
Technische Universität Berlin

Algorithms for Detecting Block Structures
in Matrices

Diplomarbeit

am Fachgebiet Kombinatorische Optimierung und
Graphenalgorithmen

Prof. Dr. Marco Lübbecke
Institut für Mathematik

Fakultät II — Mathematik und Naturwissenschaften
Technische Universität Berlin

vorgelegt von

Michael Bastubbe

am

16. September 2011

Die selbständige und eigenhändige Anfertigung
versichere ich an Eides statt.

Berlin, den 16. September 2011

III

Acknowledgments

At first, I wish to thank my parents and my brother for their support and encour-
agement during my studies.

I would like to express my gratitude towards my supervisor Prof. Dr. Marco E.
Lübbecke. His encouragement and support were crucial to the success of this the-
sis. I am truly grateful for the great degree of freedom I enjoyed in exploring
my ideas. This way I could discover how doing mathematics works and made the
creation of this thesis a unique experience.

Finally, I want to thank my friends and fellow students for making the creation
of this thesis a much more enjoyable process. It motivated me a lot to spend vast
working hours and many helpful discussions with Stefan Müller. I wish to thank
Alexander Richter, Sebastian Schenker, Marlen Schwengfelder and Martin Trapp
for reading earlier versions of this thesis and many valueable suggestions. I thor-
oughly enjoyed working with you.

All remaining errors were overlooked by myself during the final review.

V

Contents

1 Introduction 1

2 Background 5
2.1 Definitions . 5

2.1.1 Basic Definitions From Graph Theory 8
2.2 Applications . 8

2.2.1 Systems of Linear Equations . 8
2.2.2 Least Squares . 11
2.2.3 Linear Programming . 12
2.2.4 Mixed Integer Programming . 12
2.2.5 Transformation k-Arrowhead to Bordered k-Block Diagonal Form . 12

2.3 Problem Formulations . 13
2.3.1 Characterization of a Decomposition 14
2.3.2 Problem formulation . 19

2.4 Quality of a Decomposition . 21
2.5 Literature review . 23

2.5.1 Literature on Exact Decomposing Methods 24
2.5.2 Literature on Heuristic Decomposing Methods 24

3 Complexity 25
3.1 Basic Definitions From Complexity Theory 25
3.2 A Polynomial Algorithm for Fixed Objective Value 26
3.3 Complexity for MinAf(A,m, 0, 1) and MinBf(A,m, 0, 1) 31
3.4 Complexity for MinBf with k = 2 . 34

4 Heuristic Decomposing Methods 39
4.1 Solving Hypergraph Partitioning Problems 39

4.1.1 Heuristic for solving HVS by HES 41
4.2 Modeling Matrix Decomposing Problems as Graph Partitioning Problems 46

4.2.1 Outlook . 47
4.3 Models for MinBf . 47

4.3.1 The Hyperrow Decomposing Algorithm 47
4.3.2 The Hypercolumn Decomposing Algorithm 51

4.4 Models for MinAf . 56
4.4.1 Hypercolrow Decomposing Algorithm 56
4.4.2 Bipartite Decomposing Algorithm 61

VII

Contents

5 Exact Decomposing Methods 69
5.1 Borndörfer’s Approach to MinBf . 69
5.2 Assignment Approach for MinAf . 70
5.3 Column Generation Approach for MinAf 75

5.3.1 Solving the LP-relaxation of IPCG 79
5.3.2 The Pricing Problem . 81

6 Computational Experiments 87
6.1 Results for Heuristic Methods . 87

6.1.1 Parameters . 88
6.1.2 Instances . 89
6.1.3 MinAf . 90
6.1.4 MinBf . 92
6.1.5 Comparison to Ferris and Horn’s Results 94
6.1.6 Performance with Forbidden Empty Blocks 95

6.2 Results for Exact Methods . 98
6.2.1 Scip . 99
6.2.2 Instances . 99
6.2.3 Results for the Assignment Approach 99
6.2.4 Results for ICG . 101

7 Final Remarks 103

8 Appendix IX
8.1 Zusammenfassung (German Summary) . IX
8.2 Background . XI
8.3 Computational Tests . XI

VIII

1 Introduction

What do society, emotions, public transport, and a desktop have in common? – All of
them can drown in chaos. It does not matter whether we consider anarchy, hate and
love, train cancellation, or an inspiring working environment, there is a notion for almost
every object to describe its state as being disordered.
Occasionally chaos seems to be abhorred in mathematical optimization. In order to

mention two examples from practice: Local train schedules are coordinated to minimize
the changing time and communication networks are designed such that capacity and
survivability constraints are satisfied while costs are minimized. The coordination of
single components in a complex system cannot only safe money and time, it sometimes
also decreases the perceived chaos. For many people a priceless feeling.
The mathematical problems behind these real-life applications can be formulated as a

mixed integer program(MIP). Mixed Integer Programming is a powerful tool to model
large-scale combinatorial optimization problems. The coefficient matrix used by this
approach encodes the problem data and hence includes much information about the
structure of the problem. Consider for example the coefficient matrix of the mixed
integer programming instance msc98-ip.mps, modeling an telecommunication network
design problem, taken from MIPLIB 2010 [30] in Figure 1.1a. This matrix has 15850
rows and 21143 columns with 92918 nonzero entries. All nonzero entries are marked with
a red dot.

(a) original (b) randomly permuted

Figure 1.1: Coefficient matrix of msc98-ip.mps

At first sight, it looks like this matrix is divided into two parts. About the first third
of the matrix seems to have a special structure, but the remaining matrix appears rather
random. Roughly speaking, this is due to the fact that the nonzero entries of the right

1

1 Introduction

and left upper part are arranged blockwise. Rows and columns belonging to one block
have no nonzero entries in columns and rows, respectively, that belongs to another block
(at least, if one only considers the left or right upper third of the matrix). This block
structure reveals that there are disjoint sets of rows and columns that are somehow
connected with each other, caused by the structure of the problem. The first crucial
question arises:

Is it possible to exploit block structures in the coefficient matrix of a MIP? (1.1)

We have not stated what we exactly mean by “block structures” and therefore we should
ask a better question:

How should a coefficient matrix of a MIP look like, such that the structure
of its nonzero entries can be exploited to improve the performance? (1.2)

To answer this question we should take a look at the algorithms to solve Mixed Inte-
ger Programs. The standard method to solve a MIP, like msc98-ip.mps, is the so-called
branch-and-bound algorithm. This algorithm, in its original form, does not exploit pos-
sible structure of the nonzero entries in the coefficient matrix. Hence, the order of the
rows and columns does not matter from a theoretical point of view. In Figure 1.1b the
coefficient matrix of msc98-ip.mps is displayed once more, but the rows and columns are
randomly permuted this time. This matrix is probably one more notion for chaos to
most people and thus, at least, it seems that information is lost by not exploiting the
structure of the matrix.
However, in this thesis we want to study two kind of block forms: The k-arrowhead

form and the bordered k-block diagonal form. Throughout this introduction, we will refer
to them as “block forms”. Instead of giving a proper definition here, we illustrate them by
the coefficient matrix of msc98-ip.mps: Its rows and columns are permuted1 such that it
is in 24-arrowhead form in Figure 1.2a and in bordered 6-block diagonal form in Figure
1.2b.
Fortunately, algorithmic approaches exploiting block structures in coefficient matrices

of MIPs were recently developed [18] and are still emerging. Moreover, there are further
mathematical problems for which it can be exploited that the coefficient matrix is in one
of these forms. We will sketch how this can be done for solving two well-known problems
from linear algebra. However, it is not our purpose to answer questions 1.1 and 1.2 in
detail, rather we wish to investigate the problem of finding permutations of the rows
and columns of a matrix such that we obtain matrices in k-arrowhead form or bordered
k-block diagonal form.
In this context the next question arises:

How can permutations yielding a matrix in one of both block forms can be
characterized?

(1.3)

To answer Question 1.3, we are going to introduce the concept of a k-decomposition of a
matrix that is essentially a partition of the rows and columns. In this way, a permutation

1These permutations were found by the matrix decomposition tool Decomp implemented in the course
of this thesis.

2

(a) 24-arrowhead form (b) 6-bordered block diagonal form

Figure 1.2: Coefficient matrix of msc98-ip.mps

of the rows and columns can be encoded. On the one hand, we will present sufficient
conditions for a k-decomposition to yield a matrix in one of the block forms with k blocks.
On the other hand, it will turn out that every permutation that yields a matrix in one
of the block forms with k blocks, can be expressed by a k-decomposition up to the order
of the rows and columns inside the blocks.
We use this characterization to formulate two optimization problems, one for each

block form, namely MinAf and MinBf, whose objective functions are motivated by the
applications introduced in Section 2.2. Naturally, more questions appear:

How can we solve MinAf and MinBf? (1.4)

Can we hope for a polynomial time algorithm to solve them? In other
words, are these problems NP-hard2? (1.5)

We will find out that both problems can be solved in polynomial time for fixed objective
function value. However, they are NP-hard in general, and hence we are going to
investigate two kind of algorithms.
At first, we are interested in finding heuristics, that obtain feasible solutions for a

reasonable number of instances of acceptable quality in moderate time. In fact, we will
introduce for each block form two algorithmic approaches. These approaches have many
structural similarities. All of them include the solution of a graph partitioning problem
in a special graph or hypergraph. We will only touch a few aspects of graph partitioning
in this thesis.
Secondly, we want to state an integer program that solves this problems exactly. It

will turn out that this model has two major flaws: On one hand, the model is highly
symmetric3. We will introduce two types of constraints that reduce symmetry. On the
other hand, the LP-relaxation will turn out to be weak. We are going to introduce another
integer program that is based on the old one, but has exponentially many variables. A

3Roughly speaking, an integer program is symmetric if its variables can be permuted without changing
the structure of the problem. For a thorough treatment, we refer the reader to [34].

3

1 Introduction

column generation approach is presented to solve the LP-relaxation of the new model.
However, it is not our purpose to indicate a branch-and-price algorithm to solve the
integer program, rather we will restrict our attention to the LP-relaxation. In order to
solve it, we introduce the pricing problem and show that it can be solved in polynomial
time under some conditions. Moreover, we present an integer program that solves the
pricing problem in general.
Most approaches are implemented and tested in the course of this thesis. We are going

to compare the heuristic approaches by quality. In order to do so, we will define alter-
native quality measures that are motivated by applications and study extensively which
approach performs best with respect to one of the quality measures. Furthermore, we will
compare our results with some former experiments of Ferris and Horn [17]. Moreover,
we study which instances from practice (namely the Netlib and MIPLIB 2010 [30]) have
a coefficient matrix that can be permuted to k-arrowhead or bordered k-block diagonal
form for different k by our implementation. Furthermore, we study the performance and
limitation of the first integer program. Finally, we present our computational results for
the LP-relaxation of the second model.

Outline

The remaining part of this diploma thesis is structured as follows. Chapter 2 contains
the mathematical background. It provides definitions of the block forms and exemplifies
by some applications from mathematics how they can be exploited. It develops the
concept of a k-decomposition that can be used to characterize permutations of the rows
and columns that yield a matrix in a block form. The definitions of the corresponding
mathematical optimization problems MinAf and MinBf are provided. It also defines
three quality measures motivated by the applications. It ends with a brief review of the
relevant literature. Chapter 3 contains an analysis of the complexity of both problems.
A polynomial time algorithm for fixed objective function value is presented for each
problem. Then it provides proofs that some special cases of MinAf and MinBf are
NP-hard. Chapter 4 gives an introduction to graph partitioning. It then introduces two
heuristics for each problem based on solving different graph partitioning problems. It
also provides relevant examples of failed runs for every heuristic. Chapter 5 deals with
exact solving methods for MinAf and MinBf. It introduces two integer programs that
can be used to solve MinAf and can easily be adapted to solve MinBf. It deals with the
pricing problem that has to be solved to handle the second model that has exponentially
many variables. Chapter 6 includes a documentation and analysis of our computational
experiments for the heuristics and the exact solving methods.
Finally, we want to point out that we do not share the opinion that chaos is abhorred

in mathematical optimization and that we do not abhor it either; instead we follow the
words of the renowned Dutch graphic artist M.C. Escher:

“We adore chaos because we love to produce order.”

4

2 Background

In the introduction, we have already seen two matrices whose nonzero entries are ar-
ranged in one of the proposed block forms. Now we will give a proper definition of these
two forms. We develop the concept of k-decomposition that can be used to characterize
permutations of the rows and columns yielding such forms. Furthermore, we present op-
timization problems for each form that are motivated by applications from mathematics.
To be more precise, the first chapter consists of five sections. Initially, we are going to

introduce and illustrate basic definitions in Section 2.1. In particular, we will introduce
two block structures for matrices, namely the k-arrowhead form and the bordered k-block
diagonal form. Secondly, we will show potential advantages offered by matrices in such
forms offer. This will be done by presenting some applications in Section 2.2. In the
next section we introduce the concept of k-decomposition that will turn out to be useful
for characterizing a matrix in k-arrowhead form or bordered k-block diagonal form. How
well the block structure can be exploited obviously depends on the properties of the
decomposed matrices. In Section 2.4 we define functions that measure the quality of a
decomposition with respect to one of these properties. Eventually, in Section 2.5.1 of
this chapter we give an overview about the literature on detecting block structures in
matrices and compare the different approaches.

2.1 Definitions

At first, we introduce general notions about the structure of matrices. Secondly, we
define two block forms for matrices: The k-arrowhead form and a specialization of it, the
bordered k-block diagonal form for an integer k ∈ N.
Throughout this thesis, we are talking about matrices and the structure of its nonzero

entries. If not stated otherwise, A ∈ Rm×n is a matrix with entries aij for a row
i ∈ {1, . . .m} and a column j ∈ {1, . . . n}. For the rows and the columns of a
matrix we want to use the following terms: If a row i has a nonzero entry in the distinct
columns j1 and j2, we say that the columns j1 and j2 are coupled or linked by i. We also
say that j1 and j2 have a common row i, if j1 and j2 are coupled by i. Similarly, if a
column j has a nonzero entry in the distinct rows i1 and i2, we say that the rows i1 and
i2 are coupled or linked by j. If i1 and i2 are linked by j, we call j a common column of
i1 and i2.
We denote [i] := {1, . . . , i} as the set of the first i natural numbers for i ∈ N. More-

over, we will use certain submatrices of a matrix whose rows and columns are per-
muted. Consider a subset of rows {r1, r2, . . . , rm′} ⊆ [m] and a subset of columns
{c1, c2, . . . , cn′} ⊆ {1, . . . , n} of a matrix A ∈ Rm×n. We denote the permuted sub-
matrix of A by A[r1, r2, . . . , rm′ ; c1, c2, . . . , cn′] ∈ R

m′×n′ , it includes rows and columns

5

2 Background

of A such that its i-th row is the ri-th row of A and its j-th column is the cj-th column
of A with m′, n′ ∈ N, m′ ≤ m, n′ ≤ n. For the sake of clarity, we give a small example:

Example 2.1.1
Consider the matrix A ∈ R4×4 such that

A =

1 2 3 4

1 2 0 1 0
2 2 1 0 2
3 4 2 5 42
4 0 3 0 1

.

The permuted submatrix A[3, 1; 4, 1, 2] ∈ R2×3 is then given by:

A[3, 1; 4, 1, 2] =

4 1 2()
3 42 4 2
1 0 2 0

.

Furthermore, let P be a set and k ∈ N be an integer. A weak partition of P is a set
{P1, . . . , Pk} of subsets of P with

⋃k
i=1 Pi = P and Pi ∩ Pj = ∅ for i, j ∈ [k], i 6= j. The

set Pi is called part of P for every i ∈ [k]. If {P1, . . . , Pk} is a weak partition of P and
Pi 6= ∅ for all i ∈ [k], then we call {P1, . . . , Pk} a partition of P .

Moreover, we will make use of tuples. A tuple is a set whose elements are ordered. We
will note tuples in parentheses “(. . .)” instead of curly brackets “{. . . }”, and denote the
empty tuple by () and ∅. Every tuple is still a set and thus the common notation for sets
extends to tuples naturally.
It is time to define the first block form:

Definition 2.1.2 (k-arrowhead form)
Let A ∈ Rm×n, k ∈ N0. We say A is in k-arrowhead form or k-doubly-bordered block
diagonal form, if

A =

B1 C1

B2 C2

. . .
...

Bk Ck
R1 R2 · · · Rk D

 ,

with Bi ∈ Rmi×ni , Ri ∈ Rr×ni , Ci ∈ Rmi×c, D ∈ Rr×c with r, c ∈ N0 and mi, ni ∈ N for
i = 1, ..., k and all other entries equal zero.

Remark 1:
It is necessary to restrict mi and ni for i ∈ [k] to be strictly positive. Otherwise every
matrix would be in k-arrowhead form for every k ∈ N0. For example, we could set
B1 := A and leave the remaining matrices B2, . . . , Bk empty.

6

2.1 Definitions

Observation 2.1.3
Every matrix is in 0-arrowhead form and 1-arrowhead form.

This can easily be seen by setting D = A or setting B1 = A, respectively.
Observation 2.1.4
Let k ∈ N0 be a nonnegative integer and A ∈ Rm×n be a matrix in k-arrowhead form.
Then A is also in r-arrowhead form with r ∈ N0 and r ≤ k.

This is clear since we can merge two submatrices Bi and Bi+1 to one single submatrix
for i ∈ [k − 1].
Every submatrix Bi is called a block. The number of blocks is denoted by k. We call

the submatrix (
R1 R2 · · · Rk D

)
,

the row border. Every row of it is called border row or coupling constraint . Now we
extend the general notation of the nonzero structure of a matrix to blocks. If a row l
has a nonzero entry in block i and block j, we say that the distinct blocks i and j are
coupled or linked by l. We notice that for a matrix in k-arrowhead form only a border
row can couple two distinct blocks.
Similarly, we call the submatrix

C1

C2
...
Ck
D

 ,

the column border. Its columns are called border columns. If a column q has a nonzero
entry in block i and block j, we say that the blocks i and j are coupled or linked by q.
As for rows we notice that in a matrix in k-arrowhead form a column that couples two
distinct blocks is a border column.
Note that r and c may equal zero. On the one hand, if c = 0 6= r, the border columns

are missing. On the other hand, if r = 0 6= c the border rows are missing. In both cases
the matrix is called singly-bordered block diagonal form. If r = c = 0 the matrix is called
to be in block diagonal form. We are especially interested in the singly-bordered block
diagonal form with empty column border :

Definition 2.1.5 (bordered k-block diagonal form)
Let A ∈ Rm×n, k ∈ N. If A is in k-arrowhead form with empty column border, we say
that A is in bordered k-block diagonal form.

A matrix A in bordered k-block diagonal form looks like this:

A =

B1

B2

. . .
Bk

R1 R2 · · · Rk

 ,

7

2 Background

with Bi ∈ Rmi×ni , Ri ∈ Rr×ni for i = 1, ..., k and all other entries equal zero. Note that
if A is in bordered k-block diagonal form, then AT is in singly-bordered block diagonal
form with empty row border.
Before we present some applications that can exploit matrices in k-arrowhead form

and bordered k-block diagonal form, we want to introduce some basic graph theoretical
definitions.

2.1.1 Basic Definitions From Graph Theory

Throughout this thesis, we will make use of graphs and their generalizations: hypergraphs.
So we will give a brief summary about the most important notions.
A hypergraph H = (N , E) consists of a finite set of nodes N and a finite set of hy-

peredges E . Nodes are also called vertices. Every hyperedge e connects a subset of
nodes Ne ⊆ N , with |Ne| ≥ 2. For s ∈ Ne, we also write s ∈ e and say that s and e are
incident. The size of e is |Ne|. We say that the distinct nodes s and t are adjacent if
there is a hyperedge e that is incident to both nodes. For a node s we call adj (s) the set
of adjacent nodes of s. The degree of a node s is |adj(s)|. A hypergraph whose hyper-
edges have size exactly two is called undirected graph. The hyperedges of an undirected
graph are simply called edges. For the sake of clearness, we will denote the edges of an
undirected graph by E and the vertices by V .
We will also need directed graphs. A directed graph G = (V,A) consists of a set of

nodes V and a set of directed edges A. Directed edges are also called arcs. An arc is an
ordered pair (i, j) of distinct nodes i, j ∈ V .
For an arbitrary hypergraph H = (N , E) with N = {v1, ..., vm} and E = {e1, ..., en},

we define its incidence matrix AH ∈ Rm×n with entries aij such that aij = 1 if vi ∈ ej
and aij = 0 otherwise.
Now we want to give some applications for motivation.

2.2 Applications

In this section we show that one can often exploit a coefficient matrix of a problem that is
in k-arrowhead form or bordered k-block diagonal form to solve the problem. At first, we
want to motivate the reader by presenting two well-known problems from linear algebra,
where we can take advantage of block structures. For an introduction to linear algebra,
we recommend [38]. Afterwards, we refer the reader to literature that covers techniques
to exploit a coefficient matrix in bordered k-block diagonal form for solving linear and
mixed integer programs. Finally, we sketch an approach that transforms a problem whose
coefficient matrix is in arrowhead form into bordered k-block diagonal form.

2.2.1 Systems of Linear Equations

One of the most popular problems of linear algebra is solving a system of linear equa-
tions.

8

2.2 Applications

Linear Equations
Instance: A matrix A ∈ Rm×n and a vector b ∈ Rm

Solutions: x ∈ Rn with Ax = b

We call the matrix A the coefficient matrix and vector b the right hand side of the
problem. In practice, the Linear Equations problem is solved by two kind of algo-
rithms. There are direct methods, like LU factorization and iterative algorithms, like
the Gauss-Seidel method. These algorithms can be adapted such that if one apply them
to a coefficient matrix in k-arrowhead form one can take advantage of the special block
structure. For a detailed view on how to adapt LU factorization and the Gauss-Seidel
method to exploit the k-arrowhead form by parallel computations, we refer the reader to
[31].
In the following, we want to have a look at LU factorization and how to exploit a

coefficient matrix in k-arrowhead form by parallelizing computations in a three-phase
approach. LU factorization can be managed by applying elementary row operations to
a matrix A such that an upper triangular form is reached. We will call the set of upper
triangular matrices UT . These elementary row operations are row permutations and
addition of a multiple of a row to another row situated below the first row. Row permu-
tations correlate to multiplication from the left with a matrix that has exactly one entry
in every row and column which equals one. Such a matrix is called permutation matrix.
Note, that permutation matrices are invertible and that the product of two permutation
matrices is a permutation matrix. The second mentioned operation corresponds to multi-
plication from the left with a lower triangular matrix with all diagonal entries equal one.
We call the set of all these matrices LT1. We notice that the product of two matrices
which are both in LT1 is also in LT1 and that the matrices in LT1 are invertible. We can
apply elementary row operations to factorize a matrix A ∈ Rm×n like this:

LU = PA,

with L ∈ Rm×m is in LT1, U ∈ Rm×n is in UT and P ∈ Rm×m is a permutation matrix.
For a matrix in k-arrowhead form, one could use the following three-phase approach

to solve Linear Equations:

1. Parallel factorization of each block.

2. Permutation of the unfactored rows and columns to their border.

3. Factorization of the unfactored rows.

In phase one, we factorize each block Bi and also apply the corresponding elementary
row operations to the associated column submatrix Ci obtaining C ′i. In this phase we
would benefit from around equally sized blocks because the time needed by phase one is
determined by the makespan of the parallel computations.

9

2 Background

Let A ∈ R
m×n be in k-arrowhead form. After applying phase one to A, we get the

partially factorized matrix

P1A = A1 =

L1U1 C ′1

L2U2 C ′2
. . .

...
LkUk C ′k

R1 R2 · · · Rk D

 ,

such that the factorization of block i ∈ [k] is P ′iBi = LiUi with Li ∈ Rmi×mi is in LT1,
Ui ∈ R

mi×ni is in UT , P ′i ∈ Rmi×mi is a permutation matrix, A1 is the permutation of
A after phase one and P1 the permutation matrix that corresponds to all row permuta-
tions that were done in phase one. Each of these row permutations correspond to some
permutation matrix P ′i .
Since the blocks are not necessarily quadratic and full-ranked, the matrix

U =

U1

U2

. . .
Uk

is not an upper triangular matrix with all diagonal entries unequal zero, in general. In
the second phase we permute all those rows and those columns that avoid this fact to
the respective border. We get the following:

P2P1AP
′
2 = P2A1P

′
2 = A2 =

(
L∗U∗ C∗

R∗ D∗

)
,

with P2 and P ′2 permutation matrices, U∗ in UT with only nonzeros on its diagonal, L∗

in LT1, A2 the permutation of A after phase two and the submatrices R∗, C∗ and D∗

which consist of the old border rows and columns, and the unfactored rows or columns
of phase one.
Since U∗ is in UT and all its diagonal elements are unequal zero, it is straightforward

to factorize the remaining rows. Finally, we get the following factorization:

PAP ′2 = LU,

with L ∈ Rm×m is in LT1, U ∈ Rm×n is in UT and P , P ′2 ∈ Rn×n are permutation
matrices.
We have seen that it is possible to parallelize the computations of the blocks in phase
one. Therefore, it is favorable to do as much factorization as possible in phase one. We
also want the borders to be as small as possible, in order to reduce the computation
time in phase three. Because the computation time of phase one is determined by the
makespan of the block factorizations, we prefer many equally sized blocks for a good
work load distribution.

10

2.2 Applications

2.2.2 Least Squares

Now we want to have a short look at one of the fundamental problems of numerical linear
algebra.

Least Squares
Instance: A matrix A ∈ Rm×n with m > n and a vector b ∈ Rm

Solution: x ∈ Rn

Objective: Minimize ‖Ax− b‖2

The Least Squares problem is often solved with QR factorization. In this method,
a matrix A ∈ Rm×n is factored into an orthogonal matrix Q ∈ Rm×m and an upper
triangular matrix R ∈ Rn×n with all diagonal entries are not negative:

A = Q

(
R
0

)
.

We can get a solution by solving Rx = b′, where b′ ∈ Rn consists of the first n components
of b. For a detailed view on Least Squares we recommend [11]. For a matrix A ∈ Rm×n

where AT is in bordered k-block diagonal form we can use a three-phase-approach, that
is similar to the one we have utilized for LU factorization:

1. Parallel factorization of each block.

2. Permutation of unfactored rows to the row border.

3. Factorization of the unfactored rows.

Given a matrix A with AT in bordered k-block diagonal form :

A =

B1 C1

B2 C2

. . .
...

Bk Ck

 .

In the first phase we simultaneously factorize Bi and the corresponding border columns
in Ci: (

Bi Ci
)

= Qi

(
Ri Si
0 C ′i

)
, for i = 1, . . . , k

Qi is an orthogonal matrix and Ri is an upper triangular matrix with nonnegative
diagonal elements. After phase two, we only have to factorize

C ′ =
(
C ′1 C ′2 . . . C ′k

)T
.

Similar to the LU decomposition, we take most advantage from the parallelization, if the
matrix in bordered k-block diagonal form has two properties:

11

2 Background

• Many equally sized blocks, for a balanced computational work distribution in phase
one.

• A small border to keep C ′ small which grants a fast factorization in phase three.

2.2.3 Linear Programming

Consider the well-known problem of solving a linear program (LP):

Linear Programming
Instance: A matrix A ∈ Rm×n, vector b ∈ Rm, and a vector c ∈ Rn

Solution: x ∈ Rn
≥0 with Ax ≥ b

Objective: Minimize cTx

One can exploit coefficient matrices of linear programs in bordered k-block diagonal
form by Dantzig-Wolfe decomposition. It would go beyond the scope of this thesis to
study Dantzig-Wolfe decomposition in detail. For a deep discussion of Dantzig-Wolfe
decomposition applied to linear programming problems, we refer the reader to the book
of Bertsimas and Tsitsiklis [9, Sec.6.4].

2.2.4 Mixed Integer Programming

A natural generalization of linear programming is mixed integer programming:

Mixed Integer Programming
Instance: A matrix A ∈ Rm×n, a vector b ∈ Rm, a vector c ∈ Rn, and a subset

I ⊆ [n]
Solution: x ∈ Rn

≥0 with Ax ≥ b and xj ∈ Z for all j ∈ I
Objective: Minimize cTx

Instances of the mixed integer programming problem are called mixed integer
programs. One can also exploit the coefficient matrices of mixed integer programs in
bordered k-block diagonal form by Dantzig-Wolfe decomposition. This is scoped by the
diploma thesis of Gerald Gamrath [18] and the current work of Bergner et al. [8].

2.2.5 Transformation k-Arrowhead to Bordered k-Block Diagonal Form

Consider an arbitrary mixed integer program J , i.e. a matrix A ∈ Rm×n, a vector b ∈ Rm,
a vector c ∈ Rn, and a subset I ⊆ [n]. Moreover, suppose A is in k-arrowhead form for
some k ∈ N. We can construct another mixed integer program J ′ which consists of a
matrix A′ ∈ Rm′×n′ , a vector b′ ∈ Rm′ , a vector c ∈ Rn′ , and a subset I ′ ⊆ [n′] such that
A′ in bordered k-block diagonal form and moreover J and J ′ are equivalent (i.e. there is

12

2.3 Problem Formulations

a bijection between the feasible solutions of both instances, that maintains the objective
function value).

Let C ⊆ [n] be the set of border columns with c := |C|. Let Bj be the set of blocks
that has at least one nonzero entry in border column j ∈ C and define nj := |Bj |. In the
following we are going to sketch a procedure to obtain J ′. The main idea is to add copies
of each border column j whose corresponding variables should attain the same value. In
fact, for a border column j we will add nj copies, one for each block that has a nonzero
entry in j. We initialize J ′ by setting I ′ := I, b′ := b, c′ := c and I ′ := I. The procedure
consists of three main steps:

At first, we successively add a new column to A′ for every pair (j, t) with j ∈ C and
t ∈ Bj . The column added for the pair (j, t) is denoted by s(j,t). It becomes the new last
column of block t. The entries of s(j,t) in the rows of block t are the same entries that j
has in the rows of block t. All other entries of s(j,t) are zero, except if s(j,t) is the first
column that is added for j. If s(j,b) is the first column that is added for j, then it also
has the same entries in the border rows that j has and the cost coefficient of s(j,b) is cj .
Moreover, s(j,t) ∈ I ′ if and only if j ∈ I.

Secondly, we delete all border columns j ∈ C from J ′.

Finally, we successively add rows to the border of A′ that ensure that for every j ∈ C
the variables that belongs to one of the columns s(j,t) for some t ∈ Bj has the same value.
For j ∈ C we add 2 · (|Bj | − 1) many rows. Let j ∈ C be fixed and consider tj1, . . . , tjnj

the elements of Bj . For p ∈ [nj − 1] we add two rows to the border rows of A′. The first
one has in column s(j,tjp) an entry of −1 and in column s(j,tj(p+1)) an entry of 1. All other
entries are 0. The corresponding entry in b′ is 0. The second one has in column s(j,tjp)

an entry of 1 and in column s(j,tj(p+1)) an entry of −1. All other entries are 0 again. The
corresponding entry in b′ is also 0. Thus, the variables corresponding to the columns
s(j,tj(p+1)) and s(j,tjp) attain the same value for all p ∈ [nj − 1]. Hence, the variables of
the columns s(j,tj1), . . . , s(j,tjnj

) attain the same value.

It is easily seen that setting a variable xj of J for j ∈ C to the value of one of its copies
in J ′ yields a bijection that maintains the objective function value.

2.3 Problem Formulations

In this section our goal is to introduce the mathematical problems MinBF and MinAF.
In order to do so, we think about a good characterization of a matrix in k-arrowhead
form and bordered k-block diagonal form. Afterwards, we ask how to measure the quality
of a decomposition. We will start with a small example:

13

2 Background

Example 2.3.1
The nonzero entries, marked with ’X’, of the following 9× 16 matrix are in a “MESS”:

1
2
3
4
5
6
7
8
9

X X X X X
X X X X X
X X X X X X X X X
X X X X X X
X X X X X X X X X X X X
X X X X
X X X X X X X X

X X
X X X X X X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

By permuting the rows and columns, one can obtain a matrix in 2-arrowhead form. Col-
umn 1 and 7 have moved to the column border and row 5 has moved to the row border.
Furhermore, the remainung columns are permuted blockwise:

1
2
3
4
6
7
8
9
5

X X X X X

X X X X X
X X X X X X X X X
X X X X X X

X X X X
X X X X X X X X
X X
X X X X X X

X X X X X X X X X X X X

2 3 4 5 6 11 12 13 8 9 10 14 15 16 1 7

By definition 2.1.2 we can identify a k-arrowhead form only by looking at the matrix

and identifying the blocks. Instead of verifying that a matrix is in k-arrowhead form or
bordered k-block diagonal form by inspection, we should define a structure that specifies
which rows and columns are included in the submatrices B1, . . . , Bk.

2.3.1 Characterization of a Decomposition

In this subsection we want to develop some concepts to characterize a decomposition
of a matrix. This subsection is rather technical and should give an idea how one could
implement a data structure for matrices in block forms. From an algebraic point of view
one would consider permutations of the rows and columns:

P1AP2 = A′,

with P1 ∈ Rm×m and P2 ∈ Rn×n are permutation matrices, A and A′ are m×n matrices
such that A′ is in k-arrowhead form.
Another possibility to express permutations are bijective functions σ : [m] → [m]

and τ : [n] → [n]. We could search for some σ and τ as defined above such that the
i-th row of A is the σ(i)-th row of A′ and the j-th column of A is the τ(j)-th column of
A′

However, since the order of the rows and columns inside the blocks does not matter,
it is actually sufficient to give a partition for the rows and columns into the blocks and
the respective border. We will naturally obtain a permutation of the rows and columns
from that partition.

14

2.3 Problem Formulations

Definition 2.3.2 (k-decomposition of a matrix)
Let A ∈ Rm×n be a matrix and k ∈ N. We call a pair D = (R, C) a k-decomposition of
A if the tuple R = (R1, ...,Rk,RB) is a weak partition of the set of rows [m] and the
tuple C = (C1, ..., Ck, CB) is a weak partition of the set of columns [n] of A.

We call the sets R1, ...,Rk row blocks and the sets C1, ..., Ck column blocks. The sets RB
and CB are called row border part and column border part, respectively.

Remark 2:
As the names already suggest, the elements of Ri and Ci will be the rows and columns,
respectively, that belongs to block i for some i ∈ {1, . . . , k}. Furthermore, the elements
of RB and CB will be the rows and columns that belongs to the respective border.

Now we explain how to obtain permutations of the rows and columns from these
partitions. We assume w.l.o.g. that for t ∈ [k] the elements of each of the sets Rt, RB,
Ct and CB are sorted in ascending order by the index of the rows or columns. Otherwise,
we sort them accordingly. For this purpose, we will denote them as tuples.
Therefore, by consecutive numbering of all rows in the tuple of tuples (R1, ...,Rk,RB)

we obtain a uniquely determined permutation of the rows σR : {1, . . . ,m} → {1, . . . ,m}
with σR(i1) < σR(i2) for i1 ∈ Rb1 and i2 ∈ Rb2 ∪RB with b1 < b2. In other words,
the rows are ordered blockwise by their values of σR .
Similarly, we get a unique permutation of the columns σC : {1, . . . n} → {1, . . . n} with

σC(j1) < σC(j2) for j1 ∈ Cb1 and j2 ∈ Cb2∪CB with b1 < b2 by consecutive numbering
of all columns in the tuple of tuples (C1, ..., Ck, CB).
We call σR the row permutation induced by D and σC the column permutation induced

by D. We denote by R[i] and C[j] the i-th row of R and the j-th column of C for i ∈ [m]
and j ∈ [n], respectively. Note that R[σR(i)] = i and C[σC(j)] = j.

Observation 2.3.3
Note that for Ri = (ri1, ri2, . . . , ri|Ri|) the numbers σR(ri1), σR(ri2), . . . , σR(ri|Ri|) are
consecutive (i.e. σR(ri(`+1)) = σR(ri`) + 1 for ` ∈ [|Ri| − 1]). Analogously, the numbers
σC(ci1), σC(ci2), . . . , σC(ci|Ci|) are consecutive for the tuple Ci = (ci1, ci2, . . . , ci|Ci|).

This follows immediately from R[σR(i)] = i and C[σC(j)] = j.
Since σR and σC are uniquely determined by a k-decompositionD, we obtain a uniquely

determined matrix by applying these permutations to the rows and columns of A, re-
spectively. We denote this matrix by D(A) the D-decomposed matrix or just decomposed
matrix when no confusion can arise.
Note that the i-th row and the j-th column of D(A) are the R[i]-th row and the C[j]-th

column of A, respectively. Moreover, the i-th row of A is the σR(i)-th row of D(A) and
the j-th column of A is the σC(j)-th column of D(A). Thus, the following holds:

Observation 2.3.4
D(A) = A[R[1], . . . ,R[m]; C[1], . . . , C[n]].

Now it is time to introduce some criteria for a k-decomposition D of A that will turn
out to be sufficient to tell whether D(A) is in k-arrowhead form.

15

2 Background

Definition 2.3.5 (Block condition)
Let A ∈ Rm×n be a matrix with entries aij for i ∈ [m] and j ∈ [n]. Furthermore, let k ∈ N
be a natural number and D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) be a k-decomposition of
A. We say that D fulfills the block condition for A if for all b, b′ ∈ [k] with b 6= b′ holds:
If i ∈ Rb for some i ∈ [m] and j ∈ Cb′ for some j ∈ [n], then aij = 0.

Definition 2.3.6 (Load condition)
Let A ∈ Rm×n be a matrix. Let `R, `C ∈ N0 and uR, uC , k ∈ N integers such that
`R ≤ uR ≤ m and `C ≤ uC ≤ n. Let D = ((R1, ...,Rk,RB), (C1, ..., Ck, CB)) be a
k-decomposition of A. We say that D fulfills the load condition (`R, uR, `C , uC) if the
following inequalities hold for all t ∈ [k] :

`R ≤ |Rt|, (2.1)

uR ≥ |Rt|, (2.2)

`C ≤ |Ct|, and (2.3)

uC ≥ |Ct|. (2.4)

We call the equation 2.1 the lower row load condition, 2.2 the upper row load condition,
2.3 the lower column load condition and 2.4 the upper column load condition.
If D fulfills the block condition and the load condition (1,m, 1, n), then D(A) is in

k-arrowhead form:
Theorem 2.3.7 (Characterization of the k-arrowhead form)
Let A ∈ Rm×n be a matrix and k ∈ N be an integer. The following two statements hold:

1. Let D = (R, C) be a k-decomposition of A. If D fulfills the block condition and the
load condition (1,m, 1, n), then D(A) is in k-arrowhead form.

2. If there are some permutation matrices P1 ∈ Rm×m, P2 ∈ Rn×n and a matrix
A′ ∈ Rm×n in k-arrowhead form with P1AP2 = A′, then there is a k-decomposition
D = (R, C) of A that fulfills the block condition, the load condition(1,m, 1, n) and
D(A) equals A′, apart from the order of the rows and columns inside their blocks
and their border.

Proof: Let A ∈ Rm×n be a matrix and k ∈ N an integer. At first, we show statement 1.
Let D = ((R1, ...,Rk,RB), (C1, ..., Ck, CB)) be a k-decomposition of A that fulfills the
block condition and the load condition (1,m, 1, n). We consider the matrix D(A) and
declare which entries of D(A) are part of which submatrix Bi, Ci, Ri and D, for i ∈ [k].
After checking the dimensions of the submatrices, we verify that all other entries of D(A)
are 0.
At first we define r := |RB|, c := |CB|, mi := |Ri| and ni := |Ci| for i ∈ [k]. We

have RB = (rB1 , r
B
2 , . . . and rBr), CB = (cB1 , c

B
2 , . . . , c

B
c). Moreover, for i ∈ [k] we have

Ri = (ri1, ri2, . . . , rimi) and Ci = (ci1, ci2, . . . , cini). By Observation 2.3.4 we thus obtain

D(A) = A[r11, . . . , r1m1 , . . . , rk1, . . . , rkmk
, rB1 , . . . , r

B
r ;

c11, . . . , c1n1 , . . . , ck1, . . . , cknk
, cB1 , . . . , c

B
c].

(2.5)

16

2.3 Problem Formulations

Therefore, the rows and columns of each below defined matrix are consecutive rows and
columns in D(A). Thus, they are submatrices of D(A).

Bi = A[ri1, . . . , rimi ; ci1, . . . , cini] ∈ Rmi×ni , i = 1, . . . , k,

Ri = A[rB1 , . . . , r
B
r ; ci1, . . . , cini] ∈ Rr×ni , i = 1, . . . , k,

Ci = A[ri1, . . . , rimi ; c
B
1 , . . . , c

B
c] ∈ Rmi×c, i = 1, . . . , k,

D = A[rB1 , . . . , r
B
r ; cB1 , . . . , c

B
c] ∈ Rr×c.

If two of these submatrices have a common row, then their columns are pairwise different,
hence the above defined submatrices have no common entries. With equation 2.5 we get
the following:

D(A) =

c11 . . . c1n1 . . . ck1 . . . cknk
cB1 . . . cBc

r11
... B1 ∗ C1

r1m1

...
. . .

...
rk1 ∗... Bk Ck
rkmk

rB1
... R1

. . . Rk D
rBr

,

with Bi ∈ Rmi×ni , Ri ∈ Rr×ni , Ci ∈ Rmi×c, D ∈ Rr×c with r, c,mi, ni ∈ N0 for all
i ∈ [k]. Since the load condition (1,m, 1, n) is fulfilled we have mi ∈ [m] and ni ∈ [n] for
all i ∈ [k].
It remains to show that all other entries (marked with a star in the illustration above)

of D(A) are zero. Let us consider such an entry aDi∗j∗ in the i∗th-row and the j∗-th row
of D(A) and let i′ = σR(i∗) ∈ [m] and j′ = σC(j∗) ∈ [n] be the corresponding indices of
this entry in A. Since aDi∗j∗ is not part of Ci, Ri and D for i ∈ [k], we obtain i′ /∈ RB and
j′ /∈ CB. Hence, i′ ∈ Rb1 and j′ ∈ Cb2 for some b1, b2 ∈ [k]. Because aDi∗j∗ is not part of
Bi, it holds that b1 6= b2. Thus, the block condition 2.3.5 implies that 0 = ai′j′ = aDi∗j∗ .
Now we prove point 2. We construct a k-decomposition D by identifying the blocks of

A′ and verify that D(A) equals A′ except for the order of rows and columns inside their
blocks and border. Let P1 and P2 be permutation matrices and assume that A′ ∈ Rm×n

is a matrix in k-arrowhead form such that P1AP2 = A′. The entries of A′ will be denoted

17

2 Background

with a′ij for i ∈ [m] and j ∈ [n]. It holds

A′ =

B1 C1

B2 C2

. . .
...

Bk Ck
R1 R2 · · · Rk D

 ,

with Bi ∈ Rmi×ni , Ri ∈ Rr×ni , Ci ∈ Rmi×c, D ∈ Rr×c with r, c ∈ N0 and mi, ni ∈ N

for i ∈ [k] by definition and all other entries equal zero. Consider the k-decomposition
D = (R1, . . . ,Rk,RB, C1, . . . , Ck, CB) such that for every row i ∈ [m] of A and its corre-
sponding index i∗ ∈ [m] in A′ holds:

• If the i∗-th row of A′ has an entry in the submatrix B` for some ` ∈ [k], then
i ∈ R`, and

• if the i∗-th row of A′ has no entry in the submatrix B` for all ` ∈ [k], then i ∈ RB.

Analogously, for all columns j = 1, . . . , n and its corresponding index j∗ ∈ [n] in A′ we
have:

• If the j∗-th column of A′ has an entry in B` for some ` ∈ [k] , then j ∈ C`, and

• if the j∗-th column of A′ has no entry in B` for all ` ∈ {1, . . . , k}, then j ∈ CB.

Since A′ is in k-arrowhead form, every row i∗ ∈ [m] of A′ has entries in the submatrix
B` for at most one ` ∈ [k] and hence the corresponding row i ∈ [m] of A is in exactly one
of the sets R1, . . . ,Rk,RB; hence, (R1, . . . ,Rk,RB) is a weak partition of the rows of A.
Analogously, every column j ∈ [n] is in exactly one of the sets C1, . . . , Ck, CB; therefore,
(C1, . . . , Ck, CB) is a weak partition of the columns of A.
Furthermore, for every block ` ∈ {1, . . . , k} holds |R`| = m` ≥ 1 and |C`| = n` ≥ 1.

Therefore, the load condition(1,m, 1, n) is fulfilled.
Let b, b′ ∈ [k], b 6= b′ be two distinct blocks. Consider i ∈ Rb and j ∈ Cb′ ; moreover,

consider i∗ the index in A′ of the i-th row in A and j∗ the index in A′ of the j-th column
of A. Because the i∗-th row of A′ has an entry in Bb and the j∗-th column of A′ has
an entry in submatrix Bb′ , with b 6= b′, we have a′i∗j∗ = 0. Hence, aij = a′i∗j∗ = 0 and
therefore the block condition is fulfilled. With help of the construction used in the proof
of point 1, we obtain that D(A) equals A′ apart from the order of the rows and columns
inside the blocks and border.

�

Remark 3:
The second point guarantees that every permutation yielding a matrix in k-arrowhead
form, can be expressed (up to the order inside the blocks) as a k-decomposition that
fulfills the block condition and the load condition(1,m, 1, n).

18

2.3 Problem Formulations

These results expand naturally to the bordered k-block diagonal form since it is a
special case of the k-arrowhead form:

Corollary 2.3.8 (Characterization of the bordered k-block diagonal form)
Let A ∈ Rm×n be a matrix and k ∈ N an integer. The following two statements hold:

1. Let D = (R, C) be a k-decomposition of A. If D fulfills the block condition, the load
condition (1,m, 1, n) and CB = ∅ then D(A) is in bordered k-block diagonal form.

2. If there are some permutation matrices P1, P2 and a matrix A′ ∈ Rm×n in bordered
k-block diagonal form with P1AP2 = A′, then there is a k-decomposition D = (R, C)
of A that fulfills the block condition, the load condition(1,m, 1, n) and D(A) equals
A′ apart from permutations of the rows and columns inside their blocks and their
border.

Proof: We obtain statement 1 directly from the proof of Theorem 2.3.7, the number of
border columns in the first proof is c = |CB| = 0, so D(A) is in particular in bordered
k-block diagonal form. Statement 2 also follows directly from Theorem 2.3.7.

�

Remark 4:
Note that for i ∈ [k] the rows and columns of Bi are the rows in Ri and the columns in
Ci, respectively. In particular, it is Bi ∈ R|Ri|×|Ci|.

Consider a k-decomposition that fulfills the block condition, but some sets of the row
partition R or the column partition C are empty. The corresponding blocks are “half-
empty” and would not have any entry. It is possible to delete these block and assign
the corresponig rows and columns to other blocks, without violating the block condition.
In this way, it one would obtain a k′-decomposition with k′ < k that fulfills the block
condition and all sets of its partitions are nonempty. Hence, Theorem 2.3.7 can be applied
to obtain a matrix in k′-arrowhead form. A rigorous formulation of this fact is Lemma
8.2.1. It can be found in the Appendix. It shows that it can be convenient to allow
empty blocks, e.g. if it is not known in how many blocks a matrix can be decomposed.
The trivial solutions introduced in Remark 1 can also be excluded by choosing uR and
uC small enough.

2.3.2 Problem formulation

At first, we introduce the problem of finding a Minimum Bordered Block Diagonal
Form:

19

2 Background

Minimum Bordered Block Diagonal Form (MinBf)
Instance: Matrix A ∈ Rm×n, number of blocks k ∈ N, `R, `C ∈ N0 lower block load

bounds and uR, uC ∈ N upper block load bounds
Solution: A k-decomposition D = ((R1, ...,Rk,RB), (C1, ..., Ck, CB)) that fulfills

1. the block condition,

2. the load condition (`R, uR, `C , uC) and

3. CB = ∅.
Objective: Minimize |RB|

In the following we will call it MinBf.
We also want to look for decompositions to arrowhead form by solving the problem

Minimum Arrowhead Form:

Minimum Arrowhead Form (MinAf)
Instance: Matrix A ∈ Rm×n, number of blocks k ∈ N, `R, `C ∈ N0 lower block load

bounds and uR, uC ∈ N upper block load bounds
Solution: A k-decomposition D = ((R1, ...,Rk,RB), (C1, ..., Ck, CB)) that fulfills

1. the block condition and
2. the load condition (`R, uR, `C , uC).

Objective: Minimize |RB|+ |CB|

For a matrix A ∈ Rm×n, k ∈ N, `R ∈ N0, uR ∈ N, `C ∈ N0, and uC ∈ N, we denote
these problems by MinAf (A , k , `R , uR , `C , uC) or MinBf(A , k , `R , uR , `C , uC),
respectively. If no confusion can arise, we will just write MinAf and MinBf. If the block
load bounds are trivial (i.e. `R = `C = 0, uR = m and uC = n) we will omit them and
write just MinAf(A, k) and MinBf(A, k). If the column load bounds are trivial, we will
just write MinAf(A, k, `R, uR) and MinBf(A, k, `R, uR).
Remark 5:
Notice that we could use the block load conditions, to express balance conditions on the
size of the blocks (in terms of the number of rows or columns). If we want the blocks to
be balanced in terms of rows for some real numbers α1 ≤ 1 and α2 ≥ 1:

α1
m

k
≤ |Ri| ≤ α2

m

k
, i ∈ [k],

we just set `R :=
⌈
α1

m
k

⌉
and uR :=

⌊
α2

m
k

⌋
.

Similarly, if we want the number of columns in each block to be balanced for the real
numbers β1 ≤ 1 and β2 ≥ 1:

β1
n

k
≤ |Ci| ≤ β2

n

k
, i ∈ [k],

we just set `C :=
⌈
β1

n
k

⌉
and uC :=

⌊
β2

n
k

⌋
.

In the next section, we present some quality measures for decompositions.

20

2.4 Quality of a Decomposition

2.4 Quality of a Decomposition

In the above defined problems the objective is to minimize the total number of border
rows and columns. Thus, it is about minimizing the “size” of the border. Choosing this
objective has two advantages:

• It is benefical for Applications 2.2.1 and 2.2.2.

• The objective function value is easy to calculate.

One could variate the “size” of the border by counting the number of all entries (even
the zero entries), instead of counting the number of all rows and columns in the border.
This number represents the “area” of the border. There are completely different criteria
possible. We also could measure the balance of the block sizes. It is of interest to find a
possibility to compare different decompositions concerning these criteria.
In order to do so, we will present a measure function µ for each of the above mentioned

criteria. All of them have in common that they map an m × n matrix A and a corre-
sponding k-decomposition D to a real number µ(A,D) ∈ [0, 1]. The higher µ(A,D) is,
the better is D for A concerning the criteria of µ. Observe that every convex combination
of these measures would be also a function that maps to the interval [0, 1]. Thus, it is
possible to obtain mixed measures which compares decompositions concerning weighted
criteria.
At first, we set up some helpful notations: Let A ∈ Rm×n be a matrix, k ∈ N a natural

number. Moreover, let D = ((R1, ...,Rk,RB), (C1, ..., Ck, CB)) be a k-decomposition of
A. Furthermore, let D∗m×n be the set of all k-decompositions of an m × n matrix. We
define mi := |Ri| and ni := |Ci| for i ∈ [k] and we declare mB := |RB|, nB := |CB|,
m∗ := max

i∈{1,...,k}
mi and n∗ := max

i∈{1,...,k}
ni.

Now we define three measure functions:
Definition 2.4.1 (border number measure)
The border number measure µboN is given by

µboN : Rm×n ×D∗m×n → [0, 1], (A,D) 7→ (m+ n)− (mB + nB)

m+ n
. (2.6)

The border number measure is the ratio between the total number of nonborder rows
and columns, and the total number of rows and columns. If there are neither border
rows nor border columns, the value of µboN is one. On the other hand, if all rows were
border rows and all columns were border columns, then µboN would be zero. There is
a direct connection between the objective function value of the problems MinBf and
MinAf for a k-decomposition and the value of µboN. Consider for a matrix A ∈ Rm×n

and k ∈ N, two k-decompositions D1 and D2 that are feasible solutions for the problem
MinAf or MinBf (for some fixed load condition) with objective function value val1 and
val2, respetively. We then obtain

µboN(A,D1)− µboN(A,D2) =
m+ n− val1

m+ n
− m+ n− val2

m+ n
=
val2 − val1
m+ n

. (2.7)

21

2 Background

Hence, the bigger the value µboN(A,D) is for a k-decomposition D, the smaller the
objective function value of D is. But notice, that if all rows were border rows, the value
of µboN will not be zero unless there is at least one nonborder column. Therefore, for
a k-decomposition that yields a matrix in bordered k-block diagonal form, this measure
never attains zero.
This disadvantage can be revoked by using the border area measure µboA instead:

Definition 2.4.2
We define the border area measure µboA as the function:

µboA : Rm×n ×D∗m×n → [0, 1], (A,P) 7→ (m−mB)(n− nB)

mn
. (2.8)

This function measures the ratio between the number of entries that are not part of
any border and the total number of entries. In other words it measures the ratio the
“area” of the decomposed part of the matrix (the nonborder part) and the “area” of the
complete matrix. It is easy to see that the value of µboA is zero if every row is a border
row or all columns are border columns. The value of µboA is one if and only if there
are no border rows and border columns. For the sake of visualization, we present the
coefficient matrix of the mixed integer program ’a1c1s1.mps’ from the MIPLIB 2003 [3]
and MIPLIB 2010 [30]. In Figure 2.1a it is decomposed such that µboA = 0.91 and Figure
2.1b shows a decomposition of it with µboA = 0.76.

(a) 16-arrowhead form with µboA = 0.91 (b) 16-arrowhead form with µboA = 0.76

Figure 2.1: Coefficient matrix of a1c1s1.mps

The next measure should indicate how much the dimensions of the blocks differ:

Definition 2.4.3
The block balance measure µblB is given by

µblB : Rm×n ×D∗m×n → [0, 1], (A,P) 7→ 1

k2

k∑
i=1

mi

m∗

k∑
j=1

nj
n∗
. (2.9)

22

2.5 Literature review

This measure indicates how much the number of rows and the number of columns of
each block, differs from the highest number of rows and columns, respectively, that is
attained by some block. We observe that if and only if all blocks are equal in the number
of rows and columns, µblB becomes one. On the other hand, the value of µblB diminshes
to zero, if the number of rows and columns become more and more variable. We display
the coefficient matrix of ’arki001.mps’ from the MIPLIB 2003 [3] decomposed in two
different ways. Figure 2.2a shows a decomposition with µblB = 0.77 and Figure 2.2b
displays a decomposition with µblB = 0.56. One can see that the sizes of the blocks of
the latter one differ more than the block sizes of the first decomposition.

(a) decomposition with µblB = 0.77 (b) decomposition with µblB = 0.56

Figure 2.2: Coefficient matrix of arki001.mps in bordered 12-block diagonal form

Outlook

In the beginning of this section we have seen that it is possible to obtain mixed criteria
measures by considering a convex combination of other measures. Ferris and Horn [17]
suggest the following convex combination of the border area measure and the block
balance measure for comparing decompositions: µ∗ := 0.9µboA + 0.1µblB. In order to
compare our results with theirs, we will follow them and give some of our results with
respect to µ∗.
In the next section we want to give an overview about previous literature dealing with

detecting of block structures in matrices.

2.5 Literature review

In the following, we give a brief summary about the literature on matrix decomposing.
There is rather narrow literature on decomposing unsymmetric, rectangular matrices,
those we are interested in. We are aware of only one paper dealing with an exact method
of decomposing a matrix to bordered block diagonal form. This is the work by Borndörfer,
Ferreira and Martin [12]. However, we do not have notice of any exact algorithm for
decomposing a matrix into arrowhead form. On the other hand, there are several papers

23

2 Background

for heuristic approaches. At first, we are going to give a short summary about the work
of Borndörfer et al., followed by a brief overview about the literature on the heuristics.

2.5.1 Literature on Exact Decomposing Methods

The paper of Borndörfer et al. introduces the matrix decomposition problem(MDP) for
a matrix A ∈ Rm×n, a number of blocks β ∈ N, and a block capacity κ. The MDP is
about assigning as many rows of A as possible to β blocks such that the following three
conditions hold:

1. Each row is assigned to at most one block.

2. There are at most κ rows assigned to each block.

3. There do not exist two rows in different blocks that have a nonzero entry in the
same column.

It can easily be seen that MDP(A, β, κ) is essentially the problem MinBf(A, β, 0, κ, 0, n).
In Section 5.1 we briefly present the integer program IPB that solves the MDP. In
practice this problem formulation has both advantages and disadvantages. On the one
hand, it is possible to do some preprocessing operations on the matrix (e.g. deleting
columns that are contained in other columns). But, on the other hand, one could obtain
up to γ empty blocks if (β − γ)κ ≥ m for γ ∈ N, because all rows could be assigned to
the remaining β − γ blocks. In addition to this lack of control of empty blocks, there is
no possibility to balance the block sizes in terms of columns.

2.5.2 Literature on Heuristic Decomposing Methods

Now we give an overview of the literature on heuristics for decomposing matrices to
arrowhead form and bordered k-block diagonal form.
The most recent work, is a paper [42] by Aykanat, Çatalyürek and Ucar from 2010.

They presented three heuristic models for decomposing a matrix to arrowhead form. Al-
though these models are customized to matrix-vector-multiplication, we will use one of
them, namely the fine-grain model [42, 3.1]. However, we will denote it by the hypercolrow
model since it fits better in our notation scheme. Moreover, the basic concepts of our
hypercol model and hyperrow model are sketched in [42, 2.3] and are described in [41]
and [40]. Furthermore, Ferris and Horn [17] suggest a bipartite graph model [17] to solve
MinAf. This model is similar to the bipartite model we use in our bipartite decompos-
ing algorithm. Moreover, they suggest the block balance measure 2.9, the border area
measure 2.8 and the concept of dummy nodes 4.2.1. In Chapter 6 we will compare our
results.

24

3 Complexity

Throughout this chapter, A ∈ Rm×n will denote a matrix and k ∈ N an integer. First
of all, we give some basic concepts of complexity theory. After this summary, we will
present a polynomial algorithm that obtains for fixed q ∈ N0 a feasible solution for
MinAf(A, k, 1,m) or MinBf(A, k, 1,m) with objective function value q if such a so-
lution exists. We will the study the complexity of MinBf and MinAf. In order to
do so, we will distinguish between two special cases. At first, we are going to look at
MinAf(A,m, 0, 1) and MinBf(A,m, 0, 1) and reduce the NP-hard problem Indepen-
dent Set to both problems. The basic idea to reduce Independent Set to MinBf
goes back to Borndörfer et al. [12]. Secondly, we present an additive inapproximability
result for k = 2 and matrices with at most three nonzero entries in every row and at
most two nonzero entries in every column.

3.1 Basic Definitions From Complexity Theory

We assume that the reader is aware of the fundamentals of complexity theory. For the
sake of completeness, we give a short summary. For a thorough treatment, we refer to
the book "Computers and intractability" by Garey and Johnson [19].
An algorithm that terminates after a number of steps bounded by a polynomial in the

size of the input is called a polynomial time algorithm. Here, a step consists of performing
one basic instruction. A problem is said to be solvable in polynomial time or tractable if
it can be solved by a polynomial time algorithm.
A decision problem is a problem whose instances are each either a ’yes’- or a ’no’-

instance. The class P consists of all decision problems that are tractable. P is a subclass
of NP, where the latter contains all decision problems that can be verified in polynomial
time. This means that given a polynomial certificate of a solution, one can check if the
certificate is correct in time polynomial in the size of the input. Problems that are in
NP and are at least as hard as any problem in NP are called to be NP-hard. By
hardness we mean the concept of polynomial reducibility. A reduction is a procedure
which transforms an arbitrary instance α of problem A into an instance β of problem B
such that α is a ’yes’-instance if and only if β is a ’yes’ instance. If this transformation
takes polynomial time in the input size of α, we say that problem A polynomial reduces
to problem B.
Many problems of combinatorial optimization have optimization tasks. We want to find

a feasible solution that minimizes or maximizes a certain objective. We can expand the
concept we just mentioned to optimization problems naturally. For every optimization
problem we can define a corresponding decision problem by giving an upper bound on
the objective value of a minimization task or a lower bound on the objective value of a

25

3 Complexity

maximization problem, respectively. An instance of such a decision problem is a ’yes’-
instance if and only if there is a feasible solution whose objective value respects the bound
condition.

3.2 A Polynomial Algorithm for Fixed Objective Value

In this section, we present a polynomial time algorithm that obtains for a fixed q ∈ N0 a
feasible solution for MinAf(A, k, 1,m) with objective function value q if such a solution
exists. Afterwards, we show how to adapt this algorithm to MinBf(A, k, 1,m). For our
approach, it will be useful to find the connected components of a hypergraph. For the
sake of completeness, we start with some basic ideas about connected components and
the well-known problem of finding them:

Definition 3.2.1 (Connected component)
Let H = (V, E) be a hypergraph. A nonempty subset of the nodes S ⊆ V is called
component of H if for all nodes v, w with v ∈ S and w ∈ V r S hold that v and w are
not adjacent (i.e. there is no hyperedge e with v ∈ e and w ∈ e). S is called connected
component if S is a component with the following property: For all nodes v1, v2 ∈ S
there is a path1 in S that connects v1 and v2.

Remark 6:
The set of connected components of a hypergraph is unique and two distinct connected
components of a hypergraph are disjoint. Moreover, the set of connected components is
a partition of the set of vertices of a hypergraph.

The following remark follows directly from Definition 3.2.1.

Remark 7:
Let S1, . . . ,SK be the connected components of a hypergraph H = (V, E). Then for every
hyperegde e ∈ E holds: If there is a node v ∈ Sb with v ∈ e for some b ∈ [k], then for all
nodes v′ ∈ V with v′ ∈ e, it is also true that v′ ∈ Sb.

Connected Components
Instance: H = (V, E) a hypergraph.
Solutions: The set K = {S1, . . . ,SK} of all connected components of H with K is

the number of the connected components of H.

Remark 8:
Given a hypergraph H = (V, E) with |V| = m and a node v ∈ V, one can find the con-
nected component that includes v by applying a breadth-first search algorithm starting
at v. Hence, the problem of finding all connected components of a hypergraph can be
solved in polynomial time by calling a breadth-first search algorithm not more than m
times.

1By a path we mean a finite sequence of pairwise distinct nodes v1, v2, . . . , v` with vi and vi+1 are
adjacent for i ∈ [`− 1].

26

3.2 A Polynomial Algorithm for Fixed Objective Value

One can exploit this fact by detecting the connected components in the so-called
hypercolumn graph of a matrix which encodes the structure of its nonzero entries:

Definition 3.2.2 (Hypercolumn Graph)
Let A ∈ Rm×n be a matrix. The hypercolumn graph of A is defined as the hypergraph
HCA = (V, E) with

• V = {vi : i ∈ [m]} and

• E = {ej : j ∈ [n]}, with vi ∈ ej if and only if aij 6= 0.

We will denote by vi the node that belongs to the i-th row of A and ej as the hyperedge
that belongs to the j-th column of A.

Creating the hypercolumn graph of a matrix A is the first step in Algorithm 1 that is
presented below. More precisely, the function CreateHyperColumnGraph() creates and
returns the hypercolumn graphHCA of A. Next, we iterate over all pairs of subsets of nodes
and hyperedges of HCA that have together a total number of q elements. For each of these
pairs we delete the corresponding nodes and hyperedges from HCA and find the connected
components of the remaining graph by calling the method FindConnectedComponents().
This method can be implemented such that it has a running time polynomial in the size
of the input as was noted in Remark 8. If the number of the connected components
K is at least k, we can obtain a k-decomposition from them. This is accomplished
in the method BuildDecomposition() that is displayed in Algorithm 2. The methods
CreateHyperColumnGraph() and FindConnectedComponents() are clear from Defini-
tion 3.2.2 and Remark 8.

Algorithm 1: FixedCostsArrowhead
input : A matrix A ∈ Rm×n, an integer k ∈ N with k ≥ 2 and q ∈ N0.
output: A k-decomposition of A that is feasible for MinAf(A, k, 1,m) with

objective function value equals q or a statement that there is no such
k-decomposition.

1 HCA = (V, E)← CreateHyperColumnGraph(A);
2 foreach pair of subsets (V̄ , Ē) with V̄ ⊆ V, Ē ⊆ E and |V̄ |+ |Ē| = q do
3 H′ ← (V r V̄ , E r Ē);
4 S = (S1, . . . ,SK)← FindConnectedComponents(H′);
5 if K ≥ k then
6 return D ← BuildDecomposition(HCA,S,k,V̄ , Ē,m, n);
7 end
8 end
9 output that MinAf(A, k, 1,m) has no feasible solution with objective function
value q;

In the following, we will see that Algorithm 1 returns a feasible k-decomposition for
MinAf(A, k, 1,m) with objective value q if and only if there is such a feasible solution.

27

3 Complexity

Algorithm 2: BuildDecomposition
input : A hypercolumn graph HCA = (V, E) of a matrix A ∈ Rm×n, a set of

connected components S = (S1, . . . ,SK) of a subgraph of HCA, k ∈ N
with k ≥ 2, V̄ ⊆ V a subset of vertices of HCA, Ē ⊆ E a subset of
hyperedges of HCA, m ∈ N, n ∈ N.

output: A k-decomposition of A that is feasible for MinAf(A, k, 1,m).

1 RB ← {i ∈ [m]|vi ∈ V̄ };
2 CB ← {j ∈ [n]|ej ∈ Ē};
3 for b ∈ [k] r {1} do
4 Rb ← {i ∈ [m]|vi ∈ Sb};
5 Cb ← {j ∈ [n]|∃v ∈ ej : v ∈ Sb};
6 end

7 R1 ← [m] r
(⋃k

b=2Rb ∪RB
)
;

8 C1 ← [n] r
(⋃k

b=2 Cb ∪ CB
)
;

9 return D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) ;

Lemma 3.2.3 (Correctness of Algorithm 1)
Let A ∈ Rm×n, k ∈ N and q ∈ N0. The following two statements are equivalent:

1. There is a k-decomposition that is feasible for MinAf(A, k, 1,m) with objective
function value q.

2. Algorithm 1 returns a k-decomposition that is feasible for MinAf(A, k, 1,m) with
objecive function value q.

Proof: Let A ∈ Rm×n, k ∈ N and q ∈ N0. Furthermore, let HCA = (V, E) be the
hypercolumn graph of A. At first, we proof the implication “1⇒ 2”.
Let D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) be a k-decomposition that is a feasible solu-

tion for MinAf(A, k,m, 1) with objective value q. We set V̄ := {vi ∈ V|i ∈ RB} and
Ē := {ej ∈ E|j ∈ CB} and notice that the pair (V̄ , Ē) is chosen by the algorithm in line 2
since |V̄ |+ |Ē| = q holds. We define V ′ := V r V̄ and E′ := E r Ē.

Consider S = (S1, . . . ,SK) the connected components of H′ := (V ′, E′) that is found
in line 4. Our next goal is to show that K ≥ k. In order to prove this, we set Vb := {vi ∈
V : i ∈ Rb} for b ∈ [k]. The task is now to prove that {V1, . . . ,Vk} is a weak partition of
the nodes of H′ and that Vb is a component of H′ for all b ∈ [k]. The set {V1, . . . ,Vk}
is a weak partition of the nodes of H′ because of the definition of Vb for b ∈ [k] and the
fact that (R1, . . . ,Rk) is a weak partition of [m] rRB.
Consider now Vb1 for an arbitrary b1 ∈ [k]. Our next claim is that Vb1 is a component

of H′. Vb1 is not empty because, on the one hand, Rb1 is not empty (since D fulfills
the load condition (1,m, 0, n)). On the other hand, for all i ∈ Rb1 we conclude that
i /∈ RB, hence that vi /∈ V̄ , and finally that vi ∈ V ′. Let vi1 , vi2 ∈ V ′ be nodes such
that vi1 ∈ Vb1 and vi2 /∈ Vb1 . Hence, we obtain i1 ∈ Rb1 . Since vi2 ∈ V ′ and vi2 /∈ Vb1 ,

28

3.2 A Polynomial Algorithm for Fixed Objective Value

we have i2 /∈ RB and i2 /∈ Rb1 , and hence i2 ∈ Rb2 with b2 ∈ [k] r {b1}. To obtain a
contradiction, suppose that vi1 and vi2 are adjacent, i.e. there is an edge ej ∈ E′ with
vi1 ∈ ej and vi2 ∈ ej . Since ej ∈ E′ we obtain j /∈ CB and therefore j ∈ Cb for b ∈ [k].
Due to the fact taht vi1 ∈ e and vi2 ∈ e, we obtain that ai1j 6= 0 and ai2j 6= 0. Since D
fulfills the block condition, we have b = b1 and b = b2, which contradicts b1 6= b2. Hence,
Vb1 is a component of H′.
Therefore, the sets V1, . . . ,Vk are pairwise disjoint components of H′. Hence, the

number of connected components are at least k. Therefore, we have K ≥ k and hence
the method BuildDecomposition() in line 6 is called. In this method the following sets
are created:

• R∗B = {i ∈ [m]|vi ∈ V̄ },

• C∗B = {j ∈ [n]|ej ∈ Ē},

• R∗b = {i ∈ [m]|vi ∈ Sb} for b ∈ [k] r {1},

• C∗b = {j ∈ [n]|∃v ∈ ej : v ∈ Sb} for b ∈ [k] r {1},

• R∗1 = [m] r
(⋃k

b=2Rb ∪RB
)
and

• C∗1 = [n] r
(⋃k

b=2 Cb ∪ CB
)
.

We notice that R∗1 = {i ∈ [m]|vi ∈ S1} since (S1, . . . ,SK) is a partition of V ′. More-
over, the set {R∗1, . . . ,R∗k,R∗B} is a weak partition of [m], and the set {(C∗1 , . . . , C∗k , C∗B} is a
weak partition of [n] because of Remark 7. Hence, D∗ := (R∗1, . . . ,R∗k,R∗B; C∗1 , . . . , C∗k , C∗B)
is a k-decomposition of A. Since |Sb| ≥ 1 for all b ∈ [k], D∗ fulfills the load condition
(1,m, 0, n).
It remains to prove that D∗ fulfills the block condition. Consider i ∈ R∗b1 and j ∈ C∗b2

with aij 6= 0 for some b1, b2 ∈ [k]. Since aij 6= 0, we have vi ∈ ej . We consider 2 cases:

1. If b1 6= 1, then we have vi ∈ Sb1 . By definition of C∗b1 , it follows that j ∈ C
∗
b1
. Hence,

we obtain b1 = b2 and D∗ fulfills the block condition.

2. In the case b1 = 1, we assume for contradiction that j /∈ C∗1 . Thus, we have j ∈ C∗b2
for some b2 ∈ [k] r {1}. By definition of C∗b2 , there is a node v ∈ ej with v ∈ Sb2 .
From Remark 7, we conclude that vi ∈ Sb2 , and therefore i ∈ R∗b2 with b2 6= 1,
which is a contradiction. Hence, j ∈ C∗1 and thus D∗ fulfills the block condition.

From the above it follows that D∗ which is returned by Algorithm 1 in line 6, is feasible
for MinAf(A, k, 1,m) with objective function value

|R∗B|+ |C∗B| = |V̄ |+ |Ē| = q.

The implication “2⇒ 1” is obviously true since Algorithm 1 already returns a feasible
solution for MinAf(A, k, 1,m) with objective function value q.

�

29

3 Complexity

In the following we are going to prove that Algorithm 1 runs in polynomial time in the
input size.
Theorem 3.2.4
Let A ∈ Rm×n be a matrix and k ∈ N. For a fixed value q ∈ N0, there is a polynomial
algorithm that obtains a feasible solution for MinAf(A, k, 1,m) with objective function
value equals q if there is such a solution.

Proof: We show that for fixed q ∈ N0 Algorithm 1 runs in polynomial time in the input
size. The method CreateHyperColumnGraph() can be implemented such that it runs in
O(mn) time. It is known that the method inside the loop FindConnectedComponents()
can be implemented in polynomial time in the input size as sketched in Remark 8.
In the method BuildDecomposition(), the sets R∗1, . . . ,R∗k,R∗B, C∗1 , . . . , C∗k , and C∗B are
created. This can be implemented such that the method runs in polynomial time in
the input. Finally, we have to count the maximal number of loop iterations in line 2.
In the worst case, the loop is iterated for every pair (V̄ , Ē) with V̄ ⊆ V, Ē ⊆ E and
|V̄ | + |Ē| = q. Thus, we have to count the number of all subsets of size q of a basic set
that has cardinality m+ n, which is

(
m+n
q

)
. We obtain(

m+ n

q

)
=

(m+ n)!

q!(m+ n− q)!
=
m+ n

1

m+ n− 1

2
. . .

m+ n− (q − 1)

q

=

q∏
i=1

m+ n+ 1− i
i

≤ (m+ n)q.

Hence, for fixed q the number of loop iterations is polynomially in the size of the input.
Therefore, Algorithm 1 runs in polynomial time in the input size and due to Lemma 3.2.3
obtains a feasible solution for MinAf(A, k, 1,m) with objective function value equal to
q if there is one.

�

For the sake of completeness, we give an variation of Algorithm 1 that finds a solution of
the problem MinBf(A, k,m, 1) in polynomial time of the input size for a fixed objective
function value q. This variation is presented in Algorithm 3.
Lemma 3.2.5 (Correctness of Algorithm 3)
Let A ∈ Rm×n, k ∈ N and q ∈ N0. The following two statements are equivalent:

1. There is a k-decomposition that is feasible for MinBf(A, k, 1,m) with objective
function value q.

2. Algorithm 3 returns a k-decomposition that is feasible for MinBf(A, k, 1,m) with
objecive function value q.

Proof: Essentially, we can use the same proof as for Lemma 3.2.3, except that we treat
the MinAf problem as a MinBf problem. Therefore, the sets CB and Ē are empty.
Hence, C∗B is empty and D∗ is a feasible solution for MinBf(A, k,m, 1) with objective
function value q.

�

30

3.3 Complexity for MinAf(A,m, 0, 1) and MinBf(A,m, 0, 1)

Algorithm 3: FixedCostsBorderedBlock
input : A matrix A ∈ Rm×n, an integer k ∈ N with k ≥ 2 and q ∈ N0.
output: A k-decomposition of A that is feasible for MinBf(A, k, 1,m) with

objective function value equals q or a statement that there is no such
k-decomposition.

1 HCA = (V, E)← CreateHyperColumnGraph(A);
2 foreach subset V̄ ⊆ V with |V̄ | = q do
3 H′ ← (V r V̄ , E);
4 K = (S1, . . . ,SK)← FindConnectedComponents(H′);
5 if K ≥ k then
6 return D ← BuildDecomposition(HCA,K,k,V̄ , Ē,m, n);
7 end
8 end
9 output that MinBf(A, k, 1,m) has no feasible solution with objective function
value q;

Corollary 3.2.6
Let A ∈ Rm×n be a matrix and k ∈ N. For a fixed value q ∈ N, there is a polynomial
algorithm that decides whether or not there is a feasible solution for MinBf(A, k, 1,m)
with objective function value equals q.

Proof: Since Algorithm 3 is essentially Algorithm 1 with a reduced number of loop
iterations, the statement follows from the proof of Theorem 1. The number of loop
iterations is the number of all subsets of nodes with cardinality equal to q. Therefore,
the number of loop iterations is:(

m

q

)
=

(m)!

q!(m− q)!
=
m

1

m− 1

2
. . .

m− (q − 1)

q

=

q∏
i=1

m+ 1− i
i

≤ mq.

Hence, for fixed q the number of loop iterations is polynomial in the size of the input.
�

In practice, however, this algorithm is only convenient for very small q.

3.3 Complexity for MinAf(A,m, 0, 1) and MinBf(A,m, 0, 1)

At first, we will show that for incidence matrices of undirected graphs and minimum row
block load `R = 0, we can transform every solution of MinAf to a solution of MinBf,
in polynomial time in the input size, without increasing the objective value. Here and
subsequently, the objective function value of an instance S of MinBf and MinAf is

31

3 Complexity

denoted by val(S) Then, we introduce the NP-hard Independent Set problem and
show that it reduces to MinBf(A,m, 0, 1) and MinAf(A,m, 0, 1).

Lemma 3.3.1
Let A ∈ Rm×n be the incidence matrix of an undirected graph G = (N,E). Let S be a
feasible solution of MinAf(A, k, 0, u) for k, u ∈ N. Then there is a feasible solution S′ for
the problem MinBf(A, k, 0, u) with val(S′) ≤ val(S) that can be obtained in polynomial
time in size of the input.

Proof: Consider a graph G = (N,E) with N = {v1, . . . , vm} and E = {e1, . . . em}.
Moreover, consider k, u ∈ N. Let A ∈ Rm×n be the incidence matrix of G with entries
aij = 1 if vi ∈ ej , and otherwise is aij = 0. We consider a solution of MinAf(A, k, 0, u)
that is given by a k-decomposition D = ((R1, . . . ,Rk,RB), (C1, . . . , Ck, CB)), that fulfills
the block condition and the load condition (0, u, 0, n). In the following, we want to
apply some modifications to D and obtain D′ = ((R′1, ...,R′k,R′B), (C′1, . . . , C′k, C′B)) which
basically equals D, except for the modifications described below. It will fulfill the block
condition and the load condition (0, u, 0, n).
At first, we notice that every column of A has only two entries; hence, in particular,

every j ∈ CB has exactly two nonzero entries. We denote them by ij1 and ij2, and
distinguish between three cases:

1. If ij1, i
j
2 ∈ RB, then we can reassign j to an arbitrary column block C′t for all t ∈ [k],

without violating the block condition. This modification decreases the objective
function value by one.

2. If either ij1 ∈ RB or ij2 ∈ RB, then we assume w.l.o.g. that ij1 ∈ RB and ij2 ∈ Rt′
for some t′ ∈ [k]. Then we reassign j to C′t′ and the block condition is still fulfilled.
Again, the objective function value decreases by one.

3. If ij1, i
j
2 /∈ RB, then we have ij1 ∈ Rb1 and ij2 ∈ Rb2 for some b1, b2 ∈ [k]. We

consider two cases: If, on the one hand, b1 = b2, then we reassign j to C′b1 . This
decreases the objective value by one and the block condition is still fulfilled. If,
on the other hand, b1 6= b2, then we also reassign j to C′b1 but the block condition
would be violated since a

ij2j
= 1 6= 0 with ij2 ∈ R′b2 and j ∈ C′b1 . Therefore, we

reassign ij2 to R′B and the block condition is fulfilled again. This modification
increases the objective function value by one, and thus altogether the objective
value is maintained.

After applying this to all columns j ∈ CB, we getD′, that fulfills the block condition and
the load condition (0, u, 0, n) because no row is added to a row block part. Furthermore,
we have C′B = ∅. Hence, D′ is a feasible solution for MinBf(A, k, 0, u). Notice, that each
of the three modifications can be implemented to run in polynomial time in the size of
the input. Furthermore, the maximal number of the above described modifications is n.
Thus, D′ can be obtained in polynomial time in the input size.

�

32

3.3 Complexity for MinAf(A,m, 0, 1) and MinBf(A,m, 0, 1)

In the following, we introduce the decision version of the Independent Set problem
and show that it reduces to MinBf and MinBf.

Definition 3.3.2 (Independent set)
Let G = (N,E) be an undirected graph. A subset of nodes S ⊆ N is called independent
set if every edge e ∈ E has at most one endpoint in S.

We define the size of S to be |S|.

Independent set
Instance: G = (N,E) an undirected graph and an integer K ∈ N.
Solutions: S ⊆ N , an independent set with size at least K.

Remark 9:
Independent Set is NP-hard. This can be seen by reduction from 3-Satisfiability.
We omit the proof and refer the reader to the classical work of Garey and Johnson [19].

Theorem 3.3.3
The problems MinAf and MinBf are NP-hard even when restricted to matrices with
at most 2 nonzero entries per column and with row load bounds `R = 0 and uR = 1.

Proof: Consider a graph G = (N,E) with m nodes and n edges, and let q ∈ N be
an integer. Let A ∈ Rm×n be the incidence matrix of G. Hence, A has exactly two
nonzero entries per column. We will reduce Independent Set to the decision prob-
lems for MinBf(A,m, 0, 1) and MinAf(A,m, 0, 1). In order to do so, it is sufficient
to show that (G, q) is a ’yes’-instance of Independent Set if and only if there is a
feasible solution S for MinBf(A,m, 0, 1) with val(S) ≤ m − q. The reason for that is
the following: On the one hand, every feasible solution of MinBf(A,m, 0, 1) is also a
feasible solution of MinAf(A,m, 0, 1) with the same objective value, and on the other
hand, by Lemma 3.3.1 every feasible solution of MinAf(A,m, 0, 1) can be transformed
to a solution of MinBf(A,m, 0, 1) in polynomial time in the size of the input. There-
fore, MinBf(A,m, 0, 1) reduces to prMinAf(A,m, 0, 1) if A is an incidence matrix of an
undirected graph, and thus Independent Set would also reduces to MinAf.
Consider such a solution S for MinBf(A,m, 0, 1) with val(S) ≤ m − q. To be more

precise, this is a k -decomposition D = ((R1, . . . ,Rk,RB), (C1, . . . , Ck, ∅) of A with
|RB| ≤ m − q that fulfills the block condition and the load condition (0, 1, 0, n). Since
|RB| = val(S) ≤ m − q, there are at least q rows that are not in the row border
part RB. Each of these nonborder rows is in one unique row block because the up-
per row load limit equals one. Hence, for all pairs of distinct nonborder rows (i1, i2) with
i1, i2 ∈ [m] r RB, i1 6= i2, there is no column such that both rows have a nonzero
entry in this column; otherwise, the block condition would be violated. Therefore, there
is no pair of corresponding vertices (vi1 , vi2) that is incident to the same edge. Thus, the
vertices that belong to the nonborder rows are an independent set with size greater or
equal to q. Hence, (G, q) is a ’yes’-instance.

33

3 Complexity

On the other hand, let (G, q) be a ’yes’-instance of Independent Set. Then there is
an independent set I with |I| ≥ q. We will build a |I|-decomposition D for A that is a
feasible solution for MinBf(A,m, 0, 1) with value at most m − q. At first, we put each
row that corresponds to a node from I to one unique row block. The remaining rows
are assigned to RB. We note that |RB| ≤ m − q and that (R1, . . . ,R|I|,RB) is a weak
partition of the rows of A. Since I is an independent set, every edge of G is incident
to at most one node in I. Hence, for every column j, there is at most one row i with
aij 6= 0 and i /∈ RB, but i ∈ Rbi for some bi ∈ [|I|]. For j ∈ [n], we distinguish between
two cases: Either there is such a row i for j (with aij 6= 0 and i ∈ Rbi for some bi ∈ [|I|])
or there is not such a row. If there is such a row we assign j to Cbi . If there is not such
a row, then both rows which has an nonzero entry with j are in RB. Therefore, we can
assign j to Cb for any b ∈ [|I|] without violating the block condition. Since at most one
row is assigned to a block part, the upper row and upper column load bounds are not
exceeded. Hence, the |I|-decomposition D = (R1, . . . ,R|I|,RB; C1 . . . , C|I|, ∅) is a feasible
solution for MinBf(A,m, 0, 1) with objective value less or equal than m− q.

�

For the problem MinBf with k = 2, we can give a stronger result and obtain an
additive non-approximability factor even for matrices with at most three nonzero entries
in every row and at most two nonzero entries in every column.

3.4 Complexity for MinBf with k = 2

Definition 3.4.1 (α-vertex separator)
Let G = (V,E) be an undirected graph with |V | = m and let α ∈ R be fixed with
1
2 ≤ α < 1. Moreover, let P = (V1, V2, V3) be a weak partition of the nodes of G. If
max (|V1|, |V2|) ≤ αm, and no edge has one vertex in V1 and the other in V2, then we
call P an α-vertex separator.

Minimum α-vertex separator
Instance: G = (V,E) an undirected graph and α ∈ R with 1

2 ≤ α < 1
Solution: P = (V1, V2, V3) an α-vertex separator of G
Objective: Minimize |V3|

Theorem 3.4.2
Let ε > 0. Let G = (V,E) be an undirected graph with m nodes that has a maximum
node degree of three and let α be a fixed ratio with 1

2 ≤ α < 1. Let OPT be the value
of an optimal α-vertex separator for G and α. Unless P = NP, there is no polynomial
algorithm that finds an α-vertex separator for G and α with objective value smaller than
OPT +m

1
2
−ε.

34

3.4 Complexity for MinBf with k = 2

Proof: This result was obtained by Bui and Jones. We omit the proof and refer the
reader to [13].

�

We can use this result to get a non-approximability result for matrices with at most
three nonzero entries in every row and at most two nonzero entries in every column.

Theorem 3.4.3
Let ε > 0. Let A ∈ Rm×n be a matrix with at most three nonzero entries in every row
and at most two nonzero entries in every column, ` ∈ N0 and u ∈ N. Let OPT be the
objective value of an optimal solution for MinBf(A, 2, `, u). Unless P = NP, there is
no polynomial algorithm that finds a solution for MinBf(A, 2, `, u) with objective value
smaller than OPT +m

1
2
−ε

Proof: Let ε > 0. We proof this theorem by contradiction. Suppose there is an algorithm
A that finds a solution for MinBf(A′, 2, `, u) with objective function value smaller than
OPT + m

1
2
−ε for every matrix A′ ∈ Rm×n with at most three nonzero entries in every

row and at most two nonzero entries in every column and for every ` ∈ N0 and for every
u ∈ N. We will show that one could use A to find a feasible solution for minimum
α-vertex seperator in polynomial time in the input size and objective value smaller
than stated in Theorem 3.4.2. This would be a contradiction to Theorem 3.4.2.
For this purpose, we will transform an instance of the minimum α-vertex separator

problem, including an undirected graph G with maximum node degree three, to an
instance of the MinBf problem including a matrix that has at most three nonzero entries
in every row and at most two nonzero entries in every column. We then show that one
can obtain from every feasible solution of this MinBf instance a feasible solution of
the minimum α-vertex separator problem and, vice versa. We will see that these
tranformations can be done in polynomial time in the input size. Moreover, it will turn
out that both feasible solutions have the same objective function value. Hence, both
instances have the same optimal objective function value OPT.
At first, consider an instance I of the minimum α-vertex separator problem that

is given by an undirected graph G = (V,E) with |V | = m and |E| = n, and a real
number α ∈ R with 1

2 ≤ α < 1. Now, we consider the incidence matrix A ∈ Rm×n of G
where every node of G corresponds to an row of A and every edge of G correpsonds to
an column of A. We notice that every row of A has at most three nonzero entries and
every column of A has at most two nonzero entries since G is an undirected graph with
maximum node degree of three. We now consider an instance J of MinBf(A, 2, 0, dαme).
We show now that every feasible solution of I can be transformed into a feasible

solution of J with the same objective function value, and vice versa. We start with the
transformation from a solution of J to a solution of I.
Let D = (R1,R2,RB; C1, C2, CB) be a 2-decomposition that is a feasible solution for

MinBf(A, 2, 0, dαme). We construct an α-vertex separator P = (V1, V2, V3) from D in
the following way: For every vertex vi ∈ V with corresponding row i ∈ [m] of A, we
distinguish three cases:

35

3 Complexity

1. If i ∈ R1, then we put vi to V1.

2. If i ∈ R2, then we assign vi to V2.

3. If i ∈ RB, then we attach vi to V3.

Since the load condition(0, dαme , 0, n) is fulfilled, we obtain

|V1| = |R1| ≤ dαme and
|V2| = |R2| ≤ dαme.

Due to the fact that the cardinality of a set is an integral number, we have

max{|V1|, |V2|} ≤ αm.

We assume by contradiction that there is an edge ej ∈ E with vi1 ∈ ej and vi2 ∈ ej for
nodes vi1 ∈ V1 and vi2 ∈ V2. Column j of A, that corresponds to ej , would have nonzero
entries in two rows of A, namely the rows i1 and i2. It holds that r1 ∈ R1 and r2 ∈ R2

because vi1 ∈ V1 and vi2 ∈ V2. Since CB is empty, we have either j ∈ C1 or j ∈ C2. This
is a contradiction to the fact that D fulfills the block condition because ai1j 6= 0 and
ai2j 6= 0. Therefore, P = (V1, V2, V3) is a feasible solution of I with objective function
value |V3| = |RB|.
On the other hand let P = (V1, V2, V3) be a feasible solution of I. We now con-

struct a 2-decomposition D = (R1,R2,RB, C1, C2, CB) from P that fulfills the block
condition and the load condition (0, dαme , 0, n), and therefore is a feasible solution for
MinBf(A, 2, 0, dαme). We construct a weak partition of the rows from P as above, but
in reverse: For every row i ∈ [m] and its corresponding node vi we distinguish between
three cases:

1. If v ∈ V1, then we put r to R1.

2. If v ∈ V2, then we attach r to R2.

3. If v ∈ V3, then we assign r to RB.

In the following, we construct a weak partition of the columns. Every column j ∈ [n]
of A has nonzero entries in two rows. These are the rows i1 and i2 with corresponding
nodes vi1 , vi2 ∈ V . Since P is an α-edge separator, it neither holds that vi1 ∈ V1 and
vi2 ∈ V2 at the same time, nor that vi2 ∈ V1 and concurrently vi1 ∈ V2. Hence, it neither
holds that i1 ∈ R1 and concurrently i2 ∈ R2, nor i2 ∈ R1 and i1 ∈ R2. Therefore, we
need only consider the following three cases:

1. If i1, i2 ∈ Rq with q ∈ {1, 2}, then we put j to Cq.

2. If i1, i2 ∈ RB, then it actually does not matter to which column block j is assigned.
We just attach j to C1.

3. If i1 ∈ RB,i2 ∈ Rq or r2 ∈ RB,r1 ∈ Rq for some q ∈ {1, 2}, then we assign j to Cq.

36

3.4 Complexity for MinBf with k = 2

Since (C1, C2) is a weak partition of the columns of A, D = (R1,R2,RB, C1, C2, ∅) is a
2-decomposition of A.
For every column j ∈ Cq with q ∈ {1, 2}, there are two rows i1, i2 ∈ [m] with aij 6= 0.

From the above construction, it follows that i1, i2 /∈ Rt with t ∈ {1, 2}r {q}. Therefore,
D fulfills the block condition.
Due to the fact that P is an α-vertex seperator, we get

max{|V1|, |V2|} ≤ αm.

Hence, we obtain

|R1| = |V1| ≤ αm ≤ dαme and
|R2| = |V2| ≤ αm ≤ dαme.

Therefore, the load condition(0, dαme , 0, n) is fulfilled and thus mp is a feasible solution
for J .
Note that after both transformations

|V3| = |RB|

holds. Thus, the objective function values are equal. Also note that both transformations
are polynomial in the size of the input.
If we applied A to the MinBf instance J which we have got from the transformation,

we would obtain a feasible solution of MinBf with objective function value smaller than
OPT + m

1
2
−ε. From this solution one can obtain a feasible solution of I with objective

function value smaller than OPT + m
1
2
−ε which is a contradiction to Theorem 3.4.2.

Hence, unless P = NP, there could not be such an algorithm A.
�

Remark 10:
By Lemma 3.3.1, Theorem 3.4.2 can be extended to the problem MinAf.

Remark 11:
Since Theorem 3.3.3 covers the special case uR = 1, it is not redundant.

We have shown that it is NP-hard to get a solution with objective value within an
additive factor of the optimal objective value even for only two blocks, and martrices
with at most three nonzero entries per row and at most two nonzero entries per column.
Unfortunately, it is not clear if it is still difficult to find solution that are within a constant
multiplicative factor of the optimal solution.

37

4 Heuristic Decomposing Methods

In the last chapter, we have seen the similarities in difficulty of detecting decompositions
and graph partitioning. Now, we want to exploit these similarities to find block struc-
tures. We present four heuristic methods that solve graph partitionining problems on
special graphs and hypergraphs representing the structure of the nonzero entries of the
matrix.
At first, we introduce these graph partitioning problems, and after a brief summary

of the literature on graph partitioning, we present a way to solve them. Afterwards,
the heuristic methods for matrix decomposing will be introduced. All four algorithms
basically follow one generic procedure. We sketch the similarities of the heuristics in
Section 4.2. We then describe all four heuristic approaches in detail. Additionally, we
indicate a relevant counterexample for each approach.
Throughout this chapter, A ∈ Rm×n denotes a matrix and k ∈ N an integer. We

assume without loss of generality that A has neither empty rows nor empty columns,
these are rows or columns, respectively, with all entries equal zero. Otherwise, we delete
these rows and columns, and try to find a k-decomposition for the remaining matrix.
If we want these empty rows and columns to be in the decomposed matrix, then we
assign them to some block row parts and column block parts, respectively, such that the
load condition of the problem is still fulfilled. The rows and columns that could not be
assigned because the load condition would be violated, are assigned to the respective
border.

4.1 Solving Hypergraph Partitioning Problems

Hypergraph partitioning is an interesting problem with many applications, for example
VLSI design [28] and data mining [35]. In this section, we introduce two graph par-
titioning problems on hypergraphs that will be used to obtain solutions for MinBf
and MinAf. Both problems deal with finding a partition P = (P1, . . . , Pk) of the
vertices of a hypergraph H = (V, E) for some integer k ∈ N. The set of hyper-
edges that span multiple partitions is denoted by Cut(P):= {e ∈ E|∃u, v with u ∈ e,
v ∈ e and u ∈ Pi, v ∈ Pj for some i, j ∈ [k] with i 6= j}. We call Cut(P) the
edge cut of P . Moreover, we call a partition P = (P1, . . . , Pk) of V a k-way α-hyperedge
separator if |Pi| ≤ α |V|k for i ∈ [k] with α ∈ R and α ≥ 1. Given a weight function on
the edges w : E → R+, the weight of an edge cut is the sum of the weights of its
edges. The weight of a k-way α-hyperedge separator is the weight of its edge cut. Our
first problem is about finding a minimum weighted k-way α-hyperedge separator:

39

4 Heuristic Decomposing Methods

Minimum weighted k-way α-hyperedge separator (HES)
Instance: H = (V, E) a hypergraph with a weight function on the hyperedges

w : E → R+, an integral number k ∈ N and a real number α ≥ 1.
Solution: P = (P1, ..., Pk) a k-way α-hyperedge separator .
Objective: Minimize

∑
e∈Cut(P)

w(e) , the weight of the edge cut of P .

If we deleted the hyperedges in the edge cut from the hypergraph, the remaining
hypergraph would be decomposed into k components of balanced size. Instead of deleting
hyperedges, the next problem is about finding a subset of vertices with minimum weight,
such that after deleting this subset, the hypergraph decomposes into k components of
balanced size:

Definition 4.1.1 (k-way α-hypervertex separator)
Let H = (V, E) be a hypergraph, k ∈ N and α ∈ R with α ≥ 1. Let P = (P1, . . . , Pk, S)
a weak partition of V with Pt 6= ∅ for all t ∈ [k]. We call P a k-way α-hypervertex
separator if the following two conditions are fulfilled:

• |Pt| ≤ α |V|k holds for t ∈ [k].

• For all vertices u, v ∈ V with u ∈ Pi and v ∈ Pj for i 6= j, there is no edge e ∈ E
with u ∈ e and v ∈ e.

By deleting the vertices of the set S, we would obtain a hypergraph that decomposes
into k components of balanced size. The weight of a k-way α-hypervertex separator is
the cardinality of S.

k-way α-hypervertex separator (HVS)
Instance: H = (V, E) a hypergraph, an integral number k ∈ N and a real

number α ≥ 1.
Solution: P = (P1, ..., Pk, S) a k-way α-hypervertex separator
Objective: Minimize |S| , the weight of P .

We denote HES(H, wE , k, α) as the problem of finding a k-way α-hyperedge separator
for the hypergraph H with minimum weight according to the hyperedge weight function
wE . Sometimes we will just write HES(H, k, α), then it does not matter which edge
weighting function is used. Similarly, we denote HVS(H, k, α) as the problem of finding
a k-way α-hypervertex separator for the hypergraph H with minimum weight.

Observation 4.1.2
The HVS problem is a generalization of the Minimum α-vertex separator problem
presented in Section 3.4.

40

4.1 Solving Hypergraph Partitioning Problems

Literature on Graph Partitioning

There is a wealth of literature on both problems even restricted to graphs and k = 2.
It would go far beyound the scope of this thesis to study both problems in detail. Never-
theless, we give a brief overview before we present how we will solve the problems HVS
and HES. One of the first important results was found by Lipton and Tarjan [32]. They
showed that every planar graph with n vertices has a vertex separator of size O(

√
n)

that can be found in polynomial time. Later similar results could be found for further
classes of graphs, e.g. in 1984 by Gilbert and Hutchinson [20], and by Alon et al. [5]. Fur-
thermore, Bui and Jones [13] proved that finding an edge separator and vertex separator
with size within an additive factor from the size of an optimal separator is NP-hard .
More recently, Feige et al. [16] obtained an O(

√
log opt) pseudoapproximation algorithm

for finding a vertex separator with opt is the size of an optimal vertex separator. They
obtained this result by applying an approximation algorithm that finds an edge separator
with an approximation ratio of O(

√
log opt) which was published in 2004 by Aroa, Rao

and Vazirani [6].
Furthermore, Alber and Fernau [4] give a parameterized view on graph separators.

Schloegel [37] et al. presents an overview of graph partitioning algorithms. However, these
papers deals with graph partitioning for graphs, but our problems cope hypergraphs.
Ihler, D. Wagner and F. Wagner [22] published in 1993 a paper dealing with modeling
hypergraphs with graphs, and therefore could be used to extend some of the results to
hypergraphs. Finally, we want to mention the chapter “Hypergraph Partitioning and
Clustering” in the book “Handbook of Approximation Algorithms and Metaheuristics”
[36].
As one can see, there are numerous ways of solving graph partitioning problems. So, as

not to go beyound the scope of this work, we decided to go one way to solve the problems
HES and HVS. We are going to make use of Metis [27] and hMetis [29] to solve HES
on undirected graphs and hypergraphs, respectively. Metis and hMetis are covered in a
more detailed way in Chapter 6. The problem HVS is coped indirectly by solving a HES
problem:

4.1.1 Heuristic for solving HVS by HES

One can solve an HVS problem indirectly by solving a HES problem on the same graph,
possibly with special weights on the edges. There are different edge weighting schemes
possible. Our choice of the weighting scheme depends on the underlying matrix decom-
posing heuristic. We will describe this in a more detailed way in the section of the
respective matrix decomposing heuristic. After choosing an edge weighting scheme, we
solve the HES problem heuristically with Metis [27] (or hMetis [29]) and find a feasible
solution P with the corresponding edge cut cut(P). Then, we try to obtain a solution
for HVS from a graph that we have created according to cut(P). We call this undirected
graph the edge cut graph of P . The edge cut graph contains all nodes that are incident
to a hyperedge of the edgecut. Two nodes are connected by an edge if and only if there
is an hyperedge in the edge cut that connects these nodes.

41

4 Heuristic Decomposing Methods

Definition 4.1.3 (Edge cut graph)
Let H = (V, E) be a hypergraph, k ∈ N an integer, P = (P1, . . . , Pk) a partition of V
and Cut(P) the corresponding edgcut of P . We define the edge cut graph of P to be the
undirected graph GHP = (V,E) with

• V := {v ∈ V|∃e ∈ Cut(P) with v ∈ e} and

• E := {(v1, v2) ∈ V × V |v1 ∈ Pi1 , v2 ∈ Pi2 for some i1, i2 ∈ [k] with i1 6= i2 and
there is an edge e ∈ Cut(P) such that v1 ∈ e and v2 ∈ e }.

After creating the edge cut graph, we are going to solve the well-known Minimum
weighted vertex cover problem on it. For the sake of completeness, we define:

Definition 4.1.4 (Vertex cover)
Let G = (V,E) be an undirected graph. A subset of nodes X ⊆ V is called vertex cover
of G if every edge e ∈ E has at least one endpoint in X.

Minimum weighted vertex cover
Instance: G = (V,E) a undirected graph with a weight function on the vertices

w : V → R+.
Solution: X ⊆ V , such that X is a vertex cover of G.
Objective: Minimize

∑
v∈X

w(v) , the weight of the vertex cover X.

We will present some more information about the minimum weighted vertex
cover problem in the end of this section.
From the found vertex cover X, often a solution for HVS can be constructed. This can

be done by deleting the vertices of X from their corresponding set in P = (P1, . . . , Pk),
with P is the k-way α-hyperedge separator that is feasible for the above solved HES
problem. We define P ′ := {P ′1, . . . , P ′k, X} with P ′i := Pir (X ∩Pi) for i ∈ [k]. Although

|P ′i | ≤ |Pi| ≤ α
|V|
k

holds for all i ∈ [k],

it is not clear that P ′ is a k-way α-hypervertex separator because P ′i could be empty for
some i ∈ [k]. We will present an example later on. It is unclear which edge weighting
schemes for HES lead to feasible solutions for HVS. It is also ambiguous how to guarantee
the quality of the feasible solutions. In practice, however, this heuristic is performing
decently. Our decision about the edge weighting scheme is based on the underlying
matrix decomposing heuristics, as we will describe later. For a closer look on the topic
of finding vertex separators we recommend the work by Liu [33].
In order to formalize this approach, we present a scheme for the indirect solving of

HVS by HES in Algorithm 4 that summarizes the above explanations.

42

4.1 Solving Hypergraph Partitioning Problems

Algorithm 4: IndirectHVS
input : H = (V, E) a hypergraph, , an integer k ∈ N, α ∈ R with α ≥ 1 and

information which heuristic model is underlying.
output: P ′ = (P ′1, ..., P

′
k, X) a k-way α-hypervertex separator or a statement

that no k-way α-hypervertex separator could be found.

1 create edge weight function wE : E → R+ according to the underlying heuristic
model ;

2 P = (P1. . . . , Pk)←solveHES(H, wE , k, α);
3 if P is not a k-way α-hyperedge separator then
4 output statement that no k-way α-hypervertex separator could be found and

quit;
5 end
6 create edge cut graph GHP according to P and a weight function wV : V → R>0

with wV(v) = 1 for all v ∈ V ;
7 X ←SolveMinimumWeightedVertexCover(GHP , wV);
8 create P ′ = (P ′1. . . . , P

′
k, X) from P and X;

9 if P ′ is a k-way α-hypervertex separator then
10 return P ′;
11 end
12 output statement that no k-way α-hypervertex separator could be found and quit ;

In general, we will use three different edge weighting schemes. These are the unary,
the prop size, and the aprop degree weighting scheme. For an arbitrary hypergraph
H = (V, E) we say that an edge weight function wE : E → R+ follows

the unary weighting scheme if wE(e) = 1, for all e ∈ E , and it follows (4.1)
the prop size weighting scheme if wE(e) = |e| = |{v ∈ V|v ∈ e}| for all e ∈ E . (4.2)

Moreover, for an arbitrary undirected graph G = (V,E), we say that an edge weight
function wE : E → R+ follows the aprop degree weigthing scheme

if wE(e) =

⌈
|V |

max(d(i), d(j))

⌉
for all e = (i, j) ∈ E, (4.3)

with d(i) is the degree of node i ∈ V . Aykanat [7] et al. introduced the following weighting
scheme that is similar to the latter one :

wE(e) =
1

max(d(i), d(j))
,

for all e = (i, j) ∈ E. Since the graph partitioning software we use, can only handle
integral weights, we adapted the weighting scheme. To simplify notation we assume
that the information about the edge weighting scheme is stored in the corresponding
hypergraph itself. By default we solve a HES problem by using the unary weighting
scheme. Optionally, we will use the other ones.

43

4 Heuristic Decomposing Methods

The Minimum Weighted Vertex Cover Problem

The Minimum weighted vertex cover problem with w(v) = 1 for all v ∈ V is one of
the classical NP-hard problems that were presented by Karp [24] in 1972. The literature
on this problem is vast and would go far beyound the scope of this work. Though, we
mention the most recent work. Dinur and Safra [15] showed in 2004 that the problem
cannot be approximated within a factor of 1.36. Furthermore, Karakostas [23] presented
an algorithm that has an approximation ratio of 2−Θ

(
1√

logn

)
which was published in

2009.
Although we just need to deal with the unweighted problem, we will use a simple

greedy heuristic that is designed to cope even the weighted problem. For the sake of
completeness, it is presented in Algorithm 5 . Note, that adj(v) := {u ∈ V : (u, v) ∈ E}.

Algorithm 5: SolveMinimumWeightedVertexCover
input : G = (V,E) an undirected graph, a weight function on the vertices

w : V → R+.
output: X ⊆ V a vertex cover of G.

1 X ← ∅;
2 H ← V ;
3 for v ∈ V do
4 score(v)←

∑
u∈adj(v)

w(u) ;

5 end
6 while X is no vertex cover of G do
7 choose v ∈ H with score(v) ≥ score(u) for all u ∈ H;
8 X ← X ∪ {v};
9 H ← H r {v};

10 for u ∈ adj(v) do
11 score(u)← score(u)− w(v);
12 end
13 end
14 return X;

Finally, we present two small examples. While the first illustration shows a successful
run, the second example illustrates a run that does not yield a feasible solution for HVS.
We are going to solve the problems HVS(Hi, 2, 1.5) for i ∈ {1, 2}. Both figures consist
of three subfigures. For i ∈ {1, 2}, let wiun be an appropriate edge weight function for Hi
that follows the unary weighting scheme. The first subfigure shows the given hypergraph
Hi and the found solution Pi for HES(Hi, wiun, 2, 1.5) visualized by the colored framings
around the vertices of Hi. The second one presents the corresponding edge cut graph
GHi
Pi

and a minimum vertex cover Xi. Finally, the third subfigure shows Hi with the
deduced potential solution for HVS(Hi, 2, 1.5).
As figure 4.2c shows, Algorithm 4 can yield an infeasible solution, since P ′2,1 = ∅.

44

4.1 Solving Hypergraph Partitioning Problems

5

6

7

1

2

3

4
a

b

c

d

e

f g
H1

P1,1

P1,2

(a) Hypergraph H1 with found solution P1 = (P1,1, P1,2)
for HES and edge cut cut(P1) = {c, d}

2

3

4

GH1

P1

X1

(b) Edge cut graph GH1
P1

with
vertex cover X1 = {4}

5

6

7

1

2

3

4
a

b

c

d

e

f g
H1

P ′1,1

P ′1,2

(c) Hypergraph H1 with obtained solution
P ′1 = (P ′1,1, P

′
1,2, {4}) for HVS

Figure 4.1: Successful run of IndirectHVS

51

2

3

4
a

b

c

d

e

H2

P2,1
P2,2

(a) Hypergraph H2 with found solution
P2 = (P2,1, P2,2) for HES and edge cut
cut(P1) = {b, c}

1

2

3

4
GH2

P2
X2

(b) Edge cut graph GH1
P1

with
vertex cover X2 = {1, 2}

51

2

3

4
a

b

c

d

e

H2

P ′2,1
P ′2,2

(c) Hypergraph H2 with obtained infeasible
solution P ′2 = (∅, P ′2,2, {1, 2}) for HVS

Figure 4.2: Failed run of IndirectHVS

45

4 Heuristic Decomposing Methods

4.2 Modeling Matrix Decomposing Problems as Graph
Partitioning Problems

This short section is an introduction to the next two subsequent sections. Before we
propose our heuristic approaches in detail, we sketch the commonalities of all four ap-
proaches. Essentially, all of them follow the generic procedure displayed in Figure 4.3.
As one can see, every algorithm provides two kind of outputs: Either it returns a message
that no solution could be found or it returns a feasible solution to the respective matrix
decomposing problem.
Remark 12:
Since the algorithms are heuristics, propositions about the found solutions are rather
weak. Nevertheless, we are going to prove statements of the following form: “If algorithm
X does not quit by sending a message, then it returns a feasible solution for problem Y .”
In this context, we will call algorithm X “heuristically correct” and the corresponding
propositions “Heuristic Correctness of Algorithm X”. From a theoretical point of view,
these kind of results are rather weak but it will turn out that in practice the heuristics
often quit by returning a solution that is hence feasible. In fact, these propositions state
that if a tuple of tuples of rows and columns D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is
returned (in this case no message is returned), then D is a k-decomposition that fulfills the
block condition. (It is already verified in the algorithm that D fulfills the load condition.)

Input
• mdp ∈ {MinAf,MinBf} (“Matrix decomposing problem”)
• Matrix A ∈ Rm×n

• Integer k ∈ N
• L = (`R, uR, `C , uC) with `R, `C ∈ N0 and uR, uC ∈ N (“load condition”)

Create hypergraph H∗A depending on mdp and A.

Solve a graph partitioning problem gpp depending on
mdp, k, and L on H∗A.

If gpp could be solved, then transform its solution to a k-decomposition D.
Otherwise, return a message that no solution could be found and quit.

If D is feasible for mdp and L, then return it. Otherwise,
return a message that no solution could be found and quit.

Figure 4.3: Sketch of the generic decomposing method

46

4.3 Models for MinBf

4.2.1 Outlook

Each of the next four subsections introduces one of the announced heuristic algorithms.
These subsections have the same structure: To begin with, we define the graph that will
be used. Secondly, the main idea of the algorithm is described. Afterwards, a small
example of a successful run visualizes the algorithm. Then, the algorithm is described in
detail. This includes a brief discussion about the choice of the parameters of the corre-
sponding graph partitioning problem, namely the balance ratio α and possible weighting
schemes. Eventually, the heuristic correctness of the algorithm is proven. Finally, a failed
run is indicated.

Parameters

In the following, we introduce two parameters used in every matrix decomposing heuristic
that will be presented in the remaining part of this chapter. To begin with, we will vary
the method to solve the HES problem (HVS problems are solved indirectly by solving a
HES problem). Secondly, we will optionally add dummy nodes. Dummy nodes are not
adjacent to other nodes. Both parameters are applied to all heuristics and hence we will
not describe them in detail here. However, they are described in Section 6.1.1 where all
parameters are summarized.

4.3 Models for MinBf

In this section, we present two methods to solve the MinBf problem. Those are the
hyperrow decomposing algorithm and the hypercolumn decomposing algorithm.

4.3.1 The Hyperrow Decomposing Algorithm

This subsection deals with the hyperrow decomposing algorithm which is similar to the
row-net model of Aykanat [40]. At first, we define the hyperrow graph HRA of a matrix A.
Then, we describe the main idea of the algorithm that uses the hyperrow graph. Thirdly,
we show a small example to visualize it. After presenting the detailed algorithm, we are
going to indicate an example run that fails.

Definition 4.3.1 (Hyperrow graph)
Let A ∈ Rm×n be a matrix. We define the hyperrow graph of A to be the hypergraph
HRA = (V, E) with
• V = {vj : j ∈ [n]} and
• E = {ei : i ∈ [m]}, with vj ∈ ei, if and only if aij 6= 0.

The hyperrow graph consists of vertices and hyperedges, representing the columns
and rows, respectively, of A. Every hyperedge e connects exactly those vertices whose
corresponding rows have a nonzero entry in the column belonging to e.
The idea of the hyperrow decomposing algorithm is the following: We are going to

solve an HES problem on the hyperrow graph HRA of a matrix A with unit edge weights.

47

4 Heuristic Decomposing Methods

Thus, we obtain a partition P = (P1, . . . , Pk) of the vertices and a corresponding edge
cut Cut(P). The part Pt for t ∈ [k] corresponds to block t. Every column that belongs
to a vertex in Pt, will be assigned to the t-th column block part Ct. The rows that
are associated to hyperedges in the edge cut, become the border rows. Each remaining
hyperedge spans vertices that belongs to the same part. We assign the corresponding
row of this hyperedge to the row block part that corresponds this part. It will turn out
that we thus obtain a k-decomposition.
For a better illustration, we want to give a small example displayed in Figure 4.4.

Consider matrix A presented in Subfigure 4.4a and its hyperrow graph HRA shown in
Subfigure4.4b. From the (optimal) solution P = (P1, P2) for HES(HRA, 2, 1.5), we can
deduce a solution D for MinBf(A, 2, 1, 5, 1, 6) for this example. The solution P is dis-
played in Subfigure 4.4c and the corresponding decomposed matrix D(A) is shown in
Subfigure 4.4d.

A =

1 2 3 4 5 6

a 1 1
b 1 1 1
c 1 1 1 1
d 1 1
e 1 1 1

(a) Matrix A ∈ R5×6

6 5

1

2

3

4

a

b

c

de

HR
A

(b) Hyperrow graph HR
A

6 5

1

2

3

4

a

b

c

d

e

HR
A

P1

P2

(c) Hyperrow graph HR
A with feasible HES

solution P = ((1, 5, 6), (2, 3, 4))

D(A) =

1 5 6 2 3 4

a 1 1
e 1 1 1
b 1 1 1
d 1 1
c 1 1 1 1

(d) Decomposed matrix D(A) in

bordered 2-block diagonal form with
D = ((a, e), (b, d), (c); (1, 5, 6), (2, 3, 4), ∅)

Figure 4.4: Successful run of the hyperrow decomposing algorithm

Consider the problem MinBf(A, k, `R, uR, `C , uC) for A ∈ Rm×n, k, uR, uC ∈ N and
`R, `C ∈ N0. When solving the problem HES(HRA, k, α), the choice of α is an important
point. If we chose α too big, then we could obtain a k-decomposition that does not
fulfill the upper column block condition. On the other hand, if we chose α too small,
then we might prune some solutions of HES that potentially could be transformed to
feasible solutions of MinBf. We set α := uCk

n and notice that if α < 1, then the
instance MinBf(A, k, `R, uR, `C , uC) is infeasible since uCk < n. Therefore, by solving

48

4.3 Models for MinBf

HES(HRA, k,
uCk
n), we get a feasible solution P = (P1, . . . , Pk) with:

|Pi| ≤
uCk

n

n

k
= uC ,

for i ∈ [k] and hence the upper column load condition is fulfilled.
The above described hyperrow decomposing algorithm is stated in detail in Algorithm 6.

The implementation of method CreateHyperrowGraph() is clear from Definition 4.3.1.
The method SolveHES() is solved by an HES solver that we will treat as ’black box’
here. The method TransformPartToDecomp() is described in detail in Algorithm 7.

Algorithm 6: HyperrowDecomposingAlgorithm
input : A ∈ Rm×n a matrix, k ∈ N an integer, `R, `C ∈ N0 and uR, uC ∈ N.
output: A k-decomposition D that fulfills the block condition and the load

condition(`R, uR, `C , uC), a message that no solution exists or a message
that no solution could be found.

1 HRA ← CreateHyperrowGraph(A) ;
2 α← uCk

n ;
3 if α < 1 then
4 return message that no solution exists and quit ;
5 end
6 P = (P1, . . . , Pk)← SolveHES(HRA,k,α);
7 if P is not feasible for HES(HRA,k,α) then
8 return message that no feasible solution could be found and quit ;
9 end

10 D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB)← TransformPartToDecomp(HRA,k,P);
11 if D fulfills the load condition (`R, uR, `C , uC) then
12 return D;
13 end
14 else
15 return message that no feasible solution could be found ;
16 end

Although Algorithm 6 is a heuristic, we can prove its heuristic correctness in terms of
Remark 12:

Lemma 4.3.2 (Heuristic correctness of the hyperrow decomp. algorithm)
Let A ∈ Rm×n be a matrix and k ∈ N be an integer. Furthermore, let `R, `C ∈ N0 and
uR, uC ∈ N be integers.
If Algorithm 6 ends without sending a message for the input (A, k, `R, uR, `C , uC), then
it returns a k-decomposition that is feasible for MinBf(A, k, `R, uR, `C , uC).

Proof: Let A ∈ R
m×n be a matrix and k ∈ N be an integer. Furthermore, let

`R, `C ∈ N0 and uR, uC ∈ N be integers. Suppose that Algorithm 6 ends with-

49

4 Heuristic Decomposing Methods

Algorithm 7: TransformPartToDecomp
input : HRA = (V, E) the hyperrow graph of some matrix A ∈ Rm×n, k ∈ N an

integer, and P = (P1, . . . , Pk) a solution of HES(HRA, k, α) for some
α ≥ 1.

output: A k-decomposition D that fulfills the block condition.

1 RB ← [m];
2 for b ∈ [k] do
3 Rb ← {i ∈ [m]|v ∈ Pb for all v ∈ ei};
4 Cb ← {j ∈ [n]|vj ∈ Pb};
5 RB ← RB rRb;
6 end
7 return D = (R1, . . . ,Rk,RB; C1, . . . , Ck, ∅);

out sending a message for the input (A, k, `R, uR, `C , uC). Then, it ends by returning D
in line 12.
We will show that if line 10 is reached, the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB)

is a k-decomposition that fulfills the block condition and CB = ∅. Thus, if line 12 is
reached, the k-decomposition D additionally fulfills the load condition (`R, uR, `C , uC),
and hence D is feasible for MinBf(A, k, `R, uR, `C , uC).
Since the algorithm quits not by sending a message, Algorithm 6 reaches line 12 for

the input (A, k, `R, uR, `C , uC). Consider the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB)
which has been returned by the method TransformPartToDecomp() in line 10. Let HRA
be the hyperrow graph of A and P = (P1, . . . , Pk) the solution of HES(A, k, u

Ck
n) that

was returned in line 6. At first, we will show that (R1, . . . ,Rk,RB) is a weak partition
of the rows of A, and that (C1, . . . , Ck) is a weak partition of the columns of A. Finally,
we show that D fulfills the block condition. In line 10 of Algorithm 6 we have:

• Rb = {i ∈ [m]|v ∈ Pb for all v ∈ ei} for all b ∈ [k],

• Cb = {j ∈ [n]|vj ∈ Pb} for all b ∈ [k],

• RB = [m] r
⋃
b∈[k]

Rb, and

• CB = ∅.

Therefore, it is

⋃
b∈[k]

Rb ∪RB =
⋃
b∈[k]

Rb ∪

[m] r
⋃
b∈[k]

Rb

 = [m],

and for all b ∈ [k] holds Rb ∩RB = ∅, obviously. Moreover, for b, b′ ∈ [k] with b 6= b′ it
is Rb∩Rb′ = ∅, because of the following fact: If there was a row i ∈ [m] with i ∈ Rb and

50

4.3 Models for MinBf

i ∈ Rb′ , then for all v ∈ ei (ei 6= ∅ since A has no empty rows) would hold that v ∈ Pb
and v ∈ Pb′ , contradicting the fact that P is a partition of the vertices of HRA. Hence,
(R1, . . . ,Rk,RB) is a weak partition of the rows of A.
Let j ∈ [n] be an arbitrary column. There is exactly one b ∈ [k] with vj ∈ Pb

because (P1, . . . , Pk) is a partition of the vertices of HRA. Hence, j ∈ Cb and j /∈ Cb′ for
b′ ∈ [k] with b′ 6= b. Therefore, (C1, . . . , Ck) is a partition of the columns of A. Thus,
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, ∅) is a k-decomposition of A.
Now, we are going to show that D fulfills the block condition. Consider i ∈ Rb and

j ∈ Cb′ with aij 6= 0 for some b, b′ ∈ [k]. Since j ∈ Cb′ holds, we have vj ∈ Pb′ .
Furthermore, it holds that vj ∈ ei because aij 6= 0. On account of i ∈ Rb, we obtain that
v ∈ Pb for all v ∈ ei. Therefore, in particular, vj ∈ Pb and vj ∈ Pb′ . Since (P1, . . . , Pk) is
a partition of the vertices, we have b = b′. Hence, the block condition is fulfilled.
Because line 12 is reached, D also fulfills the load condition (`R, uR, `C , uC). Therefore,
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, ∅) is a feasible solution for MinBf(A, k, `R, uR, `C , uC).

�

We want to emphasize that even if the solution of the HES problem is balanced,
the obtained k-decomposition could fail the load condition. An example is indicated
in Figure 4.5. Consider the problem MinBf(A, 2, 1, 5, 1, 5) for the matrix A ∈ R5×5

displayed in Subfigure 4.5a. The hyperrow graph HRA of A is shown in Subfigure 4.5b.
In Subfigure 4.5c a feasible solution P = (P1, P2) for HES(HRA, 2, 2) is displayed. The
deduced 2-decomposition is D = ((a, b, c), (), (); (1, 2, 3)(4, 5), ()) that does not fulfill the
load condition (1, 5, 1, 5). The corresponding decomposed matrix D(A) is shown in Sub-
figure 4.5d. Obviously, it is not in bordered 2-block diagonal form.

4.3.2 The Hypercolumn Decomposing Algorithm

This subsection introduces the hypercolumn decomposing algorithm. It is structured
similarly to the preceding subsection. To begin with, we recapitulate Definition 3.2.2, the
hypercolumn graph of a matrix. Secondly, we present the main idea of the algorithm is to
solve a k-way α-hypervertex separator problem on the hypercolumn graph of the matrix.
This approach is akin to the column-net model of Aykanat [40]. Afterwards, we give a
successful example for the sake of visualization. Moreover, the detailed algorithm will be
indicated. Subsequently, we give an example run of the hypercolumn decomposing algo-
rithm that is not successful. Finally, we will introduce an alternative weighting scheme
that can be used when solving the k-way α-hypervertex separator problem indirectly.
Let us recapitulate Definition 3.2.2: Given a matrix A ∈ Rm×n, the hypercolumn graph

of A is defined to be the hypergraph HCA = (V, E) with
• V = {vi : i ∈ [m]} and
• E = {ej : j ∈ [n]}, such that vi ∈ ej , if and only if, aij 6= 0.

In this way, we denote vi as the node that belongs to the i-th row of A and ej
as the hyperedge that belongs to the j-th column of A. We are going to solve a k-
way α-hypervertex separator problem on HCA, obtaining an α-hypervertex separator
P = (P1, . . . , Pk, S). Afterwards, this weak partition of the vertices is transformed

51

4 Heuristic Decomposing Methods

1 2 3 4 5

a 1 1
b 1 1
c 1 1 1
d 1 1 1
e 1 1

(a) Matrix A ∈ R5×5

5

1

2

3

4

a

b

c
d

e HR
A

(b) Hyperrow graph HR
A of A

5

1

2

3

4

a

b

c
d

e HR
A

P1 P2

(c) HR
A with P = (P1, P2) the feasi-

ble solution for HES

D(A) =

1 2 3 4 5

a 1 1
c 1 1 1
e 1 1
b 1 1 1
d 1 1 1

(d) Decomposed matrix D(A)

for the deduced 2-decomposition
D = ((a, b, c), (), (); (1, 2, 3)(4, 5), ())

Figure 4.5: Failed run of hyperrow decomposing algorithm: The deduced 2 - decompo-
sition D = ((a, b, c), (), (); (1, 2, 3)(4, 5), ()) does not fulfill the load condition
(1, 5, 1, 5).

to a k-decomposition D. This is done by assigning the rows that corresponds to vertices
in part Pi to the row block part Ri and the rows corresponding to vertices in S to the row
border RB. The columns are assigned in the following way: Column j ∈ [n] is assigned
to column block part Ct if there is a node v ∈ ej with v ∈ Pt. The remaining columns
will be assigned to column block parts such that the upper column block load is fulfilled.
If there are columns remaining after this step, the instance is infeasible. As we will see,
D fulfills the block condition but the load condition may be violated.
Before we describe the algorithm in detail, we give a small example in Figure 4.6.

We want to solve the problem MinBf(A, 2, 1, 5, 1, 5) for the matrix A ∈ R6×7 shown in
Subfigure 4.6a. The hypercolumn graph HCA of A is displayed in Subfigure 4.6b. The
solution P = ({b, e}, {c, d}, {a, f}) of the HVS problem onHCA is shown in Subfigure 4.6c.
One can deduce the 2-decomposition D = ((b, e), (c, d), (a, f); (1, 3, 7), (2, 4, 5, 6), ∅) from
P . The corresponding decomposed matrix D(A) is in bordered 2-block diagonal form,
as one can see in Subfigure 4.6d.
Before we describe the algorithm in detail, we have a look at the choice of α for the

HVS problem from a theoretical point of view. We want to choose α big enough such
that we do not lose solutions of HVS that potentially can be transformed to feasible
solutions of MinBf. On the other hand, if we choose α to big, we maybe obtain a k-
decomposition that does not fulfill the upper row load condition. We have to ensure that

52

4.3 Models for MinBf

A =

1 2 3 4 5 6 7

a 1 1 1 1
b 1 1 1
c 1 1 1
d 1 1 1
e 1 1
f 1 1 1

(a) Matrix A ∈ R6×7

a

b

c

de

f

1

2

3
4

5

6

7

HC
A

(b) Hypercolumn graph HC
A of A

a

b

c

de

f

1

2

3
4

5

6

7

HC
A

P1 P2

(c) HC
A with P = (P1, P2, {a, f}) the feasible

solution of the corresponding HVS prob-
lem

D(A) =

1 3 7 2 4 5 6

b 1 1 1
e 1 1
c 1 1 1
d 1 1 1
a 1 1 1 1
f 1 1 1

(d) Decomposed matrix D(A) for
D = ((b, e), (c, d), (a, f); (1, 3, 7), (2, 4, 5, 6), ∅)

Figure 4.6: Successful run of the hypercolumn decomposing algorithm

α ≥ 1 and set α := max(u
Rk
m , 1). Therefore, by solving HVS(HRA, k, α) we get a feasible

solution P = (P1, . . . , Pk) with:

|Pi| ≤
uRk

m

m

k
= uR, if

uRk

m
≥ 1

for i ∈ [k] and hence the upper row load condition is fulfilled if uRk
m ≥ 1. On the other

hand, if u
Rk
m < 1, then we cannot be sure that the obtained k-decomposition fulfills the

upper row load constraint.
The following lemma states that Algorithm 8 is heuristically correct in terms of Re-

mark 12.

Lemma 4.3.3 (Heuristic correctness of the hypercolumn decomp. algorithm)
Let A ∈ Rm×n be a matrix and k ∈ N be an integer. Furthermore, let `R, `C ∈ N0 and
uR, uC ∈ N be integers.
If Algorithm 8 ends without sending a message for the input (A, k, `R, uR, `C , uC), then
it returns a k-decomposition that is feasible for MinBf(A, k, `R, uR, `C , uC).

Proof: Let A ∈ R
m×n be a matrix and k ∈ N be an integer. Furthermore, let

`R, `C ∈ N0 and uR, uC ∈ N be integers.

53

4 Heuristic Decomposing Methods

Algorithm 8: HypercolDecomposingAlgorithm
input : A ∈ Rm×n a matrix, k ∈ N an integer, `R, `C ∈ N0, and uR, uC ∈ N.
output: A k-decomposition D that fulfills the block condition and the load

condition(`R, uR, `C , uC), a statement that no solution exists or a
statement that no solution could be found.

1 HCA ← CreateHypercolumnGraph(A);
2 α← uRk

m ;
3 if α < 1 then
4 return statement that no solution exists and quit ;
5 end
6 P = (P1, . . . , Pk, S)← SolveHVS(HCA,k,α);
7 if P is not feasible for HVS(HCA,k,α) then
8 return statement that no feasible solution could be found and quit ;
9 end

10 D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB)← TransformPartToDecompHC(HCA,k,P);
11 if D fulfills the load condition (`R, uR, `C , uC) then
12 return D;
13 end
14 else
15 return statement that no feasible solution could be found ;
16 end

Algorithm 9: TransformPartToDecompHC
input : H = (V, E) a hypergraph, k ∈ N an integer, and P = (P1, . . . , Pk, S) a

solution of HVS problem on H .
output: A k-decomposition D of A that fulfills the block condition.

1 RB ← {i ∈ [m]|vi ∈ S};
2 Cremain ← [n];
3 for b ∈ [k] do
4 Rb ← {i ∈ [m]|vi ∈ Pb};
5 Cb ← {j ∈ [n]|∃v ∈ ej with v ∈ Pb};
6 Cremain ← Cremain r Cb;
7 end
8 create a partition (Cremain

1 , . . . , Cremain
k) of the remaining columns in Cremain ;

9 for b ∈ [k] do
10 Cb ← Cb ∪ Cremain

b };
11 end
12 return D = (R1, . . . ,Rk,RB; C1, . . . , Ck, ∅) ;

We will show that if line 10 is reached, the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB)

54

4.3 Models for MinBf

is a k-decomposition with CB = ∅ that fulfills the block condition. Thus, if line 12 is
reached, the k-decomposition D additionally fulfills the load condition (`R, uR, `C , uC),
and therefore is feasible for MinBf(A, k, `R, uR, `C , uC).
Let Algorithm 8 reach line 10 for the input (A, k, `R, uR, `C , uC) and consider the

tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) which has been returned by the method
TransformPartToDecompHC(). We notice that CB = ∅. Also, let (Cremain

1 , . . . , Cremain
k) be

the weak partition of the remaining columns Cremain that are not assigned to a column
block part in line 7 of Method TransformPartToDecompHC(). LetHCA be the hypercolumn
graph of A and P = (P1, . . . , Pk, S) the solution of HVS(A, k, u

Rk
m) that was returned in

line 6. Analogously to the proof of Lemma 4.3.2, we will show that (R1, . . . ,Rk,RB) is a
weak partition of the rows of A, and that (C1, . . . , Ck) is a weak partition of the columns
of A. Afterwards, we prove that D fulfills the block condition. In line 10 of Algorithm 8,
it holds that:

• Rb = {i ∈ [m]|vi ∈ Pb} for all b ∈ [k],

• Cb = {j ∈ [n]|∃v ∈ ej : v ∈ Pb} ∪ Cremain
b for all b ∈ [k], and

• RB = {i ∈ [m]|vi ∈ S}.

For an arbitrary row i ∈ [m] there is either exactly one b ∈ [k] with vi ∈ Pb or vi ∈ S,
because (P1, . . . , Pk, S) is a weak partition of the vertices of HCA. Therefore, there either
is exactly one b with i ∈ Rb or i ∈ RB. Hence, (R1, . . . ,Rk,RB) is a weak partition of
the rows of A.

⋃
b∈[k]

Cb =

⋃
b∈[k]

{j ∈ [n]|∃v ∈ ej : v ∈ Pb}

 ∪
⋃
b∈[k]

Cremain
b

=

⋃
b∈[k]

{j ∈ [n]|∃v ∈ ej : v ∈ Pb}

 ∪ Cremain

=

⋃
b∈[k]

{j ∈ [n]|∃v ∈ ej : v ∈ Pb}

 ∪
[n] r

⋃
b∈[k]

{j ∈ [n]|∃v ∈ ej : v ∈ Pb}

= [n].

It remains to show that Cb1 ∩ Cb2 = ∅ for b1, b2 ∈ [k] with b1 6= b2. Consider arbitrary
b1, b2 ∈ [k], with Cb1 ∩ Cb2 6= ∅. Let j∗ ∈ Cb1 ∩ Cb2 . There are two cases to consider:

1. The first case is that for all v ∈ ej∗ it is true that v ∈ S. It then holds that
j∗ ∈ Cremain. Hence, there is exactly one b ∈ [k] with j ∈ Cremain

b because
(Cremain

1 , . . . , Cremain
k) is a weak partition of Cremain. On the other hand, for all

b ∈ [k] it holds that j∗ /∈ {j ∈ [n]|∃v ∈ ej with v ∈ Pb}. Thus, there is exactly one
b with j∗ ∈ Cb. Therefore, we have b1 = b2.

55

4 Heuristic Decomposing Methods

2. In the second case there are v1, v2 ∈ ej∗ with v1 ∈ Pb1 and v2 ∈ Pb2 . Since
(P1, . . . , Pk, S) is a k-way α-hypervertex separator, it holds that b1 = b2.

Therefore, (C1, . . . , Ck) is a weak partition of the columns of A and hence , the tuple
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, ∅) is a k-decomposition of A. It remains to show that
D fulfills the block condition.
Consider i ∈ Rb1 and j ∈ Cb2 with aij 6= 0 for some b1, b2 ∈ [k]. Because i ∈ Rb1 , it

holds that vi ∈ Pb and as aij 6= 0, we have vi ∈ ej . Hence, by the definition of Cb1 , we
obtain that j ∈ Cb1 . Due to the fact that (C1, . . . , Ck) is a weak partition of the columns
of A, we obtain b1 = b2. Thus, the block condition is fulfilled.

�

In the following we give an example run that fails. It is illustrated in Figure 4.7. Let us
consider the problem MinBf(A, 2, 1, 6, 1, 6) with matrix A ∈ R6×9 displayed in Subfig-
ure 4.7a. The hypercolumn graph HCA and a solution P = ({c, e}, {a, d, f}, {b}) of the
corresponding HVS problem are displayed in Subfigure 4.7b. Although P is balanced,
the deduced 2-decomposition D = ((c, e), (a, d, f), (b); (1, 8), (2, 3, 4, 5, 6, 7, 9), ∅) does not
fulfill the load condition (1, 6, 1, 6). The decomposed matrix D(A) is shown in Subfig-
ure 4.7c. One can see that the second block includes seven columns. We observe that the
2-decomposition D2 = ((c, e), (a, d), (b, f); (1, 4, 8), (2, 3, 5, 6, 7, 9), ∅) of A fulfills the load
condition (1, 6, 1, 6). The decomposed matrix D2(A) is illustrated in Subfigure 4.7d.

Weighting Schemes

To apply the hypercolumn decomposing algorithm, we have to solve an HVS problem.
This is done indirectly by solving an HES problem followed by searching a minimum
vertex cover on the obtained edge cut graph. We notice that the objective function value
of the obtained k-decomposition and the cardinality of the found vertex cover are equal.
Hence, it might be preferable to get an edge cut graph with relatively few edges. In order
to obtain such an edge cut graph, one can assign higher weights to those hyperedges that
are likely to span more than two partitions when solving the HES problem. Therefore,
it could be useful to use a weight function that follows the prop size weighting scheme
(4.2). Furthermore, we will make use of weight functions that follow the unary weighting
scheme (4.1).

4.4 Models for MinAf

In this section, we introduce two heuristic algorithms for solving the problem MinAf,
namely the hypercolrow decomposing algorithm and the bipartite decomposing algorithm.

4.4.1 Hypercolrow Decomposing Algorithm

This subsection deals with the hypercolrow decomposing algorithm. At first, we define the
hypercolrow graph HCRA of a matrix A, and describe the main idea of the algorithm which
is essentially to solve an HES problem on HCRA . Secondly, we show a small example to

56

4.4 Models for MinAf

1 2 3 4 5 6 7 8 9

a 1 1 1 1
b 1 1 1 1 1
c 1 1
d 1 1 1 1
e 1
f 1 1 1

(a) Matrix A ∈ R6×9

a

b c

d

e

f

1

2

34

5

6

7

8

9

HC
A

P1

P2

(b) Hypercolumn graph HC
A of A with solution

P = (P1, P2, {b}) of the problem HVS(HC
A, 2, 2)

1 8 2 3 4 5 6 7 9

c 1 1
e 1
a 1 1 1 1
d 1 1 1 1
f 1 1 1 1 1 1
b 1 1 1 1 1

(c) Decomposed matrix D(A) such that D

does not fulfill the load condition

1 4 8 2 3 5 6 7 9

c 1 1
e 1
a 1 1 1 1
d 1 1 1 1
b 1 1 1 1 1
f 1 1 1 1 1 1

(d) D2(A) such that D2 fulfills the load con-

dition

Figure 4.7: Failed run of the hypercolumn decomposing algorithm; the deduced 2-
decomposition D = ((c, e), (a, d, f), (b); (1, 8), (2, 3, 4, 5, 6, 7, 9), ∅) does not
fulfill the load condition (1, 6, 1, 6).

visualize a successful run of the hypercolrow decomposing algorithm. Thirdly, we present
the formal algorithm. After indicating a failing example run, we introduce an alternative
weighting scheme to solve the corresponding HES problem.

Definition 4.4.1 (Hypercolrow graph of a matrix)
Let A ∈ Rm×n be a matrix. We define the hypercolrow graph of A to be the hypergraph
HCRA = (V, E) with
• V = {vij |i ∈ [m], j ∈ m with aij 6= 0} and
• E = ER ∪ EC with ER := {eRi |i ∈ [m]} and EC := {eCj |j ∈ [n]} such that vij ∈ eRi

and vij ∈ eCj for all i ∈ [m] and for all j ∈ [n].

The hypercolrow graph HCRA of a matrix A has a vertex for every nonzero entry of A.
Each hyperedge of HCRA either stands for a row or column. Every hyperedge representing
a row r connects exactly those vertices whose corresponding nonzero entries belong to
r. Analogously, a hyperedge related to a column c spans exactly those vertices whose

57

4 Heuristic Decomposing Methods

corresponding nonzero entries are in c. We are going to solve an HES problem on HCRA
and want to deduce a k-decomposition D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) from the
obtained solution P = (P1 . . . , Pk) of the HES problem. For t ∈ [k], part Pt corresponds
to the row block part Rt and the column block part Ct of D. To be more precise, rows
and columns belonging to edges in the edgecut of P become border rows and columns,
respectively. Each of the remaining edges spans vertices of just one part of the obtained
partition. The corresponding rows and columns are assigned to the according row block
part and column block part, respectively.
For the sake of visualization, let us consider a small example displayed in Figure 4.8.

We want to solve the problem MinAf(A, 2, 1, 4, 1, 4) for the matrix A ∈ R5×5 illustrated
in Subfigure 4.8a. The corresponding hypercolrow graph HCRA is displayed in Subfig-
ure 4.8b. In the same subfigure one can find a solution P = (P1, P2) with the edge
cut Cut(P) = {e, 3} for the problem HES(HCRA ,2,2). We obtain the 2-decomposition
D = ((a, d), (b, c), (e); (1, 4), (2, 5), (3)) from P . The decomposed matrix D(A) is in 2-
arrowhead form and is illustrated in Subfigure 4.8c.

1 2 3 4 5

a 1 1
b 1 1 1
c 1 1 1 1
d 1 1 1
e 1 1

(a) Matrix A ∈ R5×5

a3

a4

b2

b3

b5

c1 c2

c4

c5

d1

d3

d4

e2

e3

a

d

b

5

e

1 2

3

c

4

HCR
A

P1 P2

(b) Hypercolrow graph HCR
A with obtained so-

lution P = (P1, P2) for the HES problem

1 4 2 5 3

a 1 1
d 1 1 1
b 1 1 1
e 1 1
c 1 1 1 1

(c) Decomposed matrix
D(A) in 2-arrowhead
form.

Figure 4.8: Succesful run of hypercolrow decomposing algorithm

The hypercolrow decomposing algorithm is displayed in Algorithm 10. One crucial
point is the choice of α before solving the HES problem. We want to choose α in a way
such that no solution of HES that would yield a feasible solution of MinAf is pruned. A
block containing the maximum number of rows uR and the maximum number of columns
uC includes maximal uR ·uC nonzero entries. But a part of a vertex partition that would
yield such a block can contain more than uR · uC vertices because it might also include
vertices that belong to nonzero entries that are part of the border. In fact, it may contain

58

4.4 Models for MinAf

up to uR · r∗ · uC · c∗ vertices with r∗ is the maximum number of nonzero entries in a
row of A and c∗ is the maximum number of nonzero entries in a column of A. Hence,
we should set α := max (u

Rr∗uCc∗k
z , 1) where z is the number of nonzero entries in A. If

uRr∗uCc∗k
z ≥ 1, we obtain |Pt| ≤ uRr∗uCc∗k

z
z
k = uRr∗uCc∗ for all t ∈ [k], as we intend.

The above described hypercolrow decomposing algorithm is indicated in detail in Al-
gorithm 10. Three methods are used in Algorithm 10. It is clear from Definition 4.3.1,
how the first method is CreateHypercolrowGraph() could be implemented. The second
method is SolveHES(). It is solved by an HES solver that is treated as ’black box’. The
method TransPartToDecompHCR() is described in detail in Algorithm 11.

Algorithm 10: HypercolrowDecomposingAlgorithm
input : A ∈ Rm×n a matrix with z nonzero entries, the maximum number of

nonzero entries in a row of A is r∗ and the maximum number of nonzero
entries in a column of A is c∗, k ∈ N an integer, `R, `C ∈ N0 and
uR, uC ∈ N.

output: A k-decomposition D that fulfills the block condition and the load
condition(`R, uR, `C , uC) or a statement that no solution could be found.

1 HCRA ← CreateHypercolrowGraph(A);
2 α← max (u

Rr∗uCc∗k
z , 1);

3 P = (P1, . . . , Pk)← SolveHES(HCRA ,k,α);
4 if P is not feasible for HES(HCRA ,k,α) then
5 return statement that no feasible solution could be found and quit ;
6 end
7 D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) ← TransPartToDecompHCR(HCRA ,k,P);
8 if D fulfills the load condition (`R, uR, `C , uC) then
9 return D;

10 end
11 else
12 return statement that no feasible solution could be found ;
13 end

The next lemma states that Algorithm 10 is heuristically correct in terms of Remark 12:

Lemma 4.4.2 (Heuristic correctness of the hypercolrow decomp. algorithm)
Let A ∈ Rm×n be a matrix and k ∈ N be an integer. Furthermore, let `R, `C ∈ N0 and
uR, uC ∈ N be integers.
If Algorithm 10 ends without sending a message for the input (A, k, `R, uR, `C , uC), then
it returns a k-decomposition that is feasible for MinAf(A, k, `R, uR, `C , uC).

Proof: Let A ∈ R
m×n be a matrix and k ∈ N be an integer. Furthermore, let

`R, `C ∈ N0 and uR, uC ∈ N be integers.
We are going to prove the following statement: If line 7 of Algorithm 10 is reached, then

the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) in line 7 is a k-decomposition that fulfills

59

4 Heuristic Decomposing Methods

Algorithm 11: TransformPartToDecompHCR
input : H = (V, E) a hypergraph, k ∈ N an integer, and P = (P1, . . . , Pk) a

solution of HES problem on H.
output: A k-decomposition D of A that fulfills the block condition.

1 RB ← [m];
2 CB ← [n];
3 for b ∈ [k] do
4 Rb ← {i ∈ [m]|v ∈ Pb for all v ∈ eRi };
5 Cb ← {j ∈ [n]|v ∈ Pb for all v ∈ eCj };
6 RB ← RB rRb;
7 CB ← CB r Cb;
8 end
9 return D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) ;

the block condition. Thus, if line 9 is reached, the k-decomposition D additionally fulfills
the load condition (`R, uR, `C , uC), and hence is feasible for MinAf(A, k, `R, uR, `C , uC).
Let Algorithm 10 ends without sending a message for the input (A, k, `R, uR, `C , uC),

then it reaches line 7. Consider the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) which has
been returned by the method TransPartToDecompHCR(). Let HCRA be the hypercolrow
graph of A and let α have the same value as in line 2. Furthermore, let P = (P1, . . . , Pk)
be the solution of HES(A, k, α) that was returned in line 3. Similarly to the proof of
Lemma 4.3.3, we will show that (R1, . . . ,Rk,RB) is a partition of the rows of A and that
(C1, . . . , Ck, CB) is a partition of the columns of A. Afterwards, we prove that D fulfills
the block condition. It holds in line 7 of Algorithm 10:

• Rb = {i ∈ [m]|v ∈ Pb for all v ∈ eRi } for all b ∈ [k],

• Cb = {j ∈ [n]|v ∈ Pb for all v ∈ eCj } for all b ∈ [k],

• RB = [m] r
⋃
k∈[b]

Rb and

• CB = [n] r
⋃
k∈[b]

Cb.

Therefore, it is

⋃
b∈[k]

Rb ∪RB =
⋃
b∈[k]

Rb ∪

[m] r
⋃
b∈[k]

Rb

 = [m]

and ⋃
b∈[k]

Cb ∪ CB =
⋃
b∈[k]

Cb ∪

[n] r
⋃
b∈[k]

Cb

 = [n].

60

4.4 Models for MinAf

Moreover, for all b1, b2 ∈ [k] with b1 6= b2, it is Rb1 ∩ Rb2 = ∅ and Cb1 ∩ Cb2 = ∅. In
order to see that fact, suppose there are arbitrary b1, b2 ∈ [k] with Rb1 ∩ Rb2 6= ∅ or
Cb1 ∩ Cb2 6= ∅. If we have Rb1 ∩ Rb2 6= ∅, then there is an i ∈ [m] with i ∈ Rb1 and
i ∈ Rb2 . Hence, by definition of Rb1 and Rb2 , for all v ∈ eRi is v ∈ Pb1 and v ∈ Pb2 .
Since (P1, . . . , Pk) is a partition of the vertices of HCRA , we obtain b1 = b2. Analogously,
if Cb1 ∩ Cb2 6= ∅, then there is an j ∈ [n] with j ∈ Cb1 and j ∈ Cb2 . Thus, by definition of
Cb1 and Cb2 , for all v ∈ eCj is v ∈ Pb1 and v ∈ Pb2 . Since (P1, . . . , Pk) is a partition of the
vertices of HCRA , we obtain b1 = b2. Therefore, (R1, . . . ,Rk,RB) is a weak partition of
the rows of A, and (C1, . . . , Ck, CB) is a weak partition of the columns of A. Hence, D is
a k-decomposition of A.
It remains to show that D fulfills the block condition. In order to see that, consider

i ∈ Rb1 and j ∈ Cb2 with aij 6= 0 for some b1, b2 ∈ [k]. Hence, by definition, for all
v ∈ eRi is v ∈ Pb1 and for all v ∈ eCj we have v ∈ Pb2 . Since aij 6= 0, there exists a
vertex vij of HCRA with vij ∈ eRi and vij ∈ eCj . Therefore, it holds that vij ∈ Pb1 and
vij ∈ Pb2 . Because (P1, . . . , Pk) is a partition of the vertices of HCRA , we obtain b1 = b2;
hence, D fulfills the block condition. Therefore, if line 9 is reached, D is feasible for
MinAf(A, k, `R, uR, `C , uC).

�

In Figure 4.9 a failed run of the hypercolrow algorithm is presented. We want to solve
the problem MinAf(A, 2, 1, 6, 1, 6) for the matrix A presented in Subfigure 4.9a. The cor-
responding hypercolrow graphHCRA ofA is displayed in Subfigure 4.9c. Furthermore, a so-
lution P = (P1, P2) for the corresponding HES prolem is displayed in Subfigure 4.9c that
yield the 2-decomposition D = ((c, g), (a, b, d, f, h, i, j), (e); (4, 7), (1, 2, 3, 6, 8, 9), (5)) of
A that does not fulfill the load condition. Nevertheless, the permuted matrix D(A) is
displayed in Subfigure 4.9b. One can see that the first block contains only two rows while
the second block includes seven rows.

Weighting Schemes

As a variation, we want to solve the HES problem not only according to the unary
weighting scheme (4.1), but also according to the prop size weighting scheme (4.2).

4.4.2 Bipartite Decomposing Algorithm

In this subsection, we introduce the bipartite decomposing algorithm. At first, we define
the bipartite graph GBA of a matrix A and show the main idea of the algorithm. After-
wards, we show a small example to visualize a successful run of it . Thirdly, we give a
formal description of the algorithm. Finally, as for the proceeding algorithms, we will
indicate a failed run of algorithm.

61

4 Heuristic Decomposing Methods

1 2 3 4 5 6 7 8 9

a 1 1 1
b 1 1
c 1 1 1
d 1 1
e 1 1 1 1 1 1
f 1 1
g 1 1
h 1 1
i 1 1
j 1 1

(a) Matrix A ∈ R

10×9 for
MinAf(A, 2, 1, 6, 1, 6)

4 7 1 2 3 6 8 9 5

c 1 1 1
g 1 1
a 1 1 1
b 1 1
d 1 1
f 1 1 1
h 1 1
i 1 1
j 1 1
e 1 1 1 1 1 1 1

(b) Decomposed matrix D(A)

e1 e8

e3

e9e2

e7

c7

c4g4

g5

c5

a1 a8

a5

i5

i8

j6 j9

b3

b5

e4

f3

f9

h2

h6

d6 d5

a

f

h

d

b

i

5
e

1

2

3

6

7 8

9

c
g

j

4P1

P2

HCR
A

(c) Hypercolrow graph HCR
A with solution P = (P1, P2) for HES that yields the

2-decomposition D = ((c, g), (a, b, d, f, h, i, j), (e); (4, 7), (1, 2, 3, 6, 8, 9), (5))
that does not fulfill the load condition (1, 6, 1, 6)

Figure 4.9: Failed run of hypercolrow decomposing algorithm

Definition 4.4.3 (Bipartite graph of a matrix)
Let A ∈ Rm×n be a matrix. We define the bipartite graph of A as the undirected graph
GBA = (V,E), with
• V := VR ∪ VC with VR := {vRi |i ∈ [m]} and VC := {vCj |j ∈ [n]}, and
• E = {(vRi , vCj) ∈ VR × VC |i ∈ [m], j ∈ [n] with aij 6= 0} .

62

4.4 Models for MinAf

Observation 4.4.4
The bipartite graph of a matrix A ∈ R is bipartite

The main idea of the algorithm is to solve an HVS problem on the bipartite graph of
the matrix to decompose. The obtained weak partition of the vertices P = (P1,Pk, S)
is transformed into a k-decomposition that will turn out to fulfill the block condition.
The transformation is easy: The rows and columns that correspond to vertices in a part
Pb (of the obtained partition P) for some b ∈ [k] are assigned to row block part Rb and
column block part Cb, respectively. The remaining rows and columns are assigned to the
border row part RB and border column part CB, respectively. If the load condition is
fulfilled, the run of the heuristic was successful.
A successful run is illustrated in Figure 4.10. We want to solve MinAf(A, 2, 1, 3, 1, 3)

for the displayed matrix A ∈ R5×5. The bipartite graph GBA of A is shown in Subfig-
ure 4.10a. The solution P = (P1, P2, {a, 3}) of the HVS(GBA , 2, 2) problem is visualized
in Figure 4.10c. We obtain the 2-decomposition D = ((c, e), (b, d), (a); (2, 4), (1, 5), (3))
from P . D fulfills the load condition (1, 3, 1, 3) and the block condition. The decomposed
matrix D(A) is in 2-arrowhead form and is displayed in Subfigure 4.10d.
In order to solve the HVS problem on the bipartite graph of A, the choice of α is a

crucial point from a theoretical point of view. Since the number of nodes in a part Pb
and the total number of rows and columns in block b are the same, we want every vertex
part to have at most uR + uC vertices. We set α := max(k(uR+uC)

m+n , 1) and obtain

|Pt| ≤ α
m+ n

k
=
k(uR + uC)

m+ n

m+ n

k
= uR + uC , if

k(uR + uC)

m+ n
≥ 1

for all t ∈ [k].
The formal procedure of the bipartite decomposing algorithm is displayed in detail in

Algorithm 12. It makes use of three methods. Method CreateBipartiteGraph() is clear
from Definition 4.4.3. The second method, namely SolveHVS(), can be implemented
by Algorithm 4 described in Subsection 4.1.1. Finally, an implementation of method
TransPartToDecompBip() is indicated in Algorithm 13.
The next lemma states that Algorithm 12 is heuristically correct, in terms of Re-

mark 12.

Lemma 4.4.5 (Heuristic correctness of the bipartite decomp. algorithm)
Let A ∈ Rm×n be a matrix and k ∈ N be an integer. Furthermore, let `R, `C ∈ N0 and
uR, uC ∈ N be integers.
If Algorithm 12 ends without sending a message for the input (A, k, `R, uR, `C , uC), then
it returns a k-decomposition that is feasible for MinAf(A, k, `R, uR, `C , uC).

Proof: Let A ∈ R
m×n be a matrix and k ∈ N be an integer. Furthermore, let

`R, `C ∈ N0 and uR, uC ∈ N be integers.
Let Algorithm 12 ends without sending a message for the input (A, k, `R, uR, `C , uC),

then it reaches line 7. In the following, we prove the statement: If line 7 of Algorithm 12
is reached, then the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is a k-decomposition that

63

4 Heuristic Decomposing Methods

1 2 3 4 5

a 1 1 1 1
b 1 1 1
c 1 1 1
d 1 1
e 1 1

(a) Matrix A ∈ R5×5

a

b

c

d

e

1

2

3

4

5

GB
A

(b) Bipartite graph GB
A of A

a

b

c

d

e

1

2

3

4

5

P1

P2

(c) Bipartite graph of A with obtained so-
lution P = (P1, P2, {a, 3}) for the HVS
problem

2 4 1 5 3

c 1 1 1
e 1 1
b 1 1 1
d 1 1
a 1 1 1 1

(d) Decomposed matrix
D(A) in 2-arrowhead
form

Figure 4.10: Succesful run of bipartite decomposing algorithm

fulfills the block condition. Thus, if line 9 is reached, the k-decomposition D also fulfills
the load condition (`R, uR, `C , uC), and hence is feasible for MinAf(A, k, `R, uR, `C , uC).
Consider the tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) which has been returned by

the method TransPartToDecompBip(). Let GBA be the bipartite graph of A and set
α := max(k(uR+uC)

m+n , 1).Moreover, let P = (P1, . . . , Pk, S) be the solution of HVS(A, k, α)
that was returned in line 3 by method SolveHVS(). Analogously to the proof of Lemma
4.4.2, we will show that (R1, . . . ,Rk,RB) is a weak partition of the rows of A, and that
(C1, . . . , Ck, CB) is a weak partition of the columns of A. Eventually, we prove that D
fulfills the block condition. In line 7 of Algorithm 12 we have:

• Rb = {i ∈ [m]|vRi ∈ Pb} for all b ∈ [k],

• Cb = {j ∈ [n]|vCj ∈ Pb} for all b ∈ [k],

64

4.4 Models for MinAf

Algorithm 12: BipartiteDecomposingAlgorithm
input : A ∈ Rm×n a matrix, k ∈ N an integer, `R, `C ∈ N0 and uR, uC ∈ N.
output: A k-decomposition D for A that fulfills the block condition and the load

condition (`R, uR, `C , uC) or a statement that no solution could be found.

1 GBA ← CreateBipartiteGraph(A);

2 α← max(k(uR+uC)
m+n , 1);

3 P = (P1, . . . , Pk, S)← SolveHVS(GBA,k,α);
4 if P is not feasible for HVS(GBA,k,α) then
5 return statement that no feasible solution could be found and quit ;
6 end
7 D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) ← TransPartToDecompBip(GBA,k,P);
8 if D fulfills the load condition (`R, uR, `C , uC) then
9 return D;

10 end
11 else
12 return statement that no feasible solution could be found ;
13 end

Algorithm 13: TransPartToDecompBip
input : G = (V,E) an undirected graph, k ∈ N an integer, and

P = (P1, . . . , Pk, S) a solution of a HVS problem on G .
output: A k-decomposition D of A that fulfills the block condition.

1 RB ← {i ∈ [m]|vRi ∈ S};
2 CB ← {j ∈ [n]|vCj ∈ S};
3 for b ∈ [k] do
4 Rb ← {i ∈ [m]|vRi ∈ Pb};
5 Cb ← {j ∈ [n]|vCj ∈ Pb};
6 end
7 return D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB);

• RB = {i ∈ [m]|vCj ∈ S} and

• CB = {j ∈ [n]|vCj ∈ S}.

Consider an arbitrary row i ∈ [m] of A. Since (P1. . . . , Pk, S) is a partition of the rows,
there is exactly one set Q ∈ {P1, . . . , Pk, S} with vRi ∈ Q. Due to the definition of RB
and Rb for b ∈ [k], there is exactly one set Q′ ∈ {R1, . . . ,Rk,RB} with i ∈ Q′. Hence,
(R1, . . . ,Rk,RB) is a weak partition of the rows of A. Analogously, for an arbitrary
column j ∈ [n] of A, there is exactly one set W ∈ {P1, . . . , Pk, S} with j ∈ W . Owing
to the definition of CB and Cb for b ∈ [k], there is exactly one set W ′ ∈ {C1, . . . , Ck, CB}

65

4 Heuristic Decomposing Methods

with j ∈W ′. Therefore, (C1, . . . , Ck, CB) is a weak partition of the columns of A. Hence,
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is a k-decomposition for A.
Now we show that D fulfills the block condition. Consider i ∈ Rb1 and j ∈ Cb2 with

aij 6= 0 for some b1, b2 ∈ [k]. Then we have vRi ∈ Pb1 and vCj ∈ Pb2 . Since aij 6= 0,
there is an edge e of GBA with vRi ∈ e and vCj ∈ e. Because (P1, . . . , Pk, S) is a k-way
α-hypervertex separator and vRi ∈ Pb1 , we know that vCj ∈ Pb1 . Since (P1, . . . , Pk, S) is
a weak partition of the vertices of GBA , we obtain b1 = b2. Hence, the block condition is
fulfilled.

�

It is worth pointing out that even if the solution of the HVS problem is balanced,
the obtained k-decomposition could fail the load condition. An example is shown in
Figure 4.11. Consider the problem MinAf(A, 2, 1, 6, 1, 6) for the matrix A ∈ R11×11

displayed in Subfigure 4.11a. The bipartite graphGBA of A is visualized in Subfigure 4.11c.
Furthermore, this subfigure illustrates the feasible solution P = (P1, P2, {d, 8}) of
HVS(GBA , 2, 2). We can obtain the 2-decomposition D from P with

D = ((a, b, c, f, g, i, j), (e, h, k), (d); (2, 5, 9), (1, 3, 4, 6, 7, 10, 11), (8))

that does not fulfill the load condition (1, 6, 1, 6). The decomposed matrix D(A) is shown
in Subfigure 4.11b.

Weighting Schemes

We solve the HVS indirectly as described in Section 4.1.1 by solving an HES problem.
Thereby, we make use of the unary weighting scheme (4.1) and the aprop degree weighting
scheme (4.3).

66

4.4 Models for MinAf

1 2 3 4 5 6 7 8 9 10 11

a 1 1
b 1 1 1 1
c 1 1
d 1 1 1 1 1 1 1 1 1 1
e 1 1 1 1 1
f 1 1 1
g 1 1 1
h 1 1 1 1 1
i 1 1 1
j 1 1
k 1 1 1 1 1

(a) Matrix A ∈ R11×11

2 5 9 1 3 4 6 7 10 11 8

a 1 1
b 1 1 1 1
c 1 1
f 1 1 1
g 1 1 1
i 1 1 1
j 1 1
e 1 1 1 1 1
h 1 1 1 1 1
k 1 1 1 1 1
d 1 1 1 1 1 1 1 1 1 1

(b) Decomposed matrix D(A) with D does not fulfill

the load condition (1, 6, 1, 6)

a

b

c

d

e

f

g

h

i

j

k

1

2

3

4

5

6

7

8

9

10

11

(c) Bipartite graph GB
A with solution P = (P1, P2) for

the HVS problem

Figure 4.11: Failed run of the bipartite decomposing algorithm; although the partition
P = (P1, P2) is perfectly balanced, the deduced decomposition fails the load
condition

67

5 Exact Decomposing Methods

This chapter consists of three sections. At first, we introduce the model used by Borndör-
fer et al. [12] to solve MinBf for some load conditions by a so-called branch-and-cut
algorithm. However, we may obtain solutions with empty blocks, if the upper row load
capacity is not set properly. Secondly, we present an integer program to solve the prob-
lems MinAf and MinBf. Unfortunately, it will turn out to be rather weak. Moreover,
we introduce cuts to improve its performance. Finally, we suggest a column generation
approach to solve the problem MinAf.

5.1 Borndörfer’s Approach to MinBf

Borndörfer et al. suggested a branch-and-cut algorithm[12] that copes the MDP intro-
duced in Section 2.5.1. It is about assigning as many rows of A as possible to β blocks
such that the following three conditions hold:

1. Each row is assigned to at most one block.
2. There are at most κ rows assigned to each block.
3. There do not exist two rows in different blocks that have a nonzero entry in the

same column.
Obviously, it is similar to the problem MinBf(A, k, 0, uR, 0, n) for a matrix A ∈ Rm×n,
and the integers k, uR ∈ N. Borndörfer suggests a branch-and-cut algorithm that is
based on the integer program IPB described below.
It contains a binary variable yti for every pair (t, i) where t ∈ [k] is a block and i ∈ [m]

is a row. The variable yti has value one, if and only if, row i is assigned to block t.

Maximize
m∑
i=1

k∑
t=1

yti

subject to
k∑
t=1

yti ≤ 1, for i ∈ [m]; (B1)

m∑
i=1

yti ≤ uR, for t ∈ [k]; (B2)

(IPB) yti + yt′j ≤ 1, for t, t′ ∈ [k], t 6= t′ and (B3)

for i, j ∈ [m] such that
ai` 6= 0 6= aj` for some ` ∈ [n];

yti ∈ {0, 1}, for t ∈ [k], i ∈ [m]. (B4)

69

5 Exact Decomposing Methods

It is a simple matter to obtain a β-decomposition of A from a solution of MDP(A, β, κ).
However, it is not our purpose to study IPB in detail. For a fuller treatment of IPB, we
refer the reader to [12].

5.2 Assignment Approach for MinAf

The following integer program is a straight forward assignment model denoted by IPA.
It is defined for the parameters (A, k, `R, uR, `C , uC) where A ∈ Rm×n is a matrix,
k, uR, uC ∈ N are positive integers, and `R, `C ∈ N0 are nonnegative integers. For simplic-
ity, we write IPA if the parameters are clear, otherwise we write IPA(A, k, `R, uR, `C , uC).
At first, we present IPA(A, k, `R, uR, `C , uC). Afterwards, we describe the variables of

the integer program and how an assignment of them can be transformed to a solution D
of MinAf and vice versa. Thirdly, we describe the constraints of IPA. We will see easily
that the assignment of the variables is feasible for IPA if and only if the corresponding D
is feasible for MinAf. Next, it is shown how the model can be adapted to solve MinBf.
Afterwards, we will see that the LP-relaxiation of IPA is rather weak by giving a fractional
solution that has an objective function value of zero. Finally, we give some constraints
that should speed up the solving process without strengthening the LP-relaxiation.

Minimize
m∑
i=1

xRi +
n∑
j=1

xCj

subject to
k∑
t=1

yRti + xRi = 1, for i ∈ [m]; (A1R)

k∑
t=1

yCtj + xCj = 1, for j ∈ [n]; (A1C)

m∑
i=1

yRti ≥ `R, for t ∈ [k]; (A2R`)

n∑
j=1

yCtj ≥ `C , for t ∈ [k]; (A2C`)

IPA

m∑
i=1

yRti ≤ uR, for t ∈ [k]; (A2Ru)

n∑
j=1

yCtj ≤ uC , for t ∈ [k]; (A2Cu)

yCtj − yRti − xRi ≤ 0, for t ∈ [k], i ∈ [m], (A3C)

j ∈ [n] with aij 6= 0;

yRti , y
C
tj , x

R
i , x

C
j ∈ {0, 1}, for t ∈ [k], i ∈ [m], j ∈ [n]. (A4)

70

5.2 Assignment Approach for MinAf

We introduce a binary variable yRti for every pair (t, i), where t ∈ [k] is a block and
i ∈ [m] is a row. It attains a value of one if and only if row i is assigned to block t (i.e.
i ∈ Rt). Moreover, a binary variable xRi is defined for every row i ∈ [m] that takes a
value of one if and only if row i is assigned to the row border (i.e. i ∈ RB). Similarly,
we introduce a binary variable yCti for every pair (t, j), with t ∈ [k] is a block and j ∈ [n]
is a column. yCti has value one if and only if column j is assigned to block t (i.e. j ∈ Ct).
Furthermore, there is a binary variable xCj for every column j ∈ [n] that takes a value
of one if and only if j is assigned to the column border (i. e. j ∈ CB). For abbreviation,
let z(v) denote the value of variable v for the assignment z. This way, we defined how
an assignment of the variables and a tuple D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) can
be obtained from each other. For an assignment z of the variables of IPA and a tuple
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB), we write z ' D, if and only if they can be
obtained from each other.
The constraints (A1R) and (A1C) ensure that every row and every column is as-

signed either to the respective border or to exactly one block. Therefore, it is evident
that (R1, ...,Rk,RB) is a weak partition of the rows and (C1, ..., Ck, CB) is a weak par-
tition of the columns of A. Hence, D is a k-decomposition. The constraints (A2R`),
(A2C`), (A2Ru) and (A2Cu) are respected if and only if D fulfills the load condition
(`R, uR, `C , uC). The constraints (A3C) ensure that a column c can be assigned to a
block t only if every row that has a nonzero entry in c is assigned to block t or to the
row border. The following theorem provides a rigorous formulation of the fact that one
can use IPA to solve the problem MinAf.

Theorem 5.2.1
Let A ∈ Rm×n be a matrix, let k, uR, uC ∈ N be positive integers, and let `R, `C ∈ N0 be
nonnegative integers. Let D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) be a k-decomposition of
A and z be an assignment of the variables of IPA(A, k, `R, uR, `C , uC) such that z ' D.
Then the following holds: The assignment z is feasible for IPA(A, k, `R, uR, `C , uC) if and
only if D is feasible for MinAf(A, k, `R, uR, `C , uC). Furthermore, if z and D are feasible
for the corresponding problem, then the respective objective function values are equal.

Proof: Let A, k, `R, `C , uR, uC , z and D be as defined in Theorem 5.2.1. Throughout the
proof, the variables of IPA are assigned according to z.
Let us first prove that feasibility of z implies feasibility of D. Suppose z is feasi-

ble for IPA(A, k, `R, uR, `C , uC). Consider an arbitrary row i ∈ [m] and an arbitrary
column j ∈ [n]. Since all variables of IPA are binary and the constraints (A1R) are
respected, we know that exactly one of the variables yR1i, . . . , y

R
ki, x

R
i reaches value one.

Hence, the tuple (R1, ...,Rk,RB) is a weak partition of the rows of A. Similarly, exactly
one of the variables yC1j , . . . , y

C
kj , x

C
j takes value one since the constraints (A1C) are not

violated. Therefore, the tuple (C1, ..., Ck, CB) is a weak partition of the columns of A.
Therefore, D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is a k-decomposition of A. According
to the constraints (A2R`), (A2C`), (A2Ru) and (A2Cu), D fulfills the load condition
(`R, uR, `C , uC). Consider a row i ∈ [m] and a column j ∈ [n] with aij 6= 0, and i ∈ Rt
and j ∈ Ct′ for some t, t′ ∈ [k]. We have yRti = 1 and yCt′j = 1 which implies xRi = 0 and
yRt∗i = 0 for t∗ ∈ [k]r {t}. Since the constraint (A3C) for (t′, i, j) is fulfilled, we conclude

71

5 Exact Decomposing Methods

that yCt′j − yRt′i − xRi ≤ 0, hence that 1 − yRt′i ≤ 0, and finally that yRt′i = 1. This clearly
forces t = t′. It follows that the block condition is fulfilled.
Now we show that feasibility of D yields feasibility of z. The integrality conditions

(A4) are fulfilled which is clear from z ' D. Consider a row i ∈ [m] and a column
j ∈ [n]. Since D is k-decomposition, the tuples (R1, ...,Rk,RB) and (C1, ..., Ck, CB) are
weak partitions of the rows and the columns, respectively. Therefore, there is exactly
one set Q1 ∈ {R1, ...,Rk,RB} and exactly one set Q2 ∈ {C1, ..., Ck, CB} with i ∈ Q1

and j ∈ Q2. Thus, exactly one of the variables yR1i, . . . , y
R
ki, x

R
i attains value 1. Similarly,

exactly one of the variables yC1j , . . . , y
C
kj , x

C
j reaches value 1. It follows that the constraints

(A1R) and (A1C) are fulfilled for all i ∈ [m] and for all j ∈ [n], respectively. Let t ∈ [k]
be an arbitrary block. As D fulfills the load condition, at least `R and at most uR of
the variables yRt1, . . . , yRtm take a value of one. Therefore, the constraints (A2R`) and
(A2Ru) are fulfilled. Similarly, at least `C and at most uC of the variables yCt1, . . . , yCtn
reach a value of 1. Hence, the constraints (A2C`) and (A2Cu) are respected. Consider
again an arbitrary block t ∈ [k]. Also let i ∈ [m] be a row and j ∈ [n] be a column with
aij 6= 0. For contradiction, suppose that the constraint (A3C) for (t, i, j) is violated. It
follows that yCtj = 1 , yRti = 0 and xRi = 0. Hence, yRt∗i = 1 for some t∗ ∈ [k] r {t}. We
thus get i ∈ Rt and j ∈ Ct∗ for t 6= t∗, which contradicts the fact that D fulfills the
block condition. Therefore, the constraints (A3C) are fulfilled and, in consequence, z is
a feasible assignment for the variables of IPA.
It remains to show that the objective function values of z and D are equal. Let
D be feasible for MinAf(A, k, `R, uR, `C , uC). Then, as seen above, z is feasible for
IPA(A, k, `R, uR, `C , uC). The objective value of D is

|RB|+ |CB| =
m∑
i=1

xRi +
n∑
j=1

xCj ,

which is the objective function value of the assignment z.
�

Remark 13:
Let IP ∗A denote the integer program IPA with variable xCj fixed to zero for all j ∈ [n].
Consider a feasible solution z of IP ∗A. Let D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) be a
k-decomposition obtained from z. Then we have CB = ∅. On the other hand, for every
assignment that is obtained from a feasible solution of MinBf(A, k, `R, uR, `C , uC), we
obtain xCj = 0 for all j ∈ [n]. Therefore, IP ∗A solves MinBf.

A common method to solve integer programs like IPA is the LP-based branch-and-
bound algorithm. For an introduction to this algorithm we refer the reader to [39]. Its
performance highly depends on the so-called “strength” of the so-called LP-relaxation.
One obtains the LP-relaxation of an integer program by omitting the integrality condi-
tions on the variables. Explicitly, for the LP-relaxation LPA of IPA the constraints (A4)
are substituted by the following constraints:

72

5.2 Assignment Approach for MinAf

0 ≤ yRti , yCtj , xRi , xCj ≤ 1, for t ∈ [k], i ∈ [m], j ∈ [n]; (A4∗)

yRti , y
C
tj , x

R
i , x

C
j ∈ R, for t ∈ [k], i ∈ [m], j ∈ [n]. (A4∗∗)

Thus, the set of feasible solution is not reduced (i.e. every feasible solution of IPA is a
feasible solution of LPA). Therefore, the objective function value OPT ∗ of an optimal
solution of LPA provides a lower bound on the optimal objective function value OPT of
IPA. In the scope of this thesis, we will use the following intuition: If the gap between
OPT and OPT ∗ is relatively big, then we call the LP-relaxation weak, otherwise we
call it strong. For a deeper discussion of the “strength” of an LP-relaxation we refer the
reader to [39].
Unfortunately, the LP-relaxation of IPA is weak. This can be seen by considering the

following assignment of variables: We set yRti := 1
k for all t ∈ [k], i ∈ [m], yCtj := 1

k for
all t ∈ [k], j ∈ [m], and the remaining variables to zero. Since k ∈ N, this assignment
fulfills the constraints (A4∗) and (A4∗∗). Moreover, for all i ∈ [m] we have

k∑
t=1

yRti + xRi = k
1

k
+ 0 = 1,

and for all j ∈ [n] we get
k∑
t=1

yCtj + xCj = k
1

k
+ 0 = 1,

and hence the constraints (A1R) and (A1C) are fulfilled. Furthermore, we have

yCtj − yRti − xRi =
1

k
− 1

k
≤ 0

for all i ∈ [m], j ∈ [n], and t ∈ [k]. Therefore, the constraints (A3C) are fulfilled. For all
t ∈ [k] we obtain

m∑
i=1

yRti =
m

k

and
n∑
j=1

yCtj =
n

k
.

Therefore, if we had

(∗) `R ≤ m

k
≤ uR and `C ≤ n

k
≤ uC ,

the constraints (A2R`), (A2C`), (A2Ru) and (A2Cu) would be fulfilled. Since m
k is the

average number of rows per block and n
k is the average number of columns per block,

provided that the respective border is empty, it seems that assumption (∗) is natural.
However, the objective function value of the assignment is zero. Hence, the assignment

73

5 Exact Decomposing Methods

is an optimal solution of LPA, if assumption (∗) holds. Since the objective function
value is nonnegative, the gap between the the optimal function values of LPA and IPA
is maximal for a fixed instance of MinAf. Thus, the LP-relaxation of IPA is weak.
There is another problem with the formulation. Consider a feasible solution z of IPA.

Let t, t′ ∈ [k], t 6= t′ be two distinct blocks. We obtain another feasible solution z̄ of IPA
by permuting the assignment of the variables yRti and y

R
t′i for all i ∈ [m] and exchanging the

assignment of the variables yCtj and y
C
t′j for all j ∈ [n]. Obviously, the objective function

values of z and z̄ are equal. All rows and columns, assigned to block t, are assigned to
block t′, and vice versa. We call such a permutation a block permutation of an assignment.
There are not only pairwise block permutations. In fact, every block permutation of a
feasible assignment, except the identity, yields another feasible assignment with the same
objective function value. If the variables of an integer program can be permuted without
changing the structure of the problem, then we call this integer program symmetric. It
would go beyond the scope of this thesis to discuss symmetry of integer programs in
detail. For a thorough treatment of this topic we refer the reader to [34]. However, if
IPA has at least one feasible solution, then there are at least k! optimal solutions. Of
course, there is at least one of them whose blocks are sorted in non-ascending order by
their number of rows or columns. In the following, we are going to introduce two types
of constraints. The first type of constraints is called row block order constraints(ARBO).
They forbid all assignments whose blocks are not sorted in nonascending order by their
number of rows:

m∑
i=1

yRti −
m∑
i=1

yR(t+1)i ≥ 0 for t ∈ [k − 1]. (ARBO)

Clearly, these constraints ensure that the number of rows assigned to block t are not less
than the number of rows assigned to block t+ 1 for t ∈ [k − 1]. Similarly, we define the
column block order constraints(ACBO) as follows:

n∑
j=1

yCtj −
n∑
j=1

yC(t+1)j ≥ 0 for t ∈ [k − 1]. (ACBO)

It is easily seen that these constraints ensure that the number of columns assigned to
block t are not less than the number of columns assigned to block t + 1 for t ∈ [k − 1].
Both types of constraints can forbid feasible solutions of IPA, but if IPA is feasible, then
for each of both kinds of constraints there is at least one optimal solution that fulfills all
constraints of this type.
Let IPAR denote the integer program IPA with the additional constraints (ARBO)

and denote by IPAC the integer program IPA with the additional constraints (ARCO).
From the above it follows that optimal solutions of IPAR and IPAC are also optimal
solutions of IPA.
It is worth pointing out that if we added constraints of both types to IPA, then we

might prune all optimal solutions.
We will examine in section 6.2 whether there is an improvement in performance by

solving IPAR or IPAC instead of IPA.

74

5.3 Column Generation Approach for MinAf

5.3 Column Generation Approach for MinAf

In the following section, we introduce an integer program that is based on IPA, but
hopefully provides a stronger LP-relaxation. At first, we present the main idea of the
model. After giving some necessary definitions, we present the model and verify that
it can be used to solve MinAf and MinBf. Furthermore, we show how to solve the
LP-relaxation of the model with a so-called column generation approach. .
The weakness of the LP-relaxation of IPA was caused by the fact that every row and

column could be fractionally assigned to every block. We want to avoid assignments
whose number of fractionally assigned rows or columns exceeds one of the block capaci-
ties. The main idea is to introduce a binary variable for every block and every possible
assignment of rows and columns (“block pattern”). The advantage of using these kind
of variables lies in the fact that assignments may force some other rows or columns to
be part of the border. For instance, consider a row assignment that includes row i, but
excludes column j with j has a nonzero entry in i. It is necessary that j is assigned to
the border since assigning c to another block would violate the block condition.
We continue by giving some helpful definitions.

Definition 5.3.1 (Block pattern for a matrix)
Let A ∈ Rm×n be a matrix. We call a pair p = (R,C) of sets R ⊆ [m] and C ⊆ [n] a
block pattern for A.

Let A ∈ Rm×n be a matrix and let p = (R,C) be a block pattern for A. For i ∈ R and
j ∈ C, we say p contains i and j, respectively.
Observation 5.3.2
Let A ∈ Rm×n be a matrix and k ∈ N be a positive integer. Furthermore, suppose that
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is a k-decomposition of A. Then for t ∈ [k],
pt = (Rt, Ct) is a block pattern for A.
Definition 5.3.3 (Neighborhood of a block pattern)
Let A ∈ Rm×n be a matrix and p = (R,C) a block pattern for A. We call the pair of
sets p̄ = (R̄, C̄) the neighborhood of p with R̄ = {i ∈ [m]|i /∈ R ∧ ∃j ∈ C : aij 6= 0} the
set of neighbor rows of p and C̄ = {j ∈ [n]|j /∈ C ∧ ∃i ∈ R : aij 6= 0} the set of neighbor
columns of p.

This lemma provides an alternative formulation for the block condition and will be needed
later.
Lemma 5.3.4 (Alternative block conditions)
Let A ∈ Rm×n be a matrix and let k ∈ N be a positive integer. Moreover, suppose that
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is a k-decomposition of A and define pt = (Rt, Ct)
for t ∈ [k]. Furthermore, let p̄t = (R̄t, C̄t) be the neighborhood of pt. Then the following
conditions are equivalent:

(i) D fulfills the block condition.

(ii) For all t ∈ [k] holds R̄t ⊆ RB.

(iii) For all t ∈ [k] holds C̄t ⊆ CB.

75

5 Exact Decomposing Methods

Proof: Let A ∈ Rm×n be a matrix and let k ∈ N be a positive integer. Suppose that
D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) is a k-decomposition of A and write pt = (Rt, Ct)
for t ∈ [k]. Moreover, let p̄t = (R̄t, C̄t) be the neighborhood of pt.
We begin by deducing (ii) from (i). Suppose that D fulfills the block condition. Let

t ∈ [k] be a block and consider i ∈ R̄t. This gives i /∈ Rt and there is a column j ∈ Ct
such that aij 6= 0. Since the block condition would be violated if i ∈ Rt′ for some
t′ ∈ [k] r {t}, it follows that i /∈ Rt′ for all t′ ∈ [k] r {t}. By the definition of a k-
decomposition, (R1, ...,Rk,RB) is a weak partition of the rows of A, and consequently
i ∈ RB.
We now proceed by deducing (iii) from (ii). Suppose that for all t ∈ [k] holds
R̄t ⊆ RB. Consider an arbitrary block t ∈ [k] and a column j ∈ C̄t. By the def-
inition of neighborhood, we obtain that j /∈ Ct and there is a row i ∈ Rt such that
aij 6= 0. We claim that j ∈ CB. Suppose, contrary to our claim, that j ∈ Ct′ for some
t′ ∈ [k] r {t}. It follows that i ∈ R̄t′ since i /∈ Rt′ . By (ii) we obtain i ∈ RB. This
contradicts the fact that i ∈ Rt, because (R1, ...,Rk,RB) is a weak partition of the rows
of A. Hence, we have j ∈ CB.
Finally, we prove that (iii) implies (i). Suppose that for all t ∈ [k] holds C̄t ⊆ CB.

Let i ∈ Rt be a row and j ∈ Ct′ be a column for some t, t′ ∈ [k] such that aij 6= 0. To
obtain a contradiction, suppose that t 6= t′. Since (C1, ..., Ck, CB) is a weak partition of the
columns, we have j /∈ Ct and therefore get j ∈ C̄t. From (iii) we obtain j ∈ CB, contrary
to j ∈ Ct′ . This clearly forces t = t′. Consequently, D fulfills the block condition.

�

Since we are only interested in block patterns that fulfill some load condition, we define:

Definition 5.3.5 (Feasible block pattern for a matrix)
Let A ∈ Rm×n be a matrix and p = (R,C) a block pattern for A. Furthermore, let
uR, uC ∈ N be positive integers, and let `R, `C ∈ N0 be nonnegative integers. We call p
a feasible block pattern for A under the load condition (`R, uR, `C , uC) if `R ≤ |R| ≤ uR

and `C ≤ |C| ≤ uC .

To shorten notation, we write feasible block pattern if it is clear which matrix and load
condition are meant.
Even for small instances the number of feasible block patterns can be large. The

number of all i-elementary subsets of an m-elementary set is
(
m
i

)
. Therefore, the number

of all feasible row assignments and all column assignments is

uR∑
i=`R

(
m

i

)
and

uC∑
j=`C

(
n

j

)
,

respectively. Since every feasible block pattern is a unique combination of a feasible row
and feasible column assignment, the number of feasible block patterns is uR∑

i=`R

(
m

i

) uC∑
j=`C

(
n

j

) ,

76

5.3 Column Generation Approach for MinAf

the product of the number of feasible row assignments and the number of feasible column
assignments.
Given an arbitrary matrix A ∈ Rm×n and the load condition (1,m − 1, 1, n − 1), we

can calculate the number of feasible block patterns. Due to the fact that for k ∈ N we
have

k−1∑
i=1

(
k

i

)
=

k∑
i=0

(
k

i

)
−
(
k

0

)
−
(
k

k

)
= (1 + 1)k − 2 = 2k − 2,

it follows that there are 2m − 2 feasible row assignments and 2n − 2 feasible column
assignments. Hence, there are

(2m − 2) (2n − 2) = 2m+n − 2m+1 − 2n+1 + 4

feasible block patterns.
Consider for example a 20 × 20 matrix with the load condition (1, 19, 1, 19). The

number of feasible block patterns are

240 − 221 − 221 + 4 ≈ 1012,

which is a huge number for a relatively small matrix.
In the following we introduce the integer program IPCG according to some instance

MinAf(A, k, `R, uR.`C , uC). The used notation is set up afterwards.

Minimize
m∑
i=1

xRi +

n∑
j=1

xCj

subject to
k∑
t=1

yRti + xRi = 1, for i ∈ [m]; (C1R)

k∑
t=1

yCtj + xCj = 1, for j ∈ [n]; (C1C)∑
p∈Pt

api z
p
t − yRti = 0, for t ∈ [k], for i ∈ [m]; (C2R)

∑
p∈Pt

bpjz
p
t − yCti = 0, for t ∈ [k], for j ∈ [n]; (C2C)

(IPCG)
∑
p∈Pt

āpi z
p
t − xRi ≤ 0, for t ∈ [k], for i ∈ [m]; (C3R)

∑
p∈Pt

b̄pjz
p
t − xCi ≤ 0, for t ∈ [k], for j ∈ [n]; (C3C)

∑
p∈Pt

zpt = 1, for t ∈ [k]; (C4)

yRti , y
C
ti , x

R
i , x

C
j ∈ {0, 1}, for t ∈ [k], i ∈ [m], j ∈ [n]; (C5)

zpt ∈ {0, 1}, for t ∈ k, p ∈ Pt. (C6)

77

5 Exact Decomposing Methods

Let us denote by Pt the set of all feasible block patterns for A according to (`R, uR, `C , uC)
that can be assigned to block t for t ∈ [k]. For such a feasible block pattern p = (R,C)
with neighborhood p̄ = (R̄, C̄), a row i ∈ [m], and a column j ∈ [n], we define the
parameters api , b

p
j , ā

p
i , b̄

p
j ∈ {0, 1} such that

• api = 1 if and only if i ∈ R,

• bpj = 1 if and only if j ∈ C,

• āpi = 1 if and only if i ∈ R̄, and

• b̄pj = 1 if and only if j ∈ C̄.

Moreover, our model contains, additionally to the variables of IPA, a binary variable
zpt , called pattern variable, for every block t ∈ [k] and every feasible block pattern p ∈ Pt.
This variable reaches value one if and only if block t contains exactly those rows and
columns that are contained in block pattern p.
According to the constraints (C4), for every block t exactly one block pattern is chosen.

Therefore, the constraints (C2R) ensure that for all i ∈ [m] and t ∈ [k] the variable yRti
takes value of one if and only if the chosen block pattern for block t contains row i.
Similarly, the constraints (C2C) assure that for all j ∈ [n] and t ∈ [k] the variable
yCtj reaches a value of one if and only if the chosen block pattern for block t contains
column j. Furthermore, the constraints (C1R) and (C1C) guarantee that each row and
each column, respectively, is either assigned to exactly one block or the respective border.
Let A ∈ Rm×n be a matrix, let k, uR, uC ∈ N be positive integers, and let `R, `C ∈ N0

be nonnegative integers. In the following, we want to show how a feasible solution
of IPCG(A, k, `R, uR, `C , uC) can be transformed to a feasible solution of the problem
MinAf(A, k, `R, uR, `C , uC), and vice versa. Furthermore, it will turn out that the cor-
responding objective function values are equal.
On account of the constraints (C4), a feasible variable assignment for IPCG includes

for every t ∈ [k] exactly one variable zpt that attains a value of 1. Let pt = (Rt, Ct) be
the feasible block pattern with zptt = 1 for t ∈ [k]. Define R∗ := [m] r

⋃k
t=1Rt and

C∗ := [n] r
⋃k
t=1Ct. By setting Rt = Rt and Ct = Ct for t ∈ [k], plus RB = R∗ and

CB = C∗, we obtain a k-decomposition D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB) from a
feasible assignment. Since the block pattern pt for t ∈ [k] is feasible under (`R, uR, `C , uC),
D fulfills the load condition (`R, uR, `C , uC). Consider p̄t = (R̄, C̄) the neighborhood of
block pattern pt for t ∈ [k]. The constraints (C3R) ensures that every row being a
neighbor row of some chosen block pattern is assigned to the row border. Similarly, the
constraints (C3C) guarantee that every column being a neighbor column of some chosen
block pattern is assigned to the column border. Hence, for all t ∈ [k] we have R̄t ⊆ R∗

and C̄t ⊆ C∗. By Lemma 5.3.4, it follows that D fulfills the block condition. Hence,
D is feasible for MinAf(A, k, `R, uR, `C , uC). Furthermore, D and the assignment of the
variables has the same objective function values.
On the other hand, consider a k-decomposition D = (R1, . . . ,Rk,RB; C1, . . . , Ck, CB)

that is feasible for MinAf(A, k, `R, uR, `C , uC). We can deduce a feasible variable as-
signment for the IPCG according to MinAf(A, k, `R, uR, `C , uC) from D whose objective

78

5.3 Column Generation Approach for MinAf

function value equals the objective function value of D. For t ∈ [k] we define pt = (Rt, Ct)
the block patterns that are chosen. Since D fulfills the load condition (`R, uR, `C , uC),
pt is a feasible block pattern for A under the load condition (`R, uR, `C , uC) and hence
pt ∈ Pt for t ∈ [k]. We set zptt = 1 and zpt = 0 for t ∈ [k], p ∈ Pt r {pt}. Thus, the
constraints (C4) are respected. Moreover, for t ∈ [k] we set yRti = 1 if and only if i ∈ Rt.
Also, we set yCtj = 1 if and only if j ∈ Ct. Furthermore, we set xRi = 1 if and only if
i ∈ RB, and we assign xCj = 1 if and only if j ∈ CB. It follows immediately that the
constraints (C2R) and (C2C) are fulfilled and that the objective function values of D and
the deduced assignment for IPCG are equal. Due to the fact that D is a k-decomposition
of A, the constraints (C1R) and (C1C) are also fulfilled. Consider the neighborhood
p̄t = (R̄t, C̄t) of pt for t ∈ [k]. Since D fulfills the block condition, Lemma 5.3.4 shows
that for all t ∈ [k], R̄t ⊆ RB and C̄t ⊆ CB. Hence, for all t ∈ [k], for all rows i ∈ R̄t
and for all j ∈ C̄t, we have xRi = 1 and xCj = 1. Therefore, the constraints (C3R) and
(C3C) are fulfilled. Consequently, the deduced assignment fulfills all constraints and its
objective function value equals the objective function value of D.
It is worth pointing out that if we fix the variables xCj to zero for j ∈ [n] we can use

IPCG to solve MinBf. This can be seen by the same reasoning as in Remark 13.

5.3.1 Solving the LP-relaxation of IPCG

We have seen that the number of feasible block patterns and thus the number of the
variables zpt can be large even for small instances. Instead of generating all variables in
advance, we only generate them when needed. In order to do so, we utilize the fact that
the simplex algorithm can solve an LP without keeping track of all possible variables. It
is not our purpose to study the simplex algorithm in detail. For a deeper discussion of
the simplex algorithm we refer the reader to [10] or [14].
For our implementation this means, that the set Pt does not contain all variables zpt .

To be more precise, we initialize it in the following way:

Pt := {zpt |p = ({i}, {j}), i ∈ [m], j ∈ [n], aij 6= 0}

for all t ∈ [k]. Thus, Pt consists of artificial pattern variables that each correspond to a
nonzero entry of A. We set the objective cost coefficient of an artificial zpt to m+ n+ 1
if pattern p is not feasible according to (`R, uR, `C , uC). Hence, in an optimal feasible
solution the pattern variables that belong to infeasible patterns attains a value of 0.
In every iteration of the simplex algorithm we search a variable with so-called negative

reduced cost. In general, the reduced costs for a variable v can be calculated using the
objective function coefficient of v and the dual values of the constraints containing v
in the current simplex iteration. For all t ∈ [k] and i ∈ [m], we denote the dual value
of the constraint (C2R) for (t, i) by αti, and the dual value of the constraint (C3R)
for (t, i) by ᾱti. Moreover, for all t ∈ [k] and j ∈ [n], we denote the dual value of the
constraint (C2C) for (t, j) by βtj and the dual value of the constraint (C3C) for (t, j)
by β̄tj . Furthermore, for t ∈ [k] the dual value of the constraint (C4) for t is denoted by
γt. We thus obtain the reduced costs c̄pt for the variable zpt with t ∈ [k], p = (R,C) ∈ Pt

79

5 Exact Decomposing Methods

and p̄ = (R̄, C̄), the neighborhood of p, by

c̄pt = 0−

 m∑
i=1

apiαti +

n∑
j=1

bpjβtj +

m∑
i=1

āpi ᾱti +

n∑
j=1

b̄pj β̄tj + γt

= −

∑
i∈R

αti +
∑
j∈C

βtj +
∑
i∈R̄

ᾱti +
∑
j∈C̄

β̄tj + γt

 .

.
To find variables with negative reduced costs explicitly, we can iterate over all pairs

(t, p) of blocks t ∈ [k] and feasible block patterns p ∈ Pt, and stop if we have found
a variable with negative reduced cost. Of course, if there are too many feasible block
patterns, this procedure is not efficient. Instead of doing that, we solve an optimization
problem for every block t ∈ [k]. In fact, given a block t ∈ [k] we look for a feasible block
pattern p such that c̄pt is minimal. For fixed t ∈ k, we observe that γt is a constant and
therefore minimizing c̄pt is the same as maximizing

spt :=
∑
i∈R

αti +
∑
j∈C

βtj +
∑
i∈R̄

ᾱti +
∑
j∈C̄

β̄tj ,

over all feasible block patterns p = (R,C) ∈ Pt with neighborhood p̄ = (R̄, C̄). Further-
more, we observe that the dual variables ᾱti and β̄tj are nonpositive for i ∈ [m], j ∈ [n]
because the corresponding constraints (C3R) and (C3C) are “less-or-equal” constraints
and the problem is a minimization problem.
Thus, we solve the following problem for every block t ∈ [k]:

Maximum Capacitated Block Pattern Score
Instance: Matrix A ∈ Rm×n, `R, `C ∈ N0 and uR, uC ∈ N, αi ∈ R and ᾱi ∈ R≤0

for i ∈ [m], and βj ∈ R and β̄j ∈ R≤0 for j ∈ [n]
Solution: A feasible block pattern p = (R.C) (with neighborhood p̄ = (R̄, C̄)) for A

under the load condition (`R, uR, `C , uC)
Objective: Maximize

∑
i∈R

αi +
∑
j∈C

βj +
∑
i∈R̄

ᾱi +
∑
j∈C̄

β̄j

To shorten notation, we write MCBPS for the Maximum Capacitated Block Pat-
tern Score problem. If `R = `C = 0, uR = m and uC = n, then we call it the
Maximum Uncapacitated Block Pattern Score problem and write MUBPS.
After solving MCBPS for A, `R, `C , uR, uC and {αi, ᾱi, βj , β̄j |i ∈ [m], j ∈ [n]}, for a

t ∈ [k], we add the variable zpt if the reduced costs c̄pt are negative. To be more precise,
the variable zpt is added if val(p) + γt > 0 where val(p) denotes the objective function
value of p for MCBPS.
In our implementation we solve the MCBPS problem for every block t ∈ [k]. In every

pricing round we add variables up to a fixed number to Pt for all t ∈ [k]. We solve
the MCBPS problem with the integer program IPP indicated at the end of the next
subsection.

80

5.3 Column Generation Approach for MinAf

5.3.2 The Pricing Problem

At first, we want to show that the uncapacitated version of the problem (`R = `C = 0,
uR = m and uC = n) can be solved in polynomial time in the input size. One question
that is still unanswered is whether this is true for the capacitated version of the pricing
problem. Finally, we introduce an integer program that solves MCBPS.

Complexity of the Uncapacitated Version

We show that the uncapacitated version of MCBPS can be solved in polynomial time in
the input size. In order to do so, we transform an instance of MUBPS to an instance of
the so-called Maximum s-Excess problem that we introduce presently. This problem,
going back to the work of Hochbaum [21], was shown to be equivalent to the well-known
Minimum Cut problem.

Maximum s-Excess
Instance: A directed graph G = (V,A), node weights wi ∈ R for all i ∈ V and arc

weights cij ∈ R≥0 for all (i, j) ∈ A
Solution: A subset of nodes S ⊆ V
Objective: Maximize

∑
i∈S

wi −
∑

i∈S,j∈S̄
cij , with S̄ = V r S

For every subset of nodes S ⊆ V we call an arc (i, j) ∈ A with i ∈ S and j /∈ S a cut arc
of S and δ−(S) := {(i, j) ∈ A|i ∈ S, j /∈ S} the set of cut arcs of S.

Proposition 5.3.6
The Maximum s-Excess problem can be solved in polynomial time in the input size.

Proof: The proof was done by Hochbaum in [21] and is omitted. �

We make use of this result to show that one can solve MUBPS in polynomial time.

Proposition 5.3.7
The MUBPS problem can be solved in polynomial time in the input size.

Proof: Consider an instance IMU of the MUBPS problem, i.e. a matrix A ∈ Rm×n, real
numbers αi, βj ∈ R for all i ∈ [m], j ∈ [n] and real non-positive numbers ᾱi, β̄j ∈ R≤0

for i ∈ [m], j ∈ [n].
We are going to construct an instance IMA of the Maximum s-Excess problem for

IMU that has the following two properties: On the one hand, every solution of IMU can
be transformed to a solution of IMA with the same objective function value. On the other
hand, there is an optimal solution S∗ of IMA that can be obtained by this transformation
from a solution p∗ of IMU . Moreover, we can obtain p∗ from S∗. Therefore, p∗ is optimal
for IMU . It will turn out that the construction and transformations can be accomplished

81

5 Exact Decomposing Methods

in polynomial time in the input size, and hence we can use IMA to solve IMU in polynomial
time in the input size.
We start by constructing such an instance IMA of the Maximum s-Excess problem

from IMU . Consider the following directed graph G = (V,A). For every row i ∈ [m] of A,
G includes two vertices si and s̄i with weights wsi = αi and ws̄i = 0 that are connected
by an arc (s̄i, si) with weight cs̄isi = −ᾱi ≥ 0. Analogously, G includes two vertices tj
and t̄j with weights wtj = βj and wt̄j = 0 that are connected by an arc (t̄j , tj) with
weight ct̄jtj = −β̄j ≥ 0 for every column j ∈ [n] of A. Furthermore, there are two arcs
(si, t̄j) and (tj , s̄i) for every nonzero entry aij 6= 0 of A with weights csi t̄j = ctj s̄i = M
with

M := 1 +
∑

i∈[m],αi>0

αi +
∑

j∈[n],βj>0

βj ≥ 0.

Thus, we constructed the directed graph G = (V,A) with

V = {si|i ∈ [m]} ∪ {s̄i|i ∈ [m]} ∪ {tj |j ∈ [n]} ∪ {t̄j |j ∈ [n]}

and

A ={(s̄i, si)|i ∈ [m]} ∪ {(t̄j , tj)|j ∈ [n]} ∪ {(si, t̄j)|i ∈ [m], j ∈ [n], aij 6= 0}
∪ {(tj , s̄i)|i ∈ [m], j ∈ [n], aij 6= 0}.

G is sketched in Figure5.1. For i ∈ [m] and j ∈ [n] with aij 6= 0 a pair of edges with
weight M is displayed. However, the fact that there are more arcs with weight M is
adumbrated by the dashed arrows.

s̄1 s1

s̄i si

s̄m sm

t̄1t1

t̄jtj

t̄ntn

G

−ᾱ1

−ᾱi

−ᾱm

00

00

00

α1 β1

αi βi

αm βn

−β̄1

−β̄i

−β̄m

M

M

Figure 5.1: Sketch of the constructed instance IMA of the Maximum s-Excess problem

Consider a feasible solution for IMA, i.e. a block pattern p = (R,C) with neighborhood
p̄ = (R̄, C̄) and objective function value:∑

i∈R
αi +

∑
j∈C

βj +
∑
i∈R̄

ᾱi +
∑
j∈C̄

β̄j .

82

5.3 Column Generation Approach for MinAf

We define

S(p) :={si ∈ V |i ∈ R} ∪ {s̄i ∈ V |i ∈ R ∨ i ∈ R̄}
∪ {tj ∈ V |j ∈ C} ∪ {t̄j ∈ V |j ∈ C ∨ j ∈ C̄},

and obtain

δ−(S(p)) ={(v, v′) ∈ A|v ∈ S(p), v′ /∈ S(p)}
={(s̄i, si)|i ∈ [m], s̄i ∈ S(p), si /∈ S(p)} ∪ {(t̄j , tj)|j ∈ [n], t̄j ∈ S(p), tj /∈ S(p)}
∪ {(si, t̄j)|i ∈ [m], j ∈ [n], aij 6= 0, si ∈ S(p), t̄j /∈ S(p)}
∪ {(tj , s̄i)|i ∈ [m], j ∈ [n], aij 6= 0, tj ∈ S(p), s̄i /∈ S(p)}

={(s̄i, si)|i ∈ R̄} ∪ {(t̄j , tj)|j ∈ C̄}
∪ {(si, t̄j)|i ∈ R, j ∈ [n] r C, j ∈ [n] r C̄, aij 6= 0}
∪ {(tj , s̄i)|j ∈ C, i ∈ [m] rR, i ∈ [m] r R̄, aij 6= 0}

={(s̄i, si)|i ∈ R̄} ∪ {(t̄j , tj)|j ∈ C̄} ∪ ∅ ∪ ∅, (5.1)

from the definition of neighborhood.
Therefore, the objective function value of S(p) is

∑
v∈S(p)

wv −
∑

(v,v′)∈δ−(S(p))

cvv′
5.1
=

∑
si∈S(p)

wsi +
∑

s̄i∈S(p)

ws̄i +
∑

tj∈S(p)

wtj +
∑

t̄j∈S(p)

wt̄j

−

∑
i∈R̄

csis̄i +
∑
j∈C̄

ctj t̄j

=
∑
i∈R

αi + 0 +
∑
j∈C

βj + 0−

∑
i∈R̄

−ᾱi

−
∑
j∈C̄

−β̄j

=
∑
i∈R

αi +
∑
j∈C

βj +
∑
i∈R̄

ᾱi +
∑
j∈C̄

β̄j .

Hence, the objective function values of p and S(p) are equal.
Now, let us consider an optimal solution S∗ for IMA. We can assume w.l.o.g. that if

si ∈ S∗ for some i ∈ [m], then it is s̄i ∈ S∗, and analogously, if tj ∈ S∗ for some j ∈ [n],
then it holds that t̄j ∈ S∗, otherwise we add the respective nodes. This does not decrease
the objective function value because for all i ∈ [m], j ∈ [n] we have ws̄i = wt̄j = 0, and
the outgoing arc of s̄i (and t̄j) cannot be a cut arc since si ∈ S∗ (and tj ∈ S∗). Moreover,
again w.l.o.g. we can assume that if si /∈ S∗ and there is no j ∈ [n] with aij 6= 0 and
tj ∈ S∗, then s̄i /∈ S∗ holds. Otherwise we delete s̄i from S∗ without decreasing the
objective function value since all incoming arcs of s̄i are no cut arcs anyway and the
weight of s̄i is zero. Analogously, we can assume that if tj /∈ S∗ and there is no i ∈ [m]
with aij 6= 0 and si ∈ S∗, then we have t̄j /∈ S∗.

83

5 Exact Decomposing Methods

We make use of the following claims: For all i ∈ [m] holds:

s̄i ∈ S∗ ⇔ si ∈ S∗ ∨ ∃j ∈ [n], aij 6= 0, tj ∈ S∗ (5.2)

and for all j ∈ [n] holds:

t̄j ∈ S∗ ⇔ tj ∈ S∗ ∨ ∃i ∈ [m], aij 6= 0, si ∈ S∗ (5.3)

We only proof Claim 5.2. Claim 5.3 follows with analogous arguments.
Let i ∈ [m] be an arbitrary row. At first, we show “ ⇒” by contraposition. Assume

that si /∈ S∗ and for all j ∈ [n] with aij 6= 0 holds tj /∈ S∗. By the assumptions seen
above, we have s̄i /∈ S∗ which proofs the statement. Now we show “⇐”. We distinguish
two cases:

1. If si ∈ S∗ we obtain s̄i ∈ S∗ by the assumption seen above.

2. If si /∈ S∗ and there is a j ∈ [n] such that aij 6= 0 and tj ∈ S∗, then we assume by
contradiction that s̄i /∈ S∗. Then the arc (tj , s̄i) would be a cut arc with weight
M = 1+

∑
i∈[m],αi>0

αi+
∑

j∈[n],βj>0

βj . Hence, the objective function value of S∗ would

be smaller than zero, which contradicts the optimality of S∗ since the empty set
∅ ⊆ V is a solution of IMA with objective function value zero. Therefore, we have
s̄i ∈ S∗.

Thus, we have proven Claim 5.2.
In the following we construct a block pattern p∗ from S∗. We set p∗ = (R∗, C∗) with

R∗ = {i ∈ [m]|si ∈ S∗} and C∗ = {j ∈ [n]|tj ∈ S∗}. We obtain the neighborhood
p̄ = (R̄∗, C̄∗) of p∗ with:

R̄∗ ={i ∈ [m]|i /∈ R∗ ∧ ∃j ∈ C∗ : aij 6= 0} (5.4)
C̄∗ ={j ∈ [n]|j /∈ C∗ ∧ ∃i ∈ R∗ : aij 6= 0} (5.5)

It remains to prove that S(p∗) = S∗. It holds that

S(p∗)
Def.

= {si ∈ V |i ∈ R∗} ∪ {s̄i ∈ V |i ∈ [m] : i ∈ R∗ ∨ i ∈ R̄∗}
∪ {tj ∈ V |j ∈ C∗} ∪ {t̄j ∈ V |j ∈ [n] : j ∈ C∗ ∨ j ∈ C̄∗}

5.45.5
= {si ∈ S∗|i ∈ [m]} ∪ {s̄i ∈ V |i ∈ [m] : i ∈ R∗ ∨ ∃j ∈ C∗ : aij 6= 0}
∪ {tj ∈ S∗|j ∈ [n]} ∪ {t̄j ∈ V |j ∈ [n] : j ∈ C∗ ∨ ∃i ∈ R∗ : aij 6= 0}

5.25.3
= {si ∈ S∗|i ∈ [m]} ∪ {s̄i ∈ S∗|i ∈ [m]}
∪ {tj ∈ S∗|j ∈ [n]} ∪ {t̄j ∈ S∗|j ∈ [n]}

= S∗.

Therefore, p∗ is optimal for IMU . The constructions and transformations can be ac-
complish in polynomial time in the input size, and hence we can use IMA to solve IMU

in polynomial time in the input size.
�

84

5.3 Column Generation Approach for MinAf

An Integer Program for Solving MCBPS

In the following, we introduce the integer program IPP that can be used to solve the
Maximum Capacitated Block Pattern Score problem. In our implementation we
have used IPP to solve the pricing problem. Consider an instance of MCBPS given by
a matrix A ∈ Rm×n, `R, `C ∈ N0, and uR, uC ∈ N, αi, βj ∈ R and ᾱi, β̄j ∈ R≤0 for
i ∈ [m], j ∈ [n]. We look for a feasible block pattern p = (R.C) (with neighborhood
p̄ = (R̄, C̄)) for A under the load condition (`R, uR, `C , uC) such that∑

i∈R
αi +

∑
j∈C

βj +
∑
i∈R̄

ᾱi +
∑
j∈C̄

β̄j

is maximized.
We introduce a binary variable yRi for every row i ∈ [m] that attains value one if and

only if i ∈ R, and analogously, a binary variable yCj for every column j ∈ [n] that attains
value one if and only if j ∈ C. Moreover, we add a binary variables xRi for every row and
xCj for every column j ∈ [n] that attains value one if and only if i ∈ R̄ and j ∈ C̄j , unless
ᾱi 6= 0 and β̄j 6= 0, respectively. If ᾱi = 0 (or β̄j = 0) for some i ∈ [m](,j ∈ [n]), then it
does not matter whether i (or j, respectively,) is a neighbor row (or neighbor column).

Maximize
m∑
i=1

αiy
R
i +

n∑
j=1

βjy
C
j +

m∑
i=1

ᾱix
R
i +

n∑
j=1

β̄jx
C
j

subject to
m∑
i=1

yRi ≥ `R; (PR`)

n∑
j=1

yCj ≥ `C ; (PC`)

IPP

m∑
i=1

yRi ≤ uR; (PRu)

n∑
j=1

yCj ≤ uC ; (PCu)

yRi − yCj − xCj ≤ 0, for i ∈ [m], j ∈ [n] (PRN)

with aij 6= 0;

yCj − yRi − xRi ≤ 0, for i ∈ [m], j ∈ [n] (PRC)

with aij 6= 0;

yRi , y
C
j , x

R
i , x

C
j ∈ {0, 1}, for i ∈ [m], j ∈ [n]. (PB)

It easily can be seen that IPP solve the MCBPS problem. According to the constraints
(PR`), (PC`), (PRu) and (PCu), the obtained block pattern is feasible under the load
condition (`R, uR, `C , uC). The constraints (PRN) ensure that if row i ∈ [m] is assigned

85

5 Exact Decomposing Methods

to the block pattern p = (R,C), then for every column j ∈ [n] with aij 6= 0, j is assigned
to C or C̄. Analogously, the constraints (PCN) ensure that if column j ∈ [n] is assigned
the block pattern p = (R,C), then for every row i ∈ [m] with aij 6= 0, i is assigned to R
or R̄. Notice that in an optimal solution of IPP the constraints (PRN) guarantee that if
yRi = 1 for some i ∈ [m], then for every column j ∈ [n] with aij 6= 0 holds either xCj = 1

or yCj = 1, unless β̄ = 0. Analogously, the constraints (PRC) guarantee that if yCj = 1

for some j ∈ [n], then for every row i ∈ [m] with aij 6= 0 holds either xRi = 1 or yRi = 1,
unless ᾱ = 0. Hence, one can obtain an optimal solution for MCBPS from an optimal
solution of IPP and thus solve the MCBPS problem.
In the next chapter we will examine in Section 6.2.4 whether the LP-relaxation of

IPCG provides a better lower bound than the trivial one obtained by IPA.

86

6 Computational Experiments

In this chapter we are going to present the results of the computational experiments that
we obtained with the matrix decomposition tool Decomp that was implemented in the
course of this thesis. After giving some information about the testing machine and our
implementation, we illustrate the results of our experiments for the heuristic methods in
Section 6.1. Finally, we show our computational results for the exact methods.

Implementational issues

We have implemented the matrix decomposition tool Decomp that is capable of parsing
the coefficient matrix of a mixed integer program given in MPS or LP file format and
solving the problems MinBf and MinAf on this matrix. Decomp was implemented
over some months and contains roughly 18000 lines of code. The visualization of the
decomposed matrices uses gnuplot 4.4.

Machine

All tests were executed on a machine using one Intel(R) Pentium(R) 4 CPU with a
clock speed of 3.20GHz. The 32 bit CPU was supported by 1 GB of RAM. A Linux
2.6.34.10 kernel was running on the machine and all software was compiled using a GCC
4.3 compiler.

6.1 Results for Heuristic Methods

In this section we present our obtained computational results for the algorithms intro-
duced in Chapter 4. At first, we want to give a brief introduction to Metis and hMetis,
the graph partitioning software that we will use to solve the HES problem. Secondly,
we summarize all parameters. Afterwards, an overview about our test instances is given.
Our first goal is to determine the best parameter settings by testing on 3 different test
sets. The found settings will be applied to compare our results with the results obtained
by Ferris and Horn[17]. Moreover, we apply these settings to find decompostions on
matrices from a large mixed integer programming problem library, namely the MIPLIB
2010[30].

Metis

The solving of the HES problem was treated as ’black box’ in our theoretical exami-
nations in Chapter 4. In our implementation we used the methods that are provided

87

6 Computational Experiments

by Metis 4.0.1 [27, 26] and hMetis 1.5.3 [29, 25] to solve HES on graphs and hyper-
graphs, respectively. These are for Metis the methods METIS_PartGraphRecursive
and METIS_PartGraphKway, and for hMetis the methods HMETIS_PartRecursive and
HMETIS_PartKway. We used the default settings of METIS. For hMetis we also used
the default settings with two exceptions: For the method HMETIS_PartRecursive the
parameter UBfactor is set to 2 and for the method HMETIS_PartKway it is set to 5, for
both methods the parameter nRuns is set to 5. For a deeper discussion of the methods
METIS_PartGraphRecursive [27], METIS_PartGraphKway[26], HMETIS_PartKway
[29] and HMETIS_PartRecursive [25] we refer the reader to the indicated literature and
the manuals of Metis and hMetis. For the sake of simplicity, we will denote the meth-
ods METIS_PartGraphRecursive and HMETIS_PartRecursive by RECURSIVE. It will
be clear which one we use, since graphs are only used in the bipartite decomposing al-
gorithm. For the same reason, we denote the methods METIS_PartGraphKway and
HMETIS_PartKway by KWAY. We introduce the parameter metisMethod that is either
RECURSIVE or KWAY.

Dummy Nodes

The tests of Ferris and Horn[17] suggest that it may be profitable to add dummy nodes
to the graph. Dummy nodes are not adjacent to other nodes. Furthermore, they are
deleted after obtaining the partition. This may leave some parts of the partition empty.
However, we also test this approach by optionally adding 0.2N dummy nodes with N
the number of vertices of the graph. We introduce the parameter dummyRatio that is
either ’0%’ if no dummy nodes are added, or ’20%’ if 0.2N dummy nodes are added.

6.1.1 Parameters

We have introduced two general parameters so far: The parameter dummyRatio and
the parameter metisMethod. In addition to that, we can choose between two weight-
ing schemes. (As seen in Section 4.3.1 we do not have this choice for the hyperrow
decomposing algorithm). To be more precise,

• if we apply the hypercolum or the hypercolrow algorithm, we can choose either the
unary (un) or the prop size (ps) weighting scheme.

• If we apply the bipartite algorithm, we can choose either the unary (un) or the
aprop degree (ad) weighting scheme.

• If we use the hyperrow algorithm, there is no choice and we have to use the unary
(un) weighting scheme.

In this way, we will use the parameter weightingScheme that can attain one of the
values un, ps and ad.

88

6.1 Results for Heuristic Methods

6.1.2 Instances

In this subsection we want to give some information about our test instances. We in-
troduce our parameter test set that we have used to find promising settings of our pa-
rameters. In order to determine good parameter settings, we will test our algorithms on
the three following test sets from the Miplib 2003 [3]. The first set consists of rather
small instances whose number of nonzero entries is smaller than 10000. It is displayed
in Table 6.1c. Furthermore, we introduce the medium-size instances whose number of
nonzeros is between 10000 and 30000, and a set of big instances with 30000 or more
nonzero entries displayed in Table 6.1b and Table 6.1a, respectively.

instance #rows #edges #nonzeros
air04 823 8904 72965
air05 426 7195 52121
cap6000 2176 6000 48243
dano3mip 3202 13873 79655
disctom 399 10000 30000
msc98-ip 15850 21143 92918
net12 14021 14115 80384
seymour 4944 1372 33549
swath 884 6805 34965

(a) big-size instances from MIPLIB 2003

instance #rows #edges #nonzeros
a1c1s1 3312 3648 10178
arki001 1048 1388 20439
liu 2178 1156 10626
manna81 6480 3321 12960
mkc 3411 5325 17038
mod011 4480 10958 22254
protfold 2112 1835 23491
roll3000 2295 1166 29386
(b) medium-size instances from MIPLIB 2003

instance #rows #columns # nonzeros
aflow30a 479 842 2091
aflow40b 1442 2728 6783
danoint 664 521 3232
fiber 363 1298 2944
fixnet6 478 878 1756
gesa2 1392 1224 5064
gesa2-o 1248 1224 3672
glass4 396 322 1815
harp2 112 2993 5840
modglob 291 422 968
noswot 182 128 735
opt1217 64 769 1542
p2756 755 2756 8937
pk1 45 86 915
pp08a 136 240 480
pp08aCUTS 246 240 839
qiu 1192 840 3432
timtab1 171 397 829
timtab2 294 675 1482
tr12-30 750 1080 2508
vpm2 234 378 917

(c) small-size instances from MIPLIB 2003

Table 6.1: Instances from Miplib2003

In the following subsections we want to determine the best algorithm-setting combination
to solve the problems MinAf and MinBf. Instead of comparing the objective function
values, we will compare the values of the three quality measure. We have seen in Sec-
tion 2.4 that we can consider the value of µboN in order to compare the solutions by their
objective function value. We start with the MinAf problem. Every test run actually

89

6 Computational Experiments

consists of 5 runs of the current algorithm-setting combination. The decomposition with
the highest measure is chosen.

6.1.3 MinAf

In this subsection we present our results concerning the heuristic algorithms designed to
solve the MinAf problem. These are the hypercolrow decomposing algorithm and the
bipartite decomposing algorithm. We compare the algorithm-settings combinations with
each other measure-wise starting with the border number measure. In order to describe
our testing policy, we show the complete results for the medium-size instances for the
border number measure in Table 8.2. The complete results for the small-size instances
and the big-size instances can be found in Table 8.1 and Table 8.3, respectively. The table
is organized as follows: Every column (except the first 2) stands for an algorithm-settings
combination and every row (except the first 5) stands for a combination of matrix and
number of blocks. We have tested three different block numbers, namely 4, 16 and b(A)
with b(A) = min(m,n)0.3 for a matrix A ∈ Rm×n. The table shows the best value of five
test runs. If no feasible solution could be found, the respective entry is empty and the
value is treated as 0.

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.90 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
10teams 16

5 0.91 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95
4 0.96 0.95 0.96 0.95 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

a1c1s1 16 0.88 0.93 0.89 0.93 0.89 0.93 0.89 0.92 0.96 0.92 0.96 0.92 0.96 0.89 0.95 0.90
11 0.90 0.93 0.90 0.93 0.90 0.94 0.90 0.93 0.96 0.92 0.96 0.92 0.96 0.91 0.96 0.92
4 0.96 0.97 0.97 0.97 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

arki001 16 0.94 0.94 0.94 0.94 0.89 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96
8 0.93 0.94 0.93 0.93 0.92 0.94 0.98 0.98 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

liu 16 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
8 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.95 0.99 0.91 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

manna81 16 0.87 0.99 0.86 0.98 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
11 0.91 0.99 0.88 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.97 0.99 0.97 0.99 0.95 0.99 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mkc 16 0.97 0.95 0.99 0.95 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
11 0.96 0.99 0.97 0.99 0.96 0.99 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.99 0.99 0.98 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mod011 16 0.96 0.97 0.95 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
12 0.97 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99
4 0.72 0.75 0.76 0.75 0.73 0.72 0.72 0.73 0.83 0.76 0.83 0.77 0.84 0.76 0.83 0.75

protfold 16 0.59 0.66 0.61 0.65 0.58 0.62 0.57 0.63 0.74 0.68 0.74 0.73 0.75 0.58 0.76 0.59
9 0.64 0.67 0.64 0.69 0.60 0.66 0.61 0.65 0.79 0.73 0.78 0.76 0.79 0.63 0.80 0.63
4 0.93 0.94 0.93 0.94 0.92 0.93 0.91 0.94 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88

roll3000 16 0.88 0.87 0.87 0.86 0.86 0.86 0.88 0.88 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86
8 0.93 0.93 0.91 0.93 0.91 0.92 0.90 0.93 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

arithm.mean 0.87 0.82 0.77 0.79 0.81 0.82 0.81 0.86 0.91 0.90 0.91 0.90 0.91 0.89 0.91 0.89
quadr.mean 0.89 0.88 0.84 0.86 0.86 0.88 0.87 0.90 0.93 0.92 0.93 0.92 0.93 0.91 0.93 0.91

Table 6.2: Results for medium inst. to arrowhead conc. µboN

The aggregated results of our tests concerning the border number measure µboN are
stated in Table 6.3. We have decided to consider the quadratic mean values because the

90

6.1 Results for Heuristic Methods

failed runs would have too much impact if we considered the arithmetic mean values.
For the sake of simplicity, we aggregate the aggregated values by using the arithmetic
mean of the quadratic mean values.

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
MetisMethod PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un ad un ad un ad un ad un ps un ps un ps un ps
Testset
small quadr.mean 0.86 0.90 0.85 0.89 0.87 0.89 0.84 0.90 0.93 0.93 0.94 0.94 0.94 0.93 0.94 0.94
medium quadr.mean 0.89 0.88 0.84 0.86 0.86 0.88 0.87 0.90 0.93 0.92 0.93 0.92 0.93 0.91 0.93 0.91
big quadr.mean 0.81 0.83 0.75 0.87 0.81 0.88 0.80 0.84 0.92 0.94 0.94 0.94 0.91 0.94 0.89 0.92
total arithm.mean 0.85 0.87 0.81 0.87 0.85 0.88 0.83 0.88 0.94 0.93 0.94 0.93 0.93 0.93 0.92 0.92

Table 6.3: aggregated results for µboN

One can see that in general, the hypercolrow decomposing algorithm yields better decom-
positions in terms of the border number measure than the bipartite decomposing algo-
rithm. In particular, the settings with metisMethod = PKW and weightingScheme = un
yield decompositions with best aggregated values.
Now, we want to study the aggregated results for the border area measure µboA indi-

cated in Table 6.4. The complete results can be found in the Tables 8.4, 8.5 and 8.6 in
the appendix. We aggregate the aggregated values again for the sake of simplicity.

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
MetisMethod PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un ad un ad un ad un ad un ps un ps un ps un ps
Testset
small quadr.mean 0.77 0.82 0.77 0.81 0.79 0.83 0.77 0.83 0.87 0.86 0.87 0.86 0.87 0.86 0.87 0.86
medium quadr.mean 0.78 0.80 0.76 0.80 0.79 0.82 0.80 0.83 0.84 0.83 0.84 0.83 0.85 0.83 0.85 0.83
big quadr.mean 0.63 0.65 0.56 0.65 0.67 0.68 0.67 0.68 0.71 0.72 0.71 0.72 0.72 0.72 0.71 0.72
total arithm.mean 0.73 0.76 0.70 0.75 0.75 0.78 0.75 0.78 0.81 0.80 0.81 0.80 0.81 0.80 0.81 0.80

Table 6.4: aggregated results for µboA

The aggregated values show again that the hypercolrow decomposing algorithm obtains
better decompositions in terms of the border area measure than the bipartite decom-
posing algorithm in general. Especially, the settings with weightingScheme = un yield
decompositions with best aggregated values.
Finally, we examine the aggregated results for the block balance measure µblB presented

in Table 6.5. Again, the complete results can be found in the appendix in the Tables 8.7,
8.8 and 8.9.

The results show again that the hypercolrow decomposing algorithm finds better decom-
positions in terms of the block balance measure than the bipartite decomposing algo-
rithm. In particular, the settings with metisMethod = PKW , weightingScheme = un,
and dummyRatio = 20% and the settings with weightingScheme = ad finds decomposi-
tions with best aggregated values in terms of the block balance measure.

91

6 Computational Experiments

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
MetisMethod PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un ad un ad un ad un ad un ad un ad un ad un ad
Testset
small quadr.mean 0.79 0.80 0.76 0.78 0.82 0.85 0.73 0.77 0.90 0.89 0.89 0.89 0.89 0.89 0.87 0.87
medium quadr.mean 0.75 0.77 0.71 0.72 0.75 0.78 0.67 0.69 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.84
big quadr.mean 0.43 0.49 0.42 0.50 0.54 0.66 0.47 0.55 0.76 0.78 0.78 0.79 0.74 0.78 0.73 0.76
total arithm.mean 0.65 0.69 0.63 0.67 0.71 0.76 0.63 0.67 0.83 0.84 0.84 0.84 0.82 0.84 0.82 0.84

Table 6.5: aggregated results for µblB

Conclusion

We have seen that the hypercolrow decomposing algorithm obtains better decompositions
in terms of all three block measures. We believe that one reason for that is that the HVS
problem is solved indirectly and that a more elaborate approach to solve HVS would
yield better decompositions. However, there is one algorithm-setting combination that
yield decomposition with best aggregated values for all measures. This is the hypercolrow
algorithm with metisMethod = PKW , weightingScheme = un and dummyRatio = 20%.
Therefore, throughout the remaining tests, we will use this setting whenever we solve
MinAf.

6.1.4 MinBf

In this subsection we state and compare the results for the heuristic algorithms designed
to solve the MinBf problem, these are the hyperrow decomposing algorithm and the
hypercol decomposing algorithm. The structure is the same as in the last subsection: We
compare the algorithm-setting combinations for each measure starting with the border
number measure. The tables are organized in the same way as above: Every column
(except the first 2) stands for an algorithm-settings combination and every row (except
the first 5) stands for a combination of matrix and number of blocks.
The aggregated results of our tests with respect to the border number measure µboN

are stated in Table 6.6. The complete test results can be found in the Tables 8.10, 8.11
and 8.10 in the appendix.

Algorithm HYPERROW DEC. HYPERCOL DECOMPOSING
Metis method PKW REC. PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un un un un un ps un ps un ps un ps
Testset
small quadr.mean 0.89 0.90 0.88 0.89 0.85 0.86 0.84 0.84 0.87 0.85 0.82 0.83
medium quadr.mean 0.86 0.85 0.86 0.85 0.73 0.75 0.74 0.75 0.74 0.74 0.74 0.73
big quadr.mean 0.86 0.87 0.87 0.85 0.66 0.63 0.67 0.68 0.66 0.70 0.66 0.66
total arithm.mean 0.87 0.87 0.87 0.87 0.75 0.75 0.75 0.75 0.76 0.76 0.74 0.74

Table 6.6: Aggregated results for solving MinBf in terms of µboN

One can see that in general, the hyperrow decomposing algorithm yields better decom-
positions in terms of the border number measure than the hypercolumn decomposing

92

6.1 Results for Heuristic Methods

algorithm. In particular, all settings for the hyperrow decomposing algorithm yield de-
compositions with best aggregated values.
Now we want to study the aggregated results for the border area measure µboA stated in

Table 6.7. For the sake of simplicity, we aggregate the aggregated values. The complete
results can be found in the Tables 8.13, 8.14 and 8.15 in the appendix.

Algorithm HYPERROW DEC. HYPERCOL DECOMPOSING
Metis method PKW REC. PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un un un un un ps un ps un ps un ps
Testset
small quadr.mean 0.80 0.81 0.80 0.81 0.74 0.74 0.73 0.73 0.74 0.73 0.72 0.72
medium quadr.mean 0.77 0.77 0.78 0.78 0.67 0.68 0.68 0.68 0.66 0.66 0.67 0.65
big quadr.mean 0.58 0.60 0.61 0.64 0.46 0.46 0.49 0.49 0.47 0.48 0.48 0.49
total arithm.mean 0.72 0.73 0.73 0.74 0.63 0.63 0.63 0.63 0.63 0.63 0.62 0.62

Table 6.7: aggregated results for µboA

The aggregated values show that the hyperrow decomposing algorithm yields better de-
compositions in terms of the border area measure than the hypercolumn decomposing
algorithm. Especially, the settings with dummyRatio = 20% for the hyperrow decompos-
ing algorithm yield decompositions with best aggregated values.
Finally, we examine the aggregated results for the block balance measure µblB indicated

in Table 6.8. Again, the complete results can be found in the appendix in the Tables 8.16,
8.16 and 8.16.

Algorithm HYPERROW DEC. HYPERCOL DECOMPOSING
Metis method PKW REC. PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un un un un un ps un ps un ps un ps
Testset
small quadr.mean 0.84 0.81 0.84 0.80 0.76 0.76 0.69 0.67 0.73 0.72 0.65 0.61
medium quadr.mean 0.82 0.77 0.82 0.78 0.63 0.62 0.60 0.61 0.60 0.59 0.57 0.56
big quadr.mean 0.69 0.65 0.61 0.58 0.41 0.40 0.37 0.39 0.37 0.38 0.30 0.32
total arithm.mean 0.78 0.74 0.76 0.72 0.60 0.60 0.55 0.56 0.57 0.56 0.51 0.49

Table 6.8: aggregated results for µblB

One can see again that the hyperrow decomposing algorithm yields better decompositions
in terms of the block balance measure than the hypercolumn decomposing algorithm.
In particular, the setting with dummyRatio = 0% and metisMethod = PKW for the
hyperrow decomposing algorithm yield decompositions with best aggregated values.

Conclusion

We have seen that the hyperrow decomposing algorithm obtains better decompositions
in terms of all three block measures. We guess, like for MinAf, that one reason

93

6 Computational Experiments

for this is that the HVS problem is solved indirectly and that a more elaborate ap-
proach to solve HVS would yield better decompositions. However, there are several
algorithm-setting combinations that yield decompositions with almost best aggregated
values for all measures, for instance, the hyperrow algorithm with metisMethod = PKW ,
weightingScheme = un and dummyRatio = 20%. Hence, throughout the remaining tests,
we will use this setting whenever we solve MinBf.

6.1.5 Comparison to Ferris and Horn’s Results

Ferris and Horn [17] developed an approach to solve MinAf. They suggest the quality
measure µ∗ := 0.1µblB + 0.9µboA. In the following we call this measure the star measure.
One disadvandage of their stated results is that they allow blocks to be empty and do note
indicate how many blocks the decompositions found by their approach really have. They
only present the number of requested blocks and, in particular, found a decomposition
for the instance ’afiro’ that has 27 rows while actually requesting 64 blocks. From a
theoretical point of view one could define the whole matrix to be one single block leaving
all other blocks empty. This decomposition would have measure value of one for all three
measures. However, in order to compare our best algorithm-setting combination with
their algorithm, we follow them and make this concession. The complete comparison,
including 89 instances, can be found in Table 8.19 and Table 8.20 in the appendix.
Here we will show an excerpt from these tests in Table 6.9 and, of course, indicate the
aggregated values in Table 6.10.
The structure of the table is the following: The first four columns include information

about the instance. The remaining columns contain information about the found decom-
positions. There are 8 main columns, one for each k ∈ {2, 4, 8, 16, 32, 64, 128, 256} with
k is the number of requested blocks. Each of the 8 main columns contain 3 subcolumns.
The first one indicates by its color which algorithm found a better decomposition. If
Ferris and Horn found the better one, the color is red. If Decomp found the better
one, it is green. If no decomposition could be found by both algorithms, the first sub-
column is empty. The next two subcolumns show the star measure value of the found
decomposition.

number of blocks requested 2 4 8 16 32 64 128 256
instance #rows #cols #nonz F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec.
25fv47 821 1571 10400 0.97 0.91 0.88 0.855 0.65 0.762 0.73 0.611 0.69 0.524 0.58 0.473 0.45 0.369 0.27 0.285
80bau3b 2262 9799 21002 0.78 0.937 0.62 0.91 0.6 0.88 0.59 0.851 0.56 0.816 0.52 0.77 0.43 0.719 0.41 0.642
adlittle 56 97 383 0.95 0.83 0.59 0.74 0.5 0.633 0.47 0.573 0.35 0.421 0.18 0.273 0.1 0.11 0.03 0.033
afiro 27 32 83 1 0.824 0.77 0.754 0.56 0.616 0.51 0.43 0.33 0.362 0.16 0.166 0 0 0 0
agg 488 163 2410 0.8 0.886 0.74 0.734 0.65 0.474 0.44 0.321 0.27 0.255 0.19 0.202 0.19 0.197 0.18 0.178
agg2 516 302 4284 1 0.852 0.89 0.69 0.71 0.54 0.76 0.48 0.59 0.38 0.53 0.302 0.48 0.25 0.45 0.18
agg3 516 302 4300 1 0.865 1 0.694 0.83 0.534 0.78 0.471 0.66 0.38 0.57 0.318 0.53 0.233 0.5 0.179
bandm 305 472 2494 0.91 0.938 0.77 0.831 0.71 0.782 0.66 0.712 0.58 0.566 0.43 0.516 0.34 0.443 0.34 0.379
beaconfd 173 262 3375 0.73 0.796 0.49 0.742 0.48 0.717 0.46 0.689 0.44 0.636 0.44 0.471 0.38 0.341 0.28 0.278
blend 74 83 491 0.75 0.831 0.75 0.706 0.62 0.622 0.46 0.411 0.29 0.343 0.18 0.251 0 0.13 0 0.075
bnl1 643 1175 5121 0.84 0.906 0.75 0.847 0.69 0.802 0.62 0.746 0.58 0.668 0.52 0.63 0.48 0.527 0.37 0.453
bnl2 2324 3489 13999 0.87 0.928 0.83 0.866 0.78 0.83 0.71 0.787 0.66 0.75 0.6 0.713 0.58 0.673 0.52 0.614
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 6.9: Excerpt from comparison with results of Ferris and Horn

94

6.1 Results for Heuristic Methods

number of blocks requested 2 4 8 16 32 64 128 256
F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec.

quadratic mean 0.87 0.89 0.76 0.82 0.67 0.75 0.59 0.67 0.52 0.61 0.45 0.55 0.39 0.49 0.33 0.42

Table 6.10: Comparison to the results of Ferris and Horn (aggregated)

By taking the arithmetic mean of these values we obtain a value of 0.5725 for the de-
compositions found by the algorithm of Ferris and Horn, and a value of 0.65 for Decomp.
Hence, in terms of the star measure for aggregated values, Decomp is better by 13.5%.
Overall, Ferris and Horn’ algorithm found a better decomposition for 221 instances and
Decomp found a better decomposition for 485 instances.

Conclusion

We have seen that the hypercolrow algorithm performs better than the algorithm of
Ferris and Horn, at least under the conditions used by Ferris and Horn. Unfortunately,
on the one hand, these conditions make the results rather less significant, and on the
other hand, they used older graph partitioning software, namely Metis 2.0.
In the following, we give results that are easier to compare since empty blocks are

forbidden.

6.1.6 Performance with Forbidden Empty Blocks

In this subsection, we want to study if our algorithms find decompositions to arrow-
head and bordered block diagonal form for coefficient matrices of state of the art mixed
integer programs with forbidden empty blocks. In order to do so, we have tested our
best algorithm-setting combinations for each instance of the 201 instances from Mi-
plib2010 [30] that has less than 100000 nonzero entries. Again, we have tested for 8 dif-
ferent block numbers k with k ∈ {2, 4, 8, 16, 32, 64, 128, 256} but this time empty blocks
are forbidden.
The complete results for the hypercolrow decomposing algorithm that should solve the

MinAf problem can be found in the Tables 8.21, 8.22 and 8.23 in the appendix. These
tables are structured in a similar way as in the last subsection. The first four columns
include information about the matrix, and the remaining 8 columns contain the star
measure value of the obtained decomposition or are empty if no decomposition could be
found. Moreover, the complete results for the hyperrow algorithm that approaches the
MinBf problem are indicated in the Tables 8.24, 8.25 and 8.26 in the appendix.
The aggregated values of the test runs for MinAf and MinBf on all 201 instances are

shown in Table 6.11.
As expected, the aggregated values suggest that the quality of the decompositions to

bordered block diagonal form is worse than those that are in arrowhead form. Further-
more, one can see that the more blocks are requested the quality of the decompositions
decreases. It seems that the quality for decompositions to bordered block diagonal form
decreases faster than for arrowhead form.

95

6 Computational Experiments

number of blocks 2 4 8 16 32 64 128 256
quadr. mean of µ∗ for MinAf 0.86 0.82 0.78 0.75 0.70 0.65 0.59 0.51
quadr. mean of µ∗ for MinBf 0.85 0.79 0.73 0.68 0.63 0.52 0.45 0.36

Table 6.11: Results for miplib2010 (aggregated)

Finally, we present some decomposed matrices from the Miplib2010 in arrowhead and
in bordered block diagonal form.

(a) original (b) 4-arrowhead form (c) bordered 4-block diagonal
form

Figure 6.1: Coefficient matrix of satellites1-25

(a) original (b) 32-arrowhead form (c) bordered 32-block diagonal form

Figure 6.2: Coefficient matrix of bienst2

96

6.1 Results for Heuristic Methods

(a) original (b) 16-arrowhead form (c) bordered 16-block diagonal
form

Figure 6.3: Coefficient matrix of ic97_potential

(a) original (b) 8-arrowhead form (c) bordered 8-block diagonal
form

Figure 6.4: Coefficient matrix of dg012142

(a) original (b) 8-arrowhead form (c) bordered 8-block diagonal
form

Figure 6.5: Coefficient matrix of atm20-100

97

6 Computational Experiments

(a) original (b) 16-arrowhead form (c) 16-bordered block diagonal
form

Figure 6.6: Coefficient matrix of toll-like

(a) original (b) 8-arrowhead form (c) bordered 8-block diagonal
form

Figure 6.7: Coefficient matrix of nag

(a) original (b) 8-arrowhead form (c) bordered 8-block diagonal
form

Figure 6.8: Coefficient matrix of b2c1s1

6.2 Results for Exact Methods

In the following section we give the computational results of our implemented exact ap-
proach. This is the integer program IPA introduced in Section 5.2. We have implemented
this integer program in SCIP.

98

6.2 Results for Exact Methods

6.2.1 Scip

SCIP [2] is a framework developed for solving constraint integer programs. Constraint
integer programming is a generalization of mixed integer programming (see Subsec-
tion 2.2.4). It provides the fundamental parts to implement branch-and-bound based
search algorithms. Moreover, the user can replace these parts with own implementa-
tions (plugins). We use SCIP with an extern linear programming solver, namely CPLEX
12.1.0 [1].

6.2.2 Instances

We test our approach on a set of very small instances indicated in Table 6.12.

instance #rows #edges #nonZeros origin
bell3a 123 133 347 MipLib 3.0
bell5 91 104 266 MipLib 3.0
bm23 20 27 478 MipLib 2.0
egout 98 141 282 MipLib 3.0
enigma 21 100 289 MipLib 3.0
fixnet3 478 878 1756 MipLib 2.0
flugpl 18 18 46 MipLib 3.0
gt2 29 188 376 MipLib 3.0
khb05250 101 1350 2700 MipLib 3.0
lseu 28 89 309 MipLib 3.0
markshare1 6 62 312 MipLib2003
markshare2 7 74 434 MipLib2003
misc01 54 83 745 MipLib 2.0
mod008 6 319 1243 MipLib 3.0
neos858960 132 160 2770 MipLib2010
noswot 182 128 735 MipLib2010
p0033 16 33 98 MipLib 3.0
p0040 23 40 110 MipLib 2.0
pipex 25 48 192 MipLib 2.0
pk1 45 86 915 MipLib2003
pp08a 136 240 480 MipLib2003
rgn 24 180 460 MipLib 3.0
sample2 45 67 146 MipLib 2.0
stein9 13 9 45 MipLib 2.0
stein15 36 15 120 MipLib 2.0
stein27 118 27 378 MipLib 3.0
stein45 331 45 1034 MipLib 3.0
timtab1 171 397 829 MipLib2010
vpm1 234 378 749 MipLib 3.0

Table 6.12: Test instances for exact approaches

6.2.3 Results for the Assignment Approach

In order to test the approach for different load conditions, we introduce the parameter
lc ∈ {LO,ME, TI}. This paramter should achieve that the load condition can be rather
loose, medium or tight, respectively. Its influence on the load condition of the instance

99

6 Computational Experiments

is illustrated in Table 6.13. The values avr and avc are the average number of rows per
block and the average number of columns per block, respectively.

lc `R `C uR uC

LO 1 1 m n
ME 0.5avr 0.5avc 1.5avr 1.5avc
TI 0.9avr 0.9avc 1.1avr 1.1avc

Table 6.13: Table for parameter lc

We tested the three integer programs IPA, IPAR and IPAC introduced in Section 5.2
for the block numbers 2 and 4. The complete test results for 2 and 4 blocks can be
found in Table 8.27 and Table 8.28, respectively, in the appendix. In order to describe
the structure of the tables, we give a short excerpt in Table 6.14. All test runs have a
timelimit of 1800 seconds.

IPA IPAR IPAC
Instance lc gap nNodes time gap nNodes time gap nNodes time
"bell3a" LO 0% 2 2.52 0% 1 0.44 0% 1 0.49

ME 0% 19 8.18 0% 15 8.96 0% 9 4.27
TI 0% 73 18.88 0% 46 21.76 0% 58 19.85

"bell5" LO 0% 2 1.83 0% 1 0.42 0% 1 1.59
ME 0% 3 2.41 0% 12 4.55 0% 21 5.49
TI 0% 6 2.72 0% 21 6.71 0% 23 7.27

"bm23" LO 0% 462 15.64 0% 345 17.19 0% 109 15.18
ME infeas. 1 0.06 infeas. 1 0.08 infeas. 1 0.07
TI infeas. 1 0.07 infeas. 1 0.04 infeas. 1 0.06

"egout" LO 0% 13 4.66 0% 7 2.7 0% 12 5.57
ME 0% 14 4.8 0% 9 4.45 0% 11 5.32
TI 0% 10 3.93 0% 13 5.13 0% 12 8.24

"enigma" LO 0% 2913 20.86 0% 54 8.26 0% 804 13.14
ME 0% 37 6.05 0% 27 3.96 0% 26 5.65
TI 0% 17 5.89 0% 21 6.73 0% 25 9.89

"fixnet3" LO 0% 1 42.41 0% 1 27.67 0% 1 48.87
ME 0% 1939 649.17 0% 1638 885.26 0% 5816 1733.59
TI 0% 2564 1151.11 0% 1119 498.19 0% 2278 734.75

...
...

...
...

...
...

...
...

...
...

...

Table 6.14: Results for exact solving (2Blocks)

Every row stands for test run including a matrix and a load condition. There are
three main columns containing the information about the results for one integer pro-
gram. Each main column contains three subcolumns including information about the
optimality gap in percent, the number of nodes and the needed time. The gap column

100

6.2 Results for Exact Methods

may contain “infeas.” then SCIP found out that the instance is infeasible. In order to
compare the performance of the three integer programms we aggregate the values over all
instance-load condition combinations by calculating the geometric and arithmetic mean.
The aggregated numbers for 2 and 4 blocks are indicated in Table 6.15 and Table 6.16,
respectively. Additionally, we indicate the best gain that could achieve for the geometric
mean.

IPA IPAR IPAC best gain
nNodes time nNodes time nNodes time nNodes time

geom. mean 47.10 6.64 35.49 5.77 32.35 5.79 31.3% 13.1%
arithm. mean 9490.15 211.81 4884.01 172.33 6239.78 182.82

Table 6.15: Aggregated results for exact approach (2 blocks)

IPA IPAR IPAC best gain
nNodes time nNodes time nNodes time nNodes time

geom. mean 303.91 151.18 250.14 134.49 210.63 141.39 30.5% 18.6%
arithm. mean 4755.66 770.12 3038.63 723.33 2737.51 749.10

Table 6.16: Aggregated results for exact approach (4 blocks)

One can see that for both block numbers the integer programs IPAR and IPAC achieve
better aggregated values in terms of the number of needed nodes and in terms of needed
time. Hence, both kind of constraints yield a significant improvement of the performance.
Unfortunately, for bigger instances, with more than 3000 nonzero entries, this approach
is still impracticable.

6.2.4 Results for ICG

Finally, we want to indicate the results for ICG the column generation model introduced
in Section 5.3. We are only interested whether this model yields a stronger LP-relaxation.
Unfortunately, our approach could solve the LP in the root node only for 4 instance-load
condition combinations within a timelimt of 1800 seconds for two blocks. The results are
indicated in Table 6.17.

instance lc lb ub known optimum
stein9 LO 4.32 18 6

ME 8.40 12 9
stein15 LO 5.84 47 9
stein27 LO 8.85 141 15

Table 6.17: Results for IPCG

101

6 Computational Experiments

We observe that the bounds are much better than the trivial one obtained with the
model IPA. Unfortunately, the number of instances we could solve is not meaningful.
It is necessary to speed up the pricing process, e.g. by solving it heuristically whenever
possible and thus add more variables in every pricing round.

102

7 Final Remarks

In this thesis, we presented the theoretical background, complexity analysis, heuristic and
exact approaches, and computational results concerning the problem of decomposing a
matrix into arrowhead and bordered block diagonal form.
To be more precise, we motivated the problems MinAf and MinBf in Chapter 2

with the help of numerous applications. Furthermore, we discussed how the quality of
decomposition can be measured.
In Chapter 3, we studied the complexity of these problems. We have found out that

it is NP-hard to obtain solutions with objective function value within an additive factor
of the optimal objective value, even for only two blocks and matrices with at most three
nonzero entries in every row and at most two nonzero entries in every column.
We have introduced two heuristic approaches for each problem and described them in

detail in Chapter 4. We proved that the solutions found by these heuristics fulfill the
block condition. Moreover, some relevant examples of failed runs were indicated.
In Chapter 5, we introduced two integer programs that solves MinAf and easily can

be adapted to MinBf. We presented a column generation approach to solve the last one
of the integer programs. In order to solve the pricing problem, we stated another integer
program and we proved that a special case of the pricing problem can be solved by a
polynomial time algorithm. One question still unanswered is whether this is true for the
general pricing problem.
The algorithms introduced in Chapter 4 and Chapter 5 were implemented and tested

in Chapter 6. For each problem, we found a good algorithm-parameter combination. We
compared the quality of the found decompositions with the results of Ferris and Horn.
Furthermore, we tested our algorithms on a huge instance set consisting of coefficient
matrices of state of the art mixed integer programs and found decompositions on most
of them. Moreover, we have visualized some of these coefficient matrices in original and
decomposed state. Finally, we indicated our results for the exact algorithms. We add
constraints to reduce the impact of symmetry and showed the positive influence of these
constraints on the performance. Last but not least, we demonstrated that the column
generation promises better LP bounds, although its applicability is very limited at the
moment.

Outlook

Finally, we want to emphasize two interesting directions of research arising directly from
this thesis:
On the one hand, it is still open how a good decomposition for the coefficient matrix

of a mixed integer program should look like, to improve the solving process of the mixed

103

7 Final Remarks

integer program. This question is at present far from being solved, at least for the author.
On the other hand, it seems to be interesting how to implement the column generation

approach in a more elaborate way. For instance, one could solve the pricing problem
heuristically whenever possible and thus add more pricing variables per pricing round.
Furthermore, one could combine the polynomial algorithm for the uncapacitated special
case of the pricing problem with a local-search heuristic. Moreover, it would be interesting
to study the complexity of the general pricing problem in detail.

104

8 Appendix

8.1 Zusammenfassung (German Summary)

In der mathematischen Optimierung sind Matrizen ein unverzichtbares Hilfsmittel zum
Modellieren von Problemen. Ein besonders wichtiges Beispiel sind gemischt ganzzahlige
Programme, deren Koeffizientenmatrix die Struktur des zu lösenden Problems verschlüs-
selt. Die Nichtnulleinträge einer Matrix können so angeordnet sein, dass ein Teil dieser
Problemstruktur sichtbar ist. In dieser Diplomarbeit werden wir zwei solcher Anordnun-
gen genauer betrachten: Die k-arrowhead form(arh) und die bordered k-block diagonal
form(bbd). Grob gesagt, zeichnen sich beide dadurch aus, dass die Nichtnulleinträge
entlang der Diagonalen, in k nichtleeren Teilmatrizen von A, k Blöcke bilden und alle
anderen Einträge Null sind. Ausnahme sind bei der bbd nur die letzten Zeilen und bei
der arh die letzten Zeilen und Spalten der Matrix. Dieser Ausnahmebereich der Matrix
wird Border genannt.
Die vorliegende Arbeit beschäftigt sich mit dem Problem des Findens von Permuta-

tionen der Zeilen und Spalten einer Matrix A, die A für vorgegebenes k in bbd oder arh
überführen, wobei die Border möglichst wenig Zeilen (bbd) bzw. Zeilen und Spalten (arh)
enthält. Dabei werden sechs Ziele verfolgt:

• Vorstellung von Problemen, bei deren Lösungsvorgang ausgenutzt werden kann,
dass die Koeffizientmatrix in arh oder bbd ist.

• Charakterisierung der Permutationen der Zeilen und Spalten einer Matrix A, die
zu arh oder bbd führen.

• Komplexitätsanalyse der zugehörigen Optimierungsprobleme des Findens solcher
Permutationen.

• Detailierte Beschreibung jeweils zweier heuristischer Verfahren für beide Opti-
mierunsprobleme.

• Vorstellung zweier exakter Verfahren für arh mithilfe von ganzzahligen Program-
men (die leicht auf bbd angepasst werden können).

• Analyse der Rechenergebnisse für die Implementation der vorgestellten Verfahren,
die im Rahmen dieser Diplomarbeit entstanden ist.

Wir hoffen, dass der Leser von diesen Resultaten profitieren kann.

IX

8.2 Background

8.2 Background

This lemma states rigorously that given a k1-decomposition D that fullfills the block con-
dition, but not the load condition (1,m, 1, n), it is possible to obtain a k2-decomposition
that fulfills the block condition and the load condition (1, v, 1, w) with

k2 := k1 − |{i ∈ [k1] : |Ri| = 0 ∨ |Ci| = 0}|.

Lemma 8.2.1
Let A ∈ Rm×n be a matrix. Furthermore, let v ∈ [m], w ∈ [n] and k1 ∈ N. Let
D = ((R1, . . . ,Rk1 ,RB); (C1, . . . , Ck1 , CB)) be a k1-decomposition of A that fulfills the
block condition and the load condition (0, v, 0, w). Moreover, define k2 := k1 − q with
q = |{i ∈ [k1] : |Ri| = 0 ∨ |Ci| = 0}|. Then there is a k2-decomposition that fulfills the
block condition and the load condition (1, v, 1, w).

Proof: Suppose A, v, w, k1,D, q and k2 are as defined above. Consider the set of blocks
B∗ := {i ∈ [k1] : |Ri| = 0 ∨ |Ci| = 0} and B := [k1] r B∗ which has k2 elements. We
denote by R∗ :=

⋃
`∈B∗ R` and C∗ :=

⋃
`∈B∗ C` the rows and the columns, respectively,

that are in “half-empty” blocks. These rows and columns could be part of any R` and
C`, respectively, for ` ∈ B, without violating the block condition. In order to see that,
consider a row i ∈ R`∗ with `∗ ∈ B∗ such that R`∗ 6= ∅. Obviously, `∗ has no nonzero
entry with any column j ∈ C`, for ` ∈ [k1] r {`∗} since the block condition is fulfilled.
Analogously, every column j ∈ C`′ with `′ ∈ B∗ such that C`′ 6= ∅ have no nonzero entry
with any row i ∈ R` for ` ∈ [k1] r {`′} since D fulfills the block condition.
Therefore, we can add each of the rows in R∗ to one of the sets R`, for ` ∈ B without

violating the block condition. We add consecutively each row in R∗ to one of the sets
R`, for ` ∈ B such that the upper row load condition is not violated. If the next addition
of a row would violate this condition, we add the remaining rows to the set RB. Now
we add consecutively each column in C∗ to one of the sets C`, for ` ∈ B, until the upper
column load condition would be violated. The remaining columns are added to the set
CB.
Since the set B has k2 elements, we can denote its elements by B = {`1, . . . , `k2} and

define R′ := (R`1 , . . . ,R`k2 ,RB) which has become a weak partition of the rows (by
adding the rows of R∗) and C′ := (C`1 , . . . , C`k2 , CB) which has become a weak partition of
the columns (by adding the columns of C∗). Hence, P ′ = (R′, C′) is a k2-decomposition
that fulfills the block condition, the old upper row load condition and the old upper
column load condition. Moreover, all sets that form the row partition and the column
partition are nonempty. Therefore, it also fulfills the load condition (1, v, 1, w).

�

8.3 Computational Tests

In this part of the appendix we present the results of our computational tests in detail.
In the following we show our results for all settings and all sizes of test instances to find

the best decomposition to k-arrowhead form concerning the current measure. Afterwards

XI

8 Appendix

we present the remaining results in detail. Explanations can be found in the main part
of this thesis.

XII

8.3 Computational Tests

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
aflow30a 16 0.95 0.96 0.96 0.96 0.95 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.97

6 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.96 0.98 0.98 0.98 0.98
4 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

aflow40b 16 0.98 0.98 0.97 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.98 0.99 0.99 0.98 0.99
8 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.77 0.83 0.78 0.84 0.85 0.82 0.86 0.85 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91

danoint 16 0.64 0.80 0.66 0.80 0.77 0.80 0.79 0.80 0.85 0.85 0.85 0.85 0.86 0.85 0.86 0.85
6 0.74 0.83 0.77 0.84 0.81 0.83 0.82 0.85 0.89 0.89 0.88 0.89 0.89 0.89 0.88 0.89
4 0.92 0.96 0.95 0.97 0.93 0.97 0.92 0.97 0.97 0.96 0.97 0.96 0.96 0.96 0.97 0.96

fiber 16 0.88 0.95 0.89 0.95 0.89 0.96 0.96 0.96 0.91 0.96 0.91 0.96 0.90 0.96 0.90
5 0.94 0.96 0.93 0.96 0.93 0.97 0.93 0.97 0.97 0.95 0.97 0.95 0.96 0.95 0.97 0.95
4 0.94 0.99 0.95 0.99 0.97 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

fixnet6 16 0.95 0.98 0.95 0.98 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
6 0.94 0.98 0.94 0.99 0.96 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

gesa2 16 0.91 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.94 0.92 0.94 0.93 0.94 0.91 0.94 0.91
8 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98

gesa2-o 16 0.93 0.95 0.93 0.95 0.92 0.95 0.93 0.95 0.97 0.94 0.97 0.94 0.97 0.93 0.97 0.95
8 0.95 0.96 0.95 0.96 0.96 0.96 0.96 0.97 0.98 0.96 0.98 0.96 0.98 0.96 0.98 0.96
4 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

glass4 16 0.88 0.96 0.90 0.95 0.91 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97
5 0.97 0.96 0.96 0.97 0.95 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
4 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

harp2 16 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99
4 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.95 0.97 0.96 0.96 0.97 0.97 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

modglob 16 0.91 0.92 0.91 0.93 0.92 0.93 0.93 0.94 0.95 0.95 0.96 0.95 0.95 0.94 0.96 0.95
5 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.91 0.90 0.93 0.93 0.93 0.91 0.93 0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.94

noswot 16 0.69 0.76 0.75 0.76 0.81 0.79 0.79 0.78 0.80 0.76 0.80 0.78
4 0.91 0.90 0.93 0.93 0.93 0.91 0.93 0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.94
4 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

opt1217 16 0.96 0.96 0.95 0.96 0.96 0.97
3 0.94 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
4 0.98 0.99 0.98 0.97 0.98 0.99 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p2756 16 0.94 0.96 0.98 0.94 0.97 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
7 0.99 0.99 0.97 0.97 0.98 0.99 0.98 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
4 0.88

pk1 16
3 0.87 0.88 0.88 0.88 0.88 0.88
4 0.96 0.98 0.95 0.96 0.96 0.98 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

pp08a 16 0.91 0.94 0.93 0.94 0.92 0.94 0.92 0.93 0.93 0.93 0.95 0.95 0.94 0.94 0.95 0.95
4 0.96 0.96 0.94 0.97 0.97 0.96 0.96 0.96 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.98
4 0.94 0.97 0.91 0.96 0.91 0.96 0.93 0.96 0.98 0.96 0.98 0.98 0.96 0.94 0.98 0.96

pp08aCUTS 16 0.90 0.93 0.88 0.90 0.94 0.94 0.94 0.96 0.96 0.96 0.94 0.96 0.94
5 0.94 0.97 0.91 0.96 0.91 0.96 0.93 0.96 0.98 0.96 0.98 0.96 0.96 0.94 0.98 0.96
4 0.88 0.97 0.89 0.97 0.93 0.97 0.91 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97

qiu 16 0.83 0.95 0.84 0.95 0.85 0.97 0.84 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96
7 0.88 0.97 0.87 0.96 0.89 0.97 0.88 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96

timtab1 16 0.93 0.93 0.94 0.93 0.92 0.93 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.95 0.93
4 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.97 0.97 0.97 0.96 0.97 0.96 0.97 0.96
4 0.96 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

timtab2 16 0.94 0.94 0.93 0.94 0.93 0.94 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95
5 0.96 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

tr12-30 16 0.89 0.95 0.89 0.94 0.89 0.96 0.90 0.95 0.97 0.92 0.95 0.92 0.97 0.91 0.98 0.93
7 0.95 0.96 0.95 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.98 0.96 0.97 0.96 0.98 0.96
4 0.95 0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97

vpm2 16 0.88 0.91 0.88 0.90 0.91 0.91 0.92 0.91 0.94 0.93 0.94 0.92 0.94 0.86 0.94 0.91
5 0.94 0.93 0.94 0.94 0.95 0.93 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95

arithm.mean 0.79 0.86 0.78 0.83 0.81 0.84 0.76 0.85 0.90 0.90 0.92 0.91 0.92 0.91 0.92 0.91
quadr.mean 0.86 0.90 0.85 0.89 0.87 0.89 0.84 0.90 0.93 0.93 0.94 0.94 0.94 0.93 0.94 0.94

Table 8.1: Results for small inst. to arrowhead conc.µboN

XIII

8 Appendix

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.90 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
10teams 16

5 0.91 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95
4 0.96 0.95 0.96 0.95 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

a1c1s1 16 0.88 0.93 0.89 0.93 0.89 0.93 0.89 0.92 0.96 0.92 0.96 0.92 0.96 0.89 0.95 0.90
11 0.90 0.93 0.90 0.93 0.90 0.94 0.90 0.93 0.96 0.92 0.96 0.92 0.96 0.91 0.96 0.92
4 0.96 0.97 0.97 0.97 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

arki001 16 0.94 0.94 0.94 0.94 0.89 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96
8 0.93 0.94 0.93 0.93 0.92 0.94 0.98 0.98 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

liu 16 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
8 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.95 0.99 0.91 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

manna81 16 0.87 0.99 0.86 0.98 0.97 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
11 0.91 0.99 0.88 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.97 0.99 0.97 0.99 0.95 0.99 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mkc 16 0.97 0.95 0.99 0.95 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
11 0.96 0.99 0.97 0.99 0.96 0.99 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.99 0.99 0.98 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mod011 16 0.96 0.97 0.95 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
12 0.97 0.98 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99
4 0.72 0.75 0.76 0.75 0.73 0.72 0.72 0.73 0.83 0.76 0.83 0.77 0.84 0.76 0.83 0.75

protfold 16 0.59 0.66 0.61 0.65 0.58 0.62 0.57 0.63 0.74 0.68 0.74 0.73 0.75 0.58 0.76 0.59
9 0.64 0.67 0.64 0.69 0.60 0.66 0.61 0.65 0.79 0.73 0.78 0.76 0.79 0.63 0.80 0.63
4 0.93 0.94 0.93 0.94 0.92 0.93 0.91 0.94 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88

roll3000 16 0.88 0.87 0.87 0.86 0.86 0.86 0.88 0.88 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86
8 0.93 0.93 0.91 0.93 0.91 0.92 0.90 0.93 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

arithm.mean 0.87 0.82 0.77 0.79 0.81 0.82 0.81 0.86 0.91 0.90 0.91 0.90 0.91 0.89 0.91 0.89
quadr.mean 0.89 0.88 0.84 0.86 0.86 0.88 0.87 0.90 0.93 0.92 0.93 0.92 0.93 0.91 0.93 0.91

Table 8.2: Results for medium inst. to arrowhead conc. µboN

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
air04 16 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

7 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93
4 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

air05 16
6 0.95 0.95 0.95 0.95 0.95 0.95
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cap6000 16 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.91 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.94 0.90 0.93 0.90 0.94 0.90 0.93 0.90 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95

dano3mip 16 0.90 0.90 0.90 0.90 0.91 0.90 0.92 0.90 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.94
11 0.92 0.90 0.93 0.90 0.91 0.90 0.90 0.93 0.94 0.94 0.94 0.95 0.95 0.94 0.95
4 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

disctom 16 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
6 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.98 0.99 0.98 0.99 0.98 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

msc98-ip 16 0.95 0.97 0.94 0.97 0.95 0.97 0.95 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97
18 0.93 0.96 0.94 0.95 0.94 0.96 0.95 0.96 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97
4 0.85 0.96 0.85 0.96 0.92 0.96 0.94 0.95 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97

net12 16 0.78 0.95 0.79 0.94 0.90 0.95 0.93 0.94 0.95 0.96 0.95 0.95 0.95 0.96 0.95 0.96
17 0.77 0.95 0.77 0.93 0.91 0.94 0.93 0.94 0.95 0.96 0.95 0.95 0.95 0.96 0.95 0.96
4 0.93 0.94 0.92 0.94 0.93 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

seymour 16 0.88 0.90 0.88 0.90 0.88 0.88 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
8 0.90 0.91 0.89 0.91 0.90 0.91 0.90 0.91 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.92
4 0.97 0.98 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

swath 16 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
7 0.97 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

arithm.mean 0.71 0.74 0.61 0.81 0.70 0.81 0.67 0.74 0.89 0.93 0.92 0.92 0.86 0.93 0.82 0.89
quadr.mean 0.81 0.83 0.75 0.87 0.81 0.88 0.80 0.84 0.92 0.94 0.94 0.94 0.91 0.94 0.89 0.92

Table 8.3: Results for big inst. arrowhead conc. µboN

XIV

8.3 Computational Tests

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.90 0.92 0.91 0.92 0.90 0.92 0.91 0.91 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
aflow30a 16 0.88 0.89 0.89 0.90 0.87 0.90 0.90 0.90 0.90 0.91 0.90 0.91 0.91 0.91 0.91 0.91

6 0.89 0.91 0.91 0.90 0.91 0.92 0.91 0.91 0.94 0.93 0.90 0.90 0.94 0.94 0.94 0.94
4 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

aflow40b 16 0.96 0.95 0.92 0.95 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.96 0.96 0.95 0.96
8 0.96 0.96 0.97 0.96 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 0.56 0.70 0.57 0.72 0.71 0.68 0.73 0.72 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

danoint 16 0.31 0.65 0.36 0.65 0.58 0.65 0.61 0.65 0.73 0.73 0.73 0.73 0.74 0.73 0.75 0.73
6 0.53 0.69 0.56 0.72 0.65 0.70 0.67 0.73 0.79 0.79 0.78 0.79 0.80 0.79 0.79 0.79
4 0.66 0.84 0.77 0.85 0.71 0.86 0.64 0.86 0.86 0.82 0.86 0.83 0.82 0.82 0.87 0.83

fiber 16 0.53 0.78 0.56 0.79 0.59 0.81 0.82 0.81 0.64 0.81 0.64 0.80 0.59 0.81 0.56
5 0.72 0.81 0.68 0.80 0.70 0.85 0.71 0.87 0.87 0.83 0.87 0.81 0.80 0.81 0.85 0.80
4 0.84 0.96 0.85 0.96 0.93 0.96 0.91 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.96

fixnet6 16 0.86 0.94 0.85 0.95 0.88 0.94 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
6 0.84 0.95 0.84 0.96 0.89 0.96 0.91 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.97
4 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

gesa2 16 0.83 0.83 0.82 0.83 0.83 0.83 0.83 0.84 0.88 0.85 0.88 0.87 0.87 0.83 0.87 0.83
8 0.93 0.92 0.93 0.92 0.93 0.93 0.92 0.91 0.93 0.93 0.93 0.93 0.92 0.93 0.92 0.93
4 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96

gesa2-o 16 0.85 0.90 0.86 0.89 0.85 0.90 0.86 0.90 0.94 0.89 0.94 0.89 0.94 0.86 0.94 0.90
8 0.90 0.92 0.91 0.93 0.92 0.92 0.91 0.93 0.96 0.92 0.96 0.92 0.96 0.92 0.96 0.92
4 0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95

glass4 16 0.77 0.91 0.82 0.90 0.83 0.92 0.92 0.93 0.92 0.93 0.92 0.93 0.93 0.93 0.94
5 0.93 0.93 0.93 0.93 0.91 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
4 0.28 0.49 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

harp2 16 0.57 0.57 0.55 0.54 0.57 0.57 0.57 0.57
4 0.28 0.49 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
4 0.88 0.92 0.89 0.89 0.92 0.92 0.94 0.92 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

modglob 16 0.79 0.81 0.80 0.82 0.81 0.83 0.82 0.84 0.88 0.88 0.89 0.89 0.89 0.87 0.89 0.89
5 0.87 0.90 0.88 0.89 0.88 0.88 0.88 0.91 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.94
4 0.83 0.82 0.87 0.87 0.87 0.84 0.87 0.87 0.87 0.88 0.86 0.87 0.87 0.88 0.86 0.88

noswot 16 0.44 0.55 0.55 0.59 0.59 0.61 0.59 0.60 0.61 0.58 0.60 0.60
4 0.83 0.82 0.87 0.87 0.87 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.86 0.87
4 0.61 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

opt1217 16 0.50 0.52 0.39 0.44 0.53 0.56
3 0.16 0.67 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
4 0.93 0.97 0.92 0.88 0.94 0.97 0.93 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

p2756 16 0.84 0.87 0.94 0.80 0.91 0.93 0.91 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
7 0.96 0.97 0.88 0.90 0.93 0.96 0.92 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98
4 0.66

pk1 16
3 0.64 0.66 0.66 0.66 0.66 0.66
4 0.92 0.97 0.90 0.92 0.92 0.97 0.93 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

pp08a 16 0.82 0.88 0.86 0.88 0.85 0.88 0.85 0.87 0.87 0.87 0.90 0.90 0.89 0.89 0.91 0.91
4 0.93 0.93 0.88 0.94 0.94 0.92 0.91 0.92 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
4 0.83 0.92 0.76 0.89 0.76 0.90 0.80 0.88 0.94 0.88 0.94 0.94 0.88 0.88 0.94 0.89

pp08aCUTS 16 0.74 0.79 0.68 0.71 0.85 0.85 0.85 0.88 0.88 0.88 0.88 0.88 0.85
5 0.83 0.92 0.76 0.89 0.76 0.90 0.80 0.88 0.94 0.89 0.94 0.88 0.88 0.88 0.94 0.89
4 0.79 0.94 0.81 0.93 0.89 0.94 0.85 0.94 0.95 0.94 0.94 0.95 0.95 0.94 0.94 0.94

qiu 16 0.68 0.90 0.70 0.90 0.72 0.92 0.72 0.92 0.94 0.93 0.94 0.93 0.94 0.92 0.94 0.92
7 0.77 0.93 0.76 0.91 0.80 0.93 0.78 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
4 0.89 0.90 0.91 0.90 0.91 0.92 0.89 0.90 0.95 0.94 0.96 0.94 0.95 0.94 0.94 0.91

timtab1 16 0.86 0.84 0.89 0.85 0.86 0.88 0.88 0.91 0.90 0.92 0.92 0.91 0.89 0.92 0.87
4 0.89 0.90 0.91 0.90 0.91 0.92 0.89 0.90 0.96 0.95 0.96 0.94 0.96 0.93 0.96 0.91
4 0.91 0.93 0.91 0.93 0.92 0.91 0.92 0.92 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.95

timtab2 16 0.89 0.89 0.87 0.87 0.87 0.89 0.87 0.89 0.92 0.92 0.92 0.92 0.93 0.90 0.92 0.91
5 0.90 0.91 0.90 0.91 0.91 0.92 0.89 0.90 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95
4 0.94 0.93 0.94 0.93 0.94 0.93 0.95 0.94 0.96 0.96 0.96 0.97 0.95 0.96 0.95 0.97

tr12-30 16 0.72 0.88 0.72 0.86 0.73 0.89 0.75 0.88 0.92 0.84 0.89 0.85 0.94 0.84 0.95 0.86
7 0.87 0.90 0.88 0.89 0.89 0.91 0.89 0.90 0.92 0.93 0.96 0.93 0.93 0.93 0.95 0.93
4 0.86 0.86 0.84 0.87 0.87 0.88 0.89 0.88 0.92 0.92 0.92 0.92 0.91 0.92 0.91 0.92

vpm2 16 0.71 0.76 0.70 0.74 0.75 0.77 0.79 0.77 0.83 0.81 0.83 0.80 0.84 0.74 0.84 0.80
5 0.85 0.83 0.86 0.84 0.86 0.83 0.87 0.83 0.90 0.92 0.90 0.90 0.90 0.91 0.89 0.91

arithm.mean 0.71 0.77 0.70 0.75 0.74 0.78 0.69 0.78 0.84 0.83 0.85 0.84 0.84 0.83 0.85 0.83
quadr.mean 0.77 0.82 0.77 0.81 0.79 0.83 0.77 0.83 0.87 0.86 0.87 0.86 0.87 0.86 0.87 0.86

Table 8.4: Results for small inst. to arrowhead conc. µboA

XV

8 Appendix

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.11 0.45 0.30 0.53 0.53 0.53 0.53 0.54 0.53 0.53 0.53
10teams 16

5 0.12 0.40 0.40 0.40 0.40 0.43 0.46 0.54 0.47
4 0.91 0.91 0.92 0.90 0.93 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

a1c1s1 16 0.76 0.85 0.77 0.85 0.76 0.85 0.76 0.85 0.92 0.84 0.92 0.85 0.91 0.80 0.91 0.82
11 0.80 0.87 0.79 0.85 0.80 0.88 0.79 0.87 0.93 0.85 0.93 0.85 0.92 0.84 0.91 0.84
4 0.92 0.94 0.94 0.94 0.91 0.93 0.96 0.96 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.95

arki001 16 0.87 0.87 0.86 0.87 0.78 0.85 0.87 0.88 0.89 0.89 0.90 0.88 0.90 0.90 0.90 0.90
8 0.86 0.87 0.86 0.86 0.83 0.88 0.95 0.95 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
4 0.91 0.92 0.92 0.92 0.92 0.91 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

liu 16 0.92 0.92 0.91 0.92 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
8 0.92 0.92 0.91 0.92 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
4 0.92 0.97 0.85 0.96 0.96 0.98 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

manna81 16 0.79 0.98 0.78 0.96 0.95 0.97 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
11 0.85 0.98 0.81 0.98 0.95 0.98 0.95 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
4 0.93 0.98 0.92 0.98 0.90 0.99 0.91 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mkc 16 0.91 0.89 0.98 0.89 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
11 0.91 0.98 0.92 0.98 0.92 0.98 0.90 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.95 0.97 0.93 0.97 0.97 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mod011 16 0.87 0.92 0.83 0.89 0.92 0.96 0.94 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.98
12 0.90 0.93 0.91 0.92 0.95 0.97 0.96 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99
4 0.48 0.54 0.53 0.54 0.51 0.46 0.48 0.50 0.69 0.58 0.69 0.59 0.69 0.55 0.69 0.55

protfold 16 0.27 0.36 0.29 0.35 0.25 0.31 0.24 0.33 0.52 0.46 0.52 0.48 0.54 0.25 0.54 0.27
9 0.35 0.39 0.34 0.42 0.28 0.38 0.28 0.37 0.60 0.49 0.60 0.53 0.61 0.34 0.61 0.36
4 0.88 0.89 0.89 0.90 0.86 0.89 0.83 0.90 0.73 0.73 0.74 0.73 0.73 0.73 0.73 0.73

roll3000 16 0.73 0.72 0.72 0.72 0.72 0.70 0.75 0.72 0.63 0.65 0.63 0.66 0.65 0.66 0.65 0.66
8 0.86 0.87 0.84 0.86 0.84 0.84 0.80 0.88 0.71 0.71 0.71 0.71 0.71 0.72 0.71 0.71

arithm.mean 0.73 0.74 0.68 0.72 0.73 0.76 0.73 0.78 0.81 0.80 0.81 0.80 0.81 0.78 0.82 0.79
quadr.mean 0.78 0.80 0.76 0.80 0.79 0.82 0.80 0.83 0.84 0.83 0.84 0.83 0.85 0.83 0.85 0.83

Table 8.5: Results for medium inst. arrowhead conc. µboA

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.09 0.16 0.11 0.16 0.07 0.14 0.08 0.13 0.23 0.24 0.23 0.24 0.21 0.22 0.22 0.23
air04 16 0.09 0.16 0.16 0.16 0.16 0.17 0.17 0.16 0.19

7 0.04 0.12 0.04 0.12 0.10 0.20 0.20 0.20 0.20 0.22 0.22
4 0.06 0.14 0.07 0.15 0.06 0.16 0.07 0.15 0.18 0.19 0.17 0.19 0.18 0.18 0.17 0.19

air05 16
6 0.14 0.14 0.17 0.16 0.17 0.18
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cap6000 16 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.86 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.73 0.50 0.70 0.51 0.71 0.52 0.68 0.51 0.71 0.75 0.73 0.75 0.72 0.75 0.72 0.75

dano3mip 16 0.60 0.55 0.59 0.51 0.60 0.50 0.63 0.50 0.60 0.65 0.61 0.65 0.68 0.68 0.68 0.68
11 0.66 0.52 0.69 0.50 0.61 0.49 0.50 0.64 0.71 0.68 0.71 0.74 0.73 0.70 0.73
4 0.30 0.37 0.39 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

disctom 16 0.24 0.24 0.25 0.24 0.24 0.25 0.25 0.25
6 0.25 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25
4 0.95 0.98 0.96 0.98 0.95 0.99 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

msc98-ip 16 0.89 0.94 0.88 0.93 0.89 0.94 0.90 0.93 0.96 0.95 0.96 0.96 0.96 0.95 0.96 0.95
18 0.85 0.91 0.88 0.91 0.87 0.92 0.89 0.92 0.96 0.95 0.96 0.96 0.96 0.95 0.95 0.95
4 0.71 0.92 0.70 0.92 0.84 0.93 0.88 0.90 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

net12 16 0.56 0.89 0.59 0.89 0.80 0.90 0.86 0.88 0.90 0.92 0.90 0.90 0.90 0.92 0.90 0.92
17 0.56 0.90 0.55 0.87 0.83 0.89 0.87 0.89 0.90 0.93 0.90 0.90 0.91 0.93 0.90 0.93
4 0.73 0.74 0.70 0.76 0.74 0.76 0.74 0.76 0.77 0.77 0.77 0.78 0.76 0.77 0.76 0.78

seymour 16 0.54 0.58 0.54 0.59 0.53 0.54 0.59 0.60 0.62 0.60 0.62 0.61 0.62 0.61 0.62
8 0.60 0.63 0.58 0.64 0.63 0.64 0.62 0.65 0.67 0.67 0.66 0.68 0.66 0.68 0.67 0.67
4 0.80 0.87 0.85 0.84 0.86 0.87 0.86 0.87 0.87 0.88 0.88 0.87 0.87 0.87 0.87 0.87

swath 16 0.81 0.86 0.87 0.86 0.87 0.83 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
7 0.82 0.87 0.83 0.87 0.86 0.87 0.86 0.87 0.87 0.87 0.87 0.87 0.88 0.87 0.87 0.87

arithm.mean 0.51 0.52 0.42 0.54 0.54 0.56 0.53 0.57 0.62 0.64 0.63 0.63 0.62 0.64 0.61 0.63
quadr.mean 0.63 0.65 0.56 0.65 0.67 0.68 0.67 0.68 0.71 0.72 0.71 0.72 0.72 0.72 0.71 0.72

Table 8.6: Results for big inst. to arrowhead conc. µboA

XVI

8.3 Computational Tests

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.93 0.95 0.96 0.95 0.95 0.99 0.96 0.95 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
aflow30a 16 0.77 0.76 0.75 0.71 0.91 0.91 0.70 0.69 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94

6 0.95 0.96 0.93 0.88 0.95 0.97 0.94 0.96 0.97 0.94 0.95 0.95 0.90 0.95 0.89 0.97
4 0.94 0.94 0.93 0.93 0.98 0.99 0.95 0.98 0.92 0.97 0.94 0.97 0.96 0.97 0.96 0.97

aflow40b 16 0.89 0.87 0.79 0.67 0.97 0.97 0.85 0.85 0.98 0.96 0.92 0.92 0.98 0.96 0.97 0.98
8 0.94 0.92 0.92 0.90 0.98 0.99 0.92 0.96 0.95 0.97 0.96 0.95 0.96 0.96 0.97 0.96
4 0.90 0.85 0.88 0.96 0.95 0.94 0.90 0.84 1.00 0.99 1.00 0.99 1.00 0.99 0.98 0.99

danoint 16 0.53 0.76 0.44 0.81 0.72 0.81 0.55 0.66 0.94 0.94 0.94 0.91 0.95 0.91 0.96 0.94
6 0.84 0.79 0.88 0.81 0.82 0.90 0.83 0.81 0.95 0.95 0.96 0.89 0.97 0.94 0.81 0.90
4 0.88 0.79 0.88 0.89 0.86 0.82 0.90 0.86 0.95 0.83 0.91 0.94 0.90 0.94 0.83 0.94

fiber 16 0.57 0.52 0.62 0.61 0.60 0.58 0.50 0.81 0.69 0.83 0.57 0.76 0.55 0.81 0.50
5 0.82 0.90 0.76 0.88 0.86 0.80 0.76 0.66 0.93 0.84 0.77 0.85 0.87 0.90 0.78 0.91
4 0.92 0.87 0.91 0.91 0.97 0.98 0.72 0.70 0.96 0.96 0.98 0.96 0.99 0.98 0.99 0.97

fixnet6 16 0.81 0.80 0.80 0.77 0.88 0.90 0.92 0.92 0.94 0.91 0.96 0.93 0.96 0.94
6 0.89 0.89 0.90 0.80 0.90 0.95 0.66 0.74 0.95 0.94 0.93 0.93 0.96 0.93 0.91 0.92
4 0.99 0.99 0.86 0.99 1.00 1.00 0.96 0.98 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00

gesa2 16 0.89 0.80 0.72 0.82 0.85 0.87 0.84 0.89 0.89 0.89 0.93 0.89 0.92 0.86 0.91 0.86
8 0.98 0.93 0.99 0.87 1.00 1.00 0.93 0.97 0.99 0.98 0.99 0.99 1.00 0.99 1.00 0.99
4 0.99 0.90 0.93 0.96 1.00 0.99 0.98 0.94 0.98 1.00 0.96 0.99 0.94 1.00 0.94 1.00

gesa2-o 16 0.89 0.92 0.83 0.87 0.94 0.92 0.87 0.81 0.94 0.90 0.94 0.90 0.92 0.93 0.94 0.94
8 0.92 0.93 0.93 0.89 1.00 0.94 0.96 0.85 0.96 0.95 0.96 0.98 0.94 0.99 0.95 1.00
4 0.94 0.91 0.93 0.95 0.92 0.95 0.69 0.82 0.93 0.93 0.94 0.92 0.93 0.92 0.94 0.94

glass4 16 0.49 0.59 0.54 0.69 0.66 0.80 0.64 0.80 0.78 0.82 0.81 0.85 0.79 0.80 0.74
5 0.92 0.91 0.87 0.88 0.86 0.93 0.77 0.85 0.93 0.92 0.88 0.93 0.91 0.93 0.77 0.92
4 0.47 0.55 0.69 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

harp2 16 0.95 0.95 0.93 0.89 0.96 0.96 0.96 0.96
4 0.47 0.55 0.69 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
4 0.96 0.92 0.90 0.89 0.94 0.96 0.92 0.87 0.98 0.97 0.96 0.95 0.98 0.98 0.96 0.97

modglob 16 0.84 0.65 0.69 0.71 0.81 0.80 0.70 0.72 0.81 0.88 0.79 0.75 0.86 0.81 0.75 0.70
5 0.88 0.94 0.93 0.91 0.94 0.93 0.85 0.93 0.91 0.93 0.93 0.95 0.92 0.94 0.90 0.92
4 0.90 0.89 0.88 0.92 0.87 0.88 0.93 0.92 0.93 0.95 0.93 0.92 0.93 0.93 0.92 0.90

noswot 16 0.41 0.65 0.65 0.61 0.59 0.76 0.58 0.65 0.65 0.71 0.65 0.57
4 0.90 0.89 0.88 0.92 0.87 0.88 0.93 0.92 0.92 0.92 0.89 0.95 0.93 0.90 0.92 0.87
4 0.80 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

opt1217 16 0.94 0.90 0.72 0.74 0.92 0.94
3 0.38 0.82 1.00 1.00 1.00 1.00 0.89 1.00 0.79 0.89
4 0.84 0.89 0.82 0.82 0.91 0.94 0.78 0.92 0.93 0.96 0.93 0.95 0.95 0.97 0.93 0.96

p2756 16 0.73 0.75 0.75 0.71 0.84 0.89 0.72 0.81 0.92 0.92 0.94 0.92 0.91 0.92 0.91 0.91
7 0.90 0.88 0.73 0.82 0.86 0.92 0.81 0.91 0.84 0.95 0.90 0.93 0.92 0.88 0.82 0.92
4 0.27

pk1 16
3 0.40 0.41 0.41 0.40 0.43 0.30
4 0.95 0.96 0.93 0.89 0.92 0.96 0.85 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

pp08a 16 0.74 0.79 0.65 0.79 0.77 0.85 0.77 0.79 0.89 0.83 0.81 0.80 0.85 0.91 0.68 0.82
4 0.95 0.90 0.91 0.94 0.96 0.95 0.88 0.75 0.94 0.94 0.94 0.93 0.88 0.90 0.88 0.88
4 0.90 0.98 0.86 0.93 0.94 0.95 0.76 0.69 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

pp08aCUTS 16 0.65 0.51 0.51 0.71 0.84 1.00 0.90 0.88 0.69 0.88 1.00 0.88 0.60
5 0.90 0.98 0.86 0.93 0.94 0.95 0.76 0.69 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94
4 0.88 0.94 0.89 0.92 0.98 0.98 0.88 0.94 0.99 0.95 0.99 0.98 0.94 0.97 0.93 0.96

qiu 16 0.72 0.84 0.74 0.83 0.84 0.93 0.58 0.81 0.94 0.98 0.95 0.98 0.95 0.90 0.95 0.87
7 0.85 0.92 0.81 0.90 0.85 0.95 0.70 0.93 0.99 0.94 0.99 0.93 0.99 0.89 0.89 0.89
4 0.90 0.91 0.87 0.87 0.94 0.93 0.90 0.88 0.87 0.90 0.92 0.89 0.84 0.88 0.89 0.87

timtab1 16 0.36 0.39 0.51 0.26 0.87 0.85 0.60 0.77 0.79 0.62 0.68 0.67 0.72 0.62 0.64
4 0.90 0.91 0.87 0.87 0.94 0.93 0.90 0.88 0.88 0.89 0.87 0.88 0.87 0.87 0.88 0.90
4 0.94 0.93 0.92 0.92 0.96 0.92 0.96 0.94 0.81 0.93 0.84 0.87 0.87 0.90 0.86 0.86

timtab2 16 0.60 0.75 0.54 0.62 0.80 0.84 0.63 0.69 0.77 0.76 0.76 0.78 0.74 0.78 0.72 0.73
5 0.91 0.92 0.90 0.88 0.92 0.93 0.94 0.92 0.80 0.82 0.78 0.84 0.74 0.87 0.81 0.85
4 0.97 0.93 0.94 0.95 0.93 0.93 0.95 0.96 0.96 0.96 1.00 0.95 0.98 0.97 0.99 0.97

tr12-30 16 0.72 0.90 0.78 0.87 0.79 0.92 0.63 0.66 0.95 0.88 0.90 0.81 0.97 0.77 0.97 0.78
7 0.91 0.91 0.90 0.92 0.88 0.96 0.94 0.93 0.92 0.95 0.96 0.93 0.93 0.88 0.79 0.88
4 0.90 0.88 0.93 0.97 0.93 0.88 0.96 0.92 0.98 0.95 0.95 0.95 0.94 0.95 0.95 0.95

vpm2 16 0.72 0.81 0.66 0.70 0.71 0.82 0.57 0.46 0.92 0.91 0.78 0.62 0.90 0.79 0.72 0.58
5 0.94 0.82 0.92 0.86 0.87 0.84 0.78 0.79 0.93 0.88 0.93 0.94 0.85 0.89 0.77 0.90

arith.mean 0.72 0.74 0.69 0.72 0.76 0.79 0.65 0.72 0.86 0.86 0.87 0.86 0.87 0.87 0.85 0.85
quadr.mean 0.79 0.80 0.76 0.78 0.82 0.85 0.73 0.77 0.90 0.89 0.89 0.89 0.89 0.89 0.87 0.87

Table 8.7: Results for small inst. to arrowhead conc. µblB

XVII

8 Appendix

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.53 0.81 0.53 0.81 0.93 0.95 0.93 0.94 1.00 0.97 0.97 0.97
10teams 16

5 0.32 0.84 0.84 0.83 0.84 0.85 0.86 0.74 0.85
4 0.92 0.93 0.91 0.94 0.91 0.94 0.91 0.96 0.96 0.94 0.95 0.94 0.96 0.94 0.96 0.94

a1c1s1 16 0.77 0.84 0.74 0.82 0.74 0.86 0.72 0.70 0.89 0.86 0.91 0.86 0.88 0.85 0.89 0.84
11 0.84 0.86 0.78 0.82 0.80 0.89 0.85 0.88 0.88 0.88 0.88 0.86 0.88 0.86 0.73 0.84
4 0.92 0.90 0.93 0.93 0.92 0.95 0.83 0.83 0.91 0.93 0.92 0.95 0.93 0.90 0.94 0.93

arki001 16 0.68 0.69 0.65 0.73 0.70 0.75 0.59 0.66 0.71 0.70 0.72 0.67 0.71 0.76 0.86 0.86
8 0.77 0.87 0.73 0.77 0.83 0.83 0.65 0.68 0.84 0.84 0.85 0.85 0.91 0.86 0.94 0.93
4 0.95 0.97 0.94 0.94 0.99 0.98 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

liu 16 0.93 0.95 0.88 0.86 0.96 0.93 0.84 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 0.95 0.95 0.92 0.91 0.98 0.97 0.93 0.92 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99
4 0.98 0.95 0.96 0.91 0.99 0.99 0.99 0.70 0.96 0.99 0.96 0.96 1.00 1.00 1.00 1.00

manna81 16 0.90 0.96 0.86 0.90 0.97 0.99 0.68 0.68 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
11 0.95 0.96 0.91 0.93 0.97 0.99 0.70 0.69 0.93 0.93 0.96 0.95 0.86 0.91 0.89 0.93
4 0.79 0.89 0.84 0.84 0.91 0.90 0.85 0.88 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97

mkc 16 0.77 0.75 0.75 0.53 0.61 0.91 0.91 0.91 0.89 0.92 0.91 0.91 0.91
11 0.78 0.83 0.77 0.76 0.79 0.84 0.67 0.71 0.88 0.92 0.92 0.91 0.76 0.77 0.80 0.77
4 0.61 0.61 0.59 0.57 0.53 0.58 0.52 0.62 0.90 0.90 0.90 0.93 0.95 0.95 0.95 0.95

mod011 16 0.47 0.45 0.42 0.39 0.45 0.45 0.44 0.34 0.70 0.67 0.67 0.60 0.61 0.61 0.62 0.62
12 0.43 0.45 0.44 0.46 0.48 0.53 0.47 0.39 0.80 0.79 0.72 0.70 0.52 0.68 0.52 0.62
4 0.69 0.89 0.81 0.93 0.81 0.72 0.69 0.75 0.95 0.85 0.93 0.85 0.91 0.87 0.93 0.85

protfold 16 0.36 0.51 0.43 0.47 0.34 0.52 0.36 0.44 0.50 0.61 0.51 0.42 0.51 0.48 0.52 0.47
9 0.67 0.67 0.51 0.67 0.53 0.80 0.56 0.57 0.61 0.70 0.66 0.77 0.60 0.56 0.59 0.55
4 0.90 0.89 0.89 0.76 0.88 0.81 0.78 0.81 0.87 0.87 0.89 0.86 0.82 0.83 0.85 0.80

roll3000 16 0.64 0.69 0.60 0.48 0.66 0.70 0.46 0.44 0.60 0.51 0.64 0.56 0.69 0.63 0.67 0.64
8 0.78 0.80 0.74 0.72 0.76 0.71 0.62 0.69 0.70 0.75 0.69 0.70 0.71 0.71 0.75 0.68

arithm.mean 0.71 0.71 0.64 0.65 0.71 0.75 0.61 0.62 0.82 0.82 0.83 0.81 0.81 0.81 0.81 0.81
quadr.mean 0.75 0.77 0.71 0.72 0.76 0.79 0.67 0.68 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.84

Table 8.8: Results for medium inst. to arrowhead conc.µblB

Algorithm BIPARTITE DECOMPOSING HYPERCOLROW DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. ad. un. ad. un. ad. un. ad. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.60 0.68 0.54 0.51 0.58 0.86 0.41 0.44 0.93 0.85 0.92 0.91 0.87 0.98 0.90 0.95
air04 16 0.38 0.58 0.60 0.57 0.57 0.62 0.65 0.55 0.59

7 0.46 0.50 0.35 0.58 0.51 0.77 0.83 0.81 0.83 0.73 0.80
4 0.56 0.75 0.47 0.61 0.61 0.66 0.54 0.64 0.78 0.86 0.89 0.88 0.78 0.91 0.92 0.83

air05 16
6 0.40 0.52 0.79 0.73 0.72 0.74
4 0.08 0.07 0.12 0.93 0.92 0.66 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cap6000 16 0.01 0.01 0.83 0.84 0.60 0.64 0.96 0.97 0.97 0.98 0.97 0.97 0.97 0.98
10 0.02 0.02 0.03 0.88 0.83 0.62 0.74 0.97 0.98 0.98 0.99 0.87 0.92 0.86 0.93
4 0.87 0.87 0.75 0.91 0.72 0.93 0.65 0.85 0.89 0.92 0.93 0.92 0.97 0.99 0.96 0.95

dano3mip 16 0.41 0.63 0.39 0.66 0.38 0.65 0.30 0.73 0.61 0.57 0.63 0.66 0.87 0.74 0.88 0.72
11 0.36 0.72 0.65 0.62 0.31 0.77 0.54 0.72 0.63 0.74 0.62 0.85 0.73 0.78 0.69
4 0.65 0.73 0.48 0.96 0.96 1.00 0.96 0.96 0.96 1.00 0.96

disctom 16 0.79 0.70 0.73 0.72 0.86 0.86 0.83 0.76
6 0.41 0.51 0.93 0.98 0.83 0.93 0.63 0.93 0.90
4 0.43 0.44 0.44 0.44 0.44 0.49 0.43 0.47 0.49 0.52 0.49 0.59 0.50 0.58 0.48 0.50

msc98-ip 16 0.39 0.41 0.36 0.41 0.38 0.42 0.38 0.39 0.41 0.42 0.39 0.41 0.39 0.39 0.40 0.39
18 0.34 0.39 0.36 0.41 0.36 0.43 0.37 0.37 0.42 0.42 0.43 0.44 0.39 0.38 0.35 0.40
4 0.90 0.87 0.88 0.93 0.92 0.95 0.95 0.93 0.94 0.91 0.96 0.97 1.00 0.92 0.99 1.00

net12 16 0.64 0.77 0.66 0.78 0.77 0.93 0.79 0.82 0.83 0.89 0.84 0.96 0.96 0.91 0.96 0.98
17 0.66 0.79 0.65 0.79 0.73 0.92 0.74 0.80 0.89 0.99 0.85 0.93 0.93 0.98 0.88 0.99
4 0.67 0.67 0.65 0.66 0.50 0.53 0.74 0.59 0.65 0.61 0.64 0.63 0.71 0.64 0.70 0.64

seymour 16 0.23 0.30 0.27 0.40 0.27 0.22 0.26 0.23 0.18 0.22 0.23 0.18 0.17 0.18 0.25
8 0.44 0.35 0.39 0.35 0.40 0.39 0.33 0.29 0.29 0.30 0.29 0.30 0.28 0.30 0.28 0.27
4 0.31 0.34 0.38 0.38 0.68 0.81 0.53 0.61 1.00 1.00 0.99 0.99 0.97 0.97 0.99 0.99

swath 16 0.07 0.07 0.06 0.55 0.57 0.34 0.48 0.95 0.94 0.96 0.97 0.89 0.87 0.92 0.94
7 0.18 0.19 0.15 0.18 0.64 0.73 0.41 0.62 0.89 0.93 0.97 0.96 0.39 0.48 0.39 0.28

arithm.mean 0.32 0.38 0.31 0.42 0.44 0.59 0.37 0.46 0.70 0.73 0.73 0.74 0.66 0.73 0.64 0.69
quadr.mean 0.43 0.49 0.42 0.50 0.54 0.66 0.47 0.55 0.76 0.78 0.78 0.79 0.74 0.78 0.73 0.76

Table 8.9: Results for big inst. to arrowhead conc. µblB

XVIII

8.3 Computational Tests

XIX

8 Appendix

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW REC. PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97
aflow30a 16 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.96

6 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

aflow40b 16 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.98
8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.86 0.86 0.86 0.86 0.82 0.77 0.83 0.81 0.73 0.71 0.72 0.74

danoint 16 0.80 0.81 0.82 0.83 0.70 0.72 0.66
6 0.85 0.84 0.85 0.85 0.78 0.74 0.81 0.79 0.77 0.74
4 0.97 0.97 0.97 0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.97

fiber 16 0.97 0.96 0.96 0.96 0.92 0.92
5 0.97 0.97 0.96 0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95
4 0.99 0.99 0.99 0.99 0.96 0.96 0.96 0.97 0.95 0.96 0.95 0.96

fixnet6 16 0.99 0.99 0.99 0.99 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93
6 0.99 0.99 0.99 0.99 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.95
4 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

gesa2 16 0.92 0.92 0.91 0.92 0.88 0.87 0.87 0.87 0.87 0.86 0.87 0.88
8 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

gesa2-o 16 0.97 0.97 0.97 0.97 0.90 0.92 0.90 0.92 0.90 0.92 0.90 0.91
8 0.98 0.98 0.98 0.98 0.96 0.95 0.96 0.94 0.96 0.94 0.96 0.94
4 0.69 0.69 0.66 0.69 0.64 0.64 0.64 0.64 0.63 0.65 0.65 0.65

glass4 16 0.57 0.57 0.57 0.58 0.58 0.58 0.57 0.58 0.57 0.58
5 0.64 0.66 0.64 0.66 0.62 0.63 0.63 0.63 0.62 0.62 0.62 0.62
4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

harp2 16 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.98 0.98 0.98 0.98 0.96 0.95 0.97 0.95 0.96 0.95 0.97 0.96

modglob 16 0.95 0.95 0.95 0.95 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
5 0.97 0.97 0.97 0.97 0.97 0.95 0.97 0.95 0.97 0.95 0.96 0.96
4 0.92 0.94 0.92 0.94 0.92 0.92 0.93 0.94 0.92 0.91 0.95 0.95

noswot 16 0.67
4 0.92 0.94 0.92 0.94 0.92 0.92 0.93 0.94 0.91 0.91 0.95 0.95
4 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

opt1217 16 0.96 0.97 0.98 0.98 0.98 0.98 0.98
3 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
4 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99

p2756 16 0.99 0.99 0.99 0.99 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97
7 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.97
4

pk1 16
3
4 0.98 0.98 0.98 0.98 0.90 0.94 0.92 0.94 0.88 0.87 0.92 0.93

pp08a 16 0.94 0.94 0.94 0.95 0.92 0.92 0.91 0.91
4 0.98 0.98 0.97 0.98 0.93 0.93 0.93 0.94 0.89 0.90 0.90 0.90
4 0.98 0.98 0.98 0.98 0.96 0.94 0.94 0.94 0.92 0.94 0.94 0.93

pp08aCUTS 16 0.96 0.96 0.96 0.96 0.86 0.88 0.88 0.89 0.88 0.90 0.87 0.89
5 0.98 0.98 0.98 0.98 0.93 0.94 0.96 0.94 0.94 0.94 0.93 0.93
4 0.91 0.90 0.94 0.94 0.92 0.88 0.93 0.92 0.92 0.87 0.91 0.84

qiu 16 0.83 0.84 0.84 0.84 0.79
7 0.89 0.88 0.88 0.89 0.75 0.79 0.77 0.80 0.82 0.80 0.80
4 0.89 0.89 0.89 0.89 0.87 0.86 0.87 0.88 0.83 0.85 0.87 0.87

timtab1 16
4 0.89 0.89 0.89 0.89 0.87 0.87 0.87 0.88 0.83 0.85 0.87 0.88
4 0.91 0.91 0.91 0.91 0.90 0.90 0.89 0.90 0.88 0.88 0.88 0.88

timtab2 16
5 0.90 0.90 0.90 0.91 0.87 0.89 0.87 0.87 0.88 0.89 0.88 0.88
4 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

tr12-30 16 0.98 0.98 0.97 0.98 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92
7 0.98 0.98 0.98 0.98 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

vpm2 16 0.94 0.94 0.94 0.93 0.91 0.90 0.91 0.91 0.91 0.90 0.92 0.92
5 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

arithm.mean 0.85 0.85 0.82 0.84 0.79 0.80 0.76 0.76 0.82 0.78 0.72 0.74
quadr. mean 0.89 0.90 0.88 0.89 0.85 0.86 0.84 0.84 0.87 0.85 0.82 0.83

Table 8.10: Results for small inst. to bbd. conc. µboN

XX

8.3 Computational Tests

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.95 0.95 0.95 0.95
10teams 16

5 0.94 0.95 0.94 0.95
4 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

a1c1s1 16 0.91 0.91 0.91 0.91 0.88 0.90 0.88 0.90 0.86 0.90 0.86 0.90
11 0.93 0.92 0.93 0.93 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91
4 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.93 0.92 0.93 0.93

arki001 16 0.95 0.96 0.96 0.96 0.84 0.86 0.85
8 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.89 0.90 0.89 0.89
4 0.54 0.56

liu 16
8
4 0.86 0.86 0.86 0.86 0.84 0.85 0.85 0.85 0.79 0.79 0.79 0.79

manna81 16 0.80 0.80 0.80 0.80 0.72 0.72 0.72 0.72 0.75 0.75 0.72 0.72
11 0.81 0.81 0.81 0.82 0.74 0.74 0.75 0.75 0.77 0.77 0.77 0.77
4 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

mkc 16 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
11 1.00 1.00 1.00 1.00 0.97 0.96 0.96 0.96 0.96 0.96 0.97
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mod011 16 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
12 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 0.85 0.86 0.86 0.86 0.74 0.74 0.77 0.75 0.75 0.75 0.73

protfold 16 0.71 0.71 0.72 0.72
9 0.80 0.80 0.79 0.80 0.70 0.67 0.72 0.67 0.67
4 0.96 0.96 0.96 0.96 0.81 0.84 0.80 0.87 0.81 0.80 0.84 0.82

roll3000 16 0.88 0.88 0.88 0.89 0.83 0.82 0.85 0.82 0.81 0.78 0.80 0.82
8 0.94 0.94 0.94 0.94 0.85 0.83 0.86 0.78 0.78 0.82 0.83 0.80

arithm.mean 0.80 0.78 0.80 0.79 0.59 0.62 0.60 0.62 0.62 0.61 0.62 0.61
quadr. mean 0.86 0.85 0.86 0.85 0.73 0.75 0.74 0.75 0.74 0.74 0.74 0.73

Table 8.11: Results for medium inst. to bbd. conc. µboN

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94
air04 16 0.93 0.93 0.93 0.93

7 0.93 0.93 0.93 0.93 0.93
4 0.95 0.95 0.95 0.95 0.96

air05 16
6 0.95 0.95 0.95
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cap6000 16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.92 0.93 0.93 0.93 0.90 0.91 0.90 0.91 0.90 0.89 0.89 0.89

dano3mip 16 0.90 0.90 0.91 0.91 0.89 0.89 0.89 0.89 0.88 0.88 0.88 0.88
11 0.91 0.91 0.92 0.92 0.88 0.89 0.89 0.89 0.88 0.89 0.89 0.89
4 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98

disctom 16 0.97 0.97 0.97 0.97 0.98 0.98
6 0.97 0.97 0.97 0.97
4 0.97 0.97 0.88 0.88 0.88 0.88 0.88 0.88 0.89 0.88

msc98-ip 16 0.91 0.91 0.92 0.92 0.80 0.80 0.80 0.80 0.80 0.80 0.81 0.80
18 0.91 0.91 0.92 0.92 0.79 0.79 0.80 0.80 0.80 0.80
4 0.97 0.98 0.98 0.98 0.63 0.63 0.63 0.62 0.63 0.62 0.62

net12 16 0.90 0.95 0.92 0.96
17 0.90 0.94 0.92 0.95 0.53 0.53 0.53 0.53
4 0.78 0.78 0.79 0.81 0.69 0.71 0.70 0.75 0.67 0.68 0.67 0.73

seymour 16 0.52 0.55 0.54 0.57 0.48 0.46 0.46 0.48
8 0.62 0.67 0.66 0.72 0.57 0.57 0.58 0.59 0.52 0.57 0.55 0.55
4 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97

swath 16
7 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96

arithm.mean 0.81 0.81 0.81 0.78 0.50 0.46 0.52 0.51 0.50 0.55 0.50 0.50
quadr. mean 0.86 0.87 0.87 0.85 0.66 0.63 0.67 0.68 0.66 0.70 0.66 0.66

Table 8.12: Results for big inst. to bbd. conc. µboN

XXI

8 Appendix

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.93
aflow30a 16 0.90 0.89 0.92 0.91 0.92 0.91 0.93 0.91 0.92 0.91 0.93 0.90

6 0.94 0.93 0.94 0.94 0.93 0.92 0.92 0.92 0.94 0.94 0.94 0.94
4 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96

aflow40b 16 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.96 0.96 0.95
8 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.96
4 0.75 0.75 0.75 0.75 0.68 0.59 0.69 0.67 0.51 0.49 0.51 0.53

danoint 16 0.65 0.66 0.68 0.69 0.46 0.50 0.39
6 0.73 0.71 0.74 0.73 0.61 0.54 0.66 0.62 0.59 0.54
4 0.87 0.87 0.87 0.87 0.76 0.76 0.78 0.77 0.79 0.78 0.77 0.84

fiber 16 0.85 0.82 0.80 0.82 0.61 0.63
5 0.87 0.87 0.84 0.85 0.77 0.77 0.77 0.77 0.77 0.77 0.80 0.79
4 0.96 0.96 0.96 0.97 0.88 0.89 0.90 0.90 0.87 0.87 0.87 0.88

fixnet6 16 0.96 0.96 0.96 0.96 0.82 0.82 0.82 0.83 0.80 0.81 0.81 0.81
6 0.96 0.96 0.96 0.96 0.88 0.88 0.87 0.88 0.85 0.85 0.83 0.85
4 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

gesa2 16 0.84 0.84 0.84 0.84 0.77 0.75 0.76 0.76 0.76 0.74 0.76 0.77
8 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93
4 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

gesa2-o 16 0.94 0.94 0.94 0.94 0.80 0.83 0.81 0.84 0.81 0.83 0.81 0.82
8 0.96 0.96 0.96 0.96 0.91 0.90 0.92 0.89 0.92 0.89 0.92 0.89
4 0.44 0.43 0.39 0.44 0.35 0.34 0.34 0.34 0.34 0.37 0.36 0.36

glass4 16 0.21 0.22 0.23 0.24 0.24 0.25 0.21 0.24 0.22 0.24
5 0.35 0.38 0.34 0.38 0.31 0.33 0.33 0.33 0.31 0.31 0.31 0.31
4 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

harp2 16 0.55 0.57 0.57 0.57 0.65 0.65 0.65 0.65
4 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
4 0.95 0.95 0.95 0.95 0.90 0.88 0.93 0.88 0.90 0.88 0.92 0.90

modglob 16 0.89 0.89 0.89 0.88 0.82 0.83 0.83 0.83 0.83 0.82 0.82 0.82
5 0.93 0.93 0.94 0.94 0.92 0.88 0.91 0.88 0.91 0.88 0.91 0.89
4 0.86 0.89 0.86 0.89 0.86 0.86 0.89 0.90 0.86 0.85 0.91 0.91

noswot 16 0.43
4 0.86 0.89 0.87 0.89 0.86 0.86 0.89 0.90 0.85 0.84 0.91 0.91
4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

opt1217 16 0.45 0.64 0.75 0.75 0.75 0.75 0.75
3 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
4 0.98 0.98 0.98 0.98 0.95 0.94 0.95 0.94 0.96 0.91 0.97 0.94

p2756 16 0.97 0.97 0.97 0.97 0.82 0.82 0.81 0.82 0.88 0.84 0.88 0.86
7 0.98 0.98 0.98 0.98 0.94 0.93 0.91 0.91 0.97 0.96 0.90 0.87
4

pk1 16
3
4 0.97 0.97 0.97 0.97 0.80 0.88 0.85 0.87 0.76 0.75 0.85 0.85

pp08a 16 0.88 0.88 0.88 0.89 0.84 0.84 0.81 0.82
4 0.95 0.96 0.95 0.96 0.87 0.85 0.87 0.87 0.78 0.79 0.81 0.81
4 0.94 0.94 0.94 0.94 0.89 0.82 0.85 0.82 0.78 0.82 0.82 0.82

pp08aCUTS 16 0.88 0.88 0.88 0.88 0.60 0.68 0.65 0.70 0.68 0.73 0.63 0.71
5 0.94 0.94 0.94 0.94 0.80 0.82 0.88 0.82 0.82 0.82 0.80 0.80
4 0.84 0.83 0.89 0.89 0.87 0.80 0.89 0.87 0.87 0.79 0.85 0.73

qiu 16 0.72 0.73 0.73 0.73 0.64
7 0.81 0.80 0.80 0.81 0.57 0.64 0.61 0.65 0.69 0.65 0.65
4 0.63 0.63 0.63 0.63 0.56 0.54 0.56 0.61 0.44 0.52 0.57 0.58

timtab1 16
4 0.63 0.63 0.63 0.63 0.57 0.57 0.57 0.59 0.44 0.51 0.56 0.59
4 0.71 0.71 0.71 0.71 0.66 0.67 0.62 0.68 0.60 0.62 0.61 0.61

timtab2 16
5 0.66 0.67 0.67 0.69 0.57 0.64 0.59 0.59 0.60 0.62 0.61 0.60
4 0.96 0.96 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

tr12-30 16 0.94 0.94 0.93 0.94 0.77 0.78 0.79 0.79 0.77 0.78 0.79 0.79
7 0.95 0.95 0.94 0.95 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90
4 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

vpm2 16 0.83 0.86 0.83 0.82 0.75 0.74 0.77 0.76 0.76 0.73 0.78 0.78
5 0.90 0.91 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.90 0.91 0.89

arithm.mean 0.75 0.75 0.74 0.75 0.67 0.68 0.65 0.65 0.69 0.66 0.62 0.64
quadr. mean 0.80 0.81 0.80 0.81 0.74 0.74 0.73 0.73 0.74 0.73 0.72 0.72

Table 8.13: Results for small inst. to bbd. conc. µboA

XXII

8.3 Computational Tests

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.53 0.53 0.53 0.53
10teams 16

5 0.40 0.53 0.44 0.54
4 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

a1c1s1 16 0.81 0.81 0.81 0.82 0.74 0.79 0.75 0.79 0.71 0.80 0.71 0.80
11 0.84 0.84 0.84 0.85 0.78 0.81 0.79 0.80 0.79 0.82 0.79 0.82
4 0.92 0.94 0.95 0.95 0.95 0.94 0.93 0.94 0.83 0.81 0.83 0.84

arki001 16 0.89 0.90 0.90 0.90 0.63 0.66 0.66
8 0.90 0.90 0.91 0.91 0.87 0.88 0.88 0.86 0.75 0.78 0.74 0.74
4 0.30 0.33

liu 16
8
4 0.78 0.78 0.78 0.78 0.76 0.77 0.77 0.77 0.68 0.68 0.68 0.68

manna81 16 0.70 0.70 0.70 0.70 0.58 0.58 0.58 0.58 0.62 0.62 0.57 0.57
11 0.72 0.71 0.72 0.72 0.60 0.60 0.62 0.62 0.65 0.65 0.65 0.65
4 0.99 0.99 0.99 0.99 0.92 0.93 0.92 0.92 0.92 0.91 0.92 0.91

mkc 16 0.99 0.99 0.99 0.99 0.91 0.91 0.90 0.91 0.90 0.90 0.90 0.90
11 0.99 0.99 0.99 0.99 0.91 0.91 0.90 0.91 0.90 0.90 0.92
4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mod011 16 0.97 0.97 0.98 0.97 0.95 0.96 0.96 0.97 0.95 0.96 0.95 0.96
12 0.97 0.98 0.98 0.98 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.97
4 0.73 0.74 0.73 0.74 0.52 0.52 0.58 0.54 0.52 0.53 0.49

protfold 16 0.46 0.46 0.47 0.47
9 0.62 0.62 0.62 0.62 0.43 0.39 0.48 0.38 0.39
4 0.93 0.93 0.93 0.93 0.72 0.75 0.69 0.80 0.72 0.70 0.76 0.73

roll3000 16 0.82 0.82 0.82 0.84 0.74 0.72 0.78 0.72 0.72 0.67 0.70 0.72
8 0.91 0.91 0.91 0.91 0.77 0.75 0.79 0.67 0.67 0.73 0.74 0.71

arithm.mean 0.71 0.70 0.71 0.70 0.54 0.56 0.55 0.56 0.55 0.54 0.55 0.54
quadr. mean 0.77 0.77 0.78 0.78 0.67 0.68 0.68 0.68 0.66 0.66 0.67 0.65

Table 8.14: Results for medium inst. to bbd. conc. µboA

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.22 0.22 0.21 0.21 0.28 0.28 0.28 0.28 0.31
air04 16 0.15 0.15 0.15 0.14

7 0.19 0.19 0.19 0.22 0.22
4 0.17 0.17 0.17 0.16 0.23

air05 16
6 0.16 0.15 0.15
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cap6000 16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99
4 0.58 0.61 0.63 0.64 0.47 0.49 0.48 0.50 0.45 0.42 0.42 0.40

dano3mip 16 0.47 0.48 0.52 0.53 0.40 0.40 0.41 0.41 0.36 0.36 0.36 0.37
11 0.53 0.53 0.56 0.58 0.38 0.40 0.41 0.42 0.37 0.39 0.40 0.42
4 0.27 0.26 0.25 0.25 0.45 0.45 0.49 0.49

disctom 16 0.25 0.25 0.25 0.22 0.50 0.50
6 0.25 0.26 0.25 0.25
4 0.92 0.93 0.71 0.73 0.71 0.72 0.72 0.72 0.73 0.72

msc98-ip 16 0.79 0.79 0.81 0.82 0.52 0.53 0.53 0.54 0.53 0.53 0.54 0.53
18 0.78 0.79 0.81 0.81 0.52 0.52 0.53 0.53 0.52 0.53
4 0.94 0.96 0.95 0.96 0.26 0.26 0.26 0.24 0.26 0.25 0.24

net12 16 0.80 0.90 0.83 0.91
17 0.80 0.88 0.84 0.90 0.06 0.06 0.06 0.06
4 0.72 0.72 0.73 0.75 0.60 0.63 0.61 0.68 0.57 0.59 0.58 0.65

seymour 16 0.38 0.42 0.41 0.45 0.34 0.31 0.31 0.33
8 0.52 0.58 0.56 0.64 0.44 0.46 0.46 0.48 0.39 0.45 0.42 0.43
4 0.61 0.62 0.61 0.61 0.67 0.67 0.68 0.67 0.68 0.67 0.73 0.73

swath 16
7 0.53 0.54 0.56 0.60 0.59 0.62 0.62 0.65 0.64

arithm.mean 0.49 0.50 0.51 0.53 0.32 0.31 0.35 0.35 0.33 0.35 0.34 0.35
quadr. mean 0.58 0.60 0.61 0.64 0.46 0.46 0.49 0.49 0.47 0.48 0.48 0.49

Table 8.15: Results for big inst. to bbd. conc. µboA

XXIII

8 Appendix

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.99 0.99 0.99 0.99 0.95 0.95 0.91 0.92 0.93 0.93 0.93 0.67
aflow30a 16 0.93 0.81 0.92 0.82 0.83 0.85 0.71 0.70 0.83 0.79 0.72 0.66

6 0.94 0.94 0.90 0.85 0.96 0.97 0.70 0.71 0.92 0.92 0.67 0.65
4 0.95 0.94 0.96 0.97 0.97 0.96 0.96 0.93 0.96 0.96 0.95 0.65

aflow40b 16 0.92 0.92 0.98 0.96 0.89 0.92 0.89 0.89 0.89 0.86 0.85 0.66
8 0.96 0.91 0.96 0.97 0.94 0.94 0.94 0.83 0.93 0.92 0.91 0.64
4 0.91 0.91 0.91 0.87 0.90 0.72 0.88 0.83 0.75 0.53 0.72 0.63

danoint 16 0.86 0.61 0.83 0.78 0.46 0.49 0.42
6 0.92 0.85 0.86 0.85 0.66 0.73 0.65 0.55 0.44 0.48
4 0.88 0.91 0.91 0.93 0.70 0.71 0.84 0.72 0.81 0.84 0.82 0.50

fiber 16 0.63 0.60 0.82 0.66 0.51 0.47
5 0.76 0.77 0.80 0.58 0.70 0.69 0.86 0.84 0.75 0.75 0.61 0.61
4 0.97 0.95 0.99 0.98 0.95 0.95 0.95 0.95 0.92 0.95 0.96 0.91

fixnet6 16 0.91 0.87 0.93 0.85 0.75 0.76 0.81 0.72 0.75 0.76 0.83 0.75
6 0.62 0.80 0.91 0.87 0.91 0.93 0.64 0.65 0.70 0.83 0.79 0.73
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

gesa2 16 0.87 0.94 0.97 0.94 0.82 0.89 0.79 0.85 0.85 0.87 0.80 0.58
8 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 0.96 0.96 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

gesa2-o 16 0.93 0.88 0.92 0.91 0.83 0.88 0.84 0.82 0.83 0.83 0.83 0.81
8 0.93 0.93 0.92 0.92 1.00 0.96 1.00 0.88 1.00 0.88 1.00 0.88
4 0.40 0.41 0.33 0.26 0.39 0.50 0.45 0.41 0.48 0.53 0.46 0.47

glass4 16 0.19 0.18 0.16 0.17 0.14 0.13 0.29 0.17 0.20 0.12
5 0.37 0.26 0.27 0.25 0.42 0.28 0.47 0.36 0.40 0.38 0.40 0.39
4 0.92 0.92 0.92 0.92 0.92 0.92 0.69 0.69 0.83 0.83 0.63 0.63

harp2 16 0.91 0.94 0.96 0.95 0.83 0.83 0.58 0.58
4 0.92 0.92 0.92 0.92 0.92 0.92 0.69 0.69 0.83 0.83 0.63 0.63
4 0.96 0.97 0.95 0.97 0.88 0.93 0.95 0.89 0.87 0.88 0.89 0.83

modglob 16 0.84 0.64 0.80 0.69 0.76 0.78 0.55 0.60 0.79 0.73 0.56 0.58
5 0.90 0.91 0.91 0.85 0.93 0.88 0.93 0.79 0.92 0.87 0.62 0.77
4 0.88 0.67 0.87 0.67 0.81 0.75 0.52 0.49 0.87 0.68 0.45 0.44

noswot 16 0.36
4 0.91 0.67 0.89 0.70 0.85 0.76 0.52 0.51 0.66 0.69 0.45 0.44
4 1.00 1.00 1.00 1.00 1.00 1.00 0.64 0.64 0.85 0.85 0.64 0.64

opt1217 16 0.78 0.79 0.98 0.98 0.98 0.56 0.56
3 1.00 1.00 0.89 0.79 1.00 1.00 0.71 0.71 1.00 1.00 0.71 0.71
4 0.94 0.92 0.95 0.97 0.92 0.89 0.87 0.86 0.92 0.74 0.92 0.66

p2756 16 0.94 0.96 0.93 0.94 0.47 0.48 0.34 0.38 0.55 0.47 0.45 0.42
7 0.92 0.87 0.87 0.85 0.82 0.83 0.73 0.68 0.85 0.68 0.79 0.61
4

pk1 16
3
4 0.96 0.99 0.96 0.96 0.83 0.94 0.67 0.63 0.88 0.83 0.59 0.59

pp08a 16 0.79 0.79 0.79 0.66 0.75 0.69 0.65 0.69
4 0.90 0.65 0.89 0.63 0.84 0.86 0.73 0.79 0.71 0.77 0.69 0.70
4 1.00 1.00 1.00 1.00 0.86 0.77 0.71 0.77 0.89 0.77 0.91 0.79

pp08aCUTS 16 0.88 0.69 0.88 0.88 0.46 0.60 0.58 0.51 0.62 0.74 0.46 0.46
5 1.00 1.00 1.00 1.00 0.89 0.77 0.62 0.77 0.89 0.77 0.80 0.80
4 0.98 0.94 1.00 1.00 0.89 0.94 1.00 0.95 0.93 0.89 1.00 0.91

qiu 16 0.90 0.60 0.85 0.69 0.58
7 0.94 0.91 0.93 0.80 0.65 0.60 0.78 0.71 0.52 0.58 0.41
4 0.76 0.75 0.79 0.77 0.48 0.59 0.64 0.43 0.58 0.57 0.55 0.40

timtab1 16
4 0.76 0.77 0.79 0.77 0.62 0.59 0.63 0.54 0.45 0.64 0.52 0.46
4 0.72 0.71 0.75 0.73 0.58 0.65 0.58 0.72 0.63 0.58 0.50 0.75

timtab2 16
5 0.78 0.65 0.65 0.60 0.59 0.65 0.83 0.63 0.59 0.60 0.51 0.56
4 1.00 1.00 0.99 0.98 0.91 0.93 0.80 0.89 0.90 0.93 0.89 0.89

tr12-30 16 0.94 0.82 0.97 0.90 0.63 0.72 0.63 0.59 0.63 0.72 0.59 0.60
7 0.91 0.92 0.90 0.83 0.89 0.90 0.82 0.84 0.82 0.86 0.73 0.62
4 0.93 0.90 0.93 0.93 0.91 0.91 0.91 0.90 0.90 0.91 0.91 0.91

vpm2 16 0.92 0.77 0.88 0.59 0.69 0.72 0.54 0.53 0.58 0.91 0.55 0.54
5 0.87 0.93 0.89 0.87 0.84 0.85 0.75 0.73 0.81 0.80 0.71 0.68

arithm.mean 0.79 0.75 0.77 0.74 0.68 0.70 0.61 0.59 0.68 0.65 0.56 0.53
quadr. mean 0.84 0.81 0.84 0.80 0.76 0.76 0.69 0.67 0.73 0.72 0.65 0.61

Table 8.16: Results for small inst. to bbd. conc. µblB

XXIV

8.3 Computational Tests

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.97 0.93 0.95 0.95
10teams 16

5 0.85 0.73 0.82 0.74
4 0.94 0.96 0.94 0.95 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

a1c1s1 16 0.87 0.82 0.88 0.88 0.83 0.80 0.81 0.76 0.79 0.79 0.81 0.79
11 0.87 0.81 0.86 0.62 0.82 0.79 0.80 0.85 0.77 0.72 0.67 0.64
4 0.92 0.87 0.96 0.93 0.87 0.86 0.91 0.91 0.83 0.64 0.79 0.61

arki001 16 0.91 0.75 0.93 0.85 0.44 0.40 0.32
8 0.92 0.85 0.97 0.93 0.65 0.67 0.65 0.65 0.50 0.56 0.54 0.49
4 0.42 0.34

liu 16
8
4 0.99 0.99 0.96 0.98 0.96 0.97 0.98 0.94 0.98 0.96 0.96 0.98

manna81 16 0.92 0.92 0.92 0.89 0.94 0.91 0.92 0.93 0.94 0.92 0.94 0.95
11 0.93 0.93 0.89 0.88 0.94 0.90 0.91 0.90 0.87 0.91 0.88 0.88
4 0.98 0.99 0.98 0.99 0.87 0.90 0.77 0.75 0.90 0.83 0.69 0.64

mkc 16 0.92 0.91 0.94 0.93 0.74 0.76 0.71 0.72 0.70 0.69 0.57 0.46
11 0.84 0.79 0.83 0.80 0.74 0.77 0.58 0.60 0.65 0.59 0.52
4 0.89 0.89 0.96 0.96 0.80 0.83 0.85 0.81 0.71 0.70 0.59 0.73

mod011 16 0.67 0.68 0.59 0.72 0.38 0.40 0.39 0.42 0.29 0.40 0.38 0.34
12 0.70 0.68 0.55 0.54 0.48 0.42 0.46 0.51 0.37 0.38 0.35 0.42
4 0.91 0.79 0.97 0.96 0.61 0.66 0.46 0.50 0.56 0.47 0.67

protfold 16 0.84 0.71 0.82 0.67
9 0.92 0.76 0.88 0.77 0.50 0.64 0.40 0.46 0.53
4 0.90 0.89 0.91 0.89 0.86 0.66 0.55 0.59 0.81 0.77 0.85 0.73

roll3000 16 0.74 0.54 0.75 0.64 0.53 0.51 0.51 0.50 0.55 0.50 0.53 0.48
8 0.82 0.78 0.86 0.80 0.72 0.60 0.70 0.57 0.70 0.67 0.67 0.63

arithm.mean 0.76 0.70 0.76 0.71 0.50 0.51 0.47 0.50 0.48 0.48 0.46 0.45
quadr. mean 0.82 0.77 0.82 0.78 0.63 0.62 0.60 0.61 0.60 0.59 0.57 0.56

Table 8.17: Results for medium inst. to bbd. conc. µblB

Algorithm HYPERROW DECOMP. HYPERCOL DECOMPOSING
Metis method PKW RECURSIVE PKW RECURSIVE
Dummy ratio 0% 20% 0% 20% 0% 20% 0% 20%
Weighting scheme un. un. un. un. un. ps. un. ps. un. ps. un. ps.
Instance nBl

4 0.95 0.89 0.91 0.93 0.55 0.60 0.50 0.63 0.41
air04 16 0.68 0.58 0.65 0.61

7 0.80 0.80 0.66 0.52 0.47
4 0.91 0.80 0.91 0.80 0.46

air05 16
6 0.86 0.68 0.46
4 1.00 1.00 1.00 1.00 0.88 0.89 0.80 0.81 0.79 0.79 0.55 0.55

cap6000 16 0.97 0.97 1.00 0.99 0.80 0.82 0.74 0.73 0.68 0.68 0.47 0.47
10 0.98 0.84 0.91 0.83 0.75 0.75 0.70 0.69 0.65 0.66 0.45 0.45
4 0.41 0.36 0.34 0.35 0.39 0.56 0.40 0.54 0.52 0.48 0.15 0.25

dano3mip 16 0.10 0.10 0.10 0.09 0.30 0.32 0.30 0.34 0.23 0.30 0.19 0.26
11 0.15 0.15 0.14 0.10 0.24 0.30 0.28 0.36 0.24 0.30 0.21 0.21
4 0.96 0.96 0.96 1.00 0.14 0.15 0.12 0.12

disctom 16 0.80 0.73 0.68 0.72 0.43 0.39
6 0.84 0.82 0.50 0.63
4 0.29 0.25 0.63 0.62 0.62 0.61 0.59 0.60 0.58 0.63

msc98-ip 16 0.26 0.25 0.20 0.14 0.43 0.39 0.37 0.37 0.36 0.38 0.33 0.37
18 0.24 0.21 0.18 0.15 0.41 0.38 0.38 0.35 0.34 0.37
4 0.95 0.92 0.91 0.92 0.43 0.41 0.42 0.56 0.50 0.58 0.53

net12 16 0.84 0.60 0.76 0.58
17 0.87 0.80 0.72 0.52 0.25 0.21 0.25 0.21
4 0.62 0.66 0.64 0.53 0.63 0.63 0.58 0.67 0.55 0.51 0.53 0.68

seymour 16 0.36 0.26 0.26 0.22 0.26 0.27 0.27 0.25
8 0.53 0.39 0.37 0.28 0.41 0.37 0.33 0.33 0.37 0.35 0.37 0.48
4 0.50 0.60 0.38 0.73 0.36 0.36 0.37 0.37 0.35 0.29 0.24 0.24

swath 16
7 0.64 0.77 0.26 0.23 0.23 0.22 0.22 0.24 0.19

arithm.mean 0.60 0.56 0.52 0.47 0.29 0.28 0.28 0.28 0.26 0.28 0.21 0.22
quadr. mean 0.69 0.65 0.61 0.58 0.41 0.40 0.37 0.39 0.37 0.38 0.30 0.32

Table 8.18: Results for big inst. to bbd. conc. µblB

XXV

8 Appendix

number of blocks requested 2 4 8 16 32 64 128 256
instance #rows #cols #nonz F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec.
25fv47 821 1571 10400 0.97 0.91 0.88 0.855 0.65 0.762 0.73 0.611 0.69 0.524 0.58 0.473 0.45 0.369 0.27 0.285
80bau3b 2262 9799 21002 0.78 0.937 0.62 0.91 0.6 0.88 0.59 0.851 0.56 0.816 0.52 0.77 0.43 0.719 0.41 0.642
adlittle 56 97 383 0.95 0.83 0.59 0.74 0.5 0.633 0.47 0.573 0.35 0.421 0.18 0.273 0.1 0.11 0.03 0.033
afiro 27 32 83 1 0.824 0.77 0.754 0.56 0.616 0.51 0.43 0.33 0.362 0.16 0.166 0 0 0 0
agg 488 163 2410 0.8 0.886 0.74 0.734 0.65 0.474 0.44 0.321 0.27 0.255 0.19 0.202 0.19 0.197 0.18 0.178
agg2 516 302 4284 1 0.852 0.89 0.69 0.71 0.54 0.76 0.48 0.59 0.38 0.53 0.302 0.48 0.25 0.45 0.18
agg3 516 302 4300 1 0.865 1 0.694 0.83 0.534 0.78 0.471 0.66 0.38 0.57 0.318 0.53 0.233 0.5 0.179
bandm 305 472 2494 0.91 0.938 0.77 0.831 0.71 0.782 0.66 0.712 0.58 0.566 0.43 0.516 0.34 0.443 0.34 0.379
beaconfd 173 262 3375 0.73 0.796 0.49 0.742 0.48 0.717 0.46 0.689 0.44 0.636 0.44 0.471 0.38 0.341 0.28 0.278
blend 74 83 491 0.75 0.831 0.75 0.706 0.62 0.622 0.46 0.411 0.29 0.343 0.18 0.251 0 0.13 0 0.075
bnl1 643 1175 5121 0.84 0.906 0.75 0.847 0.69 0.802 0.62 0.746 0.58 0.668 0.52 0.63 0.48 0.527 0.37 0.453
bnl2 2324 3489 13999 0.87 0.928 0.83 0.866 0.78 0.83 0.71 0.787 0.66 0.75 0.6 0.713 0.58 0.673 0.52 0.614
boeing1 351 384 3485 1 0.897 0.73 0.866 0.69 0.788 0.66 0.705 0.62 0.59 0.57 0.469 0.44 0.312 0.34 0.186
boeing2 166 143 1196 0.65 0.768 0.52 0.635 0.39 0.538 0.34 0.401 0.32 0.341 0.25 0.236 0.17 0.079 0.16 0.027
bore3d 233 315 1429 0.85 0.916 0.74 0.8 0.65 0.733 0.62 0.682 0.52 0.632 0.49 0.577 0.41 0.492 0.38 0.408
brandy 220 249 2148 0.8 0.632 0.66 0.582 0.57 0.523 0.49 0.454 0.42 0.386 0.4 0.349 0.34 0.31 0.31 0.24
capri 271 353 1767 0.8 0.889 0.62 0.811 0.59 0.734 0.5 0.616 0.42 0.554 0.34 0.487 0.27 0.409 0.17 0.306
cycle 1903 2857 20720 0.91 0.961 0.8 0.942 0.77 0.853 0.7 0.718 0.66 0.636 0.58 0.589 0.55 0.534 0.41 0.481
czprob 929 3523 10669 0.91 0.96 0.61 0.963 0.57 0.963 0.48 0.957 0.41 0.954 0.43 0.941 0.44 0.925 0.43 0.903
d2q06c 2171 5167 32417 0.94 0.941 0.89 0.887 0.8 0.845 0.79 0.769 0.75 0.697 0.66 0.594 0.52 0.501 0.41 0.435
d6cube 415 6184 37704 0.32 0.518 0.06 0.332 0.04 0.195 0.04 0.132 0.02 0.087 0 0.061 0 0.025 0 0.018
degen2 444 534 3978 0.71 0.837 0.61 0.778 0.5 0.725 0.45 0.64 0.37 0.549 0.29 0.467 0.21 0.398 0.13 0.298
degen3 1503 1818 24646 0.78 0.882 0.6 0.854 0.54 0.793 0.45 0.744 0.34 0.692 0.3 0.632 0.25 0.542 0.2 0.445
dfl001 6071 12230 41873 1 0.91 0.83 0.853 0.76 0.828 0.67 0.786 0.6 0.717 0.57 0.666 0.49 0.616 0.44 0.562
e226 223 282 2578 0.81 0.883 0.71 0.708 0.63 0.634 0.59 0.601 0.46 0.532 0.39 0.448 0.35 0.354 0.34 0.221
etamacro 400 688 2409 0.92 0.858 0.69 0.753 0.62 0.68 0.56 0.58 0.45 0.509 0.4 0.452 0.29 0.379 0.18 0.294
fffff800 524 854 6227 0.83 0.864 0.54 0.789 0.45 0.749 0.34 0.712 0.33 0.653 0.28 0.587 0.28 0.526 0.27 0.474
finnis 497 614 2310 1 0.923 0.87 0.898 0.8 0.869 0.69 0.802 0.66 0.758 0.61 0.702 0.56 0.614 0.45 0.523
fit1p 627 1677 9868 0.6 0.986 0.24 0.985 0.12 0.983 0.12 0.983 0 0.977 0 0.974 0 0.945 0 0.736
fit2p 3000 13525 50284 0.14 0.998 0.24 0.998 0.02 0.998 0.02 0.997 0.02 0.995 0 0.993 0 0.987 0 0.98
forplan 161 421 4563 0.96 0.24 0.88 0.177 0.84 0.151 0.68 0.134 0.62 0.123 0.54 0.116 0.42 0.104 0.35 0.089
ganges 1309 1681 6912 1 0.978 0.92 0.953 0.88 0.907 0.78 0.848 0.74 0.786 0.66 0.675 0.57 0.636 0.48 0.593
gfrd-pnc 616 1092 2377 0.97 0.99 0.87 0.973 0.84 0.95 0.82 0.911 0.79 0.857 0.72 0.794 0.65 0.709 0.52 0.537
greenbea 2392 5405 30877 0.96 0.942 0.83 0.891 0.73 0.855 0.61 0.8 0.57 0.719 0.47 0.689 0.38 0.65 0.26 0.61
greenbeb 2392 5405 30877 1 0.941 0.9 0.893 0.79 0.855 0.66 0.807 0.62 0.729 0.51 0.687 0.41 0.648 0.28 0.609
grow15 300 645 5620 0.97 0.936 0.72 0.822 0.68 0.627 0.6 0.309 0.55 0.053 0 0.042 0 0.031 0 0.021
grow22 440 946 8252 0.66 0.977 0.64 0.886 0.61 0.733 0.52 0.516 0.39 0.062 0.18 0.051 0 0.031 0 0.021
grow7 140 301 2612 0.76 0.872 0.53 0.619 0.49 0.239 0.3 0.066 0 0.041 0 0.047 0 0.024 0 0.025
israel 174 142 2269 0.78 0.731 0.64 0.711 0.53 0.659 0.57 0.605 0.54 0.49 0.33 0.385 0.25 0.322 0.21 0.206
kb2 43 41 286 0.55 0.677 0.52 0.501 0.34 0.404 0.24 0.331 0.18 0.282 0.19 0.101 0 0.068 0 0.031
lotfi 153 308 1078 0.92 0.896 0.65 0.832 0.61 0.719 0.57 0.651 0.49 0.593 0.52 0.525 0.47 0.428 0.4 0.345
maros 846 1443 9614 1 0.94 0.95 0.826 0.87 0.75 0.82 0.622 0.79 0.533 0.71 0.468 0.51 0.412 0.36 0.363
nesm 662 2923 13288 0.87 0.975 0.71 0.89 0.64 0.732 0.57 0.558 0.5 0.441 0.46 0.414 0.44 0.396 0.37 0.386
perold 625 1376 6018 1 0.897 0.83 0.824 0.73 0.716 0.63 0.678 0.55 0.544 0.36 0.481 0.28 0.414 0.21 0.315

Table 8.19: comparison with results of Ferris and Horn (part1)

XXVI

8.3 Computational Tests

number of blocks requested 2 4 8 16 32 64 128 256
instance #rows #cols #nonz F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec. F&H Dec.
pilot 1441 3652 43167 0.75 0.833 0.62 0.715 0.51 0.637 0.37 0.583 0.23 0.528 0.21 0.438 0.15 0.371 0.14 0.306
pilot.ja 940 1988 14698 0.97 0.831 0.74 0.771 0.62 0.742 0.55 0.677 0.46 0.625 0.39 0.564 0.35 0.502 0.29 0.432
pilot.we 722 2789 9126 1 0.93 0.8 0.865 0.72 0.803 0.6 0.719 0.56 0.625 0.4 0.497 0.29 0.402 0.23 0.326
pilot4 410 1000 5141 1 0.885 0.99 0.819 0.77 0.624 0.6 0.57 0.49 0.553 0.44 0.477 0.39 0.453 0.21 0.374
pilot87 2030 4883 73152 0.87 0.745 0.68 0.629 0.51 0.588 0.39 0.55 0.37 0.504 0.23 0.446 0.19 0.408 0.16 0.366
pilotnov 975 2172 13057 0.86 0.872 0.71 0.831 0.65 0.786 0.59 0.689 0.52 0.618 0.44 0.552 0.38 0.501 0.29 0.428
recipe 91 180 663 1 0.849 0.93 0.732 0.9 0.602 0.76 0.559 0.46 0.503 0.26 0.356 0.01 0.253 0 0.076
sc105 105 103 280 0.95 0.947 0.84 0.842 0.76 0.748 0.61 0.636 0.45 0.456 0.32 0.296 0.24 0.131 0.17 0
sc205 205 203 551 1 0.974 0.94 0.921 0.85 0.845 0.72 0.748 0.62 0.637 0.47 0.436 0.37 0.321 0.24 0
sc50a 50 48 130 1 0.878 0.88 0.792 0.78 0.646 0.58 0.457 0.41 0.293 0.25 0.125 0 0 0 0
sc50b 50 48 118 0.92 0.859 0.79 0.792 0.66 0.686 0.56 0.559 0.44 0.369 0.33 0 0 0 0 0
scagr25 471 500 1554 0.97 0.987 0.91 0.961 0.86 0.912 0.85 0.816 0.75 0.746 0.69 0.688 0.62 0.638 0.55 0.495
scagr7 129 140 420 0.87 0.954 0.79 0.849 0.71 0.773 0.63 0.698 0.56 0.649 0.52 0.527 0.46 0.398 0.33 0.198
scfxm1 330 457 2589 1 0.952 0.87 0.851 0.75 0.721 0.65 0.651 0.59 0.577 0.48 0.514 0.38 0.43 0.32 0.326
scfxm2 660 914 5183 1 0.993 1 0.945 0.99 0.846 0.83 0.721 0.72 0.651 0.64 0.575 0.56 0.506 0.45 0.429
scfxm3 990 1371 7777 1 0.979 0.95 0.937 0.89 0.898 0.77 0.8 0.74 0.692 0.62 0.615 0.53 0.55 0.47 0.472
scorpion 388 358 1426 1 0.971 1 0.938 0.97 0.861 0.94 0.818 0.92 0.787 0.87 0.689 0.66 0.459 0.45 0.406
scrs8 490 1169 3182 0.91 0.938 0.8 0.886 0.78 0.835 0.69 0.784 0.62 0.719 0.5 0.683 0.46 0.633 0.43 0.554
scsd1 77 760 2388 0 0.844 0 0.452 0 0.106 0 0 0 0 0 0 0 0 0 0
scsd6 147 1350 4316 0.25 0.863 0.64 0.592 0.17 0.477 0.04 0.159 0.02 0 0.04 0 0 0 0 0
scsd8 397 2750 8584 0.75 0.974 0.92 0.91 0.74 0.78 0.36 0.531 0.1 0.183 0.04 0.03 0.04 0.012 0 0
sctap1 300 480 1692 0.9 0.94 0.81 0.91 0.76 0.85 0.62 0.77 0.55 0.682 0.46 0.587 0.38 0.412 0.15 0.288
sctap2 1090 1880 6714 1 0.964 0.97 0.928 0.91 0.899 0.86 0.871 0.8 0.811 0.72 0.783 0.59 0.706 0.44 0.611
sctap3 1480 2480 8874 1 0.974 0.94 0.943 0.89 0.91 0.83 0.879 0.77 0.848 0.71 0.783 0.61 0.717 0.53 0.634
seba 515 1028 4352 0.26 0.986 0.22 0.971 0.21 0.96 0.2 0.928 0.2 0.9 0.19 0.883 0.17 0.822 0.14 0.749
share1b 117 225 1151 0.78 0.945 0.71 0.773 0.65 0.532 0.53 0.486 0.36 0.349 0.12 0.251 0.13 0.215 0.09 0.167
share2b 96 79 694 0.89 0.898 0.75 0.678 0.72 0.488 0.32 0.288 0.21 0.214 0.16 0.115 0.19 0.046 0.19 0.013
shell 536 1775 3556 0.65 0.956 0.62 0.908 0.6 0.881 0.53 0.83 0.47 0.799 0.44 0.728 0.41 0.666 0.36 0.564
ship04l 402 2118 6332 1 0.768 0.46 0.751 0.19 0.747 0.21 0.733 0.16 0.722 0.11 0.702 0.11 0.677 0.08 0.619
ship04s 402 1458 4352 0.56 0.825 0.47 0.774 0.42 0.749 0.41 0.733 0.38 0.725 0.36 0.696 0.35 0.634 0.34 0.48
ship08l 778 4283 12802 1 0.886 1 0.858 1 0.768 0.73 0.76 0.53 0.751 0.47 0.738 0.4 0.723 0.33 0.706
ship08s 778 2387 7114 0.88 0.91 0.89 0.901 0.82 0.784 0.76 0.753 0.73 0.741 0.7 0.718 0.66 0.68 0.64 0.606
ship12l 1151 5427 16170 1 0.909 0.7 0.901 0.68 0.792 0.59 0.747 0.5 0.746 0.48 0.738 0.44 0.731 0.42 0.692
ship12s 1151 2763 8178 1 0.909 0.98 0.907 0.91 0.849 0.9 0.75 0.87 0.73 0.85 0.7 0.79 0.667 0.79 0.631
sierra 1227 2036 7302 1 0.946 1 0.921 0.88 0.894 0.79 0.843 0.75 0.795 0.77 0.73 0.69 0.668 0.52 0.615
stair 356 467 3856 0.97 0.928 0.85 0.808 0.71 0.667 0.48 0.529 0.34 0.47 0.23 0.418 0.18 0.356 0.15 0.273
standata 359 1075 3031 0.9 0.938 0.77 0.918 0.75 0.841 0.68 0.775 0.66 0.706 0.59 0.674 0.57 0.651 0.54 0.629
standgub 361 1184 3139 0.87 0.929 0.69 0.88 0.67 0.831 0.63 0.77 0.62 0.705 0.58 0.672 0.53 0.66 0.52 0.623
standmps 467 1075 3679 0.86 0.954 0.76 0.882 0.63 0.818 0.56 0.777 0.52 0.749 0.43 0.74 0.46 0.697 0.43 0.485
stocfor1 117 111 447 1 0.919 0.75 0.784 0.65 0.69 0.56 0.574 0.49 0.507 0.43 0.327 0.3 0.158 0.13 0.077
stocfor2 2157 2031 8343 0.9 0.994 0.8 0.98 0.73 0.962 0.73 0.921 0.69 0.836 0.63 0.729 0.55 0.65 0.44 0.602
tuff 333 587 4520 0.78 0.783 0.43 0.726 0.39 0.697 0.32 0.655 0.3 0.603 0.31 0.558 0.27 0.519 0.2 0.322
vtp.base 198 203 908 0.95 0.924 0.8 0.821 0.67 0.748 0.62 0.665 0.53 0.612 0.49 0.546 0.49 0.451 0.36 0.236
wood1p 244 2594 70215 0.05 0.593 0.03 0.512 0.02 0.468 0.02 0.434 0.01 0.336 0.01 0.249 0.01 0.168 0.01 0.117
woodw 1098 8405 37474 1 0.954 0.67 0.95 0.19 0.852 0.14 0.712 0.1 0.61 0.1 0.475 0.05 0.376 0.05 0.282
quadratic mean 0.87 0.89 0.76 0.82 0.67 0.75 0.59 0.67 0.52 0.61 0.45 0.55 0.39 0.49 0.33 0.42

Table 8.20: comparison with results of Ferris and Horn (part2)

XXVII

8 Appendix

XXVIII

8.3 Computational Tests

number of blocks 2 4 8 16 32 64 128 256
instance #rows #cols #nonz
"50v-10" 233 2013 2745 0.93 0.90 0.88 0.83 0.77 0.73 0.57
"a1c1s1" 3312 3648 10178 0.98 0.94 0.92 0.91 0.88 0.81 0.77 0.72
"acc-tight4" 3285 1620 17073 0.86 0.79 0.76 0.72 0.71 0.68 0.59
"acc-tight5" 3052 1339 16134 0.84 0.75 0.68 0.61 0.56 0.51
"acc-tight6" 3047 1335 16108 0.85 0.76 0.68 0.61 0.55 0.51
"aflow40b" 1442 2728 6783 0.98 0.97 0.97 0.95 0.95 0.95 0.93 0.93
"air04" 823 8904 72965 0.36 0.29 0.24 0.18
"ash608gpia-3col" 24748 3651 74244
"atm20-100" 4380 6480 58878 0.97 0.96 0.95 0.92 0.88 0.85 0.81 0.75
"b2c1s1" 3904 3872 11408 0.99 0.98 0.97 0.97 0.96 0.94 0.89 0.86
"beasleyC3" 1750 2500 5000 0.98 0.92 0.88 0.84 0.80 0.75 0.72
"berlin_5_8_0" 1532 1083 4507 0.98 0.93 0.85 0.78 0.71 0.65
"bg512142" 1307 792 3953 0.85 0.63 0.48 0.32
"biella1" 1203 7328 71489 0.91 0.90 0.89 0.85 0.81 0.74
"bienst2" 576 505 2184 0.99 0.99 0.96 0.93 0.90 0.87 0.83 0.73
"binkar10_1" 1026 2298 4496 0.96 0.95 0.95 0.94 0.93 0.91 0.88 0.83
"bnatt350" 4923 3150 19061 0.96 0.94 0.94 0.93 0.92 0.91 0.88 0.84
"bnatt400" 5614 3600 21698
"cov1075" 637 120 14280 0.82 0.63 0.43 0.33
"csched007" 351 1758 6379 0.86 0.63 0.47 0.36
"csched008" 351 1536 5687 0.85 0.64 0.52 0.36
"csched010" 351 1758 6376 0.29 0.26 0.22 0.21 0.22 0.20
"dano3mip" 3202 13873 79655 0.76 0.71 0.68 0.59 0.53 0.49 0.49
"danoint" 664 521 3232 0.86 0.83 0.83 0.75 0.73 0.69 0.61
"dfn-gwin-UUM" 158 938 2632 0.73 0.64 0.62
"dg012142" 6310 2080 14795 0.96 0.90 0.85 0.82 0.78 0.72 0.67
"eil33-2" 32 4516 44243
"eilB101" 100 2818 24120
"enlight13" 169 338 962 0.91 0.79 0.67 0.45
"enlight14" 196 392 1120 0.91 0.82 0.71 0.50
"enlight15" 225 450 1290 0.91 0.84 0.70 0.51
"enlight16" 256 512 1472 0.93 0.85 0.71 0.59
"enlight9" 81 162 450 0.85 0.73 0.46
"f2000" 10500 4000 29500 0.58 0.50 0.47 0.46 0.44 0.43 0.34 0.32
"g200x740i" 940 1480 2960 0.99 0.97 0.96 0.93 0.89 0.85 0.79 0.77
"germany50-DBM" 2526 8189 24479 0.93 0.93 0.93 0.93 0.90 0.84 0.75 0.63
"glass4" 396 322 1815 0.95 0.94 0.93 0.91 0.89 0.82 0.78
"gmu-35-40" 424 1205 4843 0.70 0.67 0.61 0.53
"gmu-35-50" 435 1919 8643 0.62 0.59 0.50 0.42
"go19" 441 441 1885 0.92 0.86 0.75 0.62 0.49
"hanoi5" 16399 3862 39718 0.98 0.94 0.80 0.78 0.73 0.67 0.58 0.44
"harp2" 112 2993 5840 0.68 0.68 0.67 0.55
"ic97_potential" 1046 728 3138 0.98 0.97 0.94 0.92 0.86 0.80 0.75 0.70
"iis-100-0-cov" 3831 100 22986 0.17
"iis-bupa-cov" 4803 345 38392 0.50 0.34 0.28 0.24
"iis-pima-cov" 7201 768 71941 0.71 0.45 0.36 0.29 0.25
"janos-us-DDM" 760 2184 6384 0.90 0.89 0.87 0.85 0.79 0.69 0.58
"k16x240" 256 480 960 0.95 0.94 0.94 0.93 0.91 0.93 0.93
"lectsched-4-obj" 14163 7901 82428 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.94
"liu" 2178 1156 10626 0.92 0.92 0.92 0.92 0.92 0.91 0.88 0.86
"lotsize" 1920 2985 6565 1.00 0.99 0.98 0.96 0.91 0.86 0.82 0.77
"lrsa120" 14521 3839 39956 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.95
"m100n500k4r1" 100 500 2000 0.21 0.20
"macrophage" 3164 2260 9492 0.99 0.99 0.98 0.97 0.95 0.92 0.89 0.85
"markshare_5_0" 5 45 203
"maxgasflow" 7160 7437 19717 1.00 1.00 0.99 0.99 0.99 0.98 0.96 0.93
"mc11" 1920 3040 6080 0.99 0.98 0.97 0.95 0.93 0.89 0.84 0.79
"mcsched" 2107 1747 8088 0.97 0.95 0.94 0.94 0.93 0.92 0.89 0.88
"methanosarcina" 14604 7930 43812 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.96
"mik-250-1-100-1" 151 251 5351 0.30 0.31
"mine-166-5" 8429 830 19412 0.84 0.53 0.42 0.32 0.28
"mine-90-10" 6270 900 15407 0.97 0.83 0.55 0.43 0.34 0.24
"mkc" 3411 5325 17038 0.99 0.99 0.98 0.98 0.97 0.95 0.92 0.89
"msc98-ip" 15850 21143 92918 0.96 0.94 0.92 0.90 0.85 0.83 0.80 0.78
"n3-3" 2425 9028 35380 0.90 0.89 0.87 0.85 0.82 0.80 0.66 0.56
"n3700" 5150 10000 20000 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97
"n3705" 5150 10000 20000 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97
"n370a" 5150 10000 20000 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97

Table 8.21: results for miplib2010 to arrowhead (part 1)

XXIX

8 Appendix

number of blocks 2 4 8 16 32 64 128 256
instance
"n4-3" 1236 3596 14036 0.91 0.90 0.88 0.86 0.83 0.80 0.68 0.61
"n9-3" 2364 7644 30072 0.93 0.93 0.91 0.88 0.88 0.85 0.71 0.60
"nag" 5840 2884 26499 0.95 0.93 0.91 0.90 0.89 0.88 0.85 0.82
"neos-1109824" 28979 1520 89528 0.10 0.16
"neos-1112782" 2115 4140 8145 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.96
"neos-1112787" 1680 3280 6440 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.94
"neos-1171692" 4239 1638 42945 0.98 0.92 0.78 0.79 0.50
"neos-1171737" 4179 2340 58620 0.99 0.96 0.90 0.82 0.73 0.52
"neos-1224597" 3276 3395 25090 0.94 0.94 0.86 0.84 0.80 0.71 0.56 0.45
"neos-1225589" 675 1300 2525 0.97 0.97 0.96 0.97 0.96 0.95 0.94 0.94
"neos-1311124" 1643 1092 7140 0.98 0.96 0.96 0.91 0.80 0.59
"neos-1337307" 5687 2840 30799 0.98 0.95 0.93 0.92 0.89 0.88 0.84 0.76
"neos-1396125" 1494 1161 5511 0.90 0.87 0.83 0.82 0.77 0.72 0.70
"neos-1426635" 796 520 3400 0.96 0.96 0.90 0.80 0.59
"neos-1426662" 1914 832 8048 0.97 0.94 0.98 0.89
"neos-1436709" 1417 676 6214 0.96 0.93 0.94 0.90 0.64
"neos-1440225" 330 1285 14168 0.67 0.51 0.36
"neos-1440460" 989 468 4302 0.93 0.94 0.87
"neos-1442119" 1524 728 6692 0.96 0.97 0.92 0.90 0.63
"neos-1442657" 1310 624 5736 0.96 0.92 0.84 0.70 0.61
"neos15" 552 792 1766 0.99 0.96 0.89 0.82 0.75 0.67 0.59
"neos-1601936" 3131 4446 72500 0.71 0.64 0.60 0.59 0.49 0.46 0.37
"neos-1605061" 3474 4111 93483 0.82 0.54 0.44 0.38 0.34 0.28 0.25
"neos-1605075" 3467 4173 91377 0.81 0.52 0.45 0.38 0.34 0.28
"neos-1616732" 1999 200 3998 0.38 0.33 0.30 0.22
"neos-1620770" 9296 792 19292 1.00 0.92 0.80 0.70 0.20
"neos16" 1018 377 2801 0.95 0.93 0.91 0.90 0.86 0.78
"neos18" 11402 3312 24614 0.98 0.98 0.97 0.97 0.96 0.94 0.94 0.91
"neos-506422" 6811 2527 31815 0.96 0.94 0.92 0.91 0.91 0.90 0.90 0.89
"neos-555424" 2676 3815 15667 0.99 0.98 0.91 0.89 0.87 0.84 0.79 0.71
"neos-686190" 3664 3660 18085 0.95 0.94 0.94 0.93 0.94 0.94 0.93 0.93
"neos-777800" 479 6400 32000 0.48 0.42 0.39 0.37 0.32
"neos-785912" 1714 1380 16610 0.90 0.87 0.86 0.84 0.78 0.74 0.70 0.63
"neos788725" 433 352 4912 0.82 0.69
"neos-807456" 840 1635 4905 0.67 0.55 0.50 0.46 0.39 0.36
"neos-820146" 830 600 3225 0.81 0.79 0.76 0.76 0.72 0.64
"neos-820157" 1015 1200 4875 0.91 0.88 0.87 0.83 0.78 0.74 0.72
"neos-824695" 9576 23970 72590 1.00 0.99 0.99 0.98 0.97 0.96 0.92 0.86
"neos-826650" 2414 5912 20440 0.93 0.93 0.93 0.93 0.92 0.79 0.63 0.51
"neos-826694" 6904 16410 59268 0.98 0.97 0.97 0.96 0.95 0.92 0.86 0.81
"neos-826812" 6844 15864 53808 0.98 0.98 0.98 0.97 0.96 0.94 0.89 0.84
"neos-826841" 2354 5516 18460 0.95 0.95 0.95 0.95 0.95 0.84 0.71 0.56
"neos-847302" 609 737 9566 0.71 0.60 0.48 0.41 0.32
"neos-849702" 1041 1737 19308 0.70 0.65 0.59 0.55 0.53 0.31
"neos858960" 132 160 2770 0.65 0.65 0.64 0.61 0.55
"neos-911880" 83 888 2568 0.62 0.62
"neos-935627" 7859 10301 40476 0.79 0.78 0.72 0.71 0.71 0.69 0.62 0.59
"neos-935769" 6741 9799 36447 0.77 0.77 0.70 0.69 0.68 0.66 0.60 0.56
"neos-937511" 8158 11332 44237 0.81 0.81 0.75 0.73 0.72 0.71 0.65 0.60
"neos-937815" 9251 11646 48013 0.81 0.81 0.76 0.75 0.73 0.72 0.66 0.62
"neos-941262" 6703 9480 35659 0.77 0.76 0.70 0.69 0.67 0.65 0.61 0.56
"neos-942830" 803 882 13290 0.84 0.55 0.39 0.25 0.19
"neos-948126" 7271 9551 38219 0.79 0.78 0.73 0.70 0.69 0.67 0.62 0.58
"neos-952987" 354 31329 90384 0.44 0.55 0.52
"neos-984165" 6962 8883 36742 0.81 0.79 0.73 0.71 0.68 0.66 0.62 0.58
"net12" 14021 14115 80384 0.94 0.93 0.90 0.89 0.87 0.86 0.86 0.86
"newdano" 576 505 2184 0.91 0.90 0.89 0.86 0.80 0.74 0.67
"nobel-eu-DBE" 879 3771 11313 0.91 0.91 0.90 0.90 0.89
"noswot" 182 128 735 0.89 0.87 0.65 0.58 0.38
"ns1208400" 4289 2883 81746 0.33 0.26 0.24 0.23 0.13 0.07 0.05
"ns1606230" 3503 4173 92133 0.80 0.51 0.45 0.40 0.33 0.29 0.25
"ns1686196" 4055 2738 68529 0.85 0.80 0.76 0.70 0.65 0.62 0.61 0.59
"ns1688347" 4191 2685 66908 0.87 0.80 0.75 0.70 0.65 0.61 0.59 0.56
"ns1702808" 1474 804 5856 0.99 0.95 0.85 0.81 0.79 0.77 0.76 0.75
"ns1745726" 4687 3208 90278 0.85 0.77 0.71 0.67 0.63 0.59 0.58
"ns1766074" 182 100 666 0.85 0.83 0.80 0.77 0.70
"ns1778858" 10666 4720 32673 0.99 0.99 0.99 0.99 0.97 0.93 0.90 0.83
"ns1905800" 8289 3228 38100 0.97 0.91 0.91 0.89 0.87 0.87 0.86 0.85

Table 8.22: results for miplib2010 to arrowhead (part 2)

XXX

8.3 Computational Tests

number of blocks 2 4 8 16 32 64 128 256
instance
"ns4-pr3" 2210 8601 25986 0.95 0.95 0.94 0.92 0.89 0.86 0.68 0.59
"ns4-pr9" 2220 7350 22176 0.96 0.96 0.96 0.93 0.90 0.86 0.72 0.63
"ns894236" 8218 9666 41067 0.98 0.98 0.97 0.96 0.93 0.86 0.79 0.69
"ns894244" 12129 21856 90864 0.98 0.98 0.97 0.96 0.94 0.90 0.80 0.73
"ns894788" 2279 3463 14381 0.96 0.94 0.91 0.85 0.77 0.69 0.63
"ns903616" 18052 21582 91641 0.99 0.98 0.98 0.97 0.97 0.93 0.89 0.80
"nu120-pr3" 2210 8601 25986 0.95 0.95 0.94 0.92 0.89 0.86 0.68 0.59
"nu60-pr9" 2220 7350 22176 0.96 0.96 0.96 0.93 0.90 0.86 0.72 0.63
"opm2-z7-s2" 31798 2023 79762 0.69 0.54 0.41 0.37 0.34 0.31 0.28
"p100x588b" 688 1176 2352 1.00 0.99 0.98 0.96 0.94 0.90 0.85 0.83
"p2m2p1m1p0n100" 1 100 100
"p6b" 5852 462 11704 0.72 0.53 0.36 0.26
"p80x400b" 480 800 1600 0.99 0.99 0.98 0.95 0.91 0.88 0.83
"pg5_34" 225 2600 7700 0.90 0.90 0.89 0.86 0.58
"pg" 125 2700 5200 0.82 0.82 0.81 0.79
"pigeon-10" 931 490 8150 0.65 0.62 0.60 0.57 0.46
"pigeon-11" 1123 572 9889 0.67 0.64 0.62 0.57 0.52
"pigeon-12" 1333 660 11796 0.68 0.66 0.64 0.61 0.59 0.57
"pigeon-13" 1561 754 13871 0.70 0.68 0.66 0.66 0.56 0.53
"pigeon-19" 3307 1444 29849 0.75 0.75 0.74 0.73 0.69 0.63 0.55
"probportfolio" 302 320 6620 0.94 0.94 0.94 0.94 0.92 0.84
"protfold" 2112 1835 23491 0.79 0.71 0.61 0.52 0.40 0.31
"pw-myciel4" 8164 1059 17779 0.98 0.95 0.90 0.75 0.56 0.50 0.39
"qiu" 1192 840 3432 0.95 0.95 0.94 0.94 0.93 0.92 0.82 0.81
"queens-30" 960 900 93440
"r80x800" 880 1600 3200 0.97 0.96 0.95 0.94 0.93 0.91 0.90 0.87
"ramos3" 2187 2187 32805 0.45 0.22 0.14 0.08
"ran14x18-disj-8" 447 504 10277 0.79 0.71 0.70 0.61 0.61 0.57
"ran14x18" 284 504 1008 0.96 0.94 0.90 0.88 0.88 0.86 0.90
"ran16x16" 288 512 1024 0.93 0.92 0.90 0.89 0.88 0.86 0.84
"reblock166" 17024 1660 39442 0.98 0.79 0.53 0.40 0.30 0.25
"reblock354" 19906 3540 52901 0.97 0.79 0.68 0.58 0.50 0.42 0.37
"reblock67" 2523 670 7495 0.94 0.82 0.65 0.56 0.52 0.42
"rmatr100-p10" 7260 7359 21877 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.95
"rmatr100-p5" 8685 8784 26152 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.96
"rmatr200-p20" 29406 29605 88415 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
"rmine6" 7078 1096 18084 0.91 0.75 0.69 0.59 0.49 0.45
"rococoB10-011000" 1667 4456 16517 0.93 0.92 0.94 0.91 0.86 0.73 0.67
"rococoC10-001000" 1293 3117 11751 0.93 0.92 0.93 0.92 0.92 0.75 0.69
"rococoC11-011100" 2367 6491 30472 0.94 0.93 0.91 0.90 0.86 0.75 0.67
"rococoC12-111000" 10776 8619 48920 0.98 0.98 0.98 0.97 0.96 0.98 0.92 0.90
"roll3000" 2295 1166 29386 0.82 0.74 0.70 0.64 0.54 0.48
"satellites1-25" 5996 9013 59023 0.94 0.91 0.88 0.75 0.70 0.66 0.64 0.61
"set3-10" 3747 4019 13747 0.98 0.93 0.91 0.89 0.87 0.81 0.77 0.72
"set3-15" 3747 4019 13747 0.98 0.93 0.91 0.89 0.87 0.81 0.77 0.71
"set3-20" 3747 4019 13747 0.98 0.93 0.91 0.89 0.87 0.81 0.77 0.71
"seymour" 4944 1372 33549 0.84 0.75 0.62 0.55 0.49
"seymour-disj-10" 5108 1209 64704 0.55 0.48 0.43 0.40 0.35
"sp98ir" 1531 1680 71704 0.73 0.61 0.60 0.60 0.57 0.56 0.53
"sts405" 27270 405 81810
"swath" 884 6805 34965 0.88 0.89 0.88 0.88 0.81 0.79 0.57 0.44
"tanglegram2" 8980 4714 26940 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.97
"timtab1" 171 397 829 0.96 0.94 0.92 0.88 0.84 0.80
"toll-like" 4408 2883 13224 0.98 0.98 0.97 0.96 0.95 0.93 0.91 0.87
"transportmoment" 9616 9685 29541 1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.91
"tw-myciel4" 8146 760 27961 0.47 0.20 0.15 0.12
"uct-subprob" 1973 2256 10147 0.96 0.93 0.90 0.88 0.85 0.83 0.80 0.78
"umts" 4465 2947 23016 0.98 0.97 0.97 0.96 0.95 0.92 0.90 0.88
"usAbbrv-8-25_70" 3291 2312 9628 0.98 0.94 0.91 0.88 0.84 0.80 0.76 0.72
"wachplan" 1553 3361 89361 0.50 0.46 0.41 0.39 0.34
"zib54-UUE" 1809 5150 15288 0.96 0.96 0.96 0.96 0.96 0.88 0.81 0.74
quadratic mean 0.86 0.82 0.78 0.75 0.70 0.65 0.59 0.51

Table 8.23: results for miplib2010 to arrowhead (part 3)

XXXI

8 Appendix

number of blocks 2 4 8 16 32 64 128 256
instance #rows #cols #nonz
"50v-10" 233 2013 2745 0.93 0.90 0.89 0.86 0.83 0.64
"a1c1s1" 3312 3648 10178 0.98 0.93 0.86 0.81 0.77 0.71 0.65
"acc-tight4" 3285 1620 17073 0.79 0.71 0.67 0.60 0.54 0.48 0.42
"acc-tight5" 3052 1339 16134 0.79 0.71 0.66 0.55 0.48 0.42
"acc-tight6" 3047 1335 16108 0.79 0.71 0.65 0.55 0.48 0.43 0.36
"aflow40b" 1442 2728 6783 0.97 0.97 0.97 0.96 0.94 0.94 0.93 0.93
"air04" 823 8904 72965 0.31 0.27 0.24 0.17
"ash608gpia-3col" 24748 3651 74244
"atm20-100" 4380 6480 58878 0.98 0.94 0.88 0.84 0.79 0.73 0.67
"b2c1s1" 3904 3872 11408 0.99 0.98 0.98 0.97 0.96 0.92 0.88 0.84
"beasleyC3" 1750 2500 5000 0.97 0.80 0.71 0.60
"berlin_5_8_0" 1532 1083 4507 0.97 0.94 0.89 0.82 0.77
"bg512142" 1307 792 3953 0.84 0.60 0.45 0.36
"biella1" 1203 7328 71489 0.87 0.82 0.78 0.77 0.76
"bienst2" 576 505 2184 0.99 0.98 0.96 0.93 0.90 0.86 0.81 0.72
"binkar10_1" 1026 2298 4496 0.84 0.70 0.64 0.61 0.56 0.52
"bnatt350" 4923 3150 19061 0.84 0.72 0.66 0.62 0.58 0.54
"bnatt400" 5614 3600 21698
"cov1075" 637 120 14280 0.80 0.56 0.42 0.36 0.28
"csched007" 351 1758 6379 0.78 0.54 0.40 0.34
"csched008" 351 1536 5687 0.85 0.61 0.50 0.40
"csched010" 351 1758 6376 0.31 0.30 0.28 0.28 0.28 0.18
"dano3mip" 3202 13873 79655 0.67 0.60 0.55 0.47
"danoint" 664 521 3232 0.81 0.76 0.72 0.67 0.69
"dfn-gwin-UUM" 158 938 2632 0.73 0.65 0.62
"dg012142" 6310 2080 14795 0.96 0.94 0.90 0.85 0.81 0.79 0.77
"eil33-2" 32 4516 44243
"eilB101" 100 2818 24120
"enlight13" 169 338 962 0.86 0.74 0.55
"enlight14" 196 392 1120 0.87 0.76 0.59
"enlight15" 225 450 1290 0.88 0.78 0.63
"enlight16" 256 512 1472 0.89 0.80 0.63
"enlight9" 81 162 450 0.80 0.63
"f2000" 10500 4000 29500 0.62 0.45 0.38 0.35 0.34 0.31 0.28 0.26
"g200x740i" 940 1480 2960 0.99 0.97 0.95 0.93 0.89 0.84 0.77 0.75
"germany50-DBM" 2526 8189 24479 0.93 0.93 0.93 0.93 0.90 0.84 0.77 0.66
"glass4" 396 322 1815 0.66 0.41 0.28 0.22
"gmu-35-40" 424 1205 4843 0.98 0.95 0.86 0.73
"gmu-35-50" 435 1919 8643 0.96 0.92 0.78 0.70 0.61
"go19" 441 441 1885 0.92 0.86 0.73 0.62 0.50
"hanoi5" 16399 3862 39718 0.99 0.97 0.93 0.85 0.76 0.65 0.55
"harp2" 112 2993 5840 0.68 0.68 0.68 0.61 0.35
"ic97_potential" 1046 728 3138 0.98 0.93 0.87 0.81
"iis-100-0-cov" 3831 100 22986
"iis-bupa-cov" 4803 345 38392
"iis-pima-cov" 7201 768 71941
"janos-us-DDM" 760 2184 6384 0.90 0.89 0.88 0.85 0.83 0.72
"k16x240" 256 480 960 0.95 0.94 0.94 0.93 0.93 0.90 0.88
"lectsched-4-obj" 14163 7901 82428 0.72 0.56 0.43 0.36 0.31
"liu" 2178 1156 10626 0.58
"lotsize" 1920 2985 6565 0.99 0.99 0.98 0.96 0.91 0.85 0.82 0.77
"lrsa120" 14521 3839 39956 0.76 0.63 0.55 0.52 0.50
"m100n500k4r1" 100 500 2000 0.21 0.17 0.16
"macrophage" 3164 2260 9492 0.99 0.96 0.94 0.88 0.79
"markshare_5_0" 5 45 203
"maxgasflow" 7160 7437 19717 1.00 1.00 0.99 0.99 0.98 0.98 0.95 0.89
"mc11" 1920 3040 6080 0.99 0.98 0.97 0.95 0.93 0.89 0.82 0.78
"mcsched" 2107 1747 8088 0.96 0.94 0.85 0.79 0.75 0.69 0.63
"methanosarcina" 14604 7930 43812 0.82 0.57 0.40 0.28
"mik-250-1-100-1" 151 251 5351 0.40 0.38 0.36 0.36
"mine-166-5" 8429 830 19412 0.95 0.78 0.69 0.55
"mine-90-10" 6270 900 15407 0.99 0.93 0.77 0.66 0.53
"mkc" 3411 5325 17038 0.99 0.99 0.99 0.98 0.97 0.95 0.91 0.89
"msc98-ip" 15850 21143 92918 0.92 0.86 0.79 0.75 0.70 0.66 0.59
"n3-3" 2425 9028 35380 0.91 0.91 0.89 0.88 0.86 0.84 0.70 0.60
"n3700" 5150 10000 20000 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.95
"n3705" 5150 10000 20000 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.96
"n370a" 5150 10000 20000 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.96

Table 8.24: results for miplib2010 to bordered block diagonal (part1)

XXXII

8.3 Computational Tests

number of blocks 2 4 8 16 32 64 128 256
instance
"n4-3" 1236 3596 14036 0.92 0.91 0.91 0.90 0.89 0.88 0.74 0.67
"n9-3" 2364 7644 30072 0.93 0.93 0.93 0.92 0.91 0.86 0.78 0.65
"nag" 5840 2884 26499 0.72 0.55 0.44 0.39 0.33 0.32 0.29 0.27
"neos-1109824" 28979 1520 89528 1.00 1.00 0.57 0.37 0.24 0.16 0.11 0.09
"neos-1112782" 2115 4140 8145 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96
"neos-1112787" 1680 3280 6440 0.98 0.98 0.98 0.98 0.97 0.97 0.96 0.96
"neos-1171692" 4239 1638 42945 0.98 0.97 0.97 0.87 0.75
"neos-1171737" 4179 2340 58620 0.99 0.98 0.96 0.94 0.94 0.43
"neos-1224597" 3276 3395 25090 0.96 0.94 0.87 0.87 0.84
"neos-1225589" 675 1300 2525 0.97 0.97 0.97 0.96 0.95 0.95 0.94 0.94
"neos-1311124" 1643 1092 7140 0.99 0.98 0.98 0.96 0.96 0.73
"neos-1337307" 5687 2840 30799 0.97 0.95 0.94 0.94 0.92 0.87 0.80
"neos-1396125" 1494 1161 5511 0.85 0.80 0.77 0.78 0.73 0.58
"neos-1426635" 796 520 3400 0.98 0.98 0.93 0.94 0.70
"neos-1426662" 1914 832 8048 0.99 0.98 0.98 0.95 0.94
"neos-1436709" 1417 676 6214 0.99 0.98 0.95 0.92 0.84 0.61
"neos-1440225" 330 1285 14168 0.55 0.51 0.38
"neos-1440460" 989 468 4302 0.98 0.97 0.94 0.93 0.69
"neos-1442119" 1524 728 6692 0.99 0.97 0.98 0.91 0.86
"neos-1442657" 1310 624 5736 0.98 0.97 0.94 0.95 0.78
"neos15" 552 792 1766 0.98 0.95 0.87 0.81 0.75 0.67 0.54
"neos-1601936" 3131 4446 72500 0.74 0.67 0.64 0.52 0.37
"neos-1605061" 3474 4111 93483 0.68 0.47 0.43 0.40 0.28
"neos-1605075" 3467 4173 91377 0.68 0.52 0.47 0.40 0.32
"neos-1616732" 1999 200 3998 0.67 0.49
"neos-1620770" 9296 792 19292 1.00 0.98 0.98 0.88 0.75
"neos16" 1018 377 2801 0.84 0.76 0.69 0.59 0.50 0.43
"neos18" 11402 3312 24614 0.93 0.86 0.81 0.79 0.76 0.70 0.61 0.52
"neos-506422" 6811 2527 31815 0.71 0.55 0.45 0.39 0.35
"neos-555424" 2676 3815 15667 0.99 0.98 0.94 0.91 0.91 0.89 0.80 0.68
"neos-686190" 3664 3660 18085 0.61 0.40
"neos-777800" 479 6400 32000 0.51 0.42 0.41 0.37 0.34
"neos-785912" 1714 1380 16610 0.90 0.88 0.87 0.84 0.80 0.77
"neos788725" 433 352 4912 0.83 0.74 0.71
"neos-807456" 840 1635 4905 0.64 0.54 0.49 0.45 0.41 0.36
"neos-820146" 830 600 3225 0.89 0.85
"neos-820157" 1015 1200 4875 0.89 0.86
"neos-824695" 9576 23970 72590 1.00 0.99 0.99 0.99 0.97 0.95 0.91 0.77
"neos-826650" 2414 5912 20440 0.93 0.93 0.93 0.93 0.93 0.76 0.68 0.65
"neos-826694" 6904 16410 59268 0.98 0.97 0.97 0.96 0.95 0.91 0.83 0.71
"neos-826812" 6844 15864 53808 0.98 0.98 0.97 0.96 0.96 0.91 0.83 0.71
"neos-826841" 2354 5516 18460 0.95 0.95 0.95 0.95 0.95 0.78 0.69 0.66
"neos-847302" 609 737 9566 0.64 0.57 0.52 0.52
"neos-849702" 1041 1737 19308 0.70 0.65 0.61 0.58 0.56
"neos858960" 132 160 2770 0.69 0.66 0.64 0.63 0.61 0.59
"neos-911880" 83 888 2568 0.62 0.62 0.34
"neos-935627" 7859 10301 40476 0.96 0.95 0.88 0.86 0.85 0.83 0.77 0.71
"neos-935769" 6741 9799 36447 0.95 0.94 0.86 0.85 0.84 0.82 0.75
"neos-937511" 8158 11332 44237 0.95 0.94 0.87 0.87 0.85 0.84 0.77 0.72
"neos-937815" 9251 11646 48013 0.96 0.95 0.88 0.88 0.86 0.84 0.77 0.75
"neos-941262" 6703 9480 35659 0.95 0.93 0.86 0.85 0.83 0.80 0.74
"neos-942830" 803 882 13290 0.81 0.65 0.38 0.21
"neos-948126" 7271 9551 38219 0.96 0.94 0.87 0.84 0.83 0.80 0.75 0.70
"neos-952987" 354 31329 90384
"neos-984165" 6962 8883 36742 0.96 0.94 0.87 0.85 0.83 0.80 0.75 0.71
"net12" 14021 14115 80384 0.96 0.96 0.96 0.87 0.74
"newdano" 576 505 2184 0.86 0.81 0.78 0.77 0.77
"nobel-eu-DBE" 879 3771 11313 0.91 0.91 0.89 0.90 0.86
"noswot" 182 128 735 0.94 0.82 0.70
"ns1208400" 4289 2883 81746 0.77 0.69 0.64 0.60 0.58
"ns1606230" 3503 4173 92133 0.68 0.51 0.47 0.42 0.33 0.27
"ns1686196" 4055 2738 68529 0.89 0.72 0.62 0.51
"ns1688347" 4191 2685 66908 0.92 0.84 0.76 0.68 0.59 0.48
"ns1702808" 1474 804 5856 0.99 0.92 0.83
"ns1745726" 4687 3208 90278 0.89 0.72 0.59 0.49
"ns1766074" 182 100 666 0.59 0.35
"ns1778858" 10666 4720 32673 0.99 0.99 0.99 0.99 0.97 0.90 0.79
"ns1905800" 8289 3228 38100 0.94

Table 8.25: results for miplib2010 to bordered block diagonal (part2)

XXXIII

8 Appendix

number of blocks 2 4 8 16 32 64 128 256
instance
"ns2081729" 1190 661 5680 0.84 0.68 0.39
"ns2122603" 24754 19300 77044 1.00 0.99 0.97 0.94 0.90 0.88 0.86 0.83
"ns4-pr3" 2210 8601 25986 0.95 0.94 0.94 0.92 0.89 0.85 0.71 0.59
"ns4-pr9" 2220 7350 22176 0.96 0.96 0.96 0.93 0.90 0.85 0.75 0.64
"ns894236" 8218 9666 41067 0.98 0.98 0.96 0.94 0.88 0.80 0.70 0.62
"ns894244" 12129 21856 90864 0.98 0.97 0.96 0.95 0.91 0.83 0.71 0.62
"ns894788" 2279 3463 14381 0.95 0.93 0.86 0.78 0.70 0.64
"ns903616" 18052 21582 91641 0.99 0.98 0.97 0.95 0.94 0.89 0.80 0.69
"nu120-pr3" 2210 8601 25986 0.95 0.94 0.94 0.92 0.89 0.85 0.71 0.60
"nu60-pr9" 2220 7350 22176 0.96 0.96 0.96 0.93 0.90 0.85 0.75 0.64
"opm2-z7-s2" 31798 2023 79762 0.81 0.69 0.55 0.45
"p100x588b" 688 1176 2352 1.00 0.99 0.97 0.96 0.90 0.89 0.83 0.83
"p2m2p1m1p0n100" 1 100 100
"p6b" 5852 462 11704 0.84 0.69 0.56
"p80x400b" 480 800 1600 0.99 0.98 0.98 0.94 0.90 0.87 0.82
"pg5_34" 225 2600 7700 0.90 0.90 0.89 0.86 0.46
"pg" 125 2700 5200 0.82 0.82 0.81 0.79 0.79
"pigeon-10" 931 490 8150 0.61
"pigeon-11" 1123 572 9889 0.61
"pigeon-12" 1333 660 11796 0.62 0.40
"pigeon-13" 1561 754 13871 0.63
"pigeon-19" 3307 1444 29849 0.63
"probportfolio" 302 320 6620
"protfold" 2112 1835 23491 0.80 0.76 0.65 0.49 0.36
"pw-myciel4" 8164 1059 17779 0.99 0.98 0.97 0.87 0.79
"qiu" 1192 840 3432 0.89 0.84 0.80 0.71 0.64 0.60
"queens-30" 960 900 93440
"r80x800" 880 1600 3200 0.96 0.96 0.95 0.94 0.93 0.90 0.89 0.87
"ramos3" 2187 2187 32805 0.45 0.23 0.16 0.12
"ran14x18-disj-8" 447 504 10277 0.79 0.75 0.72 0.62 0.61 0.60 0.56
"ran14x18" 284 504 1008 0.96 0.95 0.89 0.88 0.88 0.86 0.84
"ran16x16" 288 512 1024 0.95 0.93 0.92 0.89 0.86 0.86 0.84
"reblock166" 17024 1660 39442 0.99 0.94 0.77 0.67 0.55
"reblock354" 19906 3540 52901 0.96 0.93 0.83 0.75 0.65
"reblock67" 2523 670 7495 0.94 0.89 0.75 0.65 0.55
"rmatr100-p10" 7260 7359 21877 0.72 0.61 0.55 0.51 0.48 0.44
"rmatr100-p5" 8685 8784 26152 0.72 0.59 0.54 0.50 0.47 0.44
"rmatr200-p20" 29406 29605 88415 0.71 0.59 0.53 0.50 0.49 0.48 0.42
"rmine6" 7078 1096 18084 0.95 0.88 0.78 0.71 0.60
"rococoB10-011000" 1667 4456 16517 0.94 0.92 0.92 0.92 0.87 0.76
"rococoC10-001000" 1293 3117 11751 0.92 0.93 0.92 0.89 0.87 0.78
"rococoC11-011100" 2367 6491 30472 0.95 0.93 0.92 0.91 0.87 0.81 0.70
"rococoC12-111000" 10776 8619 48920 0.95 0.94 0.90 0.89 0.88 0.88 0.55 0.37
"roll3000" 2295 1166 29386 0.93 0.93 0.90 0.82 0.61 0.53
"satellites1-25" 5996 9013 59023 0.82 0.73 0.65 0.63 0.57 0.52 0.48
"set3-10" 3747 4019 13747 0.98 0.94 0.89 0.86 0.81 0.71 0.63
"set3-15" 3747 4019 13747 0.98 0.94 0.89 0.85 0.81 0.71 0.63
"set3-20" 3747 4019 13747 0.98 0.94 0.89 0.86 0.80 0.71 0.63
"seymour" 4944 1372 33549 0.90 0.71 0.60 0.42 0.32 0.21
"seymour-disj-10" 5108 1209 64704 0.89 0.68 0.51 0.37
"sp98ir" 1531 1680 71704 0.87 0.85 0.85 0.84 0.83 0.82 0.80 0.78
"sts405" 27270 405 81810 0.32 0.29
"swath" 884 6805 34965 0.74 0.62 0.54 0.50
"tanglegram2" 8980 4714 26940 0.77 0.64 0.47 0.36
"timtab1" 171 397 829 0.82 0.65 0.55
"toll-like" 4408 2883 13224 0.96 0.93 0.86 0.77 0.65
"transportmoment" 9616 9685 29541 1.00 1.00 1.00 0.99 0.98 0.97 0.94 0.86
"tw-myciel4" 8146 760 27961 0.85 0.54 0.32 0.21
"uct-subprob" 1973 2256 10147 0.84 0.75 0.65 0.53 0.43
"umts" 4465 2947 23016 0.95 0.94 0.92 0.88 0.71 0.53 0.42
"usAbbrv-8-25_70" 3291 2312 9628 0.96 0.85 0.76 0.66 0.58
"wachplan" 1553 3361 89361 0.67 0.50 0.38
"zib54-UUE" 1809 5150 15288 0.96 0.96 0.96 0.96 0.96 0.89 0.79 0.74

0.85 0.79 0.73 0.68 0.63 0.52 0.45 0.36

Table 8.26: results for miplib2010 to bordered block diagonal (part3)

XXXIV

8.3 Computational Tests

XXXV

8 Appendix

IPA IPAR IPAC
Instance lc. gap nNodes time gap nNodes time gap nNodes time
bell3a LO 0% 2 2.52 0% 1 0.44 0% 1 0.49

ME 0% 19 8.18 0% 15 8.96 0% 9 4.27
TI 0% 73 18.88 0% 46 21.76 0% 58 19.85

bell5 LO 0% 2 1.83 0% 1 0.42 0% 1 1.59
ME 0% 3 2.41 0% 12 4.55 0% 21 5.49
TI 0% 6 2.72 0% 21 6.71 0% 23 7.27

bm23 LO 0% 462 15.64 0% 345 17.19 0% 109 15.18
ME infeas. 1 0.06 infeas. 1 0.08 infeas. 1 0.07
TI infeas. 1 0.07 infeas. 1 0.04 infeas. 1 0.06

egout LO 0% 13 4.66 0% 7 2.7 0% 12 5.57
ME 0% 14 4.8 0% 9 4.45 0% 11 5.32
TI 0% 10 3.93 0% 13 5.13 0% 12 8.24

enigma LO 0% 2913 20.86 0% 54 8.26 0% 804 13.14
ME 0% 37 6.05 0% 27 3.96 0% 26 5.65
TI 0% 17 5.89 0% 21 6.73 0% 25 9.89

fixnet3 LO 0% 1 42.41 0% 1 27.67 0% 1 48.87
ME 0% 1939 649.17 0% 1638 885.26 0% 5816 1733.59
TI 0% 2564 1151.11 0% 1119 498.19 0% 2278 734.75

flugpl LO 0% 1 0.04 0% 5 0.1 0% 1 0.03
ME 0% 1 0.03 0% 4 0.14 0% 1 0.04
TI 0% 1 0.04 0% 4 0.09 0% 1 0.05

gt2 LO 0% 144 13.68 0% 72 13.24 0% 60 13.52
ME 0% 283 15.9 0% 132 15.26 0% 228 17.3
TI 0% 361 39.26 0% 716 45.97 0% 374 33.43

khb05250 LO 0% 1 5.45 0% 1 5.65 0% 1 47.47
ME 394% 2204 1800.68 374% 2717 1800.02 372% 2633 1800.02
TI 1e+20 350 1800.06 1e+20 564 1800.05 1e+20 592 1800.08

lseu LO 0% 3 1.23 0% 1 0.87 0% 5 1.63
ME 0% 24 6.07 0% 18 4.56 0% 22 5.64
TI 0% 3 3.64 0% 9 5.93 0% 3 5.3

markshare1 LO 0% 1 0.09 0% 1 0.1 0% 1 0.12
ME infeas. 1 0.04 infeas. 1 0.04 infeas. 1 0.04
TI infeas. 1 0.05 infeas. 1 0.04 infeas. 1 0.04

markshare2 LO 0% 1 0.11 0% 1 0.16 0% 1 0.14
ME infeas. 1 0.06 infeas. 1 0.06 infeas. 1 0.05
TI infeas. 1 0.04 infeas. 1 0.06 infeas. 1 0.06

misc01 LO 0% 271 22.89 0% 13 11.16 0% 19 13.97
ME 0% 24769 568.64 0% 18387 426.66 0% 15040 411.63
TI 0% 5 14.5 0% 5 13.15 0% 5 14.87

mod008 LO 0% 1576 44.63 0% 708 45.38 0% 144 53.3
ME 0% 276 62.78 0% 85 41.51 0% 1281 99.93
TI infeas. 1 0.14 infeas. 1 0.14 infeas. 1 0.17

neos858960 LO 0% 2 17.69 0% 1 2.7 0% 1 2.75
ME 0% 6488 1262.6 0% 4426 1003.13 0% 4321 864.61
TI 0% 1187 1328.04 0% 853 1156.81 0% 965 1227.43

noswot LO 0% 852 44.83 0% 148 30.14 0% 249 35.55
ME 0% 370 36.71 0% 362 42.91 0% 212 40.71
TI 48% 57281 1800 53% 48395 1800 45% 60318 1800

p0033 LO 0% 1 0.06 0% 1 0.1 0% 1 0.07
ME 0% 3 0.24 0% 1 0.16 0% 1 0.19
TI 0% 2 0.21 0% 2 0.18 0% 2 0.24

p0040 LO 0% 13 0.87 0% 22 0.84 0% 1 0.32
ME 0% 3 0.34 0% 5 0.35 0% 5 0.34
TI 0% 5 0.34 0% 5 0.34 0% 1 0.28

pp08a LO 0% 2 5 0% 2 3.11 0% 1 0.73
ME 0% 2894 90.9 0% 978 31.67 0% 595 38.49
TI 0% 2608 89.5 0% 357 28.42 0% 166 22.76

pipex LO 0% 47 4.69 0% 41 2.97 0% 39 3.17
ME 0% 29 4.67 0% 23 3.5 0% 14 2.54
TI 0% 3 0.85 0% 3 0.99 0% 3 1

rgn LO 0% 395 21.74 0% 246 15.37 0% 246 19.23
ME 0% 15 7.06 0% 9 4.64 0% 5 4.6
TI 0% 363 20.2 0% 485 20.17 0% 413 28.82

pk1 LO 0% 12 7.25 0% 9 8.99 0% 1 1.2
ME 0% 7 18.6 0% 12 18.42 0% 39 28.07
TI 0% 1 0.18 0% 1 0.17 0% 1 0.19

sample2 LO 0% 1 0.11 0% 1 0.52 0% 7 1.62
ME 0% 38 3.31 0% 36 3.02 0% 30 3.38
TI 0% 318 9.34 0% 629 9.08 0% 374 8.93

stein9 LO 0% 28 0.28 0% 30 0.29 0% 20 0.2
ME 0% 536 0.66 0% 416 0.69 0% 475 0.6
TI 0% 3 0.08 0% 1 0.09 0% 3 0.07

stein15 LO 0% 1245 3.71 0% 186 3.05 0% 26 1.06
ME 0% 14787 20.61 0% 7382 13.3 0% 11873 16.97
TI 0% 7 0.78 0% 5 0.71 0% 5 0.57

stein27 LO 0% 261913 1300.67 0% 3708 34.71 0% 1103 16.57
ME 85% 368826 1800 82% 283033 1800 74% 369689 1800
TI 0% 15 11.48 0% 13 9.47 0% 7 4.44

stein45 LO 289% 17238 1800.03 0% 14401 664.49 0% 9581 518.12
ME 488% 45474 1800 495% 28656 1800 403% 46567 1800.02
TI 0% 409 192.33 0% 817 455.33 0% 372 168.12

timtab1 LO 0% 2 7.85 0% 8 20.34 0% 1 8.34
ME 0% 883 82.51 0% 706 61.01 0% 176 35.77
TI 0% 1343 112.63 0% 1020 84.02 0% 1454 132.37

vpm1 LO 0% 17 30.53 0% 2 11.4 0% 13 20.96
ME 0% 1430 101.76 0% 460 64.24 0% 3733 258.5
TI 0% 190 45.36 0% 232 47.63 0% 126 46.91

Table 8.27: Results for exact solving (2Blocks)

XXXVI

8.3 Computational Tests

IPA IPAR IPAC
Instance lc. gap nNodes time gap nNodes time gap nNodes time
bell3a LO 0% 2084 505.67 0% 494 172.07 0% 596 211.79

ME 0% 173 74.95 0% 265 108.41 0% 489 143.56
TI 0% 1024 245.32 0% 1148 322.06 0% 1561 393.51

bell5 LO 0% 1140 167.33 0% 441 81.36 0% 474 90.52
ME 0% 1707 282.77 0% 1294 207.54 0% 1293 163.05
TI 0% 6418 832.77 0% 9241 1018.86 0% 4129 518.99

bm23 LO 0% 1 29.93 0% 3 44.69 0% 5 36.62
ME 0% 1 0.37 0% 1 3.77 0% 1 0.41
TI 0% 1 0.21 0% 1 0.27 0% 1 0.21

egout LO 0% 201 36.28 0% 205 46.31 0% 221 64.39
ME 0% 147 60.34 0% 266 79.04 0% 82 56.24
TI 0% 652 130.37 0% 515 103.78 0% 482 108.72

enigma LO 0% 14021 563.49 0% 4243 240.05 0% 3933 346.3
ME 0% 1522 104.23 0% 650 69.38 0% 432 68.83
TI 0% 1212 277.08 0% 1507 292.19 0% 1304 346.74

fixnet3 LO 20300% 181 1800.03 2072% 260 1802.3 1333% 84 1800.12
ME 1e+20 11 1803.27 1900% 249 1800.09 1e+20 6 1800.17
TI 3904% 34 1800.02 2244% 153 1800.06 1967% 122 1800.1

flugpl LO 0% 630 6.96 0% 31 4.31 0% 44 3.68
ME 0% 53 3.49 0% 23 2.87 0% 21 1.76
TI 0% 509 9.37 0% 649 10.61 0% 585 9.55

gt2 LO 139% 11506 1800 0% 9315 1339.48 150% 3955 1800.04
ME 95% 8295 1800 27% 12493 1800.16 31% 5824 1800
TI 1e+20 2910 1800.04 1e+20 2567 1800.05 1e+20 2509 1800.02

khb05250 LO 9900% 93 1800 0% 93 1416.34 2275% 36 1800.07
ME 1e+20 6 1800.2 1e+20 6 1800.11 1e+20 6 1800.22
TI 1e+20 5 1803.91 1e+20 6 1800.08 1e+20 6 1800.13

lseu LO 0% 912 66.62 0% 275 30.19 0% 291 49.55
ME 0% 22 43.15 0% 20 40.31 0% 169 75.38
TI 0% 83 68.25 0% 23 56.28 0% 82 76.71

markshare1 LO 0% 1 0.25 0% 1 0.31 0% 1 4.4
ME 0% 7 21.97 0% 1 4.82 0% 3 23.77
TI infeas. 1 0.09 infeas. 1 0.07 infeas. 1 0.09

markshare2 LO 0% 1 0.4 0% 1 0.47 0% 1 9.95
ME 0% 1 32 0% 1 10.34 0% 3 55.62
TI infeas. 1 0.13 infeas. 1 0.1 infeas. 1 0.13

misc01 LO 408% 1751 1800 207% 1662 1800.29 228% 1374 1800.06
ME 552% 3012 1800.02 743% 2415 1800 570% 2164 1800.03
TI 0% 83 268.31 0% 105 376.24 0% 145 495.98

mod008 LO 0% 766 323.19 0% 2115 298.46 0% 3096 824.97
ME 0% 93 295.39 0% 167 173.13 0% 411 338.24
TI 0% 82 270.78 0% 257 329.86 0% 1 2.63

neos858960 LO 220% 292 1800.05 60% 447 1800.01 0% 253 1237.29
ME 1833% 86 1800.01 1366% 749 1800.09 988% 430 1800.08
TI 1e+20 43 1800.1 1e+20 36 1802.62 1e+20 41 1800.08

noswot LO 849% 921 1800.01 495% 552 1800 242% 743 1800.04
ME 86% 2915 1800.24 0% 1543 1220.61 90% 2495 1800.68
TI 335% 1206 1800.5 212% 1892 1800.04 235% 2525 1800.03

p0033 LO 0% 11 2.9 0% 10 2.53 0% 27 4.42
ME 0% 88 10.43 0% 28 8.15 0% 22 6.04
TI 0% 30 10.73 0% 177 12.75 0% 31 12.28

p0040 LO 0% 1152 12.41 0% 10 5.64 0% 3 4.76
ME 0% 7 3.68 0% 1 2.58 0% 1 1.24
TI 0% 5883 92.18 0% 16982 289.32 0% 17878 152.44

pp08a LO 0% 3526 839.68 0% 463 193.31 0% 710 442.78
ME 33% 3311 1800.53 0% 2648 1195.75 0% 2140 1362.17
TI 0% 3583 1793.87 0% 3211 1751.14 52% 2616 1800.09

pipex LO 0% 2319 64.34 0% 1150 30.2 0% 1087 43.33
ME 0% 554 31.58 0% 27 23.49 0% 15 22.3
TI 0% 63 34.31 0% 162 38.42 0% 73 36.23

rgn LO 87% 19939 1800.01 0% 17278 1711.57 77% 8829 1800
ME 0% 6593 1409.36 0% 5505 1046.92 0% 5245 1686.3
TI 0% 1793 1269.28 1e+20 2993 1800.02 0% 1936 1610.41

pk1 LO 0% 125 150.25 0% 102 66.58 0% 5 51.95
ME 0% 2145 358.96 0% 3362 601.15 0% 3005 802.52
TI 0% 468 471.06 0% 470 525.12 0% 441 435.99

sample2 LO 0% 252 21.62 0% 129 18.2 0% 89 21.33
ME 0% 4489 185.12 0% 2360 105.36 0% 1953 86.57
TI 1e+20 29209 1800 1e+20 26881 1800.06 1e+20 27761 1800

stein9 LO 0% 6885 12.58 0% 2173 7.4 0% 2966 7.36
ME 0% 5991 12.13 0% 2655 8.45 0% 2849 7.55
TI 0% 1 0.7 0% 1 0.65 0% 5 0.77

stein15 LO 0% 163730 833.71 0% 52086 327.15 0% 41241 218.03
ME 0% 43811 275.5 0% 31045 225.35 0% 26953 131.61
TI 0% 3 4.82 0% 3 7.39 0% 3 5.11

stein27 LO 349% 8864 1800 271% 8160 1800 228% 9044 1800.02
ME 265% 22806 1800.01 261% 17563 1800.02 190% 31085 1800
TI 0% 236 251.88 0% 193 226.87 0% 258 235.98

stein45 LO 1908% 358 1800.01 2250% 203 1800.04 1289% 493 1800.46
ME 2804% 1023 1800.07 2861% 669 1800 2002% 443 1800.03
TI 1e+20 152 1800.05 1e+20 133 1800.05 1e+20 138 1800.1

timtab1 LO 0% 71 115.02 0% 100 211.99 0% 11 136.95
ME 292% 1312 1800.04 253% 1422 1800.05 213% 1579 1800.06
TI 297% 1614 1800.9 214% 2103 1800.02 311% 1869 1800.01

vpm1 LO 710% 2259 1800.52 0% 1156 1174.87 0% 845 1482.29
ME 434% 1055 1800.06 334% 752 1800.02 279% 926 1800
TI 634% 1215 1800 428% 1612 1800.24 646% 1157 1800.56

Table 8.28: Results for exact solving (4 blocks)

XXXVII

List of Figures

1.1 Coefficient matrix of msc98-ip.mps . 1
(a) original . 1
(b) randomly permuted . 1

1.2 Coefficient matrix of msc98-ip.mps . 3
(a) 24-arrowhead form . 3
(b) 6-bordered block diagonal form . 3

2.1 Coefficient matrix of a1c1s1.mps . 22
(a) 16-arrowhead form with µboA = 0.91 22
(b) 16-arrowhead form with µboA = 0.76 22

2.2 Coefficient matrix of arki001.mps in bordered 12-block diagonal form . . . 23
(a) decomposition with µblB = 0.77 . 23
(b) decomposition with µblB = 0.56 . 23

4.1 Successful run of IndirectHVS . 45
(a) Hypergraph H1 with HES solution 45
(b) Edge cut graph GH1

P1
. 45

(c) Hypergraph H1 with HVS solution 45
4.2 Failed run of IndirectHVS . 45

(a) Hypergraph H2 with HES solution 45
(b) Edge cut graph GH1

P1
. 45

(c) Hypergraph H2 with HVS solution 45
4.3 Sketch of the generic decomposing method 46
4.4 Successful run of the hyperrow decomposing algorithm 48

(a) Matrix A ∈ R5×6 . 48
(b) Hyperrow graph HRA . 48
(c) Hyperrow graph HRA with HES solution 48
(d) Decomposed matrix D(A) in bordered 2-block diagonal form 48

4.5 Failed run of hyperrow decomposing algorithm 52
(a) Matrix A ∈ R5×5 . 52
(b) Hyperrow graph HRA of A . 52
(c) HRA with HES solution . 52
(d) Decomposed matrix D(A) . 52

4.6 Successful run of the hypercolumn decomposing algorithm 53
(a) Matrix A ∈ R6×7 . 53
(b) Hypercolumn graph HCA of A . 53
(c) HCA with HVS solution . 53

XXXIX

List of Figures

(d) Decomposed matrix D(A) . 53
4.7 Failed run of the hypercolumn decomposing algorithm 57

(a) Matrix A ∈ R6×9 . 57
(b) Hypercolumn graph HCA of A with HVS solution 57
(c) Decomposed matrix D(A) . 57
(d) D2(A) such that D2 fulfills the load condition 57

4.8 Succesful run of hypercolrow decomposing algorithm 58
(a) Matrix A ∈ R5×5 . 58
(b) Hypercolrow graph HCRA with HES solution 58
(c) Decomposed matrix D(A) in 2-arrowhead form. 58

4.9 Failed run of hypercolrow decomposing algorithm 62
(a) Matrix A ∈ R10×9 . 62
(b) Decomposed matrix D(A) . 62
(c) Hypercolrow graph HCRA with HES solution 62

4.10 Succesful run of bipartite decomposing algorithm 64
(a) Matrix A ∈ R5×5 . 64
(b) Bipartite graph GBA of A . 64
(c) Bipartite graph of A with HVS solution 64
(d) Decomposed matrix D(A) in 2-arrowhead form 64

4.11 Failed run of the bipartite decomposing algorithm 67
(a) Matrix A ∈ R11×11 . 67
(b) Decomposed matrix D(A) . 67
(c) Bipartite graph GBA with HVS solution 67

5.1 Sketch of the constructed Maximum s-Excess instance 82

6.1 Coefficient matrix of satellites1-25 . 96
(a) original . 96
(b) 4-arrowhead form . 96
(c) bordered 4-block diagonal form . 96

6.2 Coefficient matrix of bienst2 . 96
(a) original . 96
(b) 32-arrowhead form . 96
(c) bordered 32-block diagonal form . 96

6.3 Coefficient matrix of ic97_potential . 97
(a) original . 97
(b) 16-arrowhead form . 97
(c) bordered 16-block diagonal form . 97

6.4 Coefficient matrix of dg012142 . 97
(a) original . 97
(b) 8-arrowhead form . 97
(c) bordered 8-block diagonal form . 97

6.5 Coefficient matrix of atm20-100 . 97
(a) original . 97

XL

List of Figures

(b) 8-arrowhead form . 97
(c) bordered 8-block diagonal form . 97

6.6 Coefficient matrix of toll-like . 98
(a) original . 98
(b) 16-arrowhead form . 98
(c) 16-bordered block diagonal form . 98

6.7 Coefficient matrix of nag . 98
(a) original . 98
(b) 8-arrowhead form . 98
(c) bordered 8-block diagonal form . 98

6.8 Coefficient matrix of b2c1s1 . 98
(a) original . 98
(b) 8-arrowhead form . 98
(c) bordered 8-block diagonal form . 98

XLI

List of Tables

6.1 Instances from Miplib2003 . 89
(a) big-size instances from MIPLIB 2003 89
(b) medium-size instances from MIPLIB 2003 89
(c) small-size instances from MIPLIB 2003 89

6.2 Results for medium inst. arrowhead conc.µboN 90
6.3 aggregated results for µboN . 91
6.4 aggregated results for µboA . 91
6.5 aggregated results for µblB . 92
6.6 Aggregated results for solving MinBf in terms of µboN 92
6.7 aggregated results for µboA . 93
6.8 aggregated results for µblB . 93
6.9 Excerpt from comparison with results of Ferris and Horn 94
6.10 Comparison to the results of Ferris and Horn (aggregated) 95
6.11 Results for miplib2010 (aggregated) . 96
6.12 Test instances for exact approaches . 99
6.13 Table for parameter lc . 100
6.14 Results for exact solving (2Blocks) . 100
6.15 Aggregated results for exact approach (2 blocks) 101
6.16 Aggregated results for exact approach (4 blocks) 101
6.17 Results for IPCG . 101

8.1 Results for small inst. arrowhead conc.µboN XIII
8.2 Results for medium inst. arrowhead conc.µboN XIV
8.3 Results for big inst. arrowhead conc.µboN XIV
8.4 Results for small inst. arrowhead conc.µboA XV
8.5 Results for medium inst. arrowhead conc.µboA XVI
8.6 Results for big inst. arrowhead conc.µboA XVI
8.7 Results for small inst. arrowhead conc.µblB XVII
8.8 Results for medium inst. arrowhead conc.µblB XVIII
8.9 Results for big inst. arrowhead conc.µblB XVIII
8.10 Results for small inst. bbd. conc.µboN . XX
8.11 Results for medium inst. bbd. conc.µboN XXI
8.12 Results for big inst. bbd. conc.µboN . XXI
8.13 Results for small inst. bbd. conc.µboA . XXII
8.14 Results for medium inst. bbd. conc.µboA XXIII
8.15 Results for big inst. bbd. conc.µboA . XXIII

XLIII

List of Tables

8.16 Results for small inst. to bbd. conc. µblB XXIV
8.17 Results for medium inst. to bbd. conc. µblB XXV
8.18 Results for big inst. bbd. conc. µblB . XXV
8.19 comparison with results of Ferris and Horn (part1) XXVI
8.20 comparison with results of Ferris and Horn (part2) XXVII
8.21 results for miplib2010 to arrowhead (part 1) XXIX
8.22 results for miplib2010 to arrowhead (part 2) XXX
8.23 results for miplib2010 to arrowhead (part 3) XXXI
8.24 results for miplib2010 to bordered block diagonal (part1) XXXII
8.25 results for miplib2010 to bordered block diagonal (part2) XXXIII
8.26 results for miplib2010 to bordered block diagonal (part3) XXXIV
8.27 Results for exact solving (2Blocks) . XXXVI
8.28 Results for exact solving (4 blocks) . XXXVII

XLIV

List of Algorithms

1 FixedCostsArrowhead . 27
2 BuildDecomposition . 28
3 FixedCostsBorderedBlock . 31

4 IndirectHVS . 43
5 SolveMinimumWeightedVertexCover . 44
6 HyperrowDecomposingAlgorithm . 49
7 TransformPartToDecomp . 50
8 HypercolDecomposingAlgorithm . 54
9 TransformPartToDecompHC . 54
10 HypercolrowDecomposingAlgorithm . 59
11 TransformPartToDecompHCR . 60
12 BipartiteDecomposingAlgorithm . 65
13 TransPartToDecompBip . 65

XLV

Bibliography

[1] IBM ILOG CPLEX 12.10. reference manual. 2009.

[2] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

[3] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):361–372, 2006. doi: 10.1016/j.orl.2005.07.009.

[4] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: Exponential
speed-up for planar graph problems. In in Electronic Colloquium on Computational
Complexity (ECCC, pages 261–272. Springer, 2001.

[5] N. Alon, P. Seymour, and R. Thomas. A separator theorem for nonplanar graphs.
Journal of the American Mathematical Society, 3(4):801–808, 1990.

[6] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph
partitioning. In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, STOC ’04, pages 222–231, New York, NY, USA, 2004. ACM. ISBN
1-58113-852-0.

[7] C. Aykanat, A. Pinar, and Ümit V. Catalyurek. Permuting sparse rectangular matri-
ces into block-diagonal form. SIAM Journal on Scientific Computing, 25:1860–1879,
2002.

[8] M. Bergner, A. Caprara, F. Furini, M. E. Lübbecke, E. Malaguti, and E. Traversi.
Partial convexification of general mips by dantzig-wolfe reformulation. In O. Günlük
and G. J. Woeginger, editors, IPCO, volume 6655 of Lecture Notes in Computer
Science, pages 39–51. Springer, 2011. ISBN 978-3-642-20806-5.

[9] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1st edition, 1997. ISBN 1886529191.

[10] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization. Athena Sci-
entific, 1997. ISBN 1886529191.

[11] A. Björck. Numerical methods for least squares problems. Society for Industrial
Mathematics, 1st edition, 1996.

[12] R. Borndörfer, C. E. Ferreira, and A. Martin. Decomposing matrices into blocks.
SIAM Journal on Optimization, 9(1):236–269, 1998. ZIB Report 97-15.

XLVII

Bibliography

[13] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is
np-hard. Information Processing Letters 42, pages 153 – 159, 1992.

[14] V. Chvátal. Linear programming. W. H. Freeman, 1983.

[15] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162:2005, 2004.

[16] U. Feige and M. Mahdian. Finding small balanced separators. In Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing, STOC ’06, pages
375–384, New York, NY, USA, 2006. ACM. ISBN 1-59593-134-1.

[17] M. C. Ferris and J. D. Horn. Partitioning mathematical programs for parallel solu-
tion. Mathematical Programming 80, 1998.

[18] G. Gamrath. Generic branch-cut-and-price. Diploma thesis, Technische Universität
Berlin, 2010.

[19] M. R. Garey and D. Johnson. Computers and intractability. W.H.Freeman and
company, 1st edition, 1979.

[20] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs
of bounded genus. J. Algorithms, 5(3):391–407, 1984.

[21] D. S. Hochbaum. The pseudoflow algorithm and the pseudoflow-based simplex for
the maximum flow problem. In Proceedings of the 6th International IPCO Con-
ference on Integer Programming and Combinatorial Optimization, pages 325–337,
London, UK, 1998. Springer-Verlag. ISBN 3-540-64590-X.

[22] E. Ihler, D. Wagner, and F. Wagner. Modeling hypergraphs by graphs with the
same mincut properties. Inf. Process. Lett., 45(4):171–175, 1993.

[23] G. Karakostas. A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms, 5:41:1–41:8, November 2009. ISSN 1549-6325.

[24] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[25] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In In Pro-
ceedings of the Design and Automation Conference, pages 343–348, 1998.

[26] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput., 48(1):96–129, 1998.

[27] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. 20(1):359–392, 1999.

[28] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekar. Multilevel hypergraph parti-
tioning: Application in vlsi design. Proceedings of DAC, pages 526–529, 1997.

XLVIII

Bibliography

[29] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph parti-
tioning: applications in vlsi domain. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 7(1):69–79, 1999. ISSN 1063-8210. doi: 10.1109/92.748202.

[30] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. Miplib 2010. Mathematical
Programming Computation, 3(2):103–163, 2011. doi: 10.1007/s12532-011-0025-9.

[31] D. P. Koester. Parallel block-diagonal-bordered sparse linear solvers for electrical
power system applications, 1995.

[32] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J.
Appl. Math., 36(2), pages 177 – 189, 1979.

[33] J. W. H. Liu. A graph partitioning algorithm by node separators. ACM Trans.
Math. Softw., 15:198–219, September 1989. ISSN 0098-3500.

[34] F. Margot. Symmetry in integer linear programming. In M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. A. Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages 647–686.
Springer Berlin Heidelberg, 2010. ISBN 978-3-540-68279-0.

[35] B. Mobasher, H. Jain, E. H. Han, and J. Srivastava. Web mining: Pattern discov-
ery from world wide web. Technical Report TR-96-050, Department of Computer
Science, University of Minnesota, Minneapolis, 1996.

[36] D. A. Papa and I. L. Markov. Hypergraph partitioning and clustering. In In Ap-
proximation Algorithms and Metaheuristics, 2007.

[37] K. Schloegel, G. Karypis, V. Kumar, J. Dongarra, I. Foster, G. Fox, K. Kennedy,
A. White, and M. Kaufmann. Graph partitioning for high performance scientific
simulations, 2000.

[38] G. Strang. Introduction to linear algebra. Wellesley-Cambridge Press, 2003. ISBN
9780961408893.

[39] L. A. Wolsey. Integer and Combinatorial Optimization. Wiley-Interscience, 1 edition,
Nov. 1999. ISBN 0471359432.

[40] Ümit V. Çatalyürek and C. Aykanat. Decomposing irregularly sparse matrices for
parallel matrix-vector multiplication. volume 1117 of Lecture Notes in Computer
Science, pages 75–86. Springer, 1996. ISBN 3-540-61549-0.

[41] Ümit V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst.,
10(7):673–693, 1999.

XLIX

Bibliography

[42] Ümit V. Çatalyürek, C. Aykanat, and B. Uçar. On two-dimensional sparse matrix
partitioning: Models, methods, and a recipe. SIAM J. Scientific Computing, 32(2):
656–683, 2010.

L

	Introduction
	Background
	Definitions
	Basic Definitions From Graph Theory

	Applications
	Systems of Linear Equations
	Least Squares
	Linear Programming
	Mixed Integer Programming
	Transformation k-Arrowhead to Bordered k-Block Diagonal Form

	Problem Formulations
	Characterization of a Decomposition
	Problem formulation

	Quality of a Decomposition
	Literature review
	Literature on Exact Decomposing Methods
	Literature on Heuristic Decomposing Methods

	Complexity
	Basic Definitions From Complexity Theory
	A Polynomial Algorithm for Fixed Objective Value
	Complexity for MinAf(A,m,0,1) and MinBf(A,m,0,1)
	Complexity for MinBf with k=2

	Heuristic Decomposing Methods
	Solving Hypergraph Partitioning Problems
	Heuristic for solving HVS by HES

	Modeling Matrix Decomposing Problems as Graph Partitioning Problems
	Outlook

	Models for MinBf
	The Hyperrow Decomposing Algorithm
	The Hypercolumn Decomposing Algorithm

	Models for MinAf
	Hypercolrow Decomposing Algorithm
	Bipartite Decomposing Algorithm

	Exact Decomposing Methods
	Borndörfer's Approach to MinBf
	Assignment Approach for MinAf
	Column Generation Approach for MinAf
	Solving the LP-relaxation of IPCG
	The Pricing Problem

	Computational Experiments
	Results for Heuristic Methods
	Parameters
	Instances
	MinAf
	MinBf
	Comparison to Ferris and Horn's Results
	Performance with Forbidden Empty Blocks

	Results for Exact Methods
	Scip
	Instances
	Results for the Assignment Approach
	Results for ICG

	Final Remarks
	Appendix
	Zusammenfassung (German Summary)
	Background
	Computational Tests

