
Arc-Based Dynamic Discretization Discovery for
Continuous-Time Service Network Design

Alexander Helber
Chair of Operations Research, RWTH Aachen, helber@or.rwth-aachen.de

April 29, 2025

Abstract: In the continuous time service network design problem, a freight carrier decides the path of
shipments in their network as well as the dispatch times of the vehicles transporting the shipments. State-
of-the-art algorithms to solve this problem are based on the dynamic discretization discovery framework.
These algorithms solve a relaxation of the problem using a sparse discretization of time at each network
node and iteratively refine the discretization. We introduce a novel arc-based relaxation for this framework
and adapt acceleration strategies from the literature to it. Our computational experiments demonstrate
that this arc-based relaxation leads to significantly smaller integer programming models and overall faster
solving times for a set of hard instances from the literature.

1 Introduction

The service network design problem is an important optimization problem arising in the context of consol-
idation-based transportation. Companies in this sector need to cost-efficiently organize the transportation
of known or estimated volumes of shipments that are generally smaller than the capacity of the used vehi-
cles (Crainic and Hewitt 2021). The companies operate consolidation terminals at which shipments can be
consolidated and dispatched together in vehicles towards an intermediary or destination terminal. Con-
solidation enables more efficient utilization of vehicles and thus more cost-effective transport operations.
Since shipments can only be consolidated if they are dispatched from the same terminal at the same time,
both the routing of shipments and timing of dispatches are integral to this problem. Overall, the prob-
lem consists of deciding which path each shipment should take through the companies network and at
what time each shipment should be dispatched from each terminal in its path such that overall costs are
minimized.

Commonly, the service network design problem and related problems are modeled using time-expand-
ed networks based on a discretization of time. Time-expanded networks contain nodes representing the

1

terminals of the physical network at concrete times and arcs representing either dispatches between dif-
ferent terminals at a specific time or holding shipments for some time at a terminal. The problem can
then be stated as finding paths for each shipment in the time-expanded network with the assumption that
shipments on the same dispatch arc in the time-expanded network can be consolidated. The chosen time
discretization has a large impact on the quality of obtained solution and computational tractability (Boland
et al. 2019). This motivated Boland et al. (2017) to develop a dynamic discretization discovery approach
that iteratively refines a very small time-expanded network and solves a corresponding relaxation until a
provably optimal solution in continuous time (i.e., with arbitrary time resolution) is found. Their approach,
paired with various later improvements (Hewitt 2019; Marshall et al. 2021; Van Dyk and Koenemann 2024;
Shu et al. 2025), is capable of solving instances in seconds or minutes for which just constructing an in-
teger program based on the classical time-expanded networks would already take longer and solving the
program is not feasible in reasonable time.

One drawback of the previously mentioned approaches is that for each timed copy of a terminal in the
time-expanded network an arc for each possible transport to another terminal needs to be created. Thus,
strongly interconnected terminals with many potential outbound terminals may result in many timed
arcs, especially if shipments are dispatched there at many points in time. But on each individual outbound
connection, only a few relevant times would be sufficient to consider. This observation motivated Van Dyk
and Koenemann (2024) to work towards an arc-based discretization of time, in which the dispatch times of
each terminal-to-terminal connection are discretized independently of other connections leaving from the
same terminal. They showed that under specific conditions it is possible to modify the network and split
some nodes such that some outgoing connections of a terminal can receive individual time discretizations.
Inspired by their work, we make the following contributions in our work:

• We propose a new relaxation that enables individual discretization of time for each connection and
does not require the instance to fulfill any specific conditions.

• We show that the relaxation always provides lower bounds to the original problem and that these
lower bounds become tight if the relaxation is sufficiently refined.

• We show how to adapt concepts introduced by Shu et al. (2025) to obtain strong initial relaxations
and refine our discretization.

• We conduct computational experiments that demonstrate that our relaxation is computationally
beneficial. Specifically, our relaxation leads to integer programming models that are about a factor
of five smaller for many instances than those obtained by previous approaches and can be solved
significantly faster, leading to about a 45% reduction in average solving times for a challenging set
of instances from the literature.

The remainder of the paper is organized as follows. In Section 2, we review relevant literature. In Section 3,
we present a formal description of the problem that we study. In Section 4, we introduce our new arc-based
relaxation of the problem and show how to refine it. In Section 5, we describe the algorithm that makes use
of our relaxation to solve the overall problem. In Section 6, we describe the results of our computational

2

study that shows the efficacy of our algorithm. Finally, in Section 7, we summarize our findings and discuss
potential future work.

2 Related Work

The dynamic discretization discovery framework that our work is based on was first introduced by Boland
et al. (2017). Their work also contains an overview of prior work that advanced similar concepts but in
the context of different problems and utilizing different algorithmic approaches. We focus on algorithmic
contributions to solving network design problems with dynamic discretization discovery approaches that
have been published since their seminal work and relate them to our work.

Boland et al. (2017) introduced the continuous time service network design problem (CTSNDP) and the
dynamic discretization discovery framework for solving it. They demonstrated how to construct an inte-
ger program on a specific time-expanded network which is a relaxation of the CTSNDP. In this relaxed
problem, travel times of commodities are underestimated, allowing consolidations that are not physically
possible. Therefore, the solution value of this integer program is a lower bound on the optimal solution
value of the CTSNDP. They also proposed an algorithm that, given a solution to the integer program, re-
fines the time-expanded network in a way that this lower bound converges towards the optimal solution
value. Together with a primal heuristic that repairs the solutions of the integer program, this forms the
basis of an exact algorithm for solving the CTSNDP. Hewitt (2019) showed that a stronger initial relaxation
can be obtained by adding additional time points obtained by solving the linear programming relaxation
of the integer program. They also adapt the concept of valid inequalities to the dynamic discretization dis-
covery framework to improve the lower bounds obtained from the integer program and show that some
symmetric solutions can be eliminated by a modification of the refinement algorithm proposed by Boland
et al. (2017). Marshall et al. (2021) propose a novel relaxation of the CTSNDP utilizing an interval-based in-
terpretation of time discretization. They also introduce a new refinement strategy which not only prevents
the same relaxation solution from occurring again but also prevents the same impossible consolidations
from occurring again, which can reduce the number of iterations needed for their algorithm to converge.
Van Dyk and Koenemann (2024) propose a method by which certain nodes can be split into multiple copies
with only a subset of outgoing arcs each. Specifically, if the arcs leaving a node can be partitioned so that
each commodity can traverse only arcs in one part of the partition, the node can be split. With this method,
not all arcs leaving a node need to receive a timed copy in the time-expanded network for each time point in
the discretization for that node. This can lead to smaller relaxation problems and faster solving times. Shu
et al. (2025) improve the refinement strategy of Marshall et al. (2021), show how to obtain a much stronger
initial relaxation by adding so-called significant time points to the time discretization and develop a new
primal heuristic that can obtain better solutions than the heuristic initially introduced by Boland et al.
(2017).

In our work we utilize the same dynamic discretization discovery framework as Boland et al. (2017) but
construct a different relaxation than all prior works. Our relaxation is based on an arc-based discretization
of time which is conceptually inspired by Van Dyk and Koenemann (2024) and an interval-based inter-

3

pretation of this time discretization which is conceptually inspired by Marshall et al. (2021). Despite these
inspirations, our relaxation does not require the instance to fulfill the specific condition of the method
of Van Dyk and Koenemann (2024) and also results in significantly smaller networks compared to previ-
ous approaches. We also adapt the state-of-the-art methods for obtaining a strong initial relaxation and
refining the relaxation of Shu et al. (2025) to our relaxation.

3 Problem Description

For notational convenience, we refer to some sets of integer numbers as follows: For n1, n2 ∈ N, we say
[n1] = {1, . . . , n1}, [n1, n2] = {n1, . . . , n2} if n2 ≥ n1 and [n1, n2] = ∅ else, and [n1, n2) = [n1, n2 − 1].
We study a generalization of the (continuous time) service network design problem, the (continuous time)

service network design problem with restricted routes (SND-RR) as introduced by Van Dyk and Koenemann
(2024). In an instance of this problem we are given a network G = (V,A), also called the flat-network, and
a set of commodities K. The nodes V represent terminals and the arcs A connections between terminals
along which shipments can be dispatched. For each arc a ∈ A we are given a transit time τa ∈ N, a
capacity ua > 0, and a fixed cost fa ≥ 0 for vehicles transporting shipments dispatched on this arc.
Each commodity k ∈ K has a quantity qk > 0 that needs to be transported along a single path within
its (sub)network Gk = (Vk, Ak) (Vk ⊆ V,Ak ⊆ A) from its source node ok ∈ Vk to its destination
node dk ∈ Vk. A commodity k becomes available at its source node at its release time rk ∈ N and needs
to arrive at its destination node no later than its deadline ℓk ∈ N. Transporting a commodity k along some
arc a ∈ Ak incurs flow costs of cka ≥ 0.

The problem consists of finding a path from source node to destination node for each commodity in its
network and deciding the time at which each arc in the path is taken so that the overall costs are minimized
and all commodities are transported between their release time and deadline. The overall cost consists of
flow costs, which depend on the chosen paths, and fixed costs, which depends on the timing of when
the commodities are dispatched on arcs in their path. At any time that one or multiple commodities are
dispatched on an arc a, enough capacity (in integer multiples of ua) needs to be purchased to transport
those commodities. To more formally define a solution, we adapt the notation and terminology introduced
byMarshall et al. (2021) for the (continuous time) service network design problem to the SND-RR. For every
commodity k ∈ K, we want to find a ok-dk-path pk in its flat-network Gk, which we call a flat-path. We
state flat-paths as a sequence of arcs, i.e., pk = (ak1, . . . , a

k
nk
) where nk is the number of arcs in the flat-

path for commodity k. Note that we assume in this work (without loss of optimality) that all flat-paths
in an optimal solution are simple (i.e., repeat no vertices.) Additionally, for every commodity we seek a
set tk = {tka}a∈pk that denotes the dispatch times at which the commodity is transported over each arc in
its flat-path. A solution S = (P, T) to SND-RR consists of a set of flat-paths P = {pk}k∈K and a set of
dispatch times T = {tk}k∈K for each commodity. We introduce the following concepts to define a feasible
solution:

Definition 1 (k-feasible). A flat-path pk is k-feasible if and only if the commodity can traverse it within the

time window of its release time to deadline, i.e., rk +
∑

a∈pk τa ≤ ℓk.

4

Definition 2 (Consistent dispatch times). Dispatch times tk for a flat-path pk are consistent if and only if

tka1 ≥ rk, tkank
+ τank

≤ ℓk, and tkai + τai ≤ tkai+1
for all i ∈ [nk − 1].

A solution is feasible if for all k ∈ K the dispatch times tk are consistent for the flat-path pk. Note
that this also implies that pk is k-feasible. To compute the cost of a solution, we define for each arc a ∈ A
the set of time points at which commodities are dispatched on that arc asΘ(a) =

⋃
k∈K : a∈pk{tka} and for

each such time point t ∈ Θ(a) the set of commodities that can be consolidated as

κ(a, t) = {k ∈ K | a ∈ pk, tka = t}.

Then, the cost of a solution S is computed as

c(S) =
∑
k∈K

∑
a∈pk

cka +
∑
a∈A

∑
t∈Θ(a)

fa

⌈∑
k∈κ(a,t) qk

ua

⌉

where the first term sums the flow costs for each flat-path and the second term the costs for purchasing
transport capacity. To solve SND-RR is to find a feasible solution of minimal cost.

A common way of modeling and solving such problems is to use a time-indexed integer programming
formulation over a time-expanded network that explicitly models every possible time at which a commod-
ity could leave or arrive at a node. We provide one such formulation as an alternative problem description,
identical to that of Van Dyk and Koenemann (2024) except for notation. To not introduce unnecessary
variables, we first determine the first and last time point at which a commodity could be at a node in any
feasible solution. To compute these time points, we denote by τkuv ∈ N ∪ {∞} the length (with respect
to τa) of a shortest path between two nodes u, v ∈ Vk in the commodities flat-network Gk if such a path
exists (and τkuv = ∞ otherwise). Then we denote with tkv = rk + τkokv the earliest time that the com-
modity k can arrive at node v ∈ Vk and with tkv = ℓk − τkvdk the latest time it needs to depart that node.
Without loss of generality we assume that tkv ≤ tkv , since otherwise we could delete node v from the com-
modities’ flat-network without losing any feasible solutions. We now define for each commodity k ∈ K its
time-expanded network Gk = (V k, Ak) with copies of each node in the flat-network for each time point
in the time window for that node, i.e., V k = {(v, t) | v ∈ Vk, t ∈ [tkv, tkv]}. The set of arcsAk = Ak

t ∪Ak
h

consists of transport arcs Ak
t and holding arcs Ak

h. The set of transport arcs contains copies of each arc in
the flat-network for each time point if both the dispatch and arrival time are within the time window of the
respective node, i.e., Ak

t = {((u, t), (v, t+ τ(u,v))) | ∀(u, v) ∈ Ak,∀t ∈ [tku, tku] : t+ τ(u,v) ∈ [tkv, tkv]}.
The set of holding arcs contains arcs representing that a commodity waits at it current location, i.e.,
Ak

h = {((v, t), (v, t + 1)) | ∀v ∈ V,∀t ∈ [tkv, tkv)}. For ease of notation, we also define the com-
plete set of transport arcs asAt =

⋃
k∈K Ak

t . We define parameters for arcs in the time-expanded network
analogously to the flat-network as f((u,t),(v,t′)) = f(u,v), u((u,t),(v,t′)) = u(u,v) for all ((u, t), (v, t′)) ∈ At

and ck((u,t),(v,t′)) = ck(u,v) for all k ∈ K and ((u, t), (v, t′)) ∈ Ak
t . With this, we state the following integer

5

program for SND-RR:

min
∑
k∈K

∑
a∈Ak

t

ckax
k
a +

∑
a∈At

faya (1)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa =

1 if v = (ok, rk)

−1 if v = (dk, ℓk)

0 else

∀k ∈ K, ∀v ∈ V k (2)

∑
k∈K : a∈Ak

t

qkx
k
a ≤ uaya ∀a ∈ At (3)

xka ∈ {0, 1} ∀k ∈ K, ∀a ∈ Ak (4)

ya ∈ N0 ∀a ∈ At (5)

Variable xka takes value 1 if commodity k takes timed arc a = ((u, t), (v, t′)). If this is a transport arc,
i.e., if u ̸= v, this also means that arc (u, v) is selected to be part of the commodities flat-path pk and the
dispatch time of that arc is tk(u,v) = t. Variable ya for a timed transport arc a = ((u, t), (v, t′)) indicates
howmany units of capacity need to be purchased on the arc (u, v) to transport the commodities dispatched
at time t. Constraint (2) ensures flow conservation, i.e., that every commodity flows along a path in its
time-expanded network. Constraint (3) ensures that sufficient capacity is purchased to cover all transports
that take place. As has been discussed by Boland et al. (2017), directly solving this integer program is often
not a promising approach.

4 Dynamic Discretization Discovery

We propose an algorithm to solve SND-RR that fits into the dynamic discretization discovery framework
proposed by Boland et al. (2017). As in their framework, we propose a relaxation of SND-RR, which can be
formulated as an integer program on a time-expanded network. Solving the relaxation provides a lower
bound on the optimal value of SND-RR. We also use their method that tries to obtain a feasible solution
to SND-RR with the same value as the relaxation solution. If this succeeds, we have found an optimal
solution. If not, our algorithm determines how to modify the relaxation such that the same solution does
not appear again. This process is iterated until an optimal solution is found and is guaranteed to converge
eventually. The main difference in our approach is that we construct the relaxation differently and in a
way that results in significantly smaller integer programs that can be solved faster. Specifically, Boland
et al. (2017) use a time discretization with time points for each node and create a copy of all outgoing arcs
of each node for each time point. We use commodity-specific discretization of the node times and also give
each arc an individual discretization.

In the following, we will first introduce our relaxed problem and show that every solution to SND-RR
has a representation in this problem with the same or lower costs, i.e., that an optimal solution of the
relaxed problem gives a lower bound on the optimal solution for SND-RR. Then, we propose a new integer
program to solve our relaxed problem. We adapt some concepts first introduced by Marshall et al. (2021)

6

and extended by Shu et al. (2025) to our relaxation to determine if our relaxation solution can be converted
into a feasible solution to SND-RR and if not, how the relaxation needs to be adjusted.

4.1 Relaxed Problem

Our relaxed problem is based on a discretization that consists of a partition of time into intervals, as
was proposed by Marshall et al. (2021). They partition the time at each node into intervals and then
created timed copies of arcs between any interval at the tail node and interval at the head node where a
commodity dispatched in the tail node interval could arrive within the head node interval. We propose a
different approach: each commodity receives its own interval partition of time at each node and instead of
describing the exact times at which commodities are at a node, we only keep track of the intervals in which
they are at a node. Similarly, each arc in the flat-network receives its own interval partition of time, and
we only track which commodities are dispatched in an interval instead of considering their exact dispatch
times. We assume that a commodity can be dispatched on an arc in a specific arc interval as long as it is
at the tail node in or before the last node interval that overlaps the arc interval. This means we are overly
optimistic about how late a commodity can arrive at a node and still be dispatched. Similarly, we assume
a commodity dispatched on an arc in a specific arc interval arrives in the earliest head node interval in
which a vehicle dispatched in the arc interval could arrive. This means that we are also overly optimistic
about how early a commodity can arrive at a node if it is dispatched in a given interval. Together with
the assumption that all commodities dispatched on an arc in the same interval can be consolidated, these
assumptions are what makes this problem a relaxation of SND-RR.

We now formally introduce our time discretization and then use it to define the problem. Without
loss of generality, we assume that mink∈K rk = 1 and let H = maxk∈K ℓk denote the end of the time
horizon, i.e., all transportation occurs inside the time horizon [H] = {1, . . . ,H}. Formally, a time dis-
cretization T = ({Tkv}k∈K,v∈Vk , {Ta}a∈A) is a tuple of a set containing time intervals for each node
in each commodities’ network as well as a set of time intervals for each arc in the full network. For
each commodity k ∈ K and node v ∈ Vk the discretization contains a set of nkv ∈ N time inter-
vals Tkv = {[tkv1 , tkv2), . . . , [tkvnkv

, tkvnkv+1)} that partition [tkv, tkv], such that tkv1 = tkv and tkvnkv+1 = tkv+1.
These intervals represent possible times at which commodity k could be dispatched at this node. As an
initial time discretization we can simply use Tkv = {[tkv, tkv]} for each commodity and node. For the
arcs, we partition the time horizon into intervals in which commodities may be dispatched. Specifically,
for each arc a ∈ A we denote by Ta = {[ha1, ha2), . . . , [hana

, hana+1)} a partition of [H] into na intervals,
such that ha1 = 1 and hana+1 = H . As an initial partition, we can simply use the full time horizon, i.e.,
Ta = {[1, H)} for all a ∈ A. Note thatH does not need to be included in the possible dispatch times since
we assume all transit times to be positive and H is the latest time that any commodity needs to arrive at
its destination, so no commodity can be dispatched at time point H or later in any feasible solution.

The relaxed problem R-SND-RR(T) receives as input an instance to SND-RR as well as a time dis-
cretization T . Just as in SND-RR, we want to find an ok-dk-path pk = (ak1, . . . , a

k
nk
) in Gk for every

commodity k ∈ K. Instead of specifying for each arc in a flat-path the exact dispatch time, we specify the
time interval in which the commodity is dispatched on that arc. Specifically, the set of dispatch interval

7

indices Nk = {nk
i }i∈[nk] states the index of the interval [hai

nk
i

, hai
nk
i +1

) ∈ Tai in which a commodity is
dispatched on the i-th arc in its flat-path. A solution to R-SND-RR(T) is now given by a tupleW = (P,N)

of flat-paths P = {pk}k∈K and dispatch intervals N = {Nk}k∈K. To describe our notion of a feasible
solution to R-SND-RR(T), we introduce some additional concepts.

Definition 3 (Feasible dispatch interval). For a commodity k ∈ Ak and arc a = (u, v) ∈ Ak, we call

a dispatch interval [t′, t′′) ∈ Ta feasible if and only if there exists a time point t ∈ [t′, t′′) such that both

t ∈ [tku, tku] and t+ τa ∈ [tkv, tkv].

Said another way, a dispatch interval is feasible for a commodity if we can dispatch it at some point
inside this interval and still arrive on time. We require that the dispatch interval for each arc in the flat-
path for each commodity is feasible. Note that Definition 3 also ensures that a commodity can not be
dispatched from its source node in an interval that lies before its release time or be dispatched on an arc
to its destination node in an interval where the earliest arrival time is after its deadline. Next, we relax the
concept of consistent dispatch times (Definition 2) which required that a commodity can only be dispatched
from a node at or after the time at which it arrives at that node. We instead require that a commodity can
only be dispatched in the interval in which it arrives at a node or a later interval. This begs the question
in which node time interval a commodity arrives if it is dispatched in a given arc time interval. First, we
determine the earliest possible arrival for a dispatch in that arc time interval. We then assume a commodity
arrives at the head node in the node time interval that contains this time. As for the dispatch at the tail
node, we assume a commodity can be dispatched in a given arc time interval if it is at the tail node in a
node time interval that overlaps the arc time interval. More formally, we assume a commodity k can be
dispatched on arc a = (u, v) ∈ Ak in time interval [haq , haq+1) if it is at node u in the node interval with the
index n−

kaq = max{n ∈ [nku] | [haq , haq+1)∩ [tkun , tkun+1) ̸= ∅} and will arrive at node v in the node interval
with the index n+

kaq = min{n ∈ [nkv] | [haq + τa, h
a
q+1 + τa) ∩ [tkvn , tkvn+1) ̸= ∅}. We interchangeably

call n−
kaq and the associated interval the relaxed dispatch interval and n+

kaq and the associated interval the
relaxed arrival interval. Note that if the arc intervals are feasible, such a node interval always exists. Based
on these relaxed dispatch and arrival intervals we formally state our relaxed notion of every shipment
arriving on time at each node along its path for the next dispatch.

Definition 4 (Relaxed time consistent dispatch intervals). We call a set of dispatch intervals Nk for a flat-

path pk relaxed time consistent if the dispatch interval for each arc is feasible and for each i ∈ [nk − 1]

the relaxed arrival interval of arc ai is no later than the relaxed dispatch interval of arc ai+1, i.e., n+
kaink

i

≤
n−
kai+1nk

i+1

.

We say a solutionW = (P,N) to R-SND-RR(T) is feasible if for all k ∈ K the flat-path pk is k-feasible
and the dispatch time intervals Nk are relaxed time consistent for pk. The cost of a feasible solutionW is
the sum of the flow costs for each commodity as well as the fixed costs for dispatched vehicles, where we
assume that all commodities dispatched in the same time interval can be consolidated. For each arc a ∈ A
and interval index q ∈ [na] we collect the set of consolidated commodities κ̄(a, q) = {k ∈ K | ∃i ∈

8

[nk] : a
k
i = a, nk

i = q}. With this, we can state the cost formally as

c(W) =
∑
k∈K

∑
a∈pk

cka +
∑
a∈A

na∑
q=1

fa

⌈∑
k∈κ̄(a,q) qk

ua

⌉
.

Note that we can get non-simple flat-paths (i.e., that repeat vertices and even arcs) as part of our relax-
ation solutions. Such paths can without loss of optimality be assumed to not exist in optimal solutions to
SND-RR but in optimal solutions to R-SND-RR(T) they can occur since they allow traveling back in time.
It would be possible to require feasible solutions to R-SND-RR(T) to only contain simple paths, which
could give stronger bounds, but preliminary experiments indicated that this made the relaxed problem
computationally harder to solve.

To illustrate the concepts of our relaxed problem, we give an example. First, consider the SND-RR
instance on the simple line network shown in Figure 1. The instance has three commodities for which
the relevant parameters are given in Table 1a. All cost and demand parameters take on value 1 and both
arcs have a capacity of 2. For each commodity, its flat-network consists of the nodes reachable from its
source node. Observe that in this instance, all commodities have only a single flat-path available and the
only question is at what time each commodity is dispatched along each arc in its path. The only possible
consolidations are to consolidate commodities k1 and k2 on arc (v1, v2) and to consolidate commodities
k1 and k3 on arc (v2, v3). The instance is constructed such that it is not possible to do both consolidations
at once. Assume that we consolidate k1 and k2. Then they can not be dispatched before the release time
rk2 = 2 of k2 and thus will arrive at node 2 at time rk2 + τ(v1,v2) = 4. This is after the last time at which
commodity k3 can be dispatched to arrive on time (tk3v2 = 3), so it is not possible to consolidate k1 and
k3 as well.

We now also give one specific time discretization T as an example and study the resulting relaxed
problem. Table 1b and Table 1c display the intervals in this time discretization. Let us first consider which
arc intervals are feasible for each commodity. For commodity k1, all intervals on both arcs are feasible. As
an example, it is possible to dispatch k1 on arc (v1, v2) in the interval [1, 2) since k1 can be at v1 at time
1 and if it is dispatched at this time it also arrives on time at v2. The same is not true for commodity k2,
which only becomes available at rk2 = 2 and as such can not be dispatched in the arc interval [1, 2) on arc
(v1, v2). The other arc interval [2, 8) is feasible for k2, since the commodity can be at v1 at time 2 and if it
is dispatched at this time it also arrives on time at v2. Lastly, k3 can only be dispatched in arc interval [1, 4)
on arc (v2, v3), as the arc interval [4, 8) does not contain 3, the only time at which k3 can be at v2. We next
give an example of the relaxed dispatch and arrival intervals. If commodity k1 is dispatched on arc (v2, v3)
in the arc interval [4, 8), the relaxed dispatch interval would be [4, 5] and the relaxed arrival time would
be [6, 8]. The relaxed dispatch time represents that the commodity could be dispatched in the arc interval
[4, 8) if it arrives at node v2 at time 5 or earlier. The relaxed arrival time represents that if the commodity is
dispatched in this interval, it could certainly not arrive at node 3 before time point 6. Next, we demonstrate
that this sparse discretization of time is already sufficient to reflect all the possible consolidations in the
unrelaxed problem and thus solving this relaxed problem would be sufficient to obtain a tight bound on
the solution value of the unrelaxed problem. Consider that k1 and k2 can only be consolidated in a solution

9

v1 v2 v3
τ(v1,v2) = 2 τ(v2,v3) = 3

Figure 1: Flat-network G for the example instance

to the relaxed problem if k1 is transported along arc (v1, v2) in interval [2, 8), as this is the only feasible
interval for k2. In this case, the relaxed arrival interval of k1 at node 2 is [4, 5). Then, dispatching k1 on
arc (v2, v3) in interval [1, 4) is not possible, since the relaxed dispatch interval for this arc interval is [3, 4).
Since [1, 4) is the only feasible interval for k3, it is not possible to consolidate k1 and k3. Lastly, we note
again that the discretization of each arc is completely independent of that of any other arc or the time
points for the commodities.

ok dk rk ℓk
k1 v1 v3 1 8
k2 v1 v2 2 5
k3 v2 v3 3 6
(a) Commodity parameters

v1 v2 v3
k1 {[1, 3]} {[3, 4), [4, 5]} {[6, 8]}
k2 {[2, 3]} {[4, 5]} -
k3 - {[3, 3]} {[6, 6]}

(b) Node intervals Tkv

a Ta
(v1, v2) {[1, 2), [2, 8)}
(v2, v3) {[1, 4), [4, 8)}

(c) Arc intervals Ta

Table 1: Parameters for an example instance of R-SND-RR(T) on the network in Figure 1

We now claim that R-SND-RR(T) is indeed a relaxation of SND-RR, i.e., for every solution to SND-RR
we can find a corresponding solution of R-SND-RR(T) of equal or lower cost.

Proposition 1. Given an instance to SND-RR and a time discretization T , for every feasible solution S =

(P, T) to SND-RR there is a corresponding feasible solutionW (S) = (P (S), N(S)) to R-SND-RR(T) of equal
or lower cost.

Proof. We first show how to construct such a feasible solution W (S) = (P (S), N(S)) and then show
that c(W (S)) ≤ c(S). The relaxed solution will utilize the same flat-paths for each commodity, i.e.,
P (S) = P . To determine the dispatch intervals, we select the interval in which the time point lies at
which a commodity is dispatched in the solution S. More formally, for each commodity k for the i-th arc
ai = (u, v) ∈ pk, we set nk

i such that tki ∈ [hai
nk
i

, hai
nk
i +1

). These dispatch intervals are feasible because S
is feasible and therefore tki ∈ [tkv, tkv]. We still need to show that they are also relaxed time consistent.
Recall that they are relaxed time consistent if for any two consecutive arcs ai = (u, v), ai+1 = (v, w) in
pk it holds that n+

kaink
i

≤ n−
kai+1nk

i+1

. First, consider the relaxed dispatch interval for arc ai+1, which is the
latest node interval in Tkv that overlaps with the arc interval chosen before for ai+1. Since that arc interval
contains tki+1, this node interval either also contains tki+1 or is later than this time point. Now consider the
relaxed arrival dispatch interval for arc ai, which is the earliest node interval in Tkv that overlaps with the
arc interval chosen before for ai shifted by the travel time τai . Since that arc interval contains tki , this node
interval either contains tki + τai or is earlier than this time point. Finally, since S is a feasible solution we
know that tki + τai ≤ tki+1 and therefore the relaxed dispatch interval of ai+1 is the same or later than the
relaxed arrival interval of ai and therefore the dispatch intervals are relaxed time consistent andW (S) is
feasible for R-SND-RR(T).

10

We still need to show that this solution does indeed give a lower bound on the cost of S. With regard
to the flow costs, both solutions are identical since the flow costs are computed the same for both prob-
lems and P and P (S) are identical. With regard to the fixed costs, we note that commodities that could
previously be consolidated since they were dispatched at the same time can still be consolidated in the
relaxed problem since they are now dispatched in the same interval. Additionally, some commodities that
can not be consolidated in SND-RR since they are dispatched at different times may be consolidated if their
dispatch times lie in the same interval, leading to lower costs. Therefore, the fixed costs for the solution
W (S) are either identical to or an underestimation of the fixed costs for a solution S.

We showed that solving R-SND-RR(T) for a given time discretization indeed gives us lower bounds on
the solution value of SND-RR. We still need to demonstrate that if we add sufficiently many time points
to the discretization the lower bound eventually becomes tight, i.e., an optimal solution to SND-RR and
R-SND-RR(T) have the same value.

Proposition 2. Given an instance to SND-RR and a time discretization T with Tkv = {[tkv, tkv +1), [tkv +

1, tkv + 2), . . . , [tkv, tkv + 1)} for all k ∈ K and v ∈ Vk as well as Ta = {[1, 2), [2, 3), . . . , [H − 1, H)} for
all a ∈ A, the value c(S) of an optimal solution S to the instance of SND-RR is equal to the value c(W) of an

optimal solution W to R-SND-RR(T).

Proof. Since each time interval for each arc contains exactly one time point and each relevant time point
exists at each node for each commodity, the relaxed problem R-SND-RR(T) does not underestimate any
travel times. Specifically, if a commodity is dispatched on an arc a in an interval [t, t + 1), the relaxed
dispatch interval is [t, t + 1) and the relaxed arrival interval is [t + τa, t + τa + 1), i.e., they are identical
to the actual times. So relaxed time consistent dispatch intervals in the solution to R-SND-RR(T) can be
mapped directly to consistent dispatch times, and we can derive a feasible solution S to SND-RR from a
feasible solution W to R-SND-RR(T). These solutions also have identical costs, since only commodities
dispatched at exactly the same time on an arc can be consolidated in both cases. Therefore, each solution to
R-SND-RR(T) corresponds directly to a solution of SND-RR with identical cost and the relaxation becomes
tight.

4.2 Solving the Relaxed Problem

To actually solve R-SND-RR(T), we utilize an integer program formulated over a time-expanded net-
work. We will first describe how to construct this time-expanded network and then introduce the in-
teger program. Given a time discretization T = ({Tkv}k∈K,v∈Vk , {Ta}a∈A), we can construct what we
call a relaxed time-expanded network Gk

T = (V k
T , A

k
T) for each commodity k. The set of nodes con-

tains one copy of each node in the commodities’ flat-network for each time interval in the discretiza-
tion, i.e., V k

T = {(v, q) | ∀v ∈ Vk,∀q ∈ [nkv]}. The set of arcs Ak
T = Ak

T t ∪ Ak
T h contains trans-

port and holding arcs. The holding arcs are constructed as usual, linking timed copies of a node, as
Ak

T h = {((v, q), (v, q + 1)) | ∀v ∈ Vk, ∀q ∈ [nkv − 1]}. Constructing the set of transport arcs is a
bit more involved but follows directly from the definition of the relaxed arrival and dispatch intervals. For
each arc in the flat-network, we create a copy for each interval in its discretization. The copy leaves from

11

the node representing the relaxed dispatch interval and arrives at the node representing the relaxed arrival
interval. Formally, we state the set of transport arcs in the relaxed time-expanded network of a commodity
k as

Ak
T t = {((u, n−

kaq), (v, n
+
kaq)) | ∀a = (u, v) ∈ Ak ∀q ∈ [na] : [h

a
q , h

a
q+1) is feasible for k}.

Note that this may create parallel arcs that share their head and tail node but represent dispatching in
different time intervals. To keep apart parallel arcs, we denote by qâ ∈ [na] the index of the time in-
terval belonging to arc a that lead to the creation of the timed arc â ∈ Ak

T t. Again we define pa-
rameters for transport arcs in the relaxed time-expanded network analogously to the flat-network as
f((u,q),(v,q′)) = f(u,v), u((u,q),(v,q′)) = u(u,v), τ((u,q),(v,q′)) = τ(u,v), and ck((u,q),(v,q′)) = ck(u,v) for all k ∈ K
and ((u, q), (v, q′)) ∈ Ak

T t. For easier notation, for each arc a ∈ A we denote the corresponding set of
transport arcs by Ak

T a = {((u, q), (v, q′)) ∈ Ak
T t | (u, v) = a} (which is empty if a /∈ Ak).

An integer program to solve R-SND-RR(T) can be stated as follows.

min
∑
k∈K

∑
â∈Ak

T t

ckâx
k
â +

∑
a∈A

na∑
q=1

fayaq (6)

s.t.
∑

â∈δ+(v)

xkâ −
∑

â∈δ−(v)

xkâ =

1 if v = (ok, 1)

−1 if v = (dk, nkdk)

0 else

∀k ∈ K, ∀v ∈ V k
T (7)

∑
k∈K

∑
â∈Ak

T a : qâ=q

qkx
k
â ≤ uayaq ∀a ∈ A,∀q ∈ [na] (8)

∑
ā∈Ak

T

τâxâ ≤ ℓk − rk ∀k ∈ K (9)

xkâ ∈ {0, 1} ∀k ∈ K,∀â ∈ Ak
T (10)

yaq ∈ N0 ∀a ∈ A, ∀q ∈ [na] (11)

A variable xkâ takes value 1 if commodity k is transported along timed arc â. If that arc â = ((u, q), (v, q′))

is a transport arc (u ̸= v), it also means that the arc (u, v) should be in the flat-path pk of the commodity
and the corresponding dispatch interval is qâ. Variable yaq indicates how many vehicles are dispatched
on arc a in the time interval [haq , haq+1). Constraint (7) ensures that the selected arcs for each commodity
form a path in the time-expanded network. Constraint (8) ensures that enough vehicles are dispatched on
each arc in each time interval to transport the commodities traveling over that arc in that time interval.
Constraint (9) ensures that the resulting flat-paths are k-feasible.

As an example, Figure 2 depicts the relaxed time-expanded networks for our previously introduced
example instance on the flat-network depicted in Figure 1 and using the parameters in Table 1. Again
we observe that these networks, even though they are quite small compared to the full time-expanded
networks, already capture the main decision to be made in this instance: either commodity k1 is trans-

12

ported along the arc (v1, v2) in the later interval [2, 8) and can be consolidated with commodity k2, or it
is transported in the earlier interval [1, 2) and can be consolidated on arc (v2, v3) with commodity k3.

v1, 1

[1, 3]

v2, 1

[3, 4)

v2, 2

[4, 5]

v3, 1

[6, 8]

[1, 2)

[2, 8)

[1, 4)

[4, 8)

Gk1
T

v1, 1

[2, 3]

v2, 1

[4, 5]

[2, 8)

Gk2
T

v2, 1

[3, 3]

v3, 1

[6, 6]

[1, 4)

Gk3
T

v, i

[tkvi , tkvi+1)

[haq , h
a
q+1)

Timed node for i-th
interval of flat node v

Timed arc for q-th
interval of flat arc a

Figure 2: Relaxed time-expanded network for each commodity in the example instance

4.3 Refining the Discretization

Solving the relaxation R-SND-RR(T) only gives us a lower bound on the objective value of SND-RR. After
solving the relaxation we need to answer the question if it is possible to convert the relaxation solution
into feasible solution to SND-RR with the same objective value, in which case that solution would be
optimal. If that is not the case, we want to refine the discretization so that we do not receive the same
relaxation solution again and repeat the process. We use some concepts introduced by Marshall et al.
(2021) adapted to our relaxation for both these steps. Specifically, we make use of their notion of a flat-

solution corresponding to a relaxed solution, which specifies flat-paths and consolidations but not dispatch
times or intervals. They introduce the concept of a flat-solution being implementable when there exist
dispatch times so that these consolidations are achievable in a feasible solution to the unrelaxed problem.
The flat-paths from the flat-solution together with such dispatch times then make up a feasible solution
to the unrelaxed problem with the same objective value as the relaxation solution, which also means that
this solution is optimal (since it has the same objective value as the solution to the relaxation). To handle
the case that the flat-solution is not implementable, they introduce the concept of a flat-solution being
representable in the relaxed problem for a given time discretization. A flat-solution is representable when
one can find a solution to the relaxed problemwith the same flat-paths and consolidations. If a flat-solution
is not implementable, we want to refine the discretization tomake the solution not representable so that we
do not obtain the same solution again. Convergence relies on the fact that there are only a finite number
of flat-solutions. The discretization refinement process can then conceptually be stated as follows:

1. Obtain an optimal solution to the relaxed problem and determine the corresponding flat-solution.

2. Determine if the flat-solution is implementable.

(a) If yes, determine dispatch times and return solution.

(b) If no, adjust discretization to make flat-solution not representable. Go back to step 1.

13

We now formally describe the adaption of these concepts to our relaxed problem. Note that for sim-
plicity of presentation and notation, in the following we will assume that the paths in solutions ob-
tained from the relaxation are simple, i.e., do not repeat nodes. As stated before, node and arc rep-
etitions are possible in optimal solutions to the relaxation, but the necessary notation for the follow-
ing arguments would be cumbersome. A consolidation (a, κ) is a tuple of an arc a ∈ A as well as
a set of commodities κ ⊆ K with the interpretation that these commodities are transported together
along this arc. Given a solution W = (P,N) to R-SND-RR(T), we define its set of consolidations as
C = C(W) = {(a, κ̄(a, q)) | ∀a ∈ A,∀q ∈ [na] : |κ̄(a, q)| ≥ 1} and call the pair (P,C) a flat-solution.

Definition 5 (Implementable flat-solution (adapted from Marshall et al. 2021)). A flat-solution (P,C) is

implementable if and only if there exist dispatch times T such that the solution S = (P, T) to SND-RR is

feasible and tk1a = tk2a for all (a, κ̄) ∈ C, k1, k2 ∈ κ̄.

Definition 6 (Representable flat-solution (adapted from Marshall et al. 2021)). A flat-solution (P,C) is

called representable with respect to a discretization T ′ if and only if there exist dispatch time intervals N ′

such that W ′ = (P,N ′) is a feasible solution for R-SND-RR(T ′) and the resulting set of consolidations is

identical, i.e., C(W ′) = C .

To detect if a flat-solution is implementable and if not to refine the discretizationwe adapt the algorithm
proposed by Shu et al. (2025) to our relaxation. They introduce a dispatch-node graph which is constructed
based on the flat-solution and show that if that graph contains no too-long paths, the flat-solution is imple-
mentable and if it contains such paths, adding certain time points based on the path to the discretization
is sufficient to ensure that the flat-solution is no longer representable. We first reproduce from their work
how the node-dispatch graph is constructed, how a too-long path is defined, and how they can be found.
Then we present a theorem that details which time points need to be added to our time discretization to
make a nonimplementable flat-solution also not representable.

Definition 7 (Dispatch-node graph (Shu et al. 2025)). Given a flat-solution (P,C), its dispatch-node graph is

defined as a directed graph G (P,C) = (V ,A) with a set of dispatch (and arrival) nodes V = {(k, u) | ∀k ∈
K, (u, v) ∈ pk}∪{(k, dk) | ∀k ∈ K} and an arc setA = {((k1, u), (k2, v)) | ∀((u, v), κ̄) ∈ C, k1, k2 ∈ κ̄}.
Each arc a = ((k1, u), (k2, v)) ∈ A has a length of ρa = τ(u,v).

They showed that a path starting from any node representing the origin of any commodity (k, ok) to
any other node (k′, v) gives a lower bound on the earliest dispatch time of the commodity k′ at node v. If
that dispatch time plus the remaining duration of a shortest path for k′ from v to its destination dk′ is later
than its deadline, the solution is not implementable. Recall that by τkuv we denote the length of a shortest
path between two nodes u, v ∈ Gk in the commodities’ subnetwork. Let P denote the set of paths in
G (P,C) that start at any node (k, ok) representing the source node of some commodity k ∈ K.

Definition 8 (Too-long path (Shu et al. 2025)). Given a flat-solution (P,C), a (not necessarily simple) path

p = (((k1, v1), (k2, v2)), . . . , ((kn−1, vn−1), (kn, vn))) ∈ P with v1 = ok1 is a too-long path if rk1 +∑
a∈p ρa + τknvndkn

> ℓkn .

14

Theorem 1 (Shu et al. 2025). A flat-solution (P,C) is nonimplementable if and only if its dispatch-node

graph G (P,C) contains a too-long path.

Shu et al. (2025) explain that a too-long path can contain a partial path that is also too-long and that
if the discretization is adjusted so that the partial path can no longer occur in the node-dispatch graphs
of representable flat-solutions, the original too-long path can also no longer occur. This motivates the
following definition:

Definition 9 (Minimal too-long path (Shu et al. 2025)). A too-long path p is minimal if every partial path

of p that starts from the initial node of p, except p itself, is not a too-long path.

To findminimal too-long paths, Shu et al. (2025) propose a label-propagating algorithm that enumerates
all paths starting from each commodity’s source node in the node dispatch graph. Since all arcs have
positive lengths, a path either eventually becomes too-long, at which point it is not further propagated but
stored as a minimal too-long path or reaches some commodity’s sink node and is not further extended.
We direct the reader to Shu et al. (2025) for a detailed description of the algorithm. For some instances,
our initial relaxation lead to node-dispatch graphs with many cycles and the label-propagating algorithm
sometimes ran out of memory on these graphs, since they seem to contain many potential paths. We
therefore use a heuristic modification of their algorithm that is not guaranteed to find all but only some
minimal too-long paths. Specifically, at every node in the dispatch-node graph we store the largest time
of any label seen so far at that node and whenever we would extend a label to a node, we do not do so if
that label does not have a larger time. Note that this discarding step can lead to minimal too-long paths
recurring in the node-dispatch graph over multiple iterations, but in preliminary experiments we found
the overall algorithm to work just as well with this heuristic discarding while not running into memory
problems. Importantly for the overall algorithm to terminate, if the node-dispatch graph contains any
too-long paths, our modified algorithm will still find at least one of them.

Similar to Theorem 3 of Shu et al. (2025), we establish which time intervals we can split in a discretiza-
tion based on a too-long path to make a nonimplementable solution also not representable. The time points
we split intervals at are identical to those of their theorem, but we show that in our relaxation it is suffi-
cient for each time new point to only split a node interval of one commodity and to only split an interval
of one arc. This is in stark contrast to all previously presented approaches, where a new time point at a
node would lead to additional timed nodes for each commodity and additional copies of all arcs leaving
that node. We first explain conceptually which intervals we split and then formally state the result. Note
that a too-long path represents consolidations that are not possible together because at the end of the path
one commodity has been delayed so much that it can not reach its destination before the deadline. So
we need to modify the discretization such that all of these consolidations together are also not possible
in the relaxed problem. Consider that an arc ((kj , vj), (kj+1, vj+1)) in the too-long path indicates that
commodity kj+1 can not be dispatched from node vj+1 before commodity kj arrives at that node, either
because kj = kj+1 or because they are consolidated together on the arc (vj , vj+1). We now modify the
discretization for only these commodities to ensure that if these commodities are to be consolidated as
the too-long path indicates, they need to be at each node on time. This will not be possible for the last

15

commodity kn that by definition of a too-long path would arrive at node vn so late that it could not arrive
its destination on time. So dispatching commodities kn−1 and kn together at this time would lead to an
infeasible dispatch time interval (see Definition 3) for commodity kn. Thus, these consolidations would
not be possible in a feasible solution to the relaxed problem with these new time points and therefore the
flat-solution not representable. We formalize this idea in the following theorem.

Theorem 2. Let p denote a too-long path in the dispatch graph G (P,C) of a flat-solution (P,C). The flat-

solution is not representable with respect to a discretization T ′ where for all arcs ((kj , vj), (kj+1, vj+1)) ∈ p

it holds that for the time point tj = rk1 +
∑j−1

j′=1 ρ((kj′ ,vj′),(kj′+1,vj′+1))
there exists some [t, t′) ∈ T ′

kjvj
with

t = tj and for arc a = (vj , vj+1) there exists some [t, t′) ∈ T ′
a with t = tj .

Proof. We consider the arcs of the too-long path one by one and determine feasible dispatch intervals for
the relevant commodities. For sake of presentation, we will assume that kj ̸= kj+1 for all j ∈ [n], but
the same arguments also holds without this assumption. For the first arc ((k1, v1), (k2, v2)) note that by
definition of a too-long path, v1 = ok1 . We demand that an interval starting at the time point t1 = rk1
is in T ′

k1ok1
, which it is by definition of a discretization. We further demand that there is an interval

[h
(v1,v2)
q1 , h

(v1,v2)
q1+1) ∈ T ′

(v1,v2)
with h

(v1,v2)
q1 = rk1 . So by Definition 3 only arc intervals with index q′1 ≥ q1

are feasible for dispatching k1 on this arc. Consider next the second arc ((k2, v2), (k3, v3)), which leads
us to demand that an interval starting at the time point t2 = rk1 + τ(v1,v2) is in the set T ′

k2v2
and that

there exists some interval [h(v2,v3)q2 , h
(v2,v3)
q2+1 ∈ T ′

(v2,v3)
) with h

(v2,v3)
q2 = t2. So if commodities k1 and k2 are

to be dispatched together on the first arc (v1, v2), they need to be dispatched in an interval q′1 ≥ q1 and
the relaxed arrival interval of k2 starts at t2 or later (since h(v1,v2)

q′1
+ τ(v1,v2) ≥ h

(v1,v2)
q1 + τ(v1,v2) = t2).

So for the dispatch intervals for commodity k2 to be relaxed time consistent (see Definition 4), it needs
to be dispatched on arc (v2, v3) in some interval with index q′2 ≥ q2. We now repeat this argument
for the remaining arcs until we reach the last arc and commodity kn, which, if it is to be consolidated
with commodity kn−1, needs to be dispatched in an interval [h(vn−1,vn)

q′n−1
, h

(vn−1,vn)
q′n−1+1

) ∈ T ′
(vn−1,vn)

with

h
(vn−1,vn)
q′n−1

≥ tn−1 and since by definition of a too long path tn−1 + τ(vn−1,vn) > tknvn , this dispatch
interval would not be feasible for kn. So the consolidations implied by the too-long path are not possible
to achieve with feasible and relaxed time consistent dispatch intervals given this discretization. Therefore,
the flat-solution is not representable with respect to this discretization.

4.4 Strengthening the Initial Relaxation

The minimal initial discretization T necessary for our relaxation is to chose Tkv = {[tkv, tkv]} for all
k ∈ K, v ∈ Vk and Ta = {[1, H)} for all a ∈ A. We strengthen the initial discretization by adding
additional time points as proposed by Shu et al. (2025). They note that some commodities can never
be consolidated on an arc (u, v) because the latest time at which some commodity can arrive at u plus
the travel time τ(u,v) might already be later than the latest time at which another commodity has to be
dispatched at v to still arrive on time. They show that these consolidations can be made impossible in the
relaxation by inserting what they call significant time points. We adapt their statement to our relaxation
and notation:

16

Theorem 3 (Significant time points (adapted from Shu et al. 2025)). Given any two different commodities

k1, k2 ∈ K and some arc a = (u, v) ∈ Ak1 ∩ Ak2 with tk2u + τ(u,v) > tk1v , if there exists an interval

[t, t′) ∈ Ta with t ∈ [tk1v − τ(u,v) + 1, tk2u], then no interval in Ta can be feasible for both k1 and k2.

Proof. Consider that the interval [t, t′) can not be feasible for k1, since the earliest possible arrival time
t + τ(u,v) + 1 ≥ tk1v + 1 is already after the latest possible dispatch time tk1v + 1, compare Definition 3.
Evidently, all later intervals are also not feasible for k1. Similarly, no interval before [t, t′) can be feasible
for k2, since the end of any such interval would need to be before the earliest dispatch time tk2u. Therefore,
there exist no interval that is feasible for both commodities, and they can never be consolidated together
on this arc.

For an arc (u, v) ∈ A, we can collect the set of intervals of significant time points for all impossible
consolidations as

I(u,v) = {[tk1v − τ(u,v) + 1, tk2u] | ∀k1, k2 ∈ K : (u, v) ∈ Ak1 ∩ Ak2 , tk2u + τ(u,v) > tk1v}.

Shu et al. (2025) propose solving a minimum hitting set problem to determine the smallest set of time
points to cover all intervals. Since they can only add time points for a node and thereby to all outgoing
arcs of that node, they determine the minimum hitting set for the intervals of all outgoing arcs of a node
u, i.e., for Iu =

⋃
v : (u,v)∈A I(u,v). Our relaxation permits arc-dependent time discretization, therefore

we solve the minimum hitting set problem for each arc and add the resulting time points only to the
discretization for this arc. This can potentially lead to less dispatch intervals for each arc in the relaxed
problem compared to adding the same time points for all outgoing arcs. Let the ordered set T(u,v) =

{t1, . . . , tm} denote a minimum hitting set for I(u,v). We initialize the set of dispatch intervals for arc (u, v)
as T(u,v) = {[0, t1), [t1, t2), . . . , [tm, H)}.

5 Algorithm Implementation Details

We combine the previously introduced concepts into Algorithm 1 to solve SND-RR to optimality. This
algorithm is conceptually identical to the one proposed by Boland et al. (2017). We first initialize our dis-
cretization as described in Section 4.4. Then we iteratively solve the relaxation R-SND-RR(T) and use the
heuristic from Boland et al. (2017) (see Appendix A) to try and find a primal solution of identical value,
which will succeed if the flat-solution corresponding to the relaxation solution is implementable. In that
case, the algorithm found an optimal solution and can terminate. Otherwise, the flat-solution is not imple-
mentable, and we add time points to the discretization to make it not representable and repeat the process.
Algorithm 2 describes our refinement approach, which is based on adding time points according to Theo-
rem 2. As noted before, since there are only finitely many flat-solutions representable in a discretization,
and we only ever remove some by adding time points, the algorithm will eventually terminate. For prac-
tical purposes it is often enough to terminate once the best found primal solution is sufficiently close to
optimal, which can be achieved by adjusting the termination criterion of the loop.

17

Algorithm 1 Arc-based Dynamic Discretization Discovery Algorithm for SND-RR
Require: An instance to SND-RR
Ensure: S is an optimal solution
1: Initialize discretization T
2: z ←∞, z ← −∞, S ← ∅
3: while z > z do
4: Find an optimal solutionW to R-SND-RR(T), z ← c(W)
5: Obtain solution S′ to SND-RR from primal heuristic
6: if z > c(S′) then
7: z ← c(S′), S ← S′

8: end if
9: if z > z then
10: Refine discretization according to Algorithm 2
11: end if
12: end while

Algorithm 2 Refinement procedure
Require: Time discretization T , relaxation solutionW
Ensure: Time discretization T ′ such that flat-solution corresponding toW is not representable
1: T ′ ← T
2: Determine flat-solution (P,C) corresponding toW
3: Construct node-dispatch graph G (P,C)
4: Find a set P ′ of too-long paths
5: for all p ∈P ′ do
6: for all ((kj , vj), (kj+1, vj+1)) ∈ p do
7: if ∄q ∈ [nkjvj] with t

kjvj
q = tj then

8: Let q′ such that tj ∈ [t
kjvj
q′ , t

kjvj
q′+1)

9: T ′
kjvj
← (T ′

kjvj
\ {[tkjvjq′ , t

kjvj
q′+1)}) ∪ {[t

kjvj
q′ , tj), [tj , t

kvvj
q′+1)}

10: end if
11: if ∄q ∈ [n(vj ,vj+1)] with h

(vj ,vj+1)
q = tj then

12: Let q′ such that tj ∈ [h
(vj ,vj+1)
q′ , h

(vj ,vj+1)
q′+1)

13: T ′
(vj ,vj+1)

← (T ′
(vj ,vj+1)

\ {[h(vj ,vj+1)
q′ , h

(vj ,vj+1)
q′+1)}) ∪ {[h(vj ,vj+1)

q′ , tj), [tj , h
(vj ,vj+1)
q′+1)}

14: end if
15: end for
16: end for

18

6 Computational Study

Our computational study has two parts: In Section 6.1, we study the benefit of our arc-based compared
to a node-based discretization on the instances proposed by Boland et al. (2017) for the problem without
restricted routes, i.e., with Gk = G for all k ∈ K. In Section 6.2 we compare our algorithm to that of Van
Dyk and Koenemann (2024) for instances with restricted routes that they introduced. These instances are
specifically designed such that one would expect arc-based discretization to be beneficial.

We implemented our algorithm in Python 3.12.2 and use Gurobi 12.0.1 (Gurobi Optimization, LLC 2025)
to solve the relaxation and the linear program in the primal heuristic. All instances were solved to a gap
between lower and upper bound of 1% with a time limit of one hour on machines with a Xeon L5630
Quad Core 2.13GHz processor and 16GB or 128GB memory. For the comparison in Section 6.2 against
the algorithm proposed by Van Dyk and Koenemann (2024), we use their open-source implementation,
available at https://github.com/madisonvandyk/SND-RR. We want to mention that we
are very grateful that they provide their code and instances openly accessible and will follow their example
upon acceptance of this manuscript. Their algorithm is also implemented in Python and uses Gurobi to
solve the relaxations, so we use the same versions of Python and Gurobi as for our algorithm on the same
machines to obtain comparable results.

Note that various algorithmic features from the literature could be added to our algorithm to further
improve the performance, but we want to focus our computational study on the benefits of the new relax-
ation we introduce. We therefore implemented only the features described before, for which an adaption
was necessary to work with our relaxation. Features that would be compatible with our approach include
the various refinement strategies and the valid inequality of Marshall et al. (2021) as well as the improved
primal heuristic and the enhanced refinement scheme for too-long path elimination by Shu et al. (2025). It
would also be possible to update the relaxation models in place instead of constructing them from scratch
after updating the discretization, but in our experiments the model construction time was negligible.

6.1 Sparse versus Dense Relaxation

To evaluate the benefit of our relaxation leading to sparser time-expanded networks compared to previous
approaches, we compare our algorithm as described in this paper to the same algorithm but with the
modification that whenever an any node (arc) time interval would be split, the interval at the (tail) node is
split for all commodities that have this node in their subnetwork and for all arcs leaving this node. This also
applies to the initial time points added to strengthen the first relaxation as described in Section 4.4. We call
our algorithmADDD (for arc-based dynamic discretization discovery) and the second algorithmDDD since
it simulates the dynamic discretization discovery approaches from the literature. Furthermore, for this
experiment we use the adaptive tolerances for solving the relaxation problem as introduced by Marshall
et al. (2021) and also utilized by Shu et al. (2025). We note that without such an adaptive tolerance even
solving the first relaxation to optimality takes up the entire time limit for some instances.

We compare ADDD and DDD on the set of 558 instances proposed by Boland et al. (2017). Note that
in these instances all commodities share the same network and cost parameters, so Gk = G and cka = qkca

19

https://github.com/ madisonvandyk/SND-RR

Gap (%) Time (s) # Iterations Solved (%)
Class Algorithm

HC/HF ADDD 1.34% 1198.53 9.9 75.1%
DDD 1.58% 1312.92 3.9 74.0%

HC/LF ADDD 0.90% 258.04 8.2 96.7%
DDD 0.96% 456.27 3.8 94.5%

LC/HF ADDD 0.22% 0.13 1.2 100.0%
DDD 0.38% 0.25 1.3 100.0%

LC/LF ADDD 0.49% 0.64 2.0 100.0%
DDD 0.62% 1.67 1.8 100.0%

Table 2: Results by instance class and algorithm

1 2 3 4 5 6

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st
an
ce
s

HC/HF

1 2 3 4 5 6

Performance ratio

HC/LF

ADDD
DDD

Figure 3: Performance profiles for both algorithms for the two challenging instance classes

0 50000 100000 150000 200000 250000

Number of variables + constraints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st
an
ce
s

ADDD
DDD

Figure 4: Distribution of model sizes of the last solved relaxation for each algorithm

20

for all k ∈ K and a ∈ A. These instances were classified by Boland et al. (2019) and Marshall et al.
(2021) depending on the tightness of the release-deadline time windows and the relation of variable to
fixed costs. They classify an instance as having low flexibility (LF) if mink∈K{ℓk − rk + τkok,dk} < 227

and high flexibility (HF) otherwise. An instance also has low cost ratio (LC) if 1
|A|

∑
a∈A

fa
caua

< 0.175

and high cost ratio (HC) otherwise. For our analysis, we report the result for each of the four resulting
instance classes LC/LF, LC/HF, HC/LF, and HC/HF.

Table 2 displays the average gap between upper and lower bound at termination, solving time, number
of iterations and the percentage of solved instances by algorithm and instance class. The arc-based dis-
cretization approach ADDD achieves significantly faster solving times and lower gaps for all four instance
classes compared to DDD, even though the number of iterations is larger for all classes except LC/HF.
The larger number of iterations is to be expected, since ADDD adds time points to less arcs, resulting in
smaller but weaker relaxations. But these weaker relaxations are so much easier to solve that ADDD is
overall faster than DDD. Despite this superior performance, the number of instances solved to a 1% gap is
almost identical for both approaches. To get a more detailed picture of the speed-ups achieved by ADDD,
we plot the performance profiles for the two algorithms in Figure 3 for the two challenging instance classes
HC/LF and HC/HF. This diagram shows the proportion of instances that each algorithm solves within a
time that is at most the stated ratio larger than the time in which the fastest algorithm solves the instance.
The lines level out at the proportion of instances that each algorithm solved within the time limit. We ob-
serve that for the most challenging class HC/HF ADDD solved about 70% of instances faster than DDD,
which only solved about 10% of instances faster than ADDD (the remaining instances were not solved
by either solver.) Additionally, ADDD was at least two times faster than DDD on about half the instances.
The picture is similar for the instance class HC/LF but here ADD was faster on almost all instances. In
Figure 4 we compare the model sizes between the two algorithms. It shows the proportion of instances for
which each algorithm had less than a given number of variables and constraint in the last relaxation. We
observe that the relaxations in ADDD are indeed significantly smaller. While the largest ADDD relaxation
solved for any instance contained about 50,000 variables and constraints, the largest DDD relaxation had
about five times as many variables and constraints. Overall, we conclude that our arc-based discretization
results in smaller models that can be solved so much faster that most instances in this instance set can be
solved faster even though more iterations are necessary.

6.2 Comparison with Van Dyk and Koenemann (2024)

We compare the performance of our algorithms ADDD and DDD to that by Van Dyk and Koenemann
(2024), which we denote as VDK. Note that in their open-source implementation the relaxations are solved
to a 1% tolerance. We modified this tolerance such that for both their and our algorithm we solved the
relaxations to the default Gurobi tolerance of 0.01%.

They created 576 instances specifically to be challenging for the node-based dynamic discretization
discovery paradigms. Specifically, in (near-)optimal solutions to these instances, many nodes will have
dispatches on some outgoing arcs at many time points. So if all arcs receive timed copies for each com-
modity that can traverse them at all time points for this node, the relaxation becomes difficult to solve

21

quickly. They divide their instances into three classes of 192 instances each, which we call designated path,
critical times and hub-and-spoke. In designated path instances, each commodity’s subnetwork Gk consists
only of one origin-destination path and just the dispatch times need to be decided. In critical times in-
stances, release times and deadlines of commodities are modified such that there is just a handful of time
points per node to simulate warehouse shifts. Hub-and-spoke instances represent regional networks that
are connected by hub nodes such that commodities can only travel between two regions via the hubs.

We again report aggregate statistics by algorithm and instance class in Table 3. Note that for four
instances in the designated path class one or both of our algorithms were not able to solve the first relax-
ation in the time limit. For these instances, we removed the results for all three algorithms to calculate the
statistics in Table 3. From the results it is evident that both of our implementations are significantly faster
and able to solve more instances compared to the implementation by Van Dyk and Koenemann (2024).
This is most likely due to the algorithmic features of Shu et al. (2025) that we adapted to our relaxation,
i.e., the stronger initial relaxation and the better refinement due to the removal of too-long paths. Due to
our interval-based relaxation our algorithm can also start with a much sparser initial model similar to that
of Marshall et al. (2021). Van Dyk and Koenemann (2024) base their algorithm on the paradigm of Boland
et al. (2017) which already contains significantly more time points in the initial relaxation, specifically for
each commodity the release time and deadline at the corresponding nodes. Therefore, the fairer compari-
son between ADDD and DDD is probably more telling on these instances. Interestingly, even though these
instances were specifically constructed to be amenable approaches like the one of Van Dyk and Koene-
mann (2024) and ours, the performance of ADDD is actually worse than that of DDD. For all three classes,
DDD solves more instances, in less iterations, faster and to a smaller remaining gap. We also plot the
performance profiles by algorithm and instance class in Figure 5 (note the logarithmic scale.) While both
ADDD and DDD are fastest on about half the instances each, DDD can consistently solve more instances
within at most a small factor more time than the fastest algorithm. The exception are the designated path
instances, for which ADDD can solvemore instances within at most two times the time of the fastest solver.
One could argue that this is also the clearest-cut case for arc-based discretization, since in these instances
each commodity can be transported only along a fixed path and the discretization for each arc only affects
the set of commodities that traverse along this arc and none of the others that could traverse along the tail
node of the arc. Still, in the aggregate statistics DDD performs better overall even for the designated path
instances. In Figure 6 we plot again the sizes of the last solved relaxation model by algorithm. We observe
that the ADDD relaxations are significantly smaller than those of DDD, but seemingly for these instances
the resulting faster solving times are not sufficient to make up for the weaker relaxation. Interestingly
enough, the difference in size between the ADDD and DDD relaxations is not as large as between either
and the size of the relaxations of VDK. We therefore posit that using an interval-based relaxation as done
by Marshall et al. (2021) would already have lead to a strong reduction in model size and possibly solving
time compared to the approach implemented by Van Dyk and Koenemann (2024). Overall, for this set of
instances we can not report a benefit to using arc-based discretization.

22

Gap (%) Time (s) # Iterations Solved (%)
Class Algorithm

Critical times ADDD 0.57% 139.57 4.6 98.4%
DDD 0.41% 99.93 1.9 99.0%
VDK 1.92% 963.40 15.0 89.6%

Designated path ADDD 0.77% 303.64 5.9 96.3%
DDD 0.60% 204.76 3.3 98.4%
VDK 2.55% 1325.80 22.2 78.7%

Hub-and-spoke ADDD 0.30% 100.93 5.1 98.4%
DDD 0.18% 23.49 2.5 100.0%
VDK 6.32% 1159.75 20.8 79.7%

Table 3: Results by instance class and algorithm

0.0

0.5

1.0
Critical times

ADDD
DDD
VDK

0.0

0.5

1.0

Pr
op

or
tio

n
of

in
st
an
ce
s Designated path

100 101 102 103

Performance ratio

0.0

0.5

1.0
Hub-and-spoke

Figure 5: Performance profiles by instance class

23

0 30000 60000 90000 120000 150000

Number of variables + constraints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st
an
ce
s

ADDD
DDD
VDK

Figure 6: Distribution of model sizes of the last solved relaxation for each algorithm

7 Conclusions and Future Work

We have presented a novel arc-based relaxation for the continuous time service network design problem
and have shown that various recent algorithmic improvements for node-based relaxation approaches can
be adapted to this relaxation. Our experiments showed that while the arc-based relaxation is weaker than
the node-based one, the resulting integer programming models are significantly smaller and can be solved
faster, leading to overall faster solving speeds on some challenging instance sets.

A potential improvement of interest to us is the question of how to solve each relaxation faster, since
we observed very poor convergence of the MIP solver for some relaxation models. Another interesting
question is how to determine the smallest possible discretization that prevents all too-long paths seen in
previous iterations of the algorithm. If we could determine such a discretization, it would be possible
to not only add but also remove time points from the discretization while still ensuring no backsliding
with respect to nonimplementable solutions. We note that with recent advances (especially those of Shu
et al. 2025) the instances proposed by Boland et al. (2017) and Van Dyk and Koenemann (2024) do not
pose significant challenges anymore. It would be helpful for further algorithmic developments to acquire
challenging data sets from real-life service network design applications. Specifically applications with
highly-connected networks (large node-degrees) could be amenable to arc-based relaxations.

Code and Data for our implementation and the used instance sets are submitted with this manuscript
as a ZIP file and will be published on Github if accepted.

A Primal Heuristic

To obtain primal feasible solutions before we find an implementable flat-solution, we utilize the heuristic
proposed by Boland et al. (2017). As an input, it receives a relaxation solution W = (P,N) and solves a

24

linear program to determine consistent dispatch times for the flat-paths P while minimizing the deviation
of dispatch times between commodities that are consolidated in the relaxed solution. In our notation, the
linear program is as follows:

min
∑
a∈A

na∑
q=1

∑
{k1,k2}⊆κ̄(a,q)

δ{k1,k2}a (12)

s.t. γkai + τai ≤ γkai+1
∀k ∈ K, ∀i ∈ [nk − 1] (13)

γka1 ≥ rk ∀k ∈ K (14)

γkank
+ τank

≤ ℓk ∀k ∈ K (15)

δ{k1,k2}a ≥ γk1a − γk2a ∀a ∈ A,∀q ∈ [na], ∀{k1, k2} ⊆ κ̄(a, q) (16)

δ{k1,k2}a ≥ γk2a − γk1a ∀a ∈ A,∀q ∈ [na], ∀{k1, k2} ⊆ κ̄(a, q) (17)

γka ≥ 0 ∀k ∈ K, ∀a ∈ pk (18)

δ{k1,k2}a ≥ 0 ∀a ∈ A,∀q ∈ [na], ∀{k1, k2} ⊆ κ̄(a, q) (19)

The variables γka represent the dispatch time tka in the resulting solution S = (P, T) to SND-RR. The
variables δ{k1,k2}a represent the difference in dispatch times between commodities that are consolidated in
the relaxed solution. Constraints (13)–(15) ensure that the dispatch times are consistent and the remaining
constraints enforce the described interpretation of the δ-variables. Since the flat-paths in the relaxation
solution are k-feasible, this linear program is always feasible. Note that if the flat-solution corresponding
to W is implementable, this primal heuristic will find dispatch times T so that S = (P, T) is optimal for
SND-RR and the objective value of the linear program will be zero.

References

Boland, Natashia, Mike Hewitt, Luke Marshall, and Martin Savelsbergh (2017). “The Continuous-Time
Service Network Design Problem”. In: Operations Research 65.5, pp. 1303–1321.

— (2019). “The price of discretizing time: a study in service network design”. In: EURO Journal on Trans-

portation and Logistics. Special Issue: Advances in vehicle routing and logistics optimization: exact
methods 8.2, pp. 195–216.

Crainic, Teodor Gabriel and Mike Hewitt (2021). “Service Network Design”. In: Network Design with Appli-
cations to Transportation and Logistics. Ed. by Teodor Gabriel Crainic, Michel Gendreau, and Bernard
Gendron. Cham: Springer International Publishing, pp. 347–382.

Gurobi Optimization, LLC (2025). Gurobi Optimizer Reference Manual.
Hewitt, Mike (2019). “Enhanced Dynamic Discretization Discovery for the Continuous Time Load Plan

Design Problem”. In: Transportation Science 53.6. Publisher: INFORMS, pp. 1731–1750.
Marshall, Luke, Natashia Boland, Martin Savelsbergh, and Mike Hewitt (2021). “Interval-Based Dynamic

DiscretizationDiscovery for Solving the Continuous-Time ServiceNetworkDesign Problem”. In: Trans-
portation Science 55.1. Publisher: INFORMS, pp. 29–51.

25

Shu, Shengnan, Zhou Xu, and Roberto Baldacci (2025). “New Dynamic Discretization Discovery Strategies
for Continuous-Time Service Network Design”. In: Optimiziation Online, Preprint.

VanDyk,Madison and JochenKoenemann (2024). “Sparse dynamic discretization discovery via arc-dependent
time discretizations”. In: Computers & Operations Research 169, p. 106715.

26

	Introduction
	Related Work
	Problem Description
	Dynamic Discretization Discovery
	Relaxed Problem
	Solving the Relaxed Problem
	Refining the Discretization
	Strengthening the Initial Relaxation

	Algorithm Implementation Details
	Computational Study
	Sparse versus Dense Relaxation
	Comparison with vandyksparse2024

	Conclusions and Future Work
	Primal Heuristic

