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Abstract

We introduce the (directed) multi-stop station location problem. The goal
is to install stations such that ordered (multi-)sets of stops can be traversed
with respect to range restrictions that are reset whenever a station is visited.
Applications arise in telecommunications and transportation, e.g., charging
station placement problems. The problem generalizes several network opti-
mization problems such as (directed) Steiner tree problems. We show strong
intractability results of the directed and undirected version under different
complexity assumptions; that is, there are no constant factor approximation
algorithms, unless P = NP and there are no polylogarithmic approximation
algorithms for the directed version, unless NP ⊆ dtime(npolylog(n)). By
a transformation from the directed version to shortest path problems we
obtain a linear approximation algorithm.

1. Introduction

The (directed) multi-stop station location problem ((d)mslp) is given
by a (directed) graph G = (F ∪ V,E) with edge costs cE : E → Q≥0,
edge lengths ` : E → Q≥0, and station installation costs cF : F → Q≥0.
Moreover, there is a set of trips T . Each trip t ∈ T is represented by an
ordered (multi-)set of stops St ∈ V mt for mt ∈ Z≥2 and is equipped with
a length bound rt ∈ Q≥0. A solution to the (d)mslp consists of a subset
of stations F ∗ ⊆ F and a node-path Pt in G[F ∗ ∪ St] for each trip t ∈ T
containing exactly its ordered stops (St = Pt \ F ∗). Each path Pt has to
obey the length bound rt, i.e., the lengths of the subpaths between the first
stop and the first used station, any two consecutive stations, the last station
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and the last stop of the original path or between the first and the last stop, if
Pt = St, may not exceed the length bound rt. The objective is to minimize
the costs for installing stations and the length of the paths:∑

f∈F ∗

cF (f) +
∑
t∈T

cE(Pt) .

For the purposes of distinguishability, whenever we consider the directed
version of the problem, we denote the directed graph with D = (V,A), the
arc costs with cA : A → Q≥0, and the arc lengths with ` : A → Q≥0.

The mslp and dmslp have many applications in practice such as charg-
ing station placement problems for (long-haul) e-mobility services. In the
same way, the expansion of a hydrogen filling infrastructure for fuel cell pow-
ered cars can also be depicted by it. Besides its applications in the transport
and mobility sector, it can also be used for planning telecommunications net-
works. The (directed) network design problem with relays (ndpr) [1, 2] is a
related problem that arises in the context of telecommunications and logis-
tics. A (directed) graph with edge costs, edge lengths, and costs for relays
as well as a distance bound and a set of origin-destination node pairs is
considered. The goal is to place the relays on the nodes in such a way that
all origin-destination node pairs can be served and the costs for installing
the relays and edge costs are minimized. In contrast to our problem, only
the origin and destination nodes are fixed and each selected edge must only
be paid once. Another related problem is the regenerator location prob-
lem [3] that deals with the design of optical networks and is a special case
of the ndpr. As the quality of optical signals deteriorates with the traveled
distance, the aim is to place regenerators at nodes such that all nodes are
able to communicate with each other while minimizing the installation cost.
In the context of electric vehicle charging, Zheng and Peeta [4] address a
variant of the ndpr in which relay nodes have capacities and the number of
relay nodes in a path, which connects origin and destination, is restricted.

The mslp not only has many applications in practice, but is also strongly
related to many graph and network optimization problems in theory. Con-
sider for example the generalized connectivity problem (gcp), also known as
group Steiner forest problem, where we are given an edge-weighted graph
G = (V,E) and a collection of distinct demands D = {(S1, T1), . . . , (Sk, Tk)};
each demand (Si, Ti) is a pair of disjoint node subsets. The goal is to find
a minimum weight subgraph connecting every demand, i.e., there is a path
in the subgraph between a node of Si and a node of Ti. The mslp gen-
eralizes the gcp as follows. We create for every edge e ∈ E a station fe
at the same cost as the edge and for every node v ∈ V a station fv with
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cost 0. We introduce for every i ∈ [k] nodes si and ti, a trip (si, ti) with
length bound ri = 0, and stations fv

Si
for v ∈ Si and fv

Ti
for v ∈ Ti with cost

0. Furthermore, for each i ∈ [k] we set the lengths of the edges {si, s} for
s ∈ Si, {ti, t} for t ∈ Ti, and {v, fv} for v ∈ Si ∪ Ti to 0. For every edge
e = {u, v} ∈ E we set the length of the edges {fu, fe} and {fv, fe} to be 0.
Finally, we set all not considered edge lengths to 1 and all edge costs to 0.
It is easy to see that there is a correspondence between solutions of the both
instances and that these solutions have the same cost. Therefore, the mslp
generalizes problems such as shortest path, minimum spanning tree, Steiner
tree, Steiner forest, non-metric facility location, tree multicast, and group
Steiner tree [5]. Moreover, since the previous problems are a special cases of
the mslp, lower bounds carry over. In particular, there is no O(log2−ε(n))
approximation for group Steiner tree [6], unless NP ⊆ ztime(npolylog(n))
and no (1 − ε) ln(n)-approximation for non-metric facility location, unless
P = NP [7]. Despite of the proof sketch we have stated, we will perform a re-
duction from the set cover problem to mslp in Section 2 to obtain properties
of the mslp instances more relevant in practice.

The dmslp is additionally strongly related to some other problems. Con-
sider for example the directed Steiner forest problem (dsfp), also known
as directed Steiner network problem, where we are given a directed graph
D = (V,A), arc costs c : A → Q≥0, and a set of (ordered) demands
D = {(s1, s2), . . . , (sk, tk)}; each demand (si, ti) is a pair of distinct vertices.
The goal is to find a minimum weight subgraph connecting the demands,
i.e., there is a directed (s, t)-path in the subgraph for every demand pair
(s, t) ∈ D. The dmslp generalizes the dsfp as follows. We create for every
arc a ∈ A a station fa with the same cost as the arc and for every vertex
v ∈ V a station fv with cost 0. We introduce for every i ∈ [k] vertices si
and ti, and a trip (si, ti) with length bound ri = 0 and we set the lengths
of the arcs (si, fsi) and (fti , ti) to be 0. For every arc a = (u, v) ∈ A we
set the lengths of the arcs (fu, fa) and (fa, fv) to be 0. Finally, we set all
not considered arc lengths to be 1 and all arc costs to be 0. Again, it is
easy to see that there is a correspondence between solutions of the both in-
stances and that these solutions have the same cost. Therefore, the dmslp
generalizes problems such as directed shortest path, directed minimum span-
ning tree, and directed Steiner tree. Moreover, since the previous problems
are a special cases of the dmslp, lower bounds carry over. In particular,
for any ε > 0 there is no O(2log

1−ε(n))-approximation for dsfp [8], unless
NP ⊆ dtime(npolylog(n)). Despite the proof sketch we have stated, we will
perform a reduction from the label cover problem to dmslp in Section 2
to obtain properties of the dmslp instances more relevant in practice. Al-
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though mslp and dmslp capture many graph and network optimization
problems, there are some properties arising in such problems that are not
covered, e.g., node- or edge-disjointness.

In this paper our contribution is not only limited to formally proving the
NP-hardness of both the mslp and dmslp, but we also show that there are
no constant factor approximation algorithms, unless P = NP, even when
restricting to metric instances. For dmslp we extend this result to (non-
metric) instances with only one trip and prove that there are no polylogarith-
mic approximations, unless NP ⊆ dtime(npolylog(n)). Many other network
design problems allow trivial approximation algorithms, but this seems not
to be the case for our problems. We obtain a linear approximation algo-
rithm by stating a non-trivial transformation from dmslp to shortest path
problems.

2. Computational Complexity

In this section, we show the intractability of mslp and dmslp under
different complexity assumptions. The intractability results also hold if we
are allowed to violate the range constraints up to a constant factor.

Definition 1. An (α, β)-approximation algorithm for the (d)mslp is a
polynomial-time algorithm that computes a solution (F ∗, {Pt}t∈T ) not ex-
ceeding the length bound rt up to a factor of α for each t ∈ T and having
cost of at most β ·OPT, where OPT denotes the minimum cost not exceeding
the original length bound rt for each t ∈ T .

In the following theorem, we show that mslp is hard to approximate
within any constant factor, unless NP = P, even when restricting to metric
instances. Furthermore, the result carries over if algorithms are allowed to
violate the length bounds by a factor of (2 − ε) for every ε > 0. We prove
this results by a reduction from the unweighted set cover problem. The set
cover problem is given by a finite ground set of elements U , and a finite
collection of subsets S where each S ⊆ U for S ∈ S. The goal is to find a
subcollection S∗ ⊆ S minimizing the cardinality |S∗| such that each element
of the ground set is covered, i.e., ∪S∈S∗S = U .

Theorem 2. For any ε > 0, there is no (2− ε, (1− ε) ln(
∑

t∈T mt

2 ))-approx-
imation algorithm for mslp, unless NP = P, even if restricting to instances
with cE = ` is a metric.
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Figure 1: Schematic representation of the instances used in the set cover reductions
of Theorem 2 and Theorem 3; (a) mslp (b) dmslp. All edges/arcs with length
within the length bounds are presented in gray and feasible solutions in black.

Proof. We reduce from set cover, which is known to be (1− ε) ln(|U |)-hard
to approximate for every ε > 0, unless NP = P [7].

Let U = {u1, u2, . . . , un} be the ground set and S be the collection of
subsets of the set cover instance. We construct an instance of mslp as
follows (cf. Fig. 1a). We create a node set V = {1, 2, . . . , 2n} and for each
subset S ∈ S a station location fS , i.e., the station locations are given by
F = {fS | S ∈ S} with costs cF ≡ M ∈ Z≥0. We will determine the
value of M later. The graph of the multi-stop station location instance is
the complete graph on V ∪ F . We set the costs and lengths of the edges
{{i, fS} | i ∈ [n], S ∈ S, i ∈ S} and {{i + n, fS} | i ∈ [n], S ∈ S, i ∈ S} to
be 1 and all other edge costs and lengths to be 2. For each t ∈ T := [n], we
define a trip with stops St = (t, t+n) and length bound rt = 1 representing
the element ut ∈ U of the ground set of the set cover instance.

Given a feasible cover of the set cover instance with subcollection S ′,
we create a feasible solution to the mslp instance as follows. For each set
S ∈ S ′ we add the station fS ∈ F to the solution. We know that for each
element ut ∈ U in the set cover instance there is some set St ∈ S ′ such
that ut ∈ St; we then add the path Pt = (t, fSt , t+ n) to the solution. The
resulting solution to the mslp instance has cost of at most M · |S ′| + 2n.
Since this holds for every feasible solution of the set cover instance, we have
OPTmslp ≤ M ·OPTsc+2n, where OPTsc and OPTmslp denote the optimal
values of the set cover and the mslp instance, respectively.

Let us assume that there is a (2− ε, (1− ε) ln(
∑

t∈T mt

2 ))-approximation
algorithm for mslp for some ε > 0. We then get a solution (F ∗, {Pt}t∈T )
by only using edges with length 1. Therefore, for each t ∈ [n] the path Pt
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has to use an edge {t, fSt} for some set St ∈ S with ut ∈ St, since all other
edges incident to t have length 2. Furthermore, there has to be a path from
fSt to t + n for t ∈ [n] ending with an edge {fSt+n , t + n} with t ∈ St+n,
since otherwise the edge would have length 2. Thus, removing this path and
using the edge {fSt , t + n} does not increase the cost. So, we can and do
assume that for each trip t ∈ T the path Pt has exactly the form (t, fSt , t+n)
for some St ∈ S with t ∈ S. Thus, F ∗ induces a solution to the set cover
instance as follows. For t ∈ [n] we add St to the set cover solution. Note
that the total number of sets used is exactly equal to the number of stations
|F ∗| and that the cost of the mslp solution is M · |F ∗|+2n which is bounded
from above by (1− ε) ln(

∑
t∈T mt

2 ) ·OPTmslp. Then, the total number of sets
in the constructed set cover solution is

|F ∗| ≤
(1− ε) ln(

∑
t∈T mt

2 ) ·OPTmslp − 2n

M

≤ (1− ε) ln(n) ·OPTsc +
2n · (ln(n)− 1)

M
,

bounded from above by (1−ε) ln(n) ·OPTsc for M = 2n2 and all sufficiently
large values of n. Thus, there is a (1− ε) ln(n)-approximation algorithm for
set cover, implying P = NP.

For dmslp we improve the hardness result of Theorem 2 and show that
the result also holds in case of having only one trip.

Theorem 3. For any ε > 0, there is no (1− ε) ln(
∑

t∈T mt−1)-approxima-
tion algorithm for the dmslp, even if restricting to instances with |T | = 1,
unless P = NP.

Proof. The proof is similar to the proof of Theorem 2, except that we can
reduce the number of stops, combine them into one trip, and change some
arc lengths (cf. Fig. 1b). We create a dmslp instance with vertices V = [n]
and station locations F = {fS | S ∈ S} with cF ≡ 1. We set the lengths
of the arcs {(i, fS) | S ∈ S, i ∈ S}, {(fS , i + 1) | S ∈ S, i ∈ S}, and
{(fS , 1) | S ∈ S, n ∈ S} to be 1 and all other arc lengths to be 3. For
the ease of presentation, we set cE ≡ 0. We define one trip with stops
S1 = (1, 2, . . . , n, 1) and length bound r1 = 2. Note, that each vertex i ∈ V
is associated with an element ui ∈ U and all outgoing arcs with length at
most 2 are the arcs {(i, fS) | S ∈ S, i ∈ S}. Following the reasoning of
the proof of Theorem 2, we have that each feasible solution of the set cover
instance transforms into a feasible solution of the dmslp instance and vice
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Figure 2: Schematic representation of the directed multi-stop station location in-
stance used in the label cover reduction of Theorem 4, with edges {v11 , v12}, {v21 , v12},
{v21 , v22}, {v21 , v
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are presented in gray. A Feasible solution is depicted in black.

versa. Moreover, since cF ≡ 1 and cA ≡ 0 the cost of the dmslp solution
equals the total number of sets used in the set cover solution. We conclude
that if there is a (1− ε) ln(

∑
t∈T mt − 1)-approximation algorithm for some

ε > 0 for dmslp with only one trip, then there is a (1− ε) ln(n)-approxima-
tion algorithm for set cover, implying P = NP.

We strengthen the inapproximability result of Theorem 3 to a hardness
of 2log1−ε(

∑
t∈T mt) for every ε > 0, under the stronger complexity assumption

NP * dtime(npolylog(n)) by a reduction from a minimization version of label
cover [9, Chapter 16.4]. This label cover problem is given by a bipartite
graph G = (V1 ∪ V2, E), possible labels L1 for V1 and possible labels L2 for
V2, and a non-empty relation ∅ 6= Rv1,v2 ⊆ L1 × L2 of acceptable labels for
each edge {v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2. The goal is to find sets
of labels Lv1 and Lv2 for each node v1 ∈ V1 and v2 ∈ V2 such that for every
edge {v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2 there is a label `1 ∈ Lv1 and a
label `2 ∈ Lv2 with (`1, `2) ∈ Rv1,v2 , while minimizing the total number of
labels

∑
v1∈V1

|Lv1 |+
∑

v2∈V2
|Lv2 |.

Theorem 4. For any ε > 0, there is no 2log
1−ε(

∑
t∈T mt

2
)-approximation

algorithm for dmslp, unless NP ⊆ dtime(npolylog(n)), even if restricting to
instances with cE = ` obeys the triangle inequality.

Proof. We reduce from label cover, which is known to be 2log
1−ε|E|-hard to

approximate for every ε > 0, unless NP ⊆ dtime(npolylog(n)) [9, Theorem
16.37]. Let (V1 ∪ V2, E) be the input graph of the label cover instance, L1
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and L2 be the labels for V1 and V2 respectively, and Rv1,v2 be the relation for
{v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2. We create an instance of dmslp as
follows (cf. Fig. 2). We create a vertex set V = V1∪V2 and station locations
F = (V1 × L1) ∪ (V2 × L2) and let the costs of the station locations be M .
We will determine the value of M later. We denote the station locations of
V1 × L1 and V2 × L2 by pairs such as (v1, `1) and (v2, `2), respectively. We
set the lengths of the following arcs to 1:

A1 = {(v1, (v1, `1)) | v1 ∈ V1, `1 ∈ L1},
A1,2 = {((v1, `1), (v2, `2)) | v1 ∈ V1, v2 ∈ V2, (`1, `2) ∈ Rv1,v2}}, and
A2 = {{(v2, `2), v2} | v2 ∈ V2, `2 ∈ L2}.

We set all other arc lengths to 2; all values larger than 1 would also be
sufficient. For each edge {v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2 we define a
trip t = (v1, v2) with stops St = (v1, v2) and length bound rt = 1.

Given a feasible labeling for the label cover instance with labels Lv1 ⊆
L1 for each v1 ∈ V1 and labels Lv2 ⊆ L2 for each v2 ∈ V2, we create
a feasible solution to the dmslp instance as follows. For each node v ∈
V1 ∪ V2 and label ` ∈ Lv we add the station (v, `) to the solution. We
know that for each edge {v1, v2} ∈ E with v1 ∈ V1 and v2 ∈ V2 in the
label cover solution there is some label `1 ∈ Lv1 and `2 ∈ Lv2 such that
(`1, `2) ∈ Rv1,v2 ; we then add the path P(v1,v2) = (v1, (v1, `1), (v2, `2), v2)
to the solution. The resulting solution to the dmslp instance has cost of
at most M · (

∑
v1∈V1

|Lv1 |+
∑

v2∈V2
|Lv2 |) + 3|E|. Since this holds for every

feasible solution of the label cover instance, we have that the optimal value of
the dmslp instance (OPTdmslp) is bounded from above by M ·OPTlc+3|E|,
where OPTlc denotes the optimal value of the label cover instance.

Let us assume that there is a (2 − ε, 2log
1−ε

∑
t∈T mt

2 )-approximation al-
gorithm for dmslp for some ε > 0. We then get a solution (F ∗, {Pt}t∈T )
only using arcs in A1 ∪A1,2 ∪A2, since rt < 2 for every t ∈ T . Note that in
A1∪A1,2∪A2 the only directed path connecting vertices v1 ∈ V1 and v2 ∈ V2

(if possible) uses the arcs (v1, (v1, `1)), ((v1, `1), (v2, `2)), and ((v2, `2), v2) for
some labels `1 ∈ L1 and `2 ∈ L2. By construction (`1, `2) ∈ Rv1,v2 , since
otherwise the arc ((v1, `1), (v2, `2)) would have length 2. Thus, the sta-
tions F ∗ induce a label cover solution as follows. For each path P(v1,v2) =
(v1, (v1, `1), (v2, `2), v2) we label v1 with `1 and v2 with `2. Note that the
total number of labels used is exactly equal to the number of stations |F ∗|.
The cost of the dmslp is M · |F ∗| + 3|E| which is bounded from above by
2log

1−ε
∑

t∈T mt
2 . Then, the total number of labels in the label cover solution
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is

|F ∗| ≤ 2log
1−ε

∑
t∈T mt

2 ·OPTdmslp − 3|E|
M

≤ 2log
1−ε|E| ·OPTlc +

3|T | · 2log1−ε|T | − 3|T |
M

bounded from above by 2log
1−ε|E| · OPTlc for M = |T |2 and all sufficiently

large values of |E| = |T |. Thus, there is a 2log
1−ε|E|-approximation algorithm

for label cover, implying NP ⊆ dtime(npolylog(n)).

Remark 5. For all values of |T |, the total number of stops is at least as large
as the number of nodes

∑
t∈T mt ≥ |V |. Therefore, Theorem 2, Theorem 3,

and Theorem 4 carry over to hardness results in terms of |V |.

3. Approximation Algorithm

In the previous section, we investigated the intractability of mslp and
dmslp and have seen that it is unlikely in terms of computational complexity
that there are approximation algorithms with small factors. In this section
we provide a linear approximation algorithm. For the following theorem it
is worth mentioning that we can assume that

∑
t∈T mt ≥ 2|T |.

Theorem 6. There is a (
∑

t∈T mt − |T |)-approximation for (d)mslp.

In order to prove this theorem, we first investigate the case |T | = 1
with the following lemma. Then, Theorem 6 follows immediately. For the
case |T | = 1 we transform instances of dmslp to instance of the directed
(s, t)-shortest path problem, which is given by a directed graph and arc
weights; the goal is to find a weight-minimum directed subgraph that admits
a directed path from s and t.

Lemma 7. There is a (
∑

t∈T mt−|T |)-approximation algorithm for dmslp
instances having only one trip (|T | = 1).

Proof. Let (F, V, cF , cA, `,S1, r1) be a dmslp instance |T | = 1 and with stops
S1 = (v1, v2, . . . , vm1). We create a shortest path instance as follows. For
each i ∈ [m1 − 1] we create two copies of the station locations F i

1 = F and
F i
2 = F and refer to the copies as (f, i)1 and (f, i)2, respectively. Further-

more, we create two vertices s and t. Then, the vertex set of the shortest
path instance is given by {v1} ∪ (∪i∈[m1−1]F

i
1)∪ (∪i∈[m1−1]F

i
2)∪ {vm1} with
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Figure 3: Schematic construction of the shortest path instance in Lemma 7.

s = v1 and t = vm1 . We create the arc set of the shortest path instance,
representing paths in the dmslp instance obeying the length bound, as fol-
lows. Note that we can and do assume that a feasible solution of the dmslp
instance contains each station at most once between two consecutive stops,
because otherwise we could remove the directed cycle without increasing
the cost. For i ∈ [m1 − 1], we first create arcs from s to (f, i)1 ∈ F i

1 if the
length of the path (v1, v2, . . . , vi, f) is within the length bound r1 and set
the weight to cA(v1, v2, . . . , vi, f) (cf. Fig. 3a); second, arcs from (f, i)2 ∈ F i

2

to (g, i + p)1 ∈ F i+p
1 for p ∈ {0, 1, . . . ,m1 − i − 1} if the length of the path

(f, vi+1, vi+2, . . . , vi+p, g) is within the length bound r1 and set the weight to
cA(f, vi+1, vi+2, . . . , vi+p, g) (cf. Fig. 3b); third, arcs from (f, i)2 ∈ F i

2 to t if
the length of the path (f, vi+1, vi+2, . . . , vm1) is within the length bound r1
and set the weight to cA(f, vi+1, vi+2, . . . , vm1) (cf. Fig. 3c), and fourth, an
arc from s to t if the length of the path (v1, v2, . . . , vm1) is within the length
bound r1 and set the weight to cA(v1, v2, . . . , vm1 ) (cf. Fig. 3d). Finally, we
create arcs from (f, i)1 ∈ F i

1 to (f, i)2 ∈ F i
2 with weight cF (f) (cf. Fig. 3e).

Let (F ∗,P1) be a feasible solution of the dmslp instance with the path
given by P1 = (v1, f1

1 , f
1
2 , . . . , f

1
k1
, v2, f2

1 , f
2
2 , . . . , f

m1−1
km1−1

, vm1). Then, a feasi-
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ble solution to the shortest path instance is provided by

P = (s, (f1
1 , 1)1, (f

1
1 , 1)2, (f

1
2 , 1)1, (f

1
2 , 1)2, . . . ,

(f1
k1 , 1)1, (f

1
k1 , 1)2, (f

2
1 , 2)1, (f

2
1 , 2)2, (f

2
2 , 2)1, . . . , (f

m1−1
km1−1

,m1 − 1)2, t).

This path has cost of at most (m1 − 1) · cF (F ∗) + cA(P1), since we use
at most all stations F ∗ between two consecutive stops and the arc cost
carry over. Furthermore, this holds for every feasible solution of the dmslp
instance and thus, we have OPTsp ≤ (m1 − 1) · OPTdmslp(1), where OPTsp
and OPTdmslp(1) denote the optimal values of the shortest path instance and
the dmslp instance with only one trip, respectively.

By construction, every solution of the shortest path instance can be
transformed into a solution of the dmslp instance with at most the cost of
the shortest path solution. Again, this holds for every solution and, thus, we
have OPTdmslp(1) ≤ OPTsp. Since we can solve the directed (s, t)-shortest
path problem to optimality, it follows that we get a solution with cost of at
most (m1 − 1) ·OPTdmslp(1).

Proof of Theorem 6. This is easy to see, since the optimal cost of each trip,
if solved solely, is at most OPTdmslp. By using Lemma 7 and summation
over all trips we get the desired bound. Finally, we can use the algorithm for
the directed multi-stop station location problem for the undirected case.

We have seen that we can solve each trip independently of the other
trips to achieve the approximation factor of Theorem 6. However, we can
improve the introduced algorithm by solving the trips iteratively. After each
trip, we set the station costs of all stations already visited by a previously
solved trip to zero. As a result, the cost of the computed shortest path is
closer to the actual cost caused by the solution with respect to the dmslp
instance (if at least one station is visited that is also used by a previous trip).
Thus, for a given problem instance, the iterative approximation algorithm
constructs a solution that is at least as good as the solution constructed by
the approximation algorithm that processes the trips independently.

4. Conclusion

We introduced the (directed) multi-stop station location problem, which
has many applications in practice such as telecommunications and logistics,
for example in charging station placement problems for long-haul bus ser-
vices. For the two problems we showed a strong relationship to graph and
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network design problems. For the mslp we proved that for any ε > 0 there is
no (2−ε, (1−ε) ln(

∑
t∈T mt

2 ))-approximation algorithm, unless NP = P, even
when restricting to instances with cE = ` is a metric. Moreover, we showed
that for any ε > 0 there is no O(log2−ε(

∑
t∈T mt

2 ))-approximation, unless
NP ⊆ ztime(npolylog(n)). For the dmslp we proved that for any ε > 0, there
is no (1−ε) ln(

∑
t∈T mt−1)-approximation algorithm even when restricting

to instances with |T | = 1, unless P = NP. Furthermore, we proved that
for any ε > 0, there is no 2log

1−ε(
∑

t∈T mt
2

)-approximation algorithm under
the stronger complexity assumption NP * dtime(npolylog(n)). We devel-
oped an approximation algorithm for our problems based on shortest path
computations. We derived a linear approximation factor, (

∑
t∈T mt)− T .

Although, we proved strong lower bounds on the approximation guaran-
tees, there is a gap between lower and upper bound for the mslp as well as
for the dmslp. Therefore, it would be interesting whether the mslp admits a
polylogarithmic approximation algorithm or such a hardness result. For the
dmslp it would be nice to know whether there is a sublinear approximation
algorithm or if such an algorithm does not exist.

Moreover, the practical aspects of the work with applications of mslp
and dmslp in the context of electric vehicle charging station placement for
long-haul e-mobility services will be considered in a future paper. Along
with this, we propose (exact) approaches to solve the mslp and dmslp,
which we evaluate with respect to practically orientated instances.
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