o = L 4 s
532 Py @
T :
“ —_ el -llllll'.L ‘
= Srae EEEmEmmEmmEmme Sine N
e (i = T
] g 2 s N & K &] g g s g g g g g g g
sepou Buiydueiq# sapou Bulyoueiq# sapou Suiyoueiq# sapou Sulydueq;
g R .
i3 gii3 5823
S %= @ S h= @ S h=
Fo &8 "Eo & wh T &
L] N%E —7 NLAH __
]
H | H NGE
A ————————
P ———
) 195))
o [o
= B =
= = =
+ + +~
o o [en}
— (o] o
< < <
— — —
< %))
N = =

siig

2 €583

o0

TR

NUH am——

]
|
E—RH

g g g g 8 8 8 g8 8] g ° 8 8 H 8 8 8 ° 8 8 8 8 8 8 8 8 °
E s 2 g g g g g 8 g g g 2 g g g s g g 5 2] 2 2 s

sapou Bupypueiq# sapou Buiydueiq sopou Buiypuesq sapou Suiypueiq

(h) Ag, 40 trips
40

(g) As, 40 trips
Figure 17: Number of tree nodes created by the branch-and-price approaches Ag and Ag (instance

set I7).

2y x 58 x FrT P

383 383 383 383 a

SL5E s28s5s8 sgss S8 =8

2583 2583 £5g3 £5g3 {

B ok = ® 8 b= 8L = ® O h = L |

R e T 8 LR 5% 5 8 .
P s ——

p p p p -

L H | NUH | NUHE | NPH|

N L L H N

(b) Asg, 10 trips
(d) Asg, 20 trips
(f) Ag, 30 trips

se

O
Awmwm— gze

400000
300000
00000
100000
500000
300000
600000
500000
800000
100000
200000

400000

g
.

sopou Suioueiq# sapou Supouelq apou Buiyoueiq#

shortcut

WEE distance

fallback
fallback

1NN distance

—
@4 station
]

WA station
KW shortcut

shortcut

HEE distance

fallback

(a) As, 10 trips
(c) As, 20 trips
(e) Ag, 30 trips

EEE distance
fallback

WA station
Wl shortcut

30000
25000
20000
5000
10000
o
14000
12000
10000
8000
o

apou SuiypueiqH sapou Buiypueiq# sapou Buiypueiq# sapou Buiueiq

175000
150000

5 125000
00000
75000
50000
25000
20000
70000
60000
0000
0000
30000
20000
10000

(h) Ag, 40 trips
41

(g) As, 40 trips
Figure 18: Number of tree nodes created by the branch-and-price approaches Ag and Ag (instance

set Iy).

	Introduction
	Related Work

	Formulations
	Arc-based Formulation
	Pattern-based Formulations
	Trip Patterns
	Segment Patterns
	Nested Decomposition Approach

	Algorithmic Components
	Primal Heuristic
	Pricing
	Farkas Pricing
	Reduced Cost Pricing

	Branching
	Branching on Station Variables
	Branching on Shortcut Variables
	Branching on Distances
	Selection of a Branching Candidate

	Cutting Planes
	Preprocessing
	Implementation

	Experiments
	Platform and Instances
	Results and Discussion

	Conclusion
	Appendix

