
Experiments on Vanderbeck’s generic
Branch-and-Price scheme

von
Marcel Schmickerath

Masterarbeit in Mathematik

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfälischen Technischen Hochschule Aachen

angefertigt am Lehrstuhl für

Operations Research

1. Gutachten: Prof. Dr. Marco Lübbecke
2. Gutachten: Prof. Dr. Arie M.C.A. Koster

December 3, 2012

1

Contents

Contents

1 Introduction 5

2 Column Generation 6
2.1 Dantzig-Wolfe Decomposition . 6

2.1.1 Convexification . 7
2.1.2 Discretization . 8

2.2 Aggregation . 10
2.3 Column Generation . 12
2.4 Pricing . 12
2.5 Lagrange Dual Bound . 13
2.6 Branch-and-Price . 13

2.6.1 Branching on original variables . 14
2.6.2 Branching on master variables . 14
2.6.3 Other branching schemes . 16

2.7 Pseudocosts . 16
2.8 SCIP & GCG . 17

3 The generic Branch-and-Price scheme 18
3.1 Map λ to x . 20
3.2 Separation of a fractional solution at. 27

3.2.1 . . . the root node . 28
3.2.2 . . . a node after the root node . 36

3.3 Depth of the branch-and-price tree . 45
3.4 Preprocessing at a node . 51
3.5 Pricing . 55
3.6 The dual bound . 56

4 Set Partitioning 57
4.1 Ryan and Foster . 59
4.2 The generic scheme . 61
4.3 comparison . 64

5 Implementation & Testing 67
5.1 Implementation . 67

5.1.1 Separate with median . 67
5.1.2 Different blocks . 69
5.1.3 The Priority . 71
5.1.4 ILO or not ILO . 73

5.2 Computational Results . 75

2

Contents

6 Conclusion 78

7 German Summary 81

3

Contents

Abstract This master thesis based on [1] will develop and represent a generic branch-
and-price scheme for column generation based on the Dantzig-Wolfe decomposition for
mixed integer programs (MIP). In general finding a generic scheme for column generation
could be difficult. Often they have their disadvantages or they are specialized to a
restricted number of problem classes.

The most significant result of this scheme is that there is no need to expand the
variable space or modify the pricing oracle (except setting some bounds on the variables,
if the pricing problems are splitted like in [1]) to branch for an optimal (mixed) integer
solution. Moreover it considers identical subproblems and avoids symmetry in the B&P
tree. Therefore it will partition the subproblem solution set and take a different way for
branching constraints instead of the usual disjunctive branching.

Also interesting is the comparison between this generic scheme and the already known
Ryan&Foster branching on set partitioning instances.

4

1 Introduction

The main characteristic of this master thesis is the implementation and the experiments
with Vanderbeck’s generic branch and price scheme for column generation.

While the theory of polyheda and branch-and-bound could be found in [3], the one of
column generation could be found in e.g. [2] and will be repeated in a shorter form to
represent the theory of branch-and-price.

Although there are other branching schemes for column generation found in the litare-
ture, they have often their disadvantages or are specialized to different classes of prob-
lems.

The scheme represented and generalized in a few ways here was developed by Vander-
beck in 2005 and it was said to have many positive aspects like easy handling in the sense
of not modifying the pricing or variables and a bounded size of the corresponding B&P
tree. In this master thesis the effeciency of this scheme will be proved and compared
to other branching schemes. Moreover it will be raised up and represent as a branching
scheme for mixed integer programs with different kinds of blocks and some ideas for not
in [1] mentioned or specified sizes like the priority or the analysis of the MIP case.

This master thesis is built as follows:
Chapter 2 gives an introduction to the theory of column generation, repeating some

basic subjects. For more information see e.g. [11], [2] or [3].
Chapter 3 represents Vanderbeck’s generic branch-and-price scheme described in [1].

In this paper the examples and the scheme is explained on binary programs with one
aggregated block type. Here we pick up the instructions in the 11th chapter called
“Extensions” to raise up the scheme to a branching scheme for mixed integer programs
with different block types. So here it is represented directly for MIPs. Only the analysis
of the size of the B&P tree and the examples in the MIP case are not mentioned in [1].

Chapter 4 represents the comparison between the Ryan&Foster branching (described
in [14]) and this generic scheme on set partitioning problems like it is done in [1] chapter
10 (“The Set partitioning special case”).

Chapter 5.1 includes some notes for the implementation of the scheme, giving some
new ideas and catching a few problems which are not mentioned in [1].

In the section of the computational results (section 5.2) we compare our scheme to
others on different instances with different options and structure, e.g. discretization,
convexification, aggregation and instances without aggregation.

The conclusion is given in chapter 6.
And finally, the literature and the German summary.

5

2 Column Generation

2 Column Generation

Many known optimazation problems can be formulated as an integer linear program
(ILP) or more generally as a Mixed Integer Linear Program (MIP), e.g. the knapsack,
binpacking, set partition, cuttingstock, maxflow, stable set and other graph theoretical
problems. (see e.g. [3])

For further notation and introduction we say a MIP is in general given as:

min cTx (1)

s.t. Ax ≥ b (2)

Bx ≥ d (3)

u ≥ x ≥ l (4)

x ≥ 0 (5)

x ∈ Rn (6)

xi ∈ Z, i ∈ Z (7)

where A ∈ Qm×n, B ∈ Qk×n, c, l, u ∈ Qn, b ∈ Qm, d ∈ Qk and Z ⊆ {1, . . . , n} an index
set for integer variables. Moreover l, u ∈ {−∞,∞} is a possible value for the variable
bounds.

In the case where Z = {1, . . . , n} we call the program an integer linear program (ILP).
If l = 0 and u = 1 we call it a binary program (BP).

If Z = ∅ it’s simply called a linear program (LP). The relaxed LP or relaxation of
a MIP is the LP one gets by omitting the integer constraints.

For later notation we call the variables x original variables.

For such problems one can use a solver like SCIP (which is implemented in C), using
for a LP the so called simplex algorithm (see [13]) or the branch-and-bound algorithm
combined with useful and possibly specialised heuristics for a MIP. (see e.g. [3])

2.1 Dantzig-Wolfe Decomposition

For another approach for solving a MIP we first introduce the Dantzig-Wolfe decom-
position, which yields an extended formulation of the problem. This approach will
reformulate the original problem and can therefore respect special structures.

First we assume the following structure of our MIP:
The Polyhedron

X = {x ∈ Rn | Bx ≥ d, l ≤ x ≤ u, xi ∈ Z ∀i ∈ Z} (8)

contains only points over which optimization becomes rather easy relative to the remain-
ing problem. E.g. if the problem is a binpacking then X can be a set of feasible knapsack
refills. By cuttingstock e.g. feasible patterns. (see [2])

6

2.1 Dantzig-Wolfe Decomposition

The constraints Ax ≥ b are unchanged. So now our MIP takes the shorter form

min cTx

s.t. Ax ≥ b

x ∈ X

The Dantzig-Wolfe decomposition will now choose another representation of this shorter
program. There are two possible ways for that, the so called convexification or the dis-
cretization approach.

2.1.1 Convexification

This approach based on the following theorem:

Theorem 1 (Minkowski-Weyl). A set X ⊆ Rn is a polyhedron if and only if there exist
finite sets {xp}p∈P , {xr}r∈R ⊂ Rn s.t.

X = conv({xp}p∈P) + cone({xr}r∈R)

P stands for the extreme points and R represents the set of extreme rays.

G = P ∪R is called the set of generators for X.

Proof. see [4]

The theorem means that every x ∈ X can be written as

x =
∑
p∈P

λpx
p +

∑
r∈R

λrx
r,

∑
p∈P

λp = 1,

λ ∈ R|G|+

The constraint
∑

p∈P λp = 1 is called the convexity constraint.

By omitting the above constraint x ∈ X in our MIP and replacing each x by the
representation of Minkowski-Weyl, we get the following master problem where the

7

2 Column Generation

variables are λ called master variables:

min
∑
p∈P

c′pλp +
∑
r∈R

c′rλr (9)

s.t.
∑
p∈P

a′pλp +
∑
r∈R

a′rλr ≥ b (10)

∑
p∈P

λp = 1 (11)

x =
∑
p∈P

λpx
p +

∑
r∈R

λrx
r (12)

λ ∈ R|G|+ (13)

xi ∈ Z ∀i ∈ Z (14)

where c′p = cTxp, c
′
r = cTxr, a

′
p = Axp, a

′
r = Axr ∀p ∈ P, r ∈ R.

2.1.2 Discretization

Another approach is the so called discretization, where the master variables are chosen
to be integer.

At first we consider the case of a given ILP.

By corollary 2.7 in [7] (based on [16] theorem 6.1) we get similar to the convexification
approach

x =
∑
p∈P

λpx
p +

∑
r∈R

λrx
r,

∑
p∈P

λp = 1.

Notice that the set of rays R keeps the same set than in the convexification approach, but
now P enumerates all integer points, so it becomes larger than in the convexification
approach. On the other hand, the master variables are now integer by adding the
constraint

λ ∈ Z|G|+ .

One advantage of this approach is that there is no need to enforce integrality on the

8

2.1 Dantzig-Wolfe Decomposition

original variables x anymore. So the new master problem is

min
∑
p∈P

c′pλp +
∑
r∈R

c′rλr (15)

s.t.
∑
p∈P

a′pλp +
∑
r∈R

a′rλr ≥ b (16)

∑
p∈P

λp = 1 (17)

λ ∈ Z|G|+ (18)

The same approach from another point of view using the set of generators for G and
a bounded set X.

Let {xg}g∈G be the enumeration of all integer points in X. Then we can write the
master problem as

min
∑
g∈G

c′gλg (19)

s.t.
∑
g∈G

a′gλg ≥ b (20)

∑
g∈G

λg = 1 (21)

λg ∈ {0, 1} ∀g ∈ G (22)

where c′g = cTxg, a′g = Axg ∀g ∈ G.

For an ILP there exist many primal heuristics based on the enumeration of all integer
points in X. E.g. column selection heuristics use the integrality of the master variables
and the convexity constraint. (see [5] and [17] for more information and other primal
heuristics)

Now take a look at a given MIP.

So let X for now be bounded. This is only for a shorter and more simple notation. If
X is not bounded then one has to add the variables corresponding to the rays, like seen
above.

Here the extended formulation becomes a bit more complicated, as one has to respect
the projection for each fixed continuous original variable. (see [18])

Let us first introduce a new notation for the original variables in the given MIP. For
x ∈ X let xint = (xi)i∈Z be the vector of the original variables which have to be integer
and analogous xcon the vector of the original variables which are continuous.

For xint ∈ Z|Z| let X(xint) represent the set of xcon in X depending on xint. Then for

9

2 Column Generation

a MIP we get the following specialized sets

Gpr := {xint ∈ Z|Z| | ∃xcon ∈ X(xint)}
P (xint) := {xcon ∈ Rn−|Z| | xcon extreme point of X(xint)}

G := P := {(xcon, xint) | xint ∈ Gpr, xcon ∈ P (xint)}
G(xint) := {g = (xgcon, x

g
int) | x

g
int = xint ∈ Gpr, xgcon ∈ P (xint)}

Now we apply the discretization on the xint variables and the convexification on the
continuous variables xcon.

Then the extended formulation of the MIP is given as

min
∑
g∈G

c′gλg (23)

s.t.
∑
g∈G

a′gλg ≥ b (24)

∑
g∈G

λg = 1 (25)

∑
g∈G(xint)

λg ∈ Z+ ∀xint ∈ Gpr (26)

Constraint (25) now correspond to (21) resp. (17) the convexity constraint. Here the
extreme points consist of an integer part xint and the extreme points xcons ∈ X(xint).

Constraint (26) does not enforce integrality on the master variables directly, like (22)
resp. (18). Enforcing integrality here directly can lead to loosing the optimality, while
integrality on the sum over g ∈ G(xint) for each xint respects the integrality on the
integer components xint, as the distributivity rule holds.

2.2 Aggregation

Sometimes X has a special structure, e.g. a so called bordered block diagonal structure.
(see [13] for vehicle routing or assume a binpacking problem with different types of bins
resp. vehicle)

X = X1 ×X2 × · · · ×XK

If some of these blocks (e.g. types of bins) are identical, they can be aggregated while
using the discretization approach. We call it the aggregation of identical blocks. (see
[5],[6])

This strategy will get a strong part of our branching scheme.

10

2.2 Aggregation

From now let our MIP be given as follows

zP := min

K∑
k=1

ckxk (27)

s.t.
K∑
k=1

Akxk ≥ b (28)

Bkxk ≥ dk ∀k = 1 . . .K (29)

uk ≥ xk ≥ lk ∀k = 1 . . .K (30)

xk ≥ 0 ∀k = 1 . . .K (31)

xk ∈ Rnk ∀k = 1 . . .K (32)

xki ∈ Z, i ∈ Zk ∀k = 1 . . .K, (33)

where we have K blocks and an index set Zk for integer variables in block k.

Notice: here the number of variables is given as
∑K

k=1 nk.

Now there are K subproblems given as

Xk = {x ∈ Rn| Bkx ≥ dk, lk ≤ x ≤ uk, x ≥ 0, xi ∈ Z ∀i ∈ Zk} (34)

We say two blocks i and j are identical, if ci = cj , Ai = Aj and Xi = Xj .

Identical blocks can now easily be aggregated, i.e. the corresponding master variables
can be summed up. So let Uk denote the number of identical blocks of the type k and
K ′ the number of different types of blocks, i.e. K =

∑K′

k=1 U
k, then our master problem

takes the form

min
K′∑
k=1

∑
g∈Gk

ckgλkg (35)

s.t.
K′∑
k=1

∑
g∈Gk

akgλkg ≥ b (36)

∑
g∈Gk

λkg = Uk ∀k = 1 . . .K ′ (37)

∑
g∈Gk(xint)

λkg ∈ Z+ ∀xint ∈ Gkpr ∀k = 1 . . .K ′ (38)

11

2 Column Generation

2.3 Column Generation

In both approaches of the Dantzig-Wolfe decomposition the variable space grows expo-
nentially large. Even while aggregation in the discretization approach is applied, the
number of variables still becomes too large for practice.

Moreover, not every generator or extreme point or ray of the given problem is known.

Therefore column generation keeps the number small by only adding new master
variables if they are important to get optimality. For this procedure we consider the
pricing problem in the next subsection.

As solving the master problem directly is not possible in practice, choosing not the full
number of variables and relaxing integrality on the master variables yields the restricted
master relaxation (RMP)

zRMP
LP = min

K′∑
k=1

∑
g∈Hk

ckgλkg (39)

s.t.
K′∑
k=1

∑
g∈Hk

akgλkg ≥ b (40)

∑
g∈Hk

λkg = Uk ∀k = 1 . . .K ′ (41)

∑
g∈Hk(y)

λkg ≥ 0 ∀y ∈ Hk
pr ∀k = 1 . . .K ′, (42)

where H ⊆ G. H = G yields the master relaxation.

The choice of the beginning set of variables could be important to get a feasible RMP.
Sometimes even λ = 0 is not a feasible solution. Therefore one can use the Farkas
lemma or approach, which can be found in e.g. [11], to get a feasible RMP (if the MIP
is feasible).

2.4 Pricing

Of course a solution of the RMP does not need to satisfy optimality. Maybe one needs
more master variables to get a better value.

To guarantee optimality one has to solve the so called pricing problem for each block
k, given as

αk(π) = min{(ck − πkAk)Txk | xk ∈ Xk}, (43)

where πk are the dual variables corresponding to the constraints (40). (see [19])

If αk(π) ≥ 0 ∀ k = 1 . . .K ′ the current solution is optimal. Otherwise the pricing
problem yields a new master variable to add into the master relaxation.

12

2.5 Lagrange Dual Bound

Notice that for each block k a pricing problem is solved, i.e. they should be small
subproblems. E.g. a knapsack problem could be solved using dynamic programming in
pseudo polynomial time. (See [13])

Moreover a negative minimum αk has not to be computed exactly, i.e. adding one
variable with to negative reduce costs (even a higher than the minimum) can yield up
to a better master solution.

One advantage of column generation is that the pricing problems are rather easier to
solve than the whole MIP. E.g. it is possible to use a heuristic to solve possible knapsack
constraints, or just solving the subproblem by using another MIP.

For later notation we assume that there is one generic pricing solver, i.e. solving the
pricing problems by e.g. another MIP. We will call this solver an oracle.

2.5 Lagrange Dual Bound

By solving the pricing problem one can obtain a dual bound for the master relaxation
value zMLP and hence also for the MIP. (see [1],[18])

Let π ≥ 0 denote the dual variable obtaining by dualizing constraint (36), then we get
the Lagrange dual bound

L(π) := πb+
K′∑
k=1

Ukαk(π) (44)

The best lower bound is therefore

max
π≥0

L(π) (45)

and is also the optimum of the master LP, i.e. zMLP . Although the Lagrangian dual
bound converges against the optimal solution of the master LP, it is not a monotonically
convergence. (see [15])

2.6 Branch-and-Price

For now we can solve the master LP to optimality while using the oracle for the pricing
problems. Of course if the current solution is optimal, it does not have to satisfy the
integrality constraints for the original variables. While this check is easily done in the
convexification approach and also in the discretization approach without aggregation,
it is not this easy and also not unique while applying aggregation. Therefore we will
discuss a mapping in section 3.1.

So we have to branch. There are several possible ways for that.

13

2 Column Generation

2.6.1 Branching on original variables

(see [1],[7])

This approach for branching is quite similar to the one in the branch-and-bound
algorithm and is applied in several branching schemes like pseudocost branching, strong
branching or reliability branching.

First assume the easy case using the convexification approach. In the master LP we
relaxe constraints (14) and hence also (12) can be skipped, as they are only for the
transcription of the master variables and the original variables to enforce integrality by
(14).

Assume the current master LP solution ẋ satisfies r := ẋi /∈ Z for at least one i ∈ Z.
Otherwise the current solution is optimal and we do not need to branch.

Then we get the two intuitive branching decisions by using the disjunctive branch-
ing constraints

xi ≤ brc

xi ≥ dre

leading two successor nodes in the B&P tree.

This constraints now can be enforced e.g. in two ways which Vanderbeck calls the
hard and the soft branching.

The hard branching enforces the two branching constraints directly in the pricing
problem. But this can make solving the pricing much harder, because the constraints
are also convexified. So this can be a contradiction for the choice of easy subproblems
for the oracle to solve.

The soft branching includes the two branching constraints in the master problem.
But this can modify the reduced costs, because the constraints are also dualized.

Now take a look at the discretization approach. Without aggregation of identical
blocks, it can be done like in the convexification case. But while identical blocks are
aggregated branching will only be applied in one block. So this block has to be isolated
from the others and we loose the advantage of aggregation. Otherwise the disaggregated
variables can still be fractional while the aggregated variables are integer. (see the
mapping in section 3.1)

Therefore branching on original variables while using aggregation is not efficient at
all.

2.6.2 Branching on master variables

Instead of branching on the original variables it is possible to branch on the master
variables while using the discretization approach. This approach can also be seen quite

14

2.6 Branch-and-Price

similar to the usual branch-and-bound algorithm as we enforce integrality on the master
variables λ themselves.

So assume for the current master LP solution λ̇ holds r := λ̇g /∈ Z+ for one g ∈ H
and first assume no aggregation of identical blocks. Then the disjunctive branching
constraints because of (18) are

λ ≤ brc

λ ≥ dre

Now assume applying aggregation of identical blocks and for the current master LP
solution λ̇ holds r :=

∑
g∈Gk(xint)

λ̇kg /∈ Z+ for one aggregated block k and one xint ∈ Gkpr.
Then the disjunctive branching constraints because of (42) are∑

g∈Gk(xint)

λkg ≤ brc

∑
g∈Gk(xint)

λkg ≥ dre

Of course this branching scheme is also intuitive like branching on the original variables
and it respects the aggregation while using discretization. But it has two disadvantages.
(see [7])

As mentioned above, the number of master variables can become exponentially large.
So branching on each of these variables yields an extremely large B&P tree. Moreover
this tree will become unbalanced, because making one decision on one variable of an
exponential number of variables is only a weak decision. So branching on the original
variables is stronger and even the size of the B&P tree does not depend on an exponen-
tially large number of master variables to branch on.

Another disadvantage is that while bounding one master variable its corresponding
point or ray has to be forbidden in the pricing problem. Otherwise it could be generated
again and yield the same fractional master LP solution after pricing. So it will not
represent a feasible branching rule, as the old solution is not forbidden by it. How this
could be done can be read in [20] 11.2.4. Notice: While this is easily done for a BP, it
becomes rather more complicated for a MIP.

Just mention one more point for branching on the master variables. Also interesting
is the fact, that fractional master variables still can yield integer original variables. So
enforcing integrality on this variables could be a too hard tool. E.g.

ẋ =

(
1
1

)
= 0.5

(
1
2

)
+ 0.5

(
1
0

)

15

2 Column Generation

2.6.3 Other branching schemes

Other branching rules like pseudocost branching, strong branching or reliability branch-
ing can be found in [10]. A specialized branching scheme called Ryan&Foster will be
found in section 4.1 restricted on instances called set partitioning or raised up to set
cover. And a first generalization from this by Vanderbeck can be found in [21].

2.7 Pseudocosts

One special way for branching is the so called pseudocost-branching from branch-and-
bound and can e.g. be applied while branching on the original variables. These costs
are a value to keep up how good the branch on one component, i.e. original variable,
was. So they are computed by following the branch-and-bound tree and can help at the
next decision for a fractional variable one wants to branch on. (see [10])

Let for each branching decision where branching is applied on xi denote

f−i := xi − bxic, f+i := dxie − xi
∆−i := zLP (bxic)− zLPold , ∆+

i := zLP (dxie)− zLPold

where zLPold is the optimal LP value of the current parent node and zLP (bxic) (resp.
zLP (bxic)) the LP values of the child node whith branching constraints xi ≤ bxic (resp.
xi ≥ dxie).

Then the objective gain per unit change in variable xi is given as

ζ+i :=
∆+
i

f+i
, ζ−i :=

∆−i
f−i

Let ν+i be the number of current branching decisions where xi ≤ bxic was applied (resp.
ν−i) and σ+i the sum of its objective gain per unit (resp. σ−i).

Then the upwards (resp. downwards) pseudocost are given as

Ψ+
i :=

σ+i
ν+i

, Ψ−i :=
σ−i
ν−i

(46)

Now we consider two possible ways to work with these costs. Assume in the current
node of the branch-and-bound tree denotes J the index set of original variables where
xj , j ∈ J does not satisfy the integrality condition. Now one can branch on one of these
components. The pseudocosts can help by this decision by choosing the component i∗

for branching with

i∗ = arg max
j∈J
{(1− µ) min{f+Ψ+

i , f
−Ψ−i }+ µmax{f+Ψ+

i , f
−Ψ−i }},

16

2.8 SCIP & GCG

where 0 ≤ µ ≤ 1 is a parameter for the convex combination. (in [10] e.g. µ = 1
6)

Or the maximum over f+Ψ+
i , f

−Ψ−i .
Of course the pseudocosts are at the beginning, i.e. before branching was applied

on the specific component, uninitialized. Therefore one can choose the pure pseudocost
branching with initial Ψ+

i = Ψ−i = 1 or the strong branching where a pseudo-tree is
calculated, i.e. calculate the B&P tree to a given depth and reject it after the calculation
of the pseudocosts. Also these costs can have a reliability depending on the depth of the
current tree. (see [10] for more information)

2.8 SCIP & GCG

The branching scheme is implemented in GCG (Generic Column Generation, by Gam-
rath 2010 [7], [8] and currently maintained by Bergner, Gamrath, and Puchert) environ-
ment written in C.

GCG is an extension of SCIP (Solving Constraint Integer Programs, by Achterberg et
al [9] at the Zuse Institute Berlin) to get an efficient branch-and-price solver. Moreover
SCIP is known as one of the fastest non-commercial MIP solvers based on branch-and-
bound. (see [22])

Both, SCIP and GCG contains a lot of useful heuristics or other plugins like cuts,
presolver or branching rules. (see e.g. [7], [5])

17

3 The generic Branch-and-Price scheme

3 The generic Branch-and-Price scheme

In this section we want to repeat the generic branching scheme of Vanderbeck (see [1]),
but given in a more general case, like it is mentioned there. The binary case for a BLP
is explained in [1], also given some examples.

We assume the discretization approach with aggregation of identical blocks. Otherwise
while using the convexification approach the generic branching scheme will not work, as
we will see later in the analysis.

First for a better understanding we give a short overview on the whole branching
scheme.

The program sequence plan is given in figure 1 and the pseudocode with the name of
submethods is given in algorithm 1.

Like in section 2.6 explained we start at first solving the RMP and get the current
master LP solution λ. We start pricing and compute the reduced costs. If they are
negative, we add the corresponding master variable and generator to the RMP resp. H
and start solving the RMP again. We repeat this procedure until we do not receive
negative reduced costs from the oracle, i.e. λ is optimal for the master LP.

So let for now λ be optimal for our master LP.

Now we transform the solution of the extended formulation to a solution of our original
problem. In other words, we map λ into x. How this can be done while using aggregation
will be explained in section 3.1.

Having the corresponding original solution it is rather simple to check whether all
integrality constraints are satisfied by the current solution. If so, the current solution is
the searched optimal (mixed) integer solution of the MIP.

Assume there are still some integrality constraints violated. Otherwise we do not need
any branching rule.

This is the point where the generic scheme comes into play. As in every branching
scheme the current fractional solution has to be forbidden. Vanderbeck’s generic scheme
does so by first separating the fractional component by a computed bound sequence S.
How this is done and what this sequence exactly means can be found in section 3.2.

The computed sequence S then induces the branching constraints, which are calculated
in the next step of the scheme. How this could be done is also explained in section 3.2.1,
as for deeper steps in the B&P tree information about previous bound sequences and
nodes are needed for further branching. This is explained in section 3.2.2. While the
analysis and the rules for branching schemes are directly following in section 3.3.

While computing the successor nodes depending on S, as Vanderbeck does not apply
the usual disjunctive branching, it is rather important to keep the B&P tree nearly
small, i.e. the question is: has every node to be generated in the tree? This is what the
preprocessing decides. See for that section 3.4.

Moreover Vanderbeck further splitted up the pricing problems to get stronger dual

18

bounds. This is touched in section 3.5. For now we first keep the pricing discribed in
section 2.4 in mind, as it also holds.

Now one has to select a new node in the B&P tree to branch further as it is done in
all branching schemes. The corresponding branching constraint is added to the RMP
and the so modified RMP is solved again. So the cycle is closed and the scheme starts
from this point again.

Figure 1: Program sequence plan for Vanderbeck’s generic branching scheme.

19

3 The generic Branch-and-Price scheme

Algorithm 1 Overview of the scheme

a) solve RMP to get current solution λ
b) call SolvePricing(λ, H, S), if neg. red. costs add generators to H and go to a)
c) call MapλToX(λ) to get an original solution for P resp. relaxation of P
while x is not feasible for P do

d) call Separate(λ, H) to get component bound sequence S
g) call CreateChildNodes(λ, S, H)
h) call Preprocess(N)
i) choose a B&P node N
j) solve N to get new current solution λ
k) call SolvePricing(λ, H, S), if neg. red. costs add generators to H and go to j)
l) call MapλToX(λ) to get an original solution for P resp. relaxation of P

end while
return zRMP

LP resp. x

From now on we assume that λ is an optimal solution for the master LP corresponding
to the current node in the B&P tree.

We will now introduce a representation of this solution as a rectangle in the following
way:

Definition 1. A master solution λ can be represented by K ′ tables or rectangles, where
each table for the block k has height nk + 1 and width Uk. A column in this table is
given by the master variable λkg and the corresponding generator g ∈ Hk in a specific
order (first lexicographic order and later the so called induced lexicographic order). Such
a column is called a strip of width λkg. A set of generators H ′k then defines a H ′k-strip
of width λ(H ′k) :=

∑
g∈H′k λkg.

An example is given in the next section (see example 1) and a deeper illustration
follows at the analysis of the mapping.

3.1 Map λ to x

In this section we want to present the mapping from [1] to compute from a RMP solution
λ while using aggregation an original solution x.

As the mapping is already known while there are no identical aggregated blocks,
because of (12), the aggregated case is not that simple.

As already mentioned a fractional master solution can yield an integer original solution
for P . But the other case can also appear. Consider the case where λ is integer, then

λk′g =
λkg
Uk is a feasible solution for all k′ ∈ {k′1, . . . , k′Uk} corresponding to block k and

does not need to be integer and therefore x can also be fractional.
Moreover undoing the aggregation, called disaggregation, is not unique.

20

3.1 Map λ to x

Example 1. Let K ′ = 1, K = U1 = 2, n1 = 4 and the current solution λ be given as

λg 0.5 1 0 0.5 0 0

x1 4 4 3 2 1 1
x2 4 2 1 0 2 4
x3 4 2 1 0 2 1
x4 4 2 1 0 2 1

A possible original solution could be obtained by simply summing up the components
times their master variable λg and splitting it up by the number of identical blocks
U1 = 2

x1 =
0.5

2


4
4
4
4

+
1

2


4
2
2
2

+
0.5

2


2
0
0
0

 =


3.5
2
2
2

 , x2 = x1

Notice that this solution is not integer.
But we could disaggregate the master variables in another way. A deeper look at the

first and the fourth column of the rectangle shows, that these two master variables sum
up to 1. So why not sum them up and leave the sum of the other columns for the second
components?

x1 = 0.5


4
4
4
4

+ 0.5


2
0
0
0

 =


3
2
2
2

 , x2 =


4
2
2
2


This yields another original solution. Moreover this one is integer.

So we need a fixed mapping that preserves integrality, i.e. one concrete mapping
that computes an integer original solution if it can be obtained by the current integral
master LP solution.

The idea of the mapping from [1] is quite similar to the second variant in the example,
but a bit more efficient as it does not need to search two or more strips which sum up
their widths to one. It just blocks the rectangle.

Example 2 (continued). Let λ be given like in the last example.
By counting only the strips with positive widths, the rectangle can be illustrated as

follows:

21

3 The generic Branch-and-Price scheme

The blue boxes represent the strips and the yellow boxes at the bottom are the width
of the disaggregated master variables, which is because of (25) given as 1.

The red marks note where a new component starts and ends. So what is in the first
two marks sums up (with respect to the width, i.e. weight) to x1 and the other part to
x2.

x1 = 0.5


4
4
4
4

+ 0.5


4
2
2
2

 =


4
3
3
3

 , x2 = 0.5


4
2
2
2

+ 0.5


2
0
0
0

 =


3
1
1
1


As the width of the second strip is splitted up to compute the last half of x1 and the
first half of x2 we call the two component vectors x1, x2 floating.

In words:
To get a unique mapping we first define an order (e.g. lexicographically decreasing) on
the set of generators and start the calculation in the left side of the rectangle. Beginning
with r = 1 by adding each generator multiplies with a factor which corresponds to the
width of the strip with respect to the not yet filled disaggregated master variables. In
particular: If the width w e.g. of the first strip is smaller than 1, the corresponding
generator is multiplied with w and will be summed up with another one until the sum
of the widths is 1 and we get x1. If the width w e.g. of the first strip is greater than
1 the corresponding generator is multiplied with 1 and is therefore x1 itself. Then set
r = r + 1 and multiply the generator with w − 1 and go on for x2. If a component ends
up in a strip with width w and factor t, e.g. for r = 1, the factor for the first generator
in the sum for x2 is min{1, w − t}, i.e. the distance to the next disaggregated master
variable.

So for the factor are the last three cases to regard. Formally is this factor given as

22

3.1 Map λ to x

d

µk′rg := min {1, λkg −
r−1∑
p=1

µk′pg, (r −
∑

g′: g′<g

λkg′)
+} ∀r = 1 . . . Uk, g ∈ Hk,

where (r −
∑

g′: g′<g λkg′)
+ := max {0, (r −

∑
g′: g′<g λkg′)}

This value is the factor resp. the weight the actual strip has to sum up in the rth
component.

In more detail: 1 is the width of the component r defined by (25). λkg −
∑r−1

p=1 µk′pg
is the width which is left from λ after the first (r − 1)th components were computed
and (r −

∑
g′: g′<g λkg′)

+ is the width left for component r. Components computed by
at least one strip with a factor different from the width of the strip are called floating
components. Notice that components which are floating can be integer, like in the last
example seen. But under construction of the mapping, a component which is not floating
is integral. So floating components are the critical ones.

By this knowledge we can develop a mapping which is given in algorithm 2. Here
r counts the current component to compute xr, µk′rg is the factor satisfying the above
formula and z keeps up the distance to the next full disaggregated master variable.

Let us prove the property of the factor by an easy induction on r:

Lemma 1. In each step of algorithm 2 holds

µk′rg = min {1, λkg −
r−1∑
p=1

µk′pg, (r −
∑

g′: g′<g

λkg′)
+}

Proof. Apply induction on r ∈ N

(first induction)
Let be r = 1 and as initialized is z = 0. So it is r − z = 1,

∑r−1
p=1 µk′pg = 0 and∑

g′: g′<g λkg′ = 0 as we start in the left side of the rectangle. Therefore it holds

µk′rg = min {λkg, 1} = min {1, λkg −
r−1∑
p=1

µk′pg, (r −
∑

g′: g′<g

λkg′)
+}

Assume the minimum is not one. Otherwise we are finished.
We replace λkg = λkg − µk′rg like in f) and z = z + λkg like in g). As the assumption

holds it is λkg = 0 and therefore the algorithm increases g.
So it is

∑
g′: g′<g λkg′ = λkg′ the previous factor and hence

µk′rg = min {λkg, r − λkg′} = min {1, λkg −
r−1∑
p=1

µk′pg, (r −
∑

g′: g′<g

λkg′)
+}

23

3 The generic Branch-and-Price scheme

Now repeat the last step until it is z = r.

(induction requirement)
Let for one r − 1 be

µk′lg = min {1, λkg −
l−1∑
p=1

µk′pg, (l −
∑

g′: g′<g

λkg′)
+} ∀ l = 1, . . . , r − 1

(induction step)
r − 1 7→ r:
Because of h) and the construction of the algorithm it is z = r − 1. Now the proof is

quite similar to the first induction.

In other words, the mapping gives a partition of each table into Uk strips of width
1. r is the number of the current strip and z denotes the actual position in the strip of
width Uk.

In [1] it is shown that by using this mapping integrality on the aggregated master
variables is equivalent to the integrality on the original variables if the given problem is
a BLP. But remember the last example: in the case of an ILP (or even MIP) a fractional
λ can still yield an integer x. So the proof only holds in one direction and this fact is
intuitively clear as all entries and factors are integral. This mapping is a good tool to
check whether the current master LP solution satisfies all the integrality constraints. So
assume the given problem is a MIP, then transform the master solution into an original
solution and check the integrality constraints for the not continuous components. So the
mapping can be obtained in the MIP case, while ignoring the continuous components.
Which are ignored in every generator from now on.

24

3.1 Map λ to x

Algorithm 2 MapλTox

for k = 1 . . .K ′ do
a) let Λ = {g ∈ Hk| λkg > 0}
b) sort g ∈ Λ lexicographical decreasing by xkg

c) set x
k′j
i = 0 ∀j = 1 . . . Uk, i = 1 . . . nk, z = 0, r = 1

for g ∈ Λ in lexical order do
while λkg > 0 do

d) set µk′rg = min{λkg, r − z}
for i = 1 . . . nk do

e) x
k′r
i = x

k′r
i + xkgi µk′rg

end for
f) λkg = λkg − µk′rg
g) z = z + µk′rg
if z = r then

h) r = r + 1
end if

end while
end for

end for
return x

This mapping is not only a useful tool it is also the motivation of the generic branching
scheme and therefore the idea of the scheme is quite similar to this mapping.

As seen only floating components can end up in fractional original variables. So if it is
possible to avoid floating components, i.e. guarantee that each factor µk′rg is integer, then
clearly the obtained original solution is integer too. Motivate this on an easy example:

Example 3. Let the given problem be a MIP, K ′ = 1, K = U1 = 5, n1 = 4 and the
current solution λ be given in lexicographic order as

λg 0.5 2 1 0.5 1 0

x1 4 4 4 3 2 0
x2 1 1 0 1 1 0
x3 1 0 0 1 0 0
x4 1 0 0 0 1 1

By counting only the strips with positive width, the rectangle can be illustrated as
follows:

25

3 The generic Branch-and-Price scheme

From the mapping we obtain the original fractional solution

x1 =


4
1

0.5
0.5

 , x2 =


4
1
0
0

 , x3 =


4

0.5
0
0

 , x4 =


3.5
0.5
0.5
0

 , x5 =


0
0
0
1


The floating components are x1, x3, x4.

Let’s say we first detected x1 to be floating. Why not try to avoid this floating? This
is exactly what the branching scheme will do. We split up the rectangle between the
first and second strip, because the component is floating across these two. Now there are
two cases to avoid the floating property: x1 could be full in the left part of the rectangle
or in the right part of it.

The first one could be obtained by setting the master variable corresponding to the
first strip on value one. The other one by setting it to zero. As this method is similar to
the branching on the master variable and also not efficient like it, the branching scheme
keeps up a stronger method. Vanderbeck does not only bound single master variables,
he bounds a class of them.

Putting x1 to the left part of the rectangle could also be done by e.g. grouping the
last 5 strips to a so called column class and decrease the bound on the whole size of this
combined strip by one, i.e.

λ2 + λ3 + λ4 + λ5 ≤ 4

And in the other part with

λ2 + λ3 + λ4 + λ5 ≥ 5

In this example this choice for the component was not really the best one, as one of the
other two components would split up the rectangle more balanced.

So what we now will do in the next sections is to show why this branching works,
how such a component can be detected, which one is the best of them and how can the
partition of the column classes or the B&P tree becomes more balanced.

26

3.2 Separation of a fractional solution at. . .

3.2 Separation of a fractional solution at. . .

After checking the current solution and detecting it is not an optimal solution with
integrality on the corresponding original variables, one have to branch. Here we consider
two cases for branching. Branching in the root (i.e. first node) in the corresponding
branch-and-price tree and branching in a node which is not the root node. The main
difference of these two cases is the knowledge of the previous calculated sequence called
component bound sequence S.

Definition 2. A component bound sequence S for a block k is an ordered set of
triples ẋ = (i, γ, α) where i ∈ nk defines the component or original variable on which
the bound will be applied, γ ∈ {≤, >} gives the sense of the bound and α ∈ R defines
the value of the bound.
The pth element of S will be denoted with ẋ[p] and defines a bound on the ipth component.
Each S defines a associated Column class on the current set of generators H given
by

H(S) := {g ∈ H | xg satisfies S}
The value of a column class associated with S is given by

λ(S) := λ(H(S)) :=
∑

g∈H(S)

λg

In the definition the two senses for γ has to be disjunctive, as we will then partition
H by S. The H(S)-strip has then the width λ(S).

Now take a look at the last example:

Example 4 (continued). Let the given problem be a MIP, K ′ = 1, K = U1 = 5, n1 = 4
and the current solution λ be given in lexicographic order as

λg 0.5 2 1 0.5 1 0

x1 4 4 4 3 2 0
x2 1 1 0 1 1 0
x3 1 0 0 1 0 0
x4 1 0 0 0 1 1

As seen the floating components are x1, x3 and x4.
First let a component bound sequence S be given as

S = 〈(1, >, 3), (2, >, 0)〉
The correspond H(S)-strip is given by the first two strips and has width λ(S) = 2.5.

The right part of the rectangle is then the strip defined by H \ H(S) and has width
2.5 = 5− 2.5.

27

3 The generic Branch-and-Price scheme

λg 0.5 2 1 0.5 1 0

x1 4 4 4 3 2 0
x2 1 1 0 1 1 0
x3 1 0 0 1 0 0
x4 1 0 0 0 1 1

So the branching can be applied by e.g. setting the two branching constraints

λ(H(S)) ≥ 3

to cover the floating component in the left part or

λ(H(S)) ≤ 2 ⇔ λ(H \H(S)) ≥ 3 = 5− 2

to cover it in the right part.

A shorter bound sequence could be

S = 〈(1, >, 3)〉

This would cover x4 in the left resp. right part of the rectangle and defines a partition
with three strips on the left and on the right side.

The example shows, if we can find a component bound sequence separating a fractional
component, then it defines the branching constraints.

3.2.1 . . . the root node

In the root node there are at first no information about previous component bound
sequences. This information will in any other node than the root node get important as
we will see in the next subsection. But how will we get a component bound sequence S
which induces our branching constraints?

First we notice that strips with an integral width are not that important to find a
floating component, because every such strip covers at least one component. So floating
can only appear if there are strips with a fractional width. Otherwise the mapping would
compute an integer original solution x as seen.

So we only look at strips with a positive fractional width. Here we know that at least
one component is floating, since the current original solution is fractional. But it can
also sum up to an integral value. So we have to check this.

For each block k let be

F = {g ∈ Hk| λkg − bλkgc > 0},

28

3.2 Separation of a fractional solution at. . .

S = 〈〉, I = {1 . . . nk} and

αi :=
∑
g∈F

xkgi λkg

the component value for component i ∈ I.

If one of the component values αi is fractional, then we have found the component
which we want to separate and add the splitting bound sequence (i,≤, b) to our com-
ponent bound sequence S. The value b to split up the rectangle can be chosen as the
median over all entries in the ith entry of all strips in F . This yields a more balanced
partition.

But it can happen that all the values are integer. (see e.g. the first bound sequence
in example 13)

So we have to split up the rectangle further, without any concrete knowledge which
component is floating. Therefore we assume a given priority for every i ∈ I and discuss
this in section 5.1.3. For now we assume the priority is lexicographic decreasing with
respeect to i. Then we split up by the first component and add (1,≤, b) to the sequence S
and repeat the calculation with the strips in F which satisfies S. This will yield a nested
partition of the column classes which is explained later. Of course could the sense for
the bound also be >. So the other part of the rectangle has to be explored too. As the
strips defined by the current S gets smaller in at least one of them has to be a fractional
component value. Otherwise the entries all sum up to integer values and therefore would
the original solution has been (mixed) integer. As seen the so obtained bound sequence
does not have to be unique. Therefore we collect all possible sequences in a set, say
record. Later we need a possible small S, i.e. we choose the smallest bound sequence in
record for our S. As we also want to respect the priorities of the components, we first
choose the sequence in record which has the highest priority for the last bound in it and
then choose the smallest one of all these with the same priority. As we first select our
bounds for the sequences with the highest priority, this selection respects the priority
the most and keeps S small too.

The algorithm for this separation is given in algorithm 3 and works exactly like already
explained above.

For separating a fractional solution in block k call Separate(λ, F, I, S, record), where
S = 〈〉, I = {1 . . . nk} and record = ∅.

Step a) is only a breakpoint for the recursion call in i) resp. j). In b) are the component
values computed and c) for checking them on integrality. If there is a fractional one,
the corresponding bound is in e) added to the current sequence S and then to record
the set of all component bound sequences, while in e) we detect that this sequence is
a feasible, i.e. separating one and we can abort the algorithm at f). If there is no
fractional component value, then we compute in g) the index set J ⊆ I. J only contains
the critical indices. In particular it is 0 ≤ αi ≤ λ(F) ∀ i ∈ I as directly known from the
definition. So Indices in J are those indices which are candidates for a new bound in

29

3 The generic Branch-and-Price scheme

the current sequence, as bounding them can yield a real partition of the column classes.
Step h) is to choose the index with the highest priority like mentioned above and in i)
and j) are the recursive calls to the algorithm for splitting up further getting two sets
of sequence bounds, which are put together in k).

After applying the algorithm, choose one of the component bound sequences S in
record with the highest branching priority on its last component and the shortest size.

The shortcut F (S) stands for F ∩H(S). mediani is the median in component i over
all fractional columns. (See section 5.1.1 for details, because the choice of this value
could be important) Notice that like mentioned in [1] i∗ stays here in I, because of the
non-binary value the component can later be choosed again with another component
bound value. But in some cases it has to be removed too. (See therefore also section
5.1)

Algorithm 3 Separate(λ, F, I, S, record, k)

if F = ∅ or I = ∅ then
a) return record

end if
b) foundFractionalCompV alue := FALSE
for i ∈ I do

c) αi :=
∑

g∈F x
kg
i λkg

d) f := αi − bαic
if f > 0 i ∈ Zk then

e) record := record ∪ {(〈S, (i,≤,mediani)}, f)〉
f) foundFractionalCompV alue := TRUE

end if
end for
if foundFractionalCompV alue then

g) return record
end if
h) J := {i ∈ I| 0 < αi < λ(F)}
i) i∗ := arg maxj∈J{priorityj}
j) record1 := Separate(λ, F (〈S, (i∗,≤,mediani∗)〉), J,
〈S, (i∗,≤,mediani∗)〉, record, k)

k) record2 := Separate(λ, F (〈S, (i∗, >,mediani∗)〉), J,
〈S, (i∗, >,mediani∗)〉, record, k)

l) record := record ∪ record1 ∪ record2
m) return record

As in each branching step in the B&P we have to separate the current fractional

30

3.2 Separation of a fractional solution at. . .

solution, the complexity of the procedure should be polynomial or pseudo polynomial
and indeed it is.

Notice that in each iteration of Separate are |F ||I| = |F |nk operations, because of
the for-loops. Moreover the definition of J yields component bound sequences which
really splits up the set of generators. The number of recursive calls is bounded too. By
definition of J we decrease the index set if in F , the current set of fractional strips, one
component i ∈ I is bounded, i.e. all entries in the generator correspond to xi, then it is
αi = λ(F) and therefore this index is not anymore in J . So let vik = uki − lki denote the
number of different entries in the generators in H and Vk denote the maximum over all
vik, i = 1 . . . nk. (Given a BLP it is Vk = 1). Then there are at most 2Vknk recursive
calls. In each iteration F will be decreased by at least one, because in each step we
further split up the column classes and we do not further explore any part with empty
F as we return for that in a). So there are |F | possible strips with fractional width in
which the recursive call ends up. This all yields the complexity of O(Vkn

2
k|F |2).

By choosing only one of the two recursive calls i) or j), e.g. the one where F (〈S, ẋ[i∗]〉)
is the smallest, we can observe a complexity of O(Vknk|F |log(|F |)).

Remember that the size of F is bounded by the number of constraints in the master-
problem, because λ is the optimal LP solution.

The construction of S yields λ(S) to be fractional, therefore there are the branching
constraints

λ(S) ≤ bλ(S)c or λ(S) ≥ dλ(S)e

by using the usual disjunctive branching constraints.

But the first constraint is in general weaker than the second and yields an unbalanced
branch-and-price tree. (See Example 1)

Example 5 (continued). Keep up the example 1 with λ given as

λg 0.5 2 1 0.5 1 0

x1 4 4 4 3 2 0
x2 1 1 0 1 1 0
x3 1 0 0 1 0 0
x4 1 0 0 0 1 1

and

S = 〈(1, >, 3), (3, >, 0)〉

Now the branching constraint for the first successor node NODE(1) can be

NODE(1) ≡ λ(H(S)) ≥ 1

31

3 The generic Branch-and-Price scheme

and the weaker constraint for the second successor node

NODE(2) ≡ λ(H(S)) ≤ 0

So in NODE(2) we only know that one master variable is fixed to zero. As in the
explanation of branching on the master variables in section 2.6.2 mentioned this is a
weak decision and the B&P tree can get unbalanced.

Ignoring the fact that the partition of the column classes, i.e. the rectangle, is already
unbalanced (therefore the B&P tree can be unbalanced too) and that we can observe
better partition by choosing another component bound sequence S, we can split up the
bigger right part and get a more balanced tree.

We can define a nested partition induced by S by only taking the first bound in the
sequence and invert it to get

S1 = 〈(1,≤, 3)〉

Now take the first two bounds of S and invert the second to get

S2 = 〈(1, >, 3), (3,≤, 0)〉

And for further notation let be S3 = S.
Now take a look at the illustration.

S1 induces the green part of the partition. S2 the dark blue part and S3 the bright
blue part. Now we define three branching nodes by

NODE(1) ≡ λ(H(S3)) ≥ 1

NODE(2) ≡ λ(H(S2)) ≥ 3

NODE(3) ≡ λ(H(S1)) ≥ 3

As NODE(1) still contains a weak decision, because of the unbalanced partition, the
old big decision is now splitted up in NODE(2) and NODE(3).

In particular: NODE(1) will as already mentioned cover the floating component x1.
But by applying NODE(2) or NODE(3) we now get more information as we get one

32

3.2 Separation of a fractional solution at. . .

component more covered in the dark blue or in the green part. Later in the analysis of
the scheme we will see that this branching is a stronger step towards integrality if the
blue and green column classes satisfying a specialized property.

Hence giving up the disjunction, i.e. the disjunctive partition of the solution space,
using a non-binary branching tree yields a more balanced one.

The following definition generalizes the last idea:

Definition 3. Given a current master LP solution λ and a component bound sequence
S at a current B&P node. For each block k on which the branching scheme is applied by
S define |S|+ 1 successor nodes by

NODE(p) ≡ λ(Gp−1 −Gp) ≥ Lp−1 − Lp + 1, p = 1 . . . |S| (47)

NODE(|S|+ 1) ≡ λ(G|S|) ≥ L|S|, (48)

where Sp is the subsequence of the first p component bounds in S,

Lp := λ(Sp) ∀ p = 1, . . . , |S| − 1,

L|S| := dλ(S)e,

S0 := 〈〉, L0 := λ(Hk) = Uk and Gp := Hk(Sp) for p = 0 . . . |S|.

Notice that Lp ∈ N, p = 0 . . . |S| − 1 (otherwise S could been smaller which is a
contradiction to our smallest bound sequence S) and L|S| fractional,
Hk(S) = G|S| ⊆ G|S|−1 ⊆ · · · ⊆ G1 ⊆ Hk = G0 and L|S| ≤ L|S|−1 ≤ · · · ≤ L1 ≤ L0

per construction of Gp and S.

Figure 2: Illustration of one branching step for a fixed block k.

The order of the nodes is deterministic as the following lemma tells. Because any feasi-
ble integral solution which is not in at least one of the nodesNODE(|S|+1), . . . , NODE(t)
has to be in at least one NODE(p), p < t. More in detail it tells us that in this branching
no integral (or in the MIP case no mixed integral) solution will be lost.

33

3 The generic Branch-and-Price scheme

Lemma 2 ([1]). If a feasible integral (or mixed integral) solution λ is not represent in
a Node(l) for at least one l ∈ {p, . . . , |S|+ 1} then it satisfies λ(Gp−1) < Lp−1.

Proof. [1]

We show the result by induction on p.

(first induction)

Let p = |S|+ 1.

Then λ not represent by the NODE(|S|+ 1) implies per definition of this node

λ(G|S|) < L|S|.

(induction requirement)

For one p ∈ N let the result holds for p+ 1

(induction step)

p 7→ p− 1 :

Let λ not be represent in NODE(l) for l = p, . . . , |S|+1 and observe p ≤ |S|, otherwise
holds the first induction.

Then by induction requirement the solution satisfies the constraint

λ(Gp) < Lp

and hence

λ(Gp) ≤ Lp − 1,

because of the integrality on Lp and the convexity constraint.

Moreover, because λ is not represent in the

NODE(p) ≡ λ(Gp−1 −Gp) ≥ Lp−1 − Lp + 1,

the solution satisfies

λ(Gp−1 −Gp) ≤ Lp−1 − Lp.

The width of the strips is additive, i.e.

λ(Gp−1) = λ(Gp−1 −Gp) + λ(Gp).

Hence the solution satisfies

λ(Gp−1) = λ(Gp−1 −Gp) + λ(Gp) ≤ Lp−1 − Lp + λ(Gp) < Lp−1 − Lp + Lp = Lp−1.

34

3.2 Separation of a fractional solution at. . .

This observes that the solution of the MIP is in at most one of the sucessor nodes,
because: if a mixed integral solution λ is not represent in the

NODE(1), . . . , NODE(|S|+ 1)

then it satisfies

λ(Hk) = λ(G0) < L0 = Uk

which is a violation of the convexity constraint.

The current fractional solution is not feasible in every sucessor node, because in every
node the corresponding strip G(Sp) must have a different width. Because of the rounding
this result is clear for NODE(|S| + 1). In the other nodes the addition of 1 increases
the width of the (Gp−1 −Gp)-strip.

So we see that the generic branching scheme is a valid branching if it ends up after
a finite number of steps in an optimal integer solution. This will be the result of the
analysis in section 3.3. But for now we close this subsection with the example from [23]:

Example 6. Given a BLP, let be K ′ = 1, U1 = 5, n1 = 4 with λ given as

λg 0 1
2 1 1

2 0 0 1 1 0 0 1
2 0 1

2 0 0

x1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
x2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
x3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

The algorithm Separate now computes in the first iteration

αi = 1 ∀ i = 1, . . . , 4

So keep up the bound (1, >, 0)

Then in the corresponding recursive call it is

α2 =
1

2

So the algorithm terminates with the component bound sequence

S = 〈(1, >, 0), (2, >, 0)〉

Now calculating the bounds yields up to

L0 = 5, L1 = 3, L2 = d1.5e = 2

35

3 The generic Branch-and-Price scheme

This induces the three successor nodes

NODE(1) ≡ λ(〈(1,≤, 0)〉) ≥ 5− 3 + 1 = 3

NODE(2) ≡ λ(〈(1, >, 0), (2,≤, 0)〉) ≥ 3− 2 + 1 = 2

NODE(3) ≡ λ(〈(1, >, 0), (2, >, 0)〉) ≥ 2

By taking a deeper look at each node, we see that in each node one component is
implicit fixed. In particular we bound in NODE(1) xr1 = 0, in NODE(2) xr2 = 0 and
in NODE(3) xr2 = 1 for some unknown r correspond to each node. But as the width of
the corresponding strip is bound by an integer size, this component will at least become
integral when the width really is fixed to an integer value, e.g. when the compliment
column class is bounded to Uk − L, where L is the bound in the strip. This in a more
general view is the idea why the generic branching scheme will find an integer solution
in the end.

3.2.2 . . . a node after the root node

Now consider the case of a node in the branch-and-price tree which is not the root node.
Therefore let

λ(Sp) ≥ Lp, Gp = Hk(Sp), p = 1 . . . P

denote all the P branching constraints in the current node correspond to block k.

Notice that we assume that no pair of this constraints are identical. Otherwise the
fractional solution was not cut off by the branching constraint. Even when the component
bound sequences are identical the bound value is greater than the previous one. This
case is mostly possible and in such a case some of the constraints are redundant and can
be removed by a preprocessing. (see subsection 3.4)

Before we explain how to separate at a deeper node in the B&P tree, the question is:
can we even just call separate again to get another useful component bound sequence S
without any respect to the bound sequences calculated in the ancestor nodes?

And the answer is: No.

Example 7. Given a BLP with K ′ = 1, U1 = 3, n1 = 4 and λ be given in lexicographic
order as

λg
1
2

1
2

1
2

1
2

1
2

1
2

x1 1 1 0 0 0 0
x2 1 1 1 1 0 0
x3 1 0 1 0 1 0
x4 0 0 0 0 0 1

36

3.2 Separation of a fractional solution at. . .

Assume we are at depth 1 in the B&P tree and the current node is defined by the
branching constraint

λ(〈(1, >, 0)〉) ≥ 1

The separate method computes

α1 = 1, α2 = 2, α3 =
3

2
, α4 =

1

2

So the new component bound sequence with no respect to the previous one is given as

S = 〈(3, >, 0)〉

with λ(S) = 3
2 .

Therefore we get the two successor nodes defined by

NODE(1) ≡ λ((3,≤, 0)) ≥ 2

NODE(2) ≡ λ((3, >, 0)) ≥ 2

Remember: the idea of the branching scheme was to get the bounded component in
the mapped original solution integer. So in this example we expect the 3rd component in
at least one component vector would be integer by applying these branching constraints.

Assume we select NODE(2) to be the next node in the B&P tree to expand further.
(NODE(1) can be seen quite similar)

A new master LP solution λ can be

λg
2
3

1
3

2
3

1
3

2
3

1
3

x1 1 1 0 0 0 0
x2 1 1 1 1 0 0
x3 1 0 1 0 1 0
x4 0 0 0 0 0 1

Now apply the mapping from section 3.1 and we get

x1 =


1
1
2
3
0

 , x2 =


0
1
2
3
0

 , x3 =


0
0
2
3
1
3


We see the first component is integer in at least one of these vectors as we expected

by our first branching step. But we also see the 3rd component is fractional in all of
them. This is a contradiction to the idea of the branching scheme. In other words: the
last step is more or less useless.

37

3 The generic Branch-and-Price scheme

The example shows that we need to respect component bound sequences resp. the
partition of the column classes done at the ancestor nodes. Otherwise the branching
scheme may not terminate after a finite number of branching steps or if it does it could
have made a lot of useless steps.

To keep up our idea to get closer to an integral solution we have to keep the partition
of the column classes as a nested one. This means that the column classes we define
in each step of the branching scheme are disjunct or subsets. But they do not have to
overlap each other. Then the subset property keeps up old already covered components
and the integral solution becomes closer in each branching step as the analysis will show
in section 3.3.

So the question is how to respect the previous partitions? For that we first define the
column class tree which keeps the relationship between them.

Definition 4. Given the column classes Gp = Hk(Sp) for p = 1 . . . P for the current
block k in the current branch-and-price node. The associated tree of column classes
for block k is defined as follows.

The root is associated with Hk. Each leaf node corresponds to a class Gp with no
subclass, i.e. there is no subset Gl ⊂ Gp, l 6= p. A node associated with Gp is adjacent
to a node correspond to class Gj if and only if Gp ⊂ Gj and there is no subclass between
them, i.e. there is no Gi with Gp ⊂ Gi ⊂ Gj (treecondition). In this case Gp is a direct
successor of Gj and resp. Gj a direct predecessor of Gp. In general if there could be
a subclass between them we call them only sucessor and predecessor.

The set of all direct successors of a node associated to Gp is denoted by dsucc(p),
the set of direct predecessors by dpred(p), the set of successors by succ(p) and the
set of predecessors by pred(p).

If this tree definition really is a tree by our partition of the column classes, we call
this partition a nested partition.

We illustrate the definition of the tree of the column classes by an example:

38

3.2 Separation of a fractional solution at. . .

Example 8. Let K ′ = 1, U1 = 12 and n1 = 4. The current branching constraints are

λ(〈(2,≤, 3), (3,≤, 0), (4,≤, 1)〉) ≥ 1 (49)

λ(〈(2,≤, 3), (3,≤, 0), (4,≤, 1), (1, >, 0)〉) ≥ 1 (50)

λ(〈(2,≤, 3), (3,≤, 0), (4, >, 1), (1, >, 0)〉) ≥ 4 (51)

λ(〈(2,≤, 3), (3,≤, 0), (4, >, 2)〉) ≥ 3 (52)

λ(〈(2,≤, 3), (3, >, 0), (1,≤, 0)〉) ≥ 1 (53)

λ(〈(2, >, 3), (1,≤, 0)〉) ≥ 1 (54)

λ(〈(2, >, 3), (1,≤, 0), (4,≤, 1)〉) ≥ 1 (55)

λ(〈(2, >, 3), (1, >, 0)〉) ≥ 1 (56)

λ(〈(2, >, 3), (1, >, 0), (3,≤, 1), (4,≤, 1)〉) ≥ 1 (57)

λ(〈(2, >, 3)〉) ≥ 2 (58)

The tree of column classes is then given in figure 3.

Hk

525851 49 53

54 56 50

5755

Figure 3: Example for a column class tree for a fixed block k. The number of the nodes
corresponds to the number of the associated branching constraint.

39

3 The generic Branch-and-Price scheme

As we see, the condition for each column class to not overlap another column class
really defines a tree. This tree is induced by the set of the branching constraints resp.
the partition of the column classes and the tree itself induces an order of these column
classes, e.g. by using a depth first search from left to right and enumerate each node
of the column class tree after all child nodes are explored. This enumeration defines
then the order of the strips in our rectangle and we will call this order the induced
lexicographic order.

Applying this order on the column classes of our example yields the following sequence
for the corresponding branching constraints:

51, 55, 54, 57, 56, 58, 50, 49, 52, 53

The idea of the induced lexicographic order on the strips is to look up whether the
strip is in one of these column classes starting at the left. This respects the previous
partition of the column classes and as we apply the depth first search, the property of
the subset of each column class holds. So then the new sort of the rectangle keeps strips
in the same column class together.

Then if there are two strips in the same column class they can be sort lexicographic.

So the tree of the column classes defines an order of the strips which respects the
previous partitions. (Notice: the lexicographic order is not that important. One can
also define another sort at the beginning and then get the induced sort of it by the tree
of the column classes)

But compute this tree and then sort by it can get expensive. So do we need to compute
this tree in practice?

Take a look at the associated component bound sequences Sp for each block k. Because
they partition the whole column class Hk in a nested way by component bounds each
Sk starts with a bound on the same component. From the definition of the associated
columns class tree one gets: every component bound sequence Sp associated to a node
of the same subtree with the root in depth d has the same first d component bounds.
Because Gp ⊂ Gj ⇔ Sj ⊂ Sp which means that the two component bound sequences
bounds the same |Sj | components.
Given by this tree or by the nested partition we define a new order on the strips. First it
should represent the partition and then the order is set to be lexicographically. The so
called induced lexicographic order (ILO) is defined on two columns g, h by calling
ILO(g, h, C, S, I, p, k) where C denotes the set of branching sequences, i.e. initial C =
{S1 . . . SP }, S the component bounds which are already tested, i.e initial S = 〈〉, I the
set of components which are not yet fixed, i.e. initial I = {1 . . . nk} and p the current
position in the bound sequences, i.e. initial p = 1. (see algorithm 4)
The shortcut C(S) denotes the subset of C which have the first bounds like S, i.e.

40

3.2 Separation of a fractional solution at. . .

C(S) = {Sp ∈ C| S ⊆ Sp}.

Algorithm 4 ILO(g, h, C, S, I, p)

if C = ∅ then
if xkgI < xkhI in lexicographic order then

a) return TRUE
end if
b) return FALSE

end if
c) Find component i which is fixed in the pth entries in all S′ ∈ C
Let x[p] = (i, γ, α) ∈ S1 the pth comp. bound in first (reference) sequence S1 ∈ C
if xkgi and xkhi satisfies X[p] then

d) return ILO(g, h, C(〈S, (i, γ, α)〉), 〈S, (i, γ, α)〉, I \ {i}, p+ 1, k)
end if
if xkgi and xkhi (both) do not satisfy X[p] then

e) Let β ∈ {≤, >} \ {γ}
f) return ILO(g, h, C(〈S, (i, β, α)〉), 〈S, (i, β, α)〉, I \ {i}, p+ 1, k)

end if
g) return xkgi > xkhi

Let us apply this ordering on an example

Example 9. Let K ′ = 1, U1 = 12 and n1 = 4, the branching constraints given as 49 -
58 (without 51, 52, 57 to small it down) and the current master LP solution given as

λg 0.2 0.3 0.5 1 1 0.3 1.7 2 1 0.5 1 1.5 1

x1 4 4 3 2 1 1 0 2 0 5 3 0 3
x2 3 2 1 0 2 4 5 0 2 1 6 0 0
x3 3 2 1 0 2 1 1 3 0 1 2 1 4
x4 3 2 1 0 2 1 1 1 1 0 0 1 2

The induced lexicographic order with respect to the column class tree is then given
as:

λg 1 0.3 1.7 0.5 0.2 0.3 0.5 1 2 1 1.5 1 1

x1 3 1 0 5 4 4 3 3 2 1 0 2 0
x2 6 4 5 1 3 2 1 0 0 2 0 0 2
x3 2 1 1 1 3 2 1 4 3 2 1 0 0
x4 0 1 1 0 3 2 1 2 1 2 1 0 1

41

3 The generic Branch-and-Price scheme

The reason why the ILO is so important shows the comparison between the ILO and
the lexicographic order.

The lexicographic order here is given as

λg 0.5 0.2 0.3 1 0.5 1 2 1 0.3 1 1.7 1 1.5

x1 5 4 4 3 3 3 2 2 1 1 0 0 0
x2 1 3 2 6 1 0 0 0 4 2 5 2 0
x3 1 3 2 2 1 4 3 0 1 2 1 0 1
x4 0 3 2 0 1 2 1 0 1 2 1 1 1

Just following the method Separate would yield e.g.

α1 = 0.5 · 5 + 0.2 · 4 + 0.3 · 4 + 0.5 · 3 + 0.3 · 1 + 1.7 · 0 + 1.5 · 0 = 6.3

which is fractional. So the component bound sequence could be e.g.

S = 〈(1, >, 0)〉

and correspond to the branching constraints

λ(〈(1, >, 0)〉) ≥ 8

and
λ(〈(1,≤, 0)〉) ≥ 10− 8 + 1 = 3.

This partition of the column classes destroys the partition which was previous calculated
and is represented in the ILO. As seen this is important to reach integrality. (see also
section 3.3)

So the ILO respects the previous partition of the column classes and helps to avoid
an overlap of two or more component bound sequences, i.e. column classes. But as the
last example shows we need to tell the information not only to the mapping but also to
the separate method.

How do we use this order to branch further?
A deep look at the associated tree of column classes shows that there are three possible

cases by a separation of a fractional solution.

a) An intermediate node, i.e. an intermediate subclass, has fractional value, then
branch on the associated component bound sequence.

b) An already existing node, i.e. an old subclass, has fractional value, then branching
yields to reset the bound in the corresponding branching consraints.

42

3.2 Separation of a fractional solution at. . .

c) A new leaf node, i.e. another subclass, has fractional value, then branching will
further partition one existing subclass.

So the new separate method has to explore for this three cases.
The algorithm which do so is given in algorithm 5.
So analogous to the case at the root node we call the separate function
Explore(C, p, F, I, S, record, k) with the initial values

C = {S1 . . . SP }, I = {1 . . . nk}, S = 〈〉, record = ∅, p = 1

and F = {g | µkg − bµkgc > 0}.
Now in each iteration of the method we decrease C the set of all previous defined

component bound sequences by following the next bound in the sequences in step b) and
split up the set C in f) and g).

If we get a new leaf node in the corresponding tree of column classes we end up in
a), while the other two cases appear in d). (The value bi needs some special properties
which are explained in section 5.1.1. It should split up the column classes with respect to
the ILO but it should yield a real partition too.) In particular if the current component
bound sequence is equal to one of those in the current C then we end up here in the
same node, otherwise we get a new node between two nodes in the tree.

At the end the new component sequence can be chosen from record the set of all pos-
sible separating component bound sequences, like it is done after the method Separate
at the root node of the B&P tree.

The complexity of the separation method Explore is in O(Vkn
2
k|F |2) like the one of

Separate.
In particular: one call of Explore needs O(|F |) operations without Separate which

needs O(nk|F |) operations in each recursive call. Like in the analysis of Separate the
number of recursive calls is bounded in O(nk|F |), since there are just |F | possible par-
titions.

The complexity can also be reduced to O(Vknk|F |log(|F |)) by choosing only one of
the two recursive calls f) or g) in each step, e.g. the one with the smallest F .

43

3 The generic Branch-and-Price scheme

Algorithm 5 Explore(λ, p, F, I, S, record, k)

if C = ∅ then
a) return Separate(F, I, S, record, k)

end if
b) Find component i which is fixed in the pth entries in all S′ ∈ C
Let x[p] = (i, γ,mediani) ∈ S1 the pth comp. bound in first (reference) sequence
S1 ∈ C
c) Let αi =

∑
g∈F x

kg
i λkg, f = αi − bαic

if f > 0 i ∈ Zk then
d) record = record ∪ {(〈S, (i,≤, bi)〉, f)}
e) return record

end if
if αi > 0 then

f) record1 = Explore(C(〈S, (i, >,mediani)〉), p+ 1, F (〈S(i, >,mediani)〉),
I \ {i}, 〈S, (i, >,mediani)〉, record, k)

end if
if αi < λ(F) then

g) record2 = Explore(C(〈S, (i,≤,mediani)〉), p+ 1, F (〈S(i,≤,mediani)〉),
I \ {i}, 〈S, (i,≤,mediani)〉, record, k)

end if
h) record = record1 ∪ record2
i) return record

44

3.3 Depth of the branch-and-price tree

After separation of the fractional solution, the branching constraints will be computed
like in section 3.2.1 and therefore the properties of a branching rule (except terminating
which is shown in section 3.3 shown) also hold.

Before we show the termination of the scheme, we first answer the question: do we
need all |S|+ 1 successor nodes in each branching step?

Proposition 1 ([1]). The descendant nodes can be restricted to only l, . . . , |S|+1 nodes,
where S is the current component bound sequence and

l = max
p=1,...,P : λ(Gp)=Lp

{|Sp|}

Proof. [1] Let l be like in the proposition.

As the lemma 2 holds, we know that if the constraint λ(gl) ≥ Ll was already calculated
and by choosing this node, i.e. a path in the branch-and-price tree along this node
associated with this constraint, we already cut off integer solution for which λ(gl) < Ll

holds.

Therefore at computing the new descendant nodes we do not need the constraints, i.e.
nodes, which deserve integer solution with λ(gl) < Ll.

An easy way for pruning is the prune by dominance, i.e. a node N needs not
to be generated if one of the ancestor nodes has a successor node defined by the same
branching constraint. Notice that this result only holds for branching constraints depend
on the same block k. As the next section shows, prune by dominance and the proposition
keeps the whole branch-and-price tree small. In the case of a set partitioning it is almost
binary, which will be shown in section 4.

Other pruning aspects like prune by infeasibility or decrease the size of P is shown in
section 3.4, the preprocessing.

3.3 Depth of the branch-and-price tree

This section contains the analysis of the width and depth of the B&P tree using the
generic scheme.
For a BLP we can directly adopt the analysis in [1] and get:

Theorem 2. Let n :=
∑

k=1...K{nk}, K = U :=
∑

k=1...K′{Uk} and the given problem
is a BLP.
The depth of the branch-and-price tree on a BLP is bounded by nU and the number of
leaf nodes is bounded by 2nU .

45

3 The generic Branch-and-Price scheme

For the understanding of the proof of this theorem and to generalize it to a MIP we
need more theory about the variable space and therefore the following definition:

Definition 5. Let block k be fixed.
Given a component bound sequence S, the associated width L ∈ N and the current

master solution λ ordered in the ILO, then we call a (S,L)-strip the strip consisting of
columns of the G(S)-strip from the first one up to the value L. So it is a G(S)-strip of
width L. Adding all strips of the rectangle in ILO beginning at the first column on the
left, the (S,L)-strip for block k is described by the interval

V (S,L) = [
∑

g<G(S)

λkg ,
∑

g<G(S)

λkg + L)

A restriction of a (S,L)-strip to the lines which are bounded by S is called a (S,L)-
frame.

For λ the current master solution let x be the mapped solution using the mapping in

section 3.1. For an aggregated block k we call x
k′r
i covered by the (S,L)-frame if i ∈ S

and r − 1 ∈ V (S,L). We call the component overcovered by the (S,L)-frame if it is

covered by it and the corresponding component is fixed in S, i.e. xgki = xhki ∀xhk, xgk
satisfying S.

In words is a (S,L)-strip the set of strips consisting of the first L strips of the
G(S)-strip. A (S,L)-frame is then a (S,L)-strip containing only components which
are bounded by the bounds in the component bound sequence S. A component covered
by a (S,L)-frame means that the strip correspond to xk

′
r begins in the (S,L)-strip and

overcovered means it is not just bounded but also fixed.
Given a BLP then a component is covered if and only if it is overcovered, because

i = 0 in S or i = 1 in S.
Specially in the binary case covering also means fixing one component implicitly and

one (S,L)-frame covers L|S| components of xk
′
r .

Example 10 (continued). Like in the last example the current solution in ILO is given
as

λg 1 0.3 1.7 0.5 0.2 0.3 0.5 1 2 1 1.5 1 1
x1 3 1 0 5 4 4 3 3 2 1 0 2 0
x2 6 4 5 1 3 2 1 0 0 2 0 0 2
x3 2 1 1 1 3 2 1 4 3 2 1 0 0
x4 0 1 1 0 3 2 1 2 1 2 1 0 1
r 1 2 2 3 4 4 4 5 5 6 6 7 8 8 9 9 10 11 12

Now take a look at each frame:

46

3.3 Depth of the branch-and-price tree

The frame (〈(2, >, 3), (1, >, 0)〉, 1) covers the components x12 and x11. Because the
components are fixed they are overcovered too.

The frame (〈(2, >, 3)〉, 2) covers the components x12 and x22. But they are not overcov-
ered.

The frame (〈(2, >, 3), (1,≤, 0), (4,≤, 1)〉, 1) covers the components x32, x
3
1 and x34. And

they are all overcovered too.

The frame (〈(2, >, 3), (1,≤, 0)〉, 1) covers and overcovers the components x32, x
3
1 too.

The frame (〈(2,≤, 3), (3, >, 0), (1,≤, 0)〉, 1) covers the components x102 , x103 and x101 .
They are overcovered too.

The frame (〈(2,≤, 3), (3,≤, 0), (4,≤, 1), (1, >, 0)〉, 1) covers and overcovers the compo-
nents x112 , x113 , x114 and x111 . But the frame (〈(2,≤, 3), (3,≤, 0), (4,≤, 1)〉, 1) covers the
components x112 , x113 and x114 too. But only x113 is overcovered.

We see on x12 that it is possible for a component to be covered by two or more different
frames.

Notice that a component which is overcovered can loose this property again. E.g.
after pricing a new master variable with the generator (3, 5, 2, 0)T could be added to the
master. Then its possible that x11 is still overcovered but x12 not.

Another aspect is that x22 is covered but floating. It defines the value 0.3·4+0.7·5 = 4.7
which is fractional. If this component is overcovered, e.g. its fixed to 5 then this value
becomes integer. (0.3 · 5 + 0.7 · 5 = (0.3 + 0.7) · 5 = 1 · 5 = 5).

Overcovering is an usefull tool to guarantee this integrality, but even a covered but
not overcovered component can get an integral value, e.g. 0.3 · 3 + 0.7 · 33 = 24.

If the border of the interval V (S,L) is integral, i.e.
∑

g<G(S) λkg ∈ N, then each
component which is overcovered by the corresponding (S,L)-frame is integer by using
the mapping in the first subsection. Notice that the index r of the potentially fixed
component is floating, i.e. the r is not fixed in this sense and can be changed while
branching. This makes the branching scheme independent from the component and the
corresponding component vector directly and as the covered component is not specific
one avoids the symmetry while specializing one of them in each branching step.

So each branching constraint λ(S) ≥ L defines a set of components which are covered
and potentially overcovered.

Proposition 2 ([1]). Let the current B&P node be defined by the component bound
sequences S1, . . . , SP and the corresponding bounds L1, . . . , LP . Let λ be the current
master solution and x the associated solution obtained by the mapping in section 3.1.

For a BLP holds: If for every block k each component x
k′r
i is covered by a (Sp, Lp)-frame,

r = 1 . . . Uk, i = 1 . . . nk, i ∈ Zk, then x is integer (resp. mixed integer).

Proof. see [1] observation 5.

47

3 The generic Branch-and-Price scheme

The last proposition holds intuitively for a MIP if covering is replaced by overcovering
the component.

As seen in the example it is possible for one component to be covered by more than one
(S,L)-frame. But the bound on it is the same, which guarantees the following intuitive
proposition:

Proposition 3. Let x be integer (resp. mixed integer). If x
k′r
i is covered by a (S,L)-

frame, the value is bounded by S.

Proof. see [1]

The idea of this analysis is to show that in each step of the branching scheme a new
component is covered or overcovered. Then the scheme will at least find an integer (resp.
mixed integer) solution x. For this approach we need to specify the covered component,
by the following definition:

Definition 6. Let x
k′r
i be covered by a (S,L)-frame and i be the last component in S

which belongs to a covered component and let r be the largest index with r−1 ∈ V (S,L).

Then x
k′r
i is called the representative of a (S,L)-frame.

So a representative of a frame is the last covered component, i.e. it is on the right
bottom.

The definition is unique in the following sense:

Lemma 3. Let the current node of the B&P tree be given by the constraints associated
with (S1, L1), . . . , (SP , LP), λ a feasible solution and x defined by the mapping in section

3.1. Then a component x
k′r
i can only be the representative of at most one (Sp, Lp)- frame.

Proof. see [1] proposition 5.

Now we show:

Proposition 4. The number of covered component increases for all blocks k by each
branching step using the purposed scheme until all components are covered.

Proof. A (S,L)-frame is unique and even its representative is not a representative of
another frame. This representative is covered, so each frame covers at least one different
component for a block k. Each covered component is bounded by the associated S.
So defining a new branching constraint by the scheme defines a new bound sequence
S which yields a new frame with a new covered representative. If all components are
covered, new component bound sequences S set new bounds to the components until
they are overcovered.

48

3.3 Depth of the branch-and-price tree

Now we can give the proof of the theorem 2 which gives us a bound on the size of the
B&P tree for a BLP:

Proof. (see [1]) First let the block k be fixed.
We know that each of the branching constraints defining the current node is different

resp. the set of branching constraints containing to block k. Each constraint or frame
has a unique representative. So after nkU

k branching steps every component is covered,
because the number of covered components increases at each step. And so the solution
yield by the mapping from the first section is integer (resp. mixed integer). So the depth
of the B&P tree while only branching on block k is bounded by nkU

k. Now repeat this
for each block. This yields the depth of∑

k=1...K′

nkU
k ≤

∑
k=1...K′

nk ·
∑

k=1...K′

Uk =: nU.

In the MIP case the components which correspond to continuous variables can be ignored
in the frame and covering theory. So denotes Ck the number of continuous variables given
in block k, then the bound can be small down to∑

k=1...K′

(nk − Ck)Uk ≤
∑

k=1...K′

{nk − Ck} ·
∑

k=1...K′

Uk =: (n− C)U

Each component is bounded by the associated component bound sequence correspond
to the covering frame. This yields in the binary case at most 2nU or 2(n−C)U leaf nodes,
because each covered component is bounded by one or zero.

The following example shows that the theorem for a BLP does not hold for a MIP.

Example 11. K ′ = 1, n1 = 2, U1 = 4, Z = {1, 2}, i.e. x ∈ Z and the current solution:

λg 0.2 0.3 0.5 1 1 0.3 0.7

x1 4 4 3 2 1 1 0
x2 3 2 1 0 2 1 1

The current branching constraints are associated by :

S1 = 〈(x1,≥, 2), (x2,≥, 1)〉, L1 = 1

S2 = 〈(x1,≥, 2), (x2, <, 1)〉, L2 = 1

S3 = 〈(x1, <, 2), (x2,≥, 2)〉, L3 = 1

S4 = 〈(x1, <, 2), (x2, <, 2)〉, L4 = 1

49

3 The generic Branch-and-Price scheme

Each component is covered by at least one frame.

But e.g. x11 is not integer using the mapping MapλToX:

x11 = 0, 2 · 4 + 0.3 · 4 + 0.5 · 3 = 3.5

So at least one more branching step is needed.

Moreover (S1, L1) and (S2, L2) (resp. (S3, L3) and (S4, L4)) can replace the maybe
previous given redundant branching constraint associated by:

S5 = 〈(x1,≥, 2)〉, L5 = 2

and this makes redundant:

S6 = 〈(x1,≥, 2)〉, L6 = 1

resp.
S7 = 〈(x1, <, 2)〉, L7 = 2

and this makes redundant:

S8 = 〈(x1, <, 2)〉, L8 = 1

So the depth of the B&P tree is at least 8 + 1 > 8 = nU

In the case of a MIP we get then:

Theorem 3. Given a MIP and the original variables are bounded by l and u like it is
mentioned in section 2.

Let
L := max

i
{li}, O := max

i
{ui}, n :=

∑
k=1

K ′nk

and U :=
∑

k=1...K′ U
k.

Then the depth of the branch-and-price tree is bounded by nUK ′(O−L) and the number
of leaf nodes is bounded by (O − L+ 1)nUK

′(O−L)

Proof. As in the BLP case seen, every component is covered after a depth of at most
nkU

k while branching only in block k. But to guarantee integrality we need every
component to be overcovered. It means that the components in each strip have to be
fixed too. So in the worst case each strip has to be splitted up into smaller strips, where
the component is fixed to a value between L and O. There are O − L + 1 different

50

3.4 Preprocessing at a node

numbers. So counting the current strip there are at most O−L further branching steps
needed to overcover the components. Because of the pigeon hole principle there are at
most Uk nonredundant branching constraints. (see section 3.4 proposition 5) So there
are at most Uk strips in all nodes. Discovering for each strip then yields up to at most
Uk(O−L) further branching steps. Therefore the depth to overcover all components in
block k is at most

nkU
k + Uk(O − L) = Uk(nk +O − L).

Summing up yield the bound for the whole depth of the tree as

K′∑
k=1

Uk(nk +O − L) ≤ (

K′∑
k=1

Uk) · (
∑
k=1

K ′(nk +O − L)) = nUK ′(O − L).

For each component in S are at most (O − L+ 1) possible values. So there are at most
(O − L+ 1)nUK

′(O−L) leaf nodes.

Like above if C denotes the number of continous variables, the values can be decreased
to (n− C)UK ′(O − L) resp. (O − L+ 1)(n−C)UK′(O−L)

3.4 Preprocessing at a node

Before solving the master LP with the new branching constraints one can decrease the
number of the constraints P , or prune the node before solving the RMP again. One can
speed up a bit by some preprocessing aspects.

Example 12. Given a BLP, let be K ′ = 1, U1 = 2, n1 = 4, S = 〈〉, the current B&P
node N is defined by the branching constraints

λ(〈(1, >, 0)〉) ≥ 2 (59)

λ(〈(1, > 0), (2, > 0)〉) ≥ 1 (60)

and the current master LP solution λ is given as

λg 0.2 0.8 0.5 0 0.5 0 0 0

x1 1 1 1 1 1 0 0 0
x2 1 1 0 0 0 1 1 0
x3 1 0 1 1 0 1 0 1
x4 1 0 1 0 0 0 0 0

51

3 The generic Branch-and-Price scheme

As the first bound is applied on component 1 Explore computes

α1 = 1,

which is integral. So store the bound (1, >, 0) in the component bound sequence S. The
next bound is on component 2, therefore compute

α2 = 1,

which is integral too. As the two sets of fractional column classes inH1(〈(1, >, 0), (2, γ, 0)〉)
for γ ∈ {≤, >} are not empty add e.g. (2,≤, 0) to S. Now there are no previous bounds
and Separate detects

α3 = 0.5

So it is e.g.

S = 〈(1, >, 0), (2,≤, 0), (3, >, 0)〉, λ(S) = 0.5

Then the successor nodes are

NODE(1) ≡ λ(〈(1,≤, 0)〉) ≥ 1 (61)

NODE(2) ≡ λ(〈(1, >, 0), (2, >, 0)〉) ≥ 2 (62)

NODE(3) ≡ λ(〈(1, >, 0), (2,≤, 0), (3,≤, 0)〉) ≥ 1 (63)

NODE(4) ≡ λ(〈(1, >, 0), (2,≤, 0), (3, >, 0)〉) ≥ 1 (64)

Now take a look at the succesor nodes.
NODE(1) is pruned by infeasibility because of (59). In particular: Hence the width of
the column class H1((1, >, 0)) is already bounded to U1 by constraint (59), the master
variables in the H1((1,≤, 0))-strip can be fixed to zero and the whole column class can
be cut off from the generator set.
NODE(2) has a branching constraint which dominates the constraint (60).
NODE(3) and NODE(4) have a branching constraint which combined with (60) makes
the constraint (59) redundant.

Now assume we are in NODE(4).

Let the current master LP solution λ be given as

λg 0.2 0.8 0.5 0.5 0 0 0 0

x1 1 1 1 1 1 0 0 0
x2 1 1 0 0 0 1 1 0
x3 1 0 1 1 0 1 0 1
x4 1 0 1 0 0 0 0 0

52

3.4 Preprocessing at a node

Let the new component bound sequence be

S = 〈(1, >, 0), (2,≤, 0), (3, >, 0), (4, >, 0)〉, λ(S) = 0.5

Then the successor nodes are

NODE′(1) ≡ λ(〈(1,≤, 0)〉) ≥ 1 (65)

NODE′(2) ≡ λ(〈(1, >, 0), (2, >, 0)〉) ≥ 2 (66)

NODE′(3) ≡ λ(〈(1, >, 0), (2,≤, 0), (3,≤, 0)〉) ≥ 1 (67)

NODE′(4) ≡ λ(〈(1, >, 0), (2,≤, 0), (3, >, 0), (4,≤, 0)〉) ≥ 1 (68)

NODE′(5) ≡ λ(〈(1, >, 0), (2,≤, 0), (3, >, 0), (4, >, 0)〉) ≥ 1 (69)

As NODE′(1) is again pruned by infeasibility it is also pruned by dominance, like
NODE′(2) and NODE′(3) too, because we know an ancestor node of the B&P tree
here N (needs not to be a direct ancestor node) which defines successor nodes with the
same three branching constraints (61), (62) and (63).

Now the constraint (64) is redundant in NODE′(4) and NODE′(5).

The example shows that in some cases nodes are not just pruned by dominance or
infeasability it can also happen that one or more branching constraints dominate previous
defined branching constraints of one or more ancestor node.

We now formalize this dominance in the following definition:

Definition 7. A branching constraint λ(Sp) ≥ Lp is redundant if∑
l∈dsucc(p)

Ll ≥ Lp

The marginal lower bound for class Gp is

Lmp := Lp −
∑

l∈dsucc(p)

Ll

Directly from the definition follows: For the marginal lower bound holds

Lmp > 0 ⇔ λ(Sp) ≥ Lp not redundant.

Obviously a redundant branching constraint can be omitted.

Proposition 5 ([1] pigeon hole principle). The number of branching constraints for a
block k that are not redundant at a given B&P node is at most Uk or the current path
in the B&P tree is infeasible.

53

3 The generic Branch-and-Price scheme

Proof. Let T be the number of non-redundant constraints at the current node.
It is

λ(Sp) ≥ Lp ⇔ λ(CpGi) ≥ Lp −
∑

l∈dsucc(p)

Ll = Lmp,

where Cp := Gp −
⋃
i∈dsucc(p).

For a non-redundant constraint holds Lmp > 0 and because of integrality Lmp ≥ 1.
While the partition is nested, i.e. G1, . . . , GP are disjoint, are C1, . . . , CT disjoint too.
Therefore we have the disjunctive constraints

λ(Cp) ≥ Lmp ≥ 1, p = 1 . . . T.

Summing up the constraints yields

λ(Hk) ≥
T∑
p=1

λ(Cp) ≥ T,

but this is a contradiction to T > Uk, because from the master problem holds the
constraint

λ(Hk) ≤ Uk.

Another way for pruning is prune by infeasability. E.g. the remaining branching
constraints correspond to block k has to satisfy

P∑
p=1

Lp ≤ Uk,

because of the convexity constraint.
But also the bounds on the original variables lk and uk have to be respected.

For each block k one gets the global bounds

glk ≤
Uk∑
r=1

xk
′
r ≤ guk

e.g. with glk = Uklk and guk = Ukuk corresponding to the aggregation and the used
mapping.
Because of the nested partition one gets in the BLP case the two constraints for each
component i ∑

p: (i,>,0)∈Sp

Lp ≤ guki

54

3.5 Pricing

∑
p: (i,≤,0)/∈Sp

Lp ≥ glki

If one of these is violated the current node is infeasible. (Moreover in [1] the bound can
be reseted if one of these constraints is satisfied with equality. See “Further specification
and deleting columns”.)
In the MIP case this constraints can be extended to∑

p: (i,>,b)∈Sp

(b+ 1)Lp ≤ guki

∑
p: (i,≤,b)/∈Sp

(b+ 1)Lp ≥ glki

3.5 Pricing

At a given node in the B&P tree Vanderbeck defines in [1] for each branching constraint
a new subproblem:

Definition 8. Let SP 0
k (Xk

0 = Xk) represent the original pricing problem for block k
given in section 2.4. For each constraint λ(Sp) ≥ Lp based on block k a subproblem SP pk
exists which prices only columns of Gp

[SP pk] ζpk(π) := min{(ck − πkAk)x | x ∈ Xp
k}

where Xp
k := {x ∈ Rnk | x ∈ Xk, x satisfies Sp}.

If Xp
k = ∅ then set ζpk =∞.

Now the column generation procedure can be changed in the following sense. A new
column is added to the master if the reduced costs ζpk(π) −

∑
l∈pred(p) σl are negative,

where σl denotes the dual variable belonging to the branching constraint λ(Sl) ≥ Ll.
Like pred(p) was defined, holds l ∈ pred(k) if Sl ⊂ Sp.

Its easy to see that for l ∈ pred(p) [SP lk] is a relaxation of [SP pk] and hence ζ lk(π) ≤
ζpk(π). Therefore if xl := arg min ζ lk(π) ∈ Gp it is xl = arg min ζpk(π).

Using these facts [1] computes a tree of pricing problems where the relation given in
the column classes is respected. Then this tree is solved in the given order until negative
reduced costs are detected. (see [1] table 6)

This pricing is not yet implemented. Like it is mentioned in [1], the calculation of the
tree is expensive and even there it is solved heuristically. But it is a usefull tool to show
in theory how the dual bound corresponds to the branching scheme.

55

3 The generic Branch-and-Price scheme

In particular: The pricing problem described in section 2.4 is solved at the root node
of the pricing tree. This is enough to get an optimal master LP solution by adding
master variables with negative reduced costs. So the knowledge which column class the
corresponding strip belongs to is not really neccessary. As we do not get a strong dual
bound like in [1] the scheme still works and saves therefore a bit of time.

3.6 The dual bound

In [1] the results for the new pricing methods yields the new tighter Lagrangian dual
bound∑
k=1...K′

min {
∑
r

ckxk
′
r |
∑
r

Akxk
′
r ≥ bk, xk′r ∈ conv(Xp

k), r = ρp−1 . . . ρp−1, p = 0 . . . P}

where ρ−1 = 1, ρp = ρp−1 + Lmp, p = 0 . . . P . (Remember that P also depends on the
block k, i.e. P = P k).
(see [1] proposition 9).

56

4 Set Partitioning

In this section we will compare the branching scheme and the Ryan&Foster branching on
set partitioning problems like e.g. binpacking. So let us first explain these two problems.

Set Partitioning
Given: A set of items N = {1, . . . , n} and a set of subsets {P1, . . . , Pm} ⊆ P (N) with

costs c(Pi), i = 1, . . . ,m
Question: Find a minimum cost partition for N , i.e. find I ⊆ {1, . . . ,m} with⋃
i∈I Pi = N and Pi ∩ Pj = ∅, i, j ∈ I, i 6= j while

∑
i∈I c(Pi) is minimal.

A set partitioning is given as a BLP as

min cTx (70)

s.t. Ax = 1 (71)

x ∈ {0, 1}n, (72)

where A ∈ {0, 1}m×n, c ∈ Qn.
We say the master problem is a set partitioning if it is given as (with aggregation of

identical blocks):

min
K′∑
k=1

ck
∑
g∈Gk

xkgλkg (73)

s.t.
∑
g∈Gk

xkgi λkg = 1 ∀i = 1 . . . nk, k = 1 . . .K ′ (74)

∑
g∈Gk

λkg = Uk ∀k = 1 . . .K ′ (75)

λkg ∈ {0, 1} ∀g ∈ Gk, k = 1 . . .K ′, (76)

where xkg ∈ {0, 1}nk ∀k = 1 . . .K ′.

The constraint (74) can be written as

W kλk = 1 ∀k = 1 . . .K ′ (77)

where W k is a matrix with entries in {0, 1} and λk = (λkg1 , . . . , λkg|G|)
T .

Many problems can be reduced to a set partitioning problem, e.g. the binpacking
problem.

57

4 Set Partitioning

Binpacking
Given: N = {1, . . . , n} a set of items with weight wi, i = 1, . . . , n and W the size of

a bin
Question: Find m ∈ N and a partition {P1, . . . , Pm} of N into m bins with∑
i∈Pj

wi ≤ b ∀j = 1, . . . ,m,
⋃m
j=1 Pj = N , Pi ∩ Pj = ∅, i, j ∈ {1, . . . ,m}, i 6= j and

m ≤ n minimal.

A binpacking is given as a BLP as

min
n∑
j=1

yj (78)

s.t.
n∑
i=1

wixij ≤Wyj ∀ j = 1, . . . , n (79)

n∑
j=1

xij = 1 ∀ i = 1, . . . , n (80)

y ∈ {0, 1}n (81)

x ∈ {0, 1}n×n, (82)

where xij say whether item i is in bin j or not and yj = 1 means bin j is used.
In words:

(79) sets yj to 1 if the bin is used and it contains the constraint for the size W of the
bin. Constraint (80) guarantees that every item i is in exactly one bin j.

Now we apply the discretization approach setting

X = {x ∈ {0, 1}n|
n∑
i=1

wixi ≤W}

the set of feasible binpackings, then we get the master problem

min
∑
g∈G

xgλg (83)

s.t.
∑
g∈G

xgi λg = 1 ∀i = 1 . . . n (84)

∑
g∈G

λg = 1 (85)

λg ∈ {0, 1} ∀g ∈ G (86)

where xg ∈ X.

58

4.1 Ryan and Foster

And this is a set partitioning problem like seen above. The generators are feasible
knapsack patterns computed by the subproblem e.g. by using dynamic programing for
binpacking.

4.1 Ryan and Foster

The idea of the Ryan&Foster branching is as follows:

Theorem 4 (Ryan&Foster [12]). For a fractional solution λ exist k, r, s with

0 <
∑

t: Wk
r,t=1, Wk

s,t=1

λkgt < 1 (87)

Proof. Let λ be the current solution of the restricted master LP. And assume the solution
violates the integrality condition in block k. Then there is a λkgo /∈ {0, 1}.

The Problem is a set partitioning, i.e. it holds

nk∑
i=1

W k
riλkgi = 1

for each row r of the Matrix W k.

Now let r be fixed by a row with W k
ro = 1. (Such an r exists or the variable would not

be needed for the BLP, i.e. can be fixed to an integer value or the BLP is not bounded)

As λkgo is fractional there has to be a o′ such that λkgo′ is fractional too and it holds

W k
ro′ = 1.

Assume there are no redundant constraints anymore. Then each row of the Matrix
W k is different. Therefore it is possible to choose a row s of W k with W k

so = 1 and
W k
so′ = 0.

Then it is

1 =

nk∑
i=1

W k
riλkgi =

∑
i: Wk

ri=1

λkgi >
∑

i: Wk
ri=1,Wk

si=1

λkgi ≥ λkgo > 0

So in the branching scheme of Ryan&Foster one looks up the Matrix W k for a given

block k to contain a submatrix looking like

(
1 1
1 0

)
corresponding to the generators, say

xi = λkgi , xj = λkgj .

59

4 Set Partitioning

If so, one defines the two disjunctive successor nodes by the hard branching constraints

xi = xj “same”

with ∑
t: Wk

it=1,Wk
jt=1

λkgt ≥ 1 ⇔ λ(〈(i, >, 0), (j,>, 0)〉) ≥ 1,

which is like replacing the submatrix by

(
1 0
1 0

)
,

and
xi + xj ≤ 1 “differ”

with ∑
t: Wk

it=1,Wk
jt=1

λkgt ≤ 0 ⇔ λ(〈(i, >, 0), (j,≤, 0)〉) ≥ 1,

which is like replacing the submatrix by

(
1 0
0 1

)
.

Let us give a short example on which the Vanderbeck branching scheme is applied
too.

Example 13. Let K ′ = 1, n1 = 5, U1 = 3, the set partitioning is given as a binpacking,
i.e.

X1 = {x ∈ {0, 1}5 |
∑
i=1...5

wixi ≤W},

here w = (6, 4, 3, 2, 7), W = 10 and the current master solution λ (given in lexicographic
order) is

λg
2
3 0 1

3
1
3 0 0 0 0 2

3 0 1
3 0 0 2

3

x1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
x2 1 0 0 1 1 1 1 0 0 0 0 0 0 0
x3 0 1 0 1 1 0 0 1 1 1 0 0 0 0
x4 0 0 1 1 0 1 0 1 0 0 1 1 0 0
x5 0 0 0 0 0 0 0 0 1 0 1 0 1 0

The Ryan&Foster branching scheme could now work as follows:
Applying the mapping discribed in the second section yields integer original variables
correspond to the first component. But e.g. in the second component is x12 = 2

3 /∈ Z. So
one can choose this variable for a branching candidate and look up for another one in

the same block with the submatrix

(
1 1
1 0

)

60

4.2 The generic scheme

Here we can see the first and third column for x2 and x1 are of this structure. So one
gets the two successor nodes in the B&P tree by:

Same: The hard branching constraint is x1 = x2 with the constraint λg1 ≥ 1 in the
master.

Differ: The hard branching constraint is x1 + x2 ≤ 1 with the constraint λg1 ≤ 0 in
the master.

In this example is the same case only present in one column. This gives an idea that
in general the tree could get unbalanced, as there could be more columns in the differ
case (more combinations with other components possible) and makes the decision same
weaker than this.

Figure 4: Unbalanced tree for Ryan&Foster branching

4.2 The generic scheme

In [1] the scheme is explained on a set partitioning problem with specialized properties
given in the following proposition:

Proposition 6 ([1] Prop. 10). Let the master be a set partitioning and the current node
be defined by the branching constraints for the corresponding block k denoted like above
after the preprocessing.

61

4 Set Partitioning

Then the generic scheme satisfies the following properties:

a) (i, >, 0) ∈ Sp for some i ⇒ Lp = 1.

b) the tree of column classes corresponding to the current node for block k has depth
1 and P − 1 of this classes contains (i, >, 0) for at least one i and the last class
G1 satisfies G1 = {(i,≤, 0) | (i, >, 0) ∈ Sp for some p ∈ {2, . . . , P}} with L1 =
Uk −

∑P
p=2 L

p.

c) Columns of G0 \
⋃P
p=1G

p can be deleted.

d) Separate another fractional master solution λ yields in splitting up one further
column class.

e) Splitting up a column class Gp, p ∈ {2, . . . , P} yields at most two feasible successor
nodes.

f) Splitting up column class G1 yields at most three feasible successor nodes.

Proof. ([1])

a) Let (i, >, 0) ∈ Sp and the node correspond to (Sp, Lp) not been pruned in the
preprocessing. Then it holds (seen in section preprocessing) λ(Sp) ≤ guki = 1, as
the problem is a set partitioning. Therefore it is 0 < Lp = 1.

b) Because of a) there could be no predecessor node which is not redundant for a
node with (i, >, 0) ∈ Sp for some i. The partition yields then a class containing
(i,≤, 0) and ends up in G1 as it contains no > 0 bound on a component.

c) Clearly by b) and the strip with columns in G0 \
⋃P
p=1G

p has width zero, i.e. they
cannot be used.

d) Because of the set partitioning constraints, the left hand sides Lp are upper and
lower bounds, i.e. the constraints are satisfied with equality. In particular: for
(i, >, 0) ∈ Sp this is clear by a). The constraint belong to L1, i.e. G1 is also
satisfied with equality cause of the convexity constraint and b). Therefore one of
the existing column classes has to be splitted up further while branching.

e) Let Gp, p > 1 be the column class which is splitted up further while branching
and let (i, >, 0) ∈ Sp. Then it is λ(Gp) = 1 like d) and

|F p| = |{g ∈ Gp | λkg − bλkgc}| > 1

62

4.2 The generic scheme

or it would not be splitted up further. Since all clomuns are different (also in F p)
there is a component j not yet bounded by Sp and defines a strip with fractional
value 0 < λ(Sp, (j,>, 0)) < 1. So in this branching step S = 〈(j,>, 0)〉 is a possible
choice and the scheme goes on with at most two successor nodes.

f) Let I(Gp) = {i |
∑

g∈Gp x
kg
i (λkg − bλkgc) > 0}.

First assume I(G1)∩I(Gp) 6= ∅, for some p ∈ {2 . . . P}. Then one can branch like
in e) or branch directly on G1 by setting S = (i, > 0) for any i ∈ I(G1) ∩ I(Gp).

Now assume the other case, i.e. I(G1) ∩ I(Gp) = ∅,∀p = 2 . . . P . Because of the
set partitioning constraint it is λ(S1, (i, >, 0)) = 1 for any i ∈ I(G1). Like in e):
columns are different so there is a j ∈ I(G1), j 6= i and it is 0 < λ(S1, (i, >, 0), (j,>
, 0)) < 1. So S = 〈S1, (i, >, 0), (j,>, 0)〉 is a possible choice. As the first |S| − 2
nodes are pruned by dominance (see section 3.4). So there are at most 3 successor
nodes.

An Observation of this proposition is that the B&P tree for set partitioning problems
is binary except a few nodes with three succcessor nodes.

Example 14 ([1] example 9). Like above letK ′ = 1, n1 = 5, U1 = 3, the set partitioning
is given as a binpacking, i.e.

X1 = {x ∈ {0, 1}5 |
∑
i=1...5

wixi ≤W},

here w = (6, 4, 3, 2, 7), W = 10 and the current master solution λ given in lexicographic
order is

λg
2
3 0 1

3
1
3 0 0 0 0 2

3 0 1
3 0 0 2

3

x1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
x2 1 0 0 1 1 1 1 0 0 0 0 0 0 0
x3 0 1 0 1 1 0 0 1 1 1 0 0 0 0
x4 0 0 1 1 0 1 0 1 0 0 1 1 0 0
x5 0 0 0 0 0 0 0 0 1 0 1 0 1 0

Calling the separation method yields

αi = 1, i = 1, . . . , 4.

Because of the set partitioning constraint non of the αi can be fractional in the first call
of Separate. Now say the first component has the highest priority for branching. So

63

4 Set Partitioning

add (1, >, 0) to record = ∅ and call up Separate by recursion. Then one gets α2 = 2
3 .

So adding this (2, >, 0) to record and stop separating yields

S = 〈(1, >, 0), (2, >, 0)〉

and therefore the three successor nodes defined by

λ(〈(1,≤, 0)〉) ≥ 3

λ(〈(1, >, 0), (2,≤, 0)〉) ≥ 1

λ(〈(1, >, 0), (2, >, 0)〉) ≥ 1

The first node can be pruned by infeasibility, because the set partitioning constraint
is violated for i = 1. (This can e.g. be detected by taking a look at the variable bounds
gl1, see [1])

The depth of the corresponding column class tree is 1.
(Now in [1] the resetting of bounds is applied. Here we go on without this.)
Now continue e.g. with the last node. The new master solution given in ILO is

λg 1 0 0 0 0 0 0 1
2

1
2 0 1

2 0 0 1
2

x1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
x2 1 0 0 1 1 1 1 0 0 0 0 0 0 0
x3 0 1 0 1 1 0 0 1 1 1 0 0 0 0
x4 0 0 1 1 0 1 0 1 0 0 1 1 0 0
x5 0 0 0 0 0 0 0 0 1 0 1 0 1 0

Following the separation method one gets S = 〈(1,≤, 0), (2,≤, 0), (3, >, 0), (4, >, 0)〉.
The first two successor nodes are now pruned by dominance and one gets the three
successor nodes defined by:

λ(〈(1,≤, 0), (2,≤, 0), (3, >, 0)〉) ≥ 2

λ(〈(1,≤, 0), (2,≤, 0), (3, >, 0), (4,≤, 0)〉) ≥ 2

λ(〈(1,≤, 0), (2,≤, 0), (3, >, 0), , (4, >, 0)〉) ≥ 1

4.3 comparison

The proposition shows that in general the size of the tree of the Ryan&Foster scheme
is close to the tree correspond to the generic branching scheme. Nevertheless it is not
impossible to get three successor nodes. But as seen in the analysis the depth of the

64

4.3 comparison

tree is restricted to O(nK ′U) while the tree in the Ryan&Foster branching is bounded
by O(n2K ′) and it is U ≤ n. (see [1])

But if Uk = 1 it is U = n and moreover the generic scheme looses the efficiency and
becomes an enumeration of single strips like trying out.

Let us now take a look at the following example from [1] which shows that the inter-
mediate Langrangian can become a dual bound which is stronger than in Ryan&Foster
while using the splitted tighter pricing described in section 3.5:

Example 15 ([1] Example 10). Given a set partitioning.
Let be K ′ = 1, U1 = R, n1 = n and the subproblem is given by X. Further let the

current node while following the Ryan&Foster branching be described by the branching
constraints

λ(〈(1, >, 0), (2, >, 0)〉) ≥ 1 (88)

λ(〈(2, >, 0), (3, >, 0)〉) ≥ 1 (89)

λ(〈(4, >, 0), (5, >, 0)〉) ≤ 0 (90)

The constraints (88) and (89) are the same constraints with the hard constraints
x1 = x2 and x2 = x3 in the subproblem. While (90) is the differ constraint with the
hard constraint x4 + x5 ≤ 1 in the subproblem. So in all the subproblem becomes

Ẋ = X ∩ {x| x1 = x2 = x3, x4 + x5 ≤ 1}

Now try to reach an equal node while using the generic branching scheme.
Assume our first component bound sequence was

S1 = 〈(1, >, 0), (2, >, 0)〉

With respect to 88 we choose the node correspond to the constraint

λ(〈(1, >, 0), (2, >, 0)〉) ≥ 1 (91)

The next component bound sequence could have been

S2 = 〈(1, >, 0), (2, >, 0), (3, >, 0)〉

With respect to (89) we choose the node correspond to the constraint

λ(〈(1, >, 0), (2, >, 0), (3, >, 0)〉) ≥ 1 (92)

65

4 Set Partitioning

Note that (92) dominances the constraint (91). Now say the next component bound
sequence is

S3 = 〈(1,≤, 0), (2,≤, 0), (3,≤, 0), (4, >, 0), (5, >, 0)〉

With respect to (90) we choose the node correspond to the constraint

λ(〈(1,≤, 0), (2,≤, 0), (3,≤, 0), (4, >, 0), (5,≤, 0)〉) ≥ 1 (93)

Now (92) and (93) are the branching constraint in the node corresponding to the node
of the Ryan&Foster branching. But now here we can use more information, i.e. we use
the property of a set partitioning problem 74 and we get

λ(〈(1, >, 0), (2, >, 0), (3, >, 0), (4,≤, 0)〉) ≥ 1 (94)

λ(〈(1,≤, 0), (2,≤, 0), (3,≤, 0), (4, >, 0), (5,≤, 0)〉) ≥ 1 (95)

λ(〈(1,≤, 0), (2,≤, 0), (3,≤, 0), (4,≤, 0)〉) ≥ R− 2 (96)

Constraint (94) combines (92) and (93) as the last constraint catches already x4
and (96) is the convexity constraint combined with the already catched components
x1, . . . , x4.

In the pricingtree defined in section 3.5 we get the subproblems

X1 = X ∩ {x| x1 = x2 = x3 = 1, x4 = 0}
X2 = X ∩ {x| x1 = x2 = x3 = 0, x4 = 1, x5 = 0}
X3 = X ∩ {x| x1 = x2 = x3 = x4 = 0}

Now it is
Xi ⊆ Ẋ, i = 1, 2, 3

and hence is
αXi(π) ≤ αẊ(π), i = 1, 2, 3

and therefore is the dual bound for the generic branching scheme tighter than the one
of the Ryan&Foster scheme.

Some numerical results are found in section 5.2.

66

5 Implementation & Testing

As already mentioned the branching scheme is implemented in GCG without the pricing
described in [1]. And was tested on different instances. While doing the implementation
work and trying to raise the result up to MIPs with more than one block type, a few
problems and aspects came out. So this section first mentions the new and maybe
different things to [1] and in the second subsection the numerical results.

5.1 Implementation

For an element (i, γ, b) of a component bound sequence S is the set {≤, >} not important
in the following sense: In this masterthesis an element ẋ[p] = (i, γ, b) ∈ S is given with
γ ∈ {>,≤}. E.g. in the implementation it is γ ∈ {≥, <} as it is more comfortable since
the redundant bound of (i,≥, 0) is always given.
So let from now on be γ ∈ {≥, <}.

5.1.1 Separate with median

Take a deeper look at the function Explore or Separate.

In [1] is the method Separate given for a BLP. There the index i∗ is removed from the
index set I, but for a MIP it is said to stay there, but this can yield a not terminating
function. See e.g. example 1 in [1] for a BLP and call up Separate without removing
of i∗. So it has to be removed in one step. This case is e.g. when in this step the
component in the corresponding column class is not only bounded by S but also fixed
by it. So then another bound for this component does not make any sense.

This check is implemented while using a special value for b.

In [1] b is mentioned to be the median of the generators ith entry over all fractional
strips correspond to F . But as in the analysis of the complexity of the function Separate
(or Explore) in each step the partition of column classes has to be a real partition, i.e.
none of the subclasses bounded by ≥ b resp. < b is empty. Now consider the case
where median is also the mininum, then this assumption is violated because the subclass
bounded by < b is of course empty. So in the implementation is not only the median
calculated but also the minimum. If these two values are the same, the function called
getMedian(i) calculates the average m and returns dme. This value is only equal to
the minimum if and only if the entries are all the same. So doing a last check with
dme = min. If so, the corresponding component i is already fixed and therefore i is
removed from I and the algorithm will look up for another component.

But even if the median defines a partition it can make trouble. Because it can happen
that the scheme is not a branching scheme, as the fractional solution still is in at least

67

5 Implementation & Testing

one of the successor nodes.
Take a look at the following example.

Example 16. Let K ′ = 1, n1 = 4, U1 = 10 and the current master solution λ given in
lexicographic order is

λg 0.5 0.2 0.3 1 0.5 0.5 2 1 0.3 1.5 0.7 1 0.5

x1 5 4 4 3 3 3 2 2 1 1 0 0 0
x2 1 3 2 6 1 0 0 0 4 2 5 2 0
x3 1 3 2 2 1 4 3 0 1 2 1 0 1
x4 0 3 2 0 1 2 1 0 1 2 1 1 1

Moreover assume we are just at the root node, making things a bit easier to show.

Now Separate would detect e.g. the fractional value α1 = 9.3 and will separate the
first component.

The median over the fractional columns is 3.
Choosing

S = 〈(1,≥, 3)〉
yields the two branching constraints

λ(〈(1,≥, 3)〉) ≥ 3

and
λ(〈(1, <, 3)〉) ≥ 10− 3 + 1 = 8.

But the current fractional solution still satisfies

λ(〈(1,≥, 3)〉) ≥ 3.

Bounding the first component by 5 or 1 would cut the current solution off.

So the example shows that λ(S) has to be fractional like it is in [1] assumed. But just
the median can violate this.
Therefore in the implementation the case of a detection of a fractional αi the bound b
for this component is calculated like in algorithm 6.

In words:
Beginning with b = median and increase the bound by one resp. decrease until the width
is fractional. This choice for b guarantees that λ(S) is fractional so that the branching
scheme still can be used and as it starts from the median it tries to yield a mostly
balanced partition and therefore also a balanced tree. While beginning with b = max
and decrease it by one until µ is fractional is a method which can help to overcover the
component earlier.

68

5.1 Implementation

Algorithm 6 BoundValue(λ, S, k)

a) Set b = getMedian(i)
b) compute µ the width of the subclass bounded by ≥ b
c) Set j = 0
while while(µ ∈ N0 do

d) j = j + 1
if j odd then

e) b = b+ j
else

f) b = b− j
end if

end while
g) return b

5.1.2 Different blocks

Another question for the implementation was how should different types of blocks be
respected in the branching scheme.

Consider two different ways. We will call them the parallel and the serial blocking.
At the parallel blocking in each branching step is the branching scheme applied for

each type of block. This approach is surely the first and intuitive one.

Example 17. Let K ′ = 2 and the component bound sequences for block 1 be given as
S, |S| = s and Q, |Q| = q for block 2.

By following the scheme we get s+ 1 branching constraints for block 1 resp. q+ 1 for
block 2. Respecting all combinations of the constraints yields (s + 1) · (q + 1) succesor
nodes.

Notice that the (s+ 1) · (q + 1) nodes are all in the same depth of the B&P tree and
moreover they are weighted even same too, i.e. without exploring one node further they
are all in the same priority of the tree.

69

5 Implementation & Testing

(S2,L2)
(Q1, M1)

(S1,L1)
(Qq+1,Mq+1)

(S1,L1)
(Q1, M1)

(S2,L2)
(Qq+1,Mq+1)

(Ss+1,Ls+1)
(Qq+1,Mq+1)

.

Figure 5: Example for parallel blocking with two block types. (Sp, Lp) means the pth
branching constraint for block 1 resp. (Qr,M r) for block 2

The example shows that the tree gets a huge width. Also this can decrease the depth
of it, all successor nodes “look the same” in the tree without exploring further. By the
way: pruning by dominance now means to check not just the current constraint but also
the combination of them too, which is more expensive.

In the implementation the other approach is chosen. The serial blocking.
Serial blocking means, that in each step of the branching scheme one only branch on one
block type a time.

Example 18. Like in the previous example let be K ′ = 2 and the component bound
sequences for block 1 be given as S, |S| = s and Q, |Q| = q for block 2.

So we get (s + 1) succesor nodes in the first step and then maybe for each of these
successor (q + 1) successor nodes.

Notice that in all we can get at most (s+ 1) · (q + 1) nodes too, but they are not all
“looking the same”, as at branching in the second block we got a feedback for the choice
in the first block.

70

5.1 Implementation

(S1, L1) (Ss+1, Ls+1)

(Qq+1,M q+1)(Q1, M1) (Q1, M1) (Qq+1,M q+1)

. . .

.

Figure 6: Example for serial blocking with two block types. (Sp, Lp) means the pth
branching constraint for block 1, resp. (Qr,M r) for block 2. But notice: the
second level of the tree may not need to be full computed or it can get different
if there are linking variables.

The example shows that serial blocking is more adaptable than the parallel approach.
Moreover in the second level of the tree the component bound Q could get another one if
there are linking variables in the two blocks. The depth is higher but the width becomes
shorter.

Prune by dominance can now be applied like it is discribed in [1] and the depth and
width correspond to the one in the analysis of the tree in section 3.3.

5.1.3 The Priority

The priority of each component chosen in the method Separate resp. Explore is not
specified in [1] at all.

Setting the priority all on the same priority, e.g. priorityi = 1 ∀i will end up in a
possible unbalanced tree as always the first component in the current index set will be
chosen. So this is not the best choice at all.

A better choice for priority is max-min priority, the number of different entries
of the generators in the current column subclass. So components with many different
values in the generator are preferred to others. This fact can speed up the overcovering
of a component what was a usefull tool in the analysis of the scheme to show that a
component becomes integer.

71

5 Implementation & Testing

Another approach to solve this problem is a random priority. For example will each
i in the current index set I get the same probability, i.e. P (i∗ = i) = 1

|I| ∀i ∈ I.

A different idea came out while taking a look at the in the first section mentioned
pseudocost branching. A priority by pseudocosts.
If there is a pseudocost for each component, which gives a value how efficient it is
to branch on it, then this should be a good priority. But while the ideas for strong
branching and reliability can keep up, the scheme does not branch on a component
like it is described for branching on original variables. So the pseudocosts have to be
computed in a different way.

If Separate or Explore is called we noticed that the last component (i, γ, b) in the
computed component bound sequence S has to satisfy the fractionality width condition
λ(S) /∈ N. So compute the costs for this component is a possible good idea.

Similar to the upwards and downwards pseudocosts, one can compute |S|+ 1 pseudo-
costs for xi by similar taking the difference of the objective value from the current node
and the corresponding successor node and for the difference of the value of the original
variable use the mapping discribed in section 3.1.

But it could happen that the original variable gets the same value than before, because
unlike the branching on the variables directly only the width of the strip is changed in a
branching step and another master solution can yield the same value for this component.
So when choosing this sort of pseudocosts this case has to be carried out. And for large
S there will be many costs of this type.

A last idea is a more heuristic one which respects the structure of the current strip.
Assume γ = ≥ (the case γ = < can applied inverse) and let µ /∈ N denote the width of
the strip, i.e. µ = λ(S). The |S|+ 1 successor nodes can be ordered into two types.
The first one implies λ(S) ≥ dµe, in other words the width of the strip is increased
by at least dµe − µ. Using the fact that all components in the strip satisfies ≥ b the
difference on the original variable in this strip is ≥ b(dµe − µ). Notice that the width
of the complementary strip is decreased by 1, so this value is not a bound on the whole
component. For a heuristic cost value one can take b(dµe − µ) in the objective gain.
The other type of successor nodes implies λ(S) ≤ bµc. If the component is overcovered
then all components in the strip satisfies ≤ b too. The difference to the original variable
in this strip is ≤ b(µ − bµc). Notice that in the complementary strip the values in the
component can satisfy ≥ b too and the component does not really have to be overcovered,
i.e. fixed, at this time. So this value is not a bound on the whole component. For a
heuristic cost value one can take b(µ− bµc) in the objective gain.
The resulting values computed with this objective gains, yield |S|+ 1 likely pseudocosts
which can be seen as similar values like one upwards and |S| downwards pseudocosts
like by branching in the original variable.

72

5.1 Implementation

5.1.4 ILO or not ILO

As already mentioned is the lexicographic order not necessary for the branching scheme.
Only the induced order is important. But given a BLP it is only needed in theory as
integrality of the mapped original solution is euqivalent to the integrality on the master
variables. (see [1] lemma 1). In particular this means that single strips have an integral
width and can therefore be switched in the order of the column classes and still yield
up in an integral original solution under the mapping of section 2.1. Moreover does
the separate method Explore respect the nested partition of the column classes done at
previous nodes in the B&P tree. So an ILO on F is not necessary at all. As this also
holds for a MIP the ILO still becomes important in the following way:

Example 19. Let K ′ = 1, n1 = 2, U1 = 2 and the current master solution λ given in
lexicographic order is

λg 0.5 0.5 0.5 0.5

x1 2 2 0 0
x2 1 0 1 0

Applying the mapping from section 3.1 yields the fractional original solution

x1 =

(
2

0.5

)
, x2 =

(
0

0.5

)
Now let be C = {〈(2, >, 0)〉}. Then the current master solution λ given in ILO is

λg 0.5 0.5 0.5 0.5

x1 2 0 2 0
x2 1 1 0 0

Applying the mapping from section 3.1 on this order now yields

x1 =

(
1
1

)
, x2 =

(
1
0

)
and this is an integral solution.

The example shows, while not using an induced order on the column classes it is
possible to get a fractional original solution but in e.g. ILO it would be integral. If this
happens, the separate method Explore will not find a component bound sequence which
separates the fractional solution. Hence this can be fixed while applying an ILO on
the column strips with positive width and then use the mapping again to compute the
integer solution x. Hence the number of strips is bounded by the number of constraints

73

5 Implementation & Testing

m. Each compare of two strips takes at most (O−L) operations. By using e.g. Quicksort
or Mergesort which is in O(m log(m)) (see [13]) the whole ILO sort can be done in
O(m(O − L) log(m)).

74

5.2 Computational Results

5.2 Computational Results

In this section we want to present some computational results. For the results we choose
a small part of the binpacking instances called bison1 set by [24]. At each table are in
the first column the name of the corresponding testset and then in the second, third
and fourth column the number of computed nodes while using the generic branching
scheme from section 3, the Ryan&Foster scheme (both on the discretization approach
with aggregation) and the branching on the original variables while just applying the
convexification approach. The first number is the number of the solving nodes and the
second number in brackets gives the total number of computed nodes in the B&P tree.
The next three columns contain the total time needed for solving and the last three
columns contain the number of calls for each branching rule, i.e. the total number of
branching steps.

The first group are the N1∗ instances with K ′ = 1, n = 2550, m = 100 and U = 50.

nodes time #calls
instance gen R&F orig gen R&F orig gen R&F orig

N1C1W1 C 15 (29) 8 (14) 1 (1) 0.69 0.50 10.53 10 7 0
N1C1W1 H 1 (1) 1 (1) 7 (12) 0.33 0.33 6.76 0 0 6
N1C1W1 O 15 (30) 5 (8) 1 (1) 0.54 0.42 7.37 10 4 0
N1C1W2 H 6 (11) 4 (6) 1(1) 0.49 0.45 7.53 3 3 0
N1C2W1 E 49 (80) 9 (16) 1 (1) 1.93 0.44 9.49 26 8 0
N1C2W1 J 3 (6) 5 (8) 1 (1) 0.41 0.41 8.06 2 4 0
N1C2W1 R 10 (16) 5 (8) 1 (1) 0.52 0.45 7.89 6 4 0
N1C2W1 T 8 (19) 5 (8) 5 (8) 0.68 0.52 11.36 6 4 4
N1C2W4 N 50 (68) 2 (4) 15 (28) 6.31 0.48 9.38 18 2 14
N1C3W1 A 18 (20) 13 (24) 23 (44) 1.19 0.52 13.55 7 12 22
N1C3W1 G 13 (15) 15 (28) 1 (1) 0.80 0.55 12.44 5 14 0
N1C3W1 H 237 (478) 7 (12) 1 (1) 13.01 0.49 13.85 151 6 0
N1C3W1 J 355 (456) 11 (20) 1 (1) 74.77 0.46 14.01 138 10 0
N1C3W1 M 174 (224) 9 (16) 1 (1) 26.63 0.51 13.74 70 8 0
N1C3W1 N 22 (33) 8 (14) 19 (36) 1.45 0.52 13.04 10 7 18
N1C3W1 O 150 (200) 12 (24) 18 (36) 15.22 0.48 13.61 61 12 18
N1C3W2 K 73 (155) 5 (10) 1 (1) 3.84 0.53 13.37 48 5 0
N1C3W2 P 105 (178) 17 (32) 25 (48) 6.60 0.58 15.79 61 16 24
N1C3W2 Q 119 (155) 15 (30) 1 (1) 9.46 0.53 12.63 49 15 0
N1C3W2 R 120 (227) 7 (14) 22 (44) 9.83 0.51 13.24 75 7 22
N1C3W4 F 51 (96) 5 (10) 1 (1) 3.83 0.53 14.46 32 5 0
N1C3W4 G 30 (73) 3 (4) 1 (1) 1.92 0.54 11.99 21 2 0
N1C3W4 L 35 (72) 10 (18) 29 (56) 1.75 0.57 13.52 25 9 28
N1C3W4 M 41 (95) 4 (6) 1 (1) 1.56 0.45 10.17 31 3 0
N1C3W4 R 119 (226) 8 (14) 27 (52) 7.71 0.50 11.29 70 7 26

75

5 Implementation & Testing

The second group are the N2∗ instances with K ′ = 1, n = 10100, m = 200 and U = 100.

nodes time #calls
instance gen R&F orig gen R&F orig gen R&F orig

N2C1W1 A 30 (62) 10 (18) 1 (1) 5.61 1.72 61.97 21 9 0
N2C1W1 B 232 (424) 15 (30) 36 (70) 32.16 1.66 52.06 144 15 35
N2C1W1 J 20 (23) 4 (6) 1 (1) 2.71 1.49 41.70 8 3 0
N2C1W1 L 31 (62) 3 (6) 1 (1) 3.32 1.52 44.30 21 3 0
N2C1W1 M 231 (467) 10 (18) 1 (1) 139.18 1.83 75.44 152 9 0
N2C1W1 P 114 (173) 10 (20) 9 (18) 10.12 1.55 47.97 59 10 9
N2C1W1 Q 84 (169) 14 (26) 41 (80) 43.45 1.84 74.26 54 13 40
N2C1W1 R 5 (5) 2 (2) 19 (38) 1.66 1.59 50.46 2 1 19
N2C1W2 T 3 (11) 2 (4) 13 (26) 1.65 1.46 41.94 3 2 13
N2C2W1 A 103 (191) 11 (22) 1 (1) 15.23 1.55 50.01 65 11 0
N2C2W1 F 48 (89) 7 (12) 1 (1) 6.16 1.80 49.29 30 6 0
N2C2W1 G 159 (309) 17 (34) 27 (52) 18.80 1.80 56.41 99 17 26
N2C2W1 L 20 (38) 4 (8) 20 (38) 2.67 1.48 50.69 12 4 19
N2C2W1 N 40 (70) 12 (22) 36 (70) 7.69 1.77 71.65 24 11 35
N2C2W1 R 621 (1063) 16 (32) 58 (114) 411.38 1.90 84.37 359 16 57
N2C2W2 F 106 (248) 4 (6) 1 (1) 50.92 1.77 62.94 74 3 0
N2C2W2 S 3 (10) 2 (2) 1 (1) 1.67 1.51 54.45 3 1 0
N2C3W2 A 441 (898) 32 (64) 55 (108) 204.01 2.19 79.85 304 32 54
N2C3W2 B 348 (709) 25 (48) 48 (96) 236.22 2.01 79.65 236 24 48
N2C3W2 J 139 (300) 11 (20) 38 (74) 47.44 1.89 80.26 94 10 37
N2C3W2 K 101 (152) 26 (52) 64 (126) 89.87 2.19 80.82 45 26 63
N2C3W2 L 108 (108) 13 (24) 46 (90) 54.89 2.05 80.79 28 12 45
N2C3W4 B 294 (676) 8 (14) 38 (74) 152.06 2.08 62.03 197 7 37
N2C3W4 D 102 (234) 15 (28) 48 (96) 33.21 1.81 60.83 75 14 48
N2C3W4 E 115 (192) 7 (12) 1 (1) 92.40 1.70 67.33 58 6 0
N2C3W4 I 60 (96) 29 (58) 61 (122) 44.91 1.90 75.14 31 29 61
N2C3W4 L 16 (25) 15 (28) 44 (86) 4.50 1.82 60.63 8 14 43
N2C3W4 N 124 (253) 5 (8) 66 (130) 31.83 1.78 74.81 87 4 65
N2C3W4 O 47 16 (67) 1 (1) 34.87 1.78 70.29 19 15 0
N2C3W4 Q 304 (649) 9 (16) 17 (32) 340.25 1.87 65.53 191 8 16
N2C3W4 T 87 (214) 20 (38) 50 (100) 30.34 1.74 50.81 62 19 50

76

5.2 Computational Results

The third group are the N3∗ instances with K ′ = 1, n = 40200, m = 400 and U = 200.

nodes time #calls
instance gen R&F orig gen R&F orig gen R&F orig

N3C1W1 B 76 (146) 8 (16) 1 (1) 103.61 7.78 352.27 51 8 0
N3C1W1 P 58 (110) 6 (10) 1 (1) 58.58 7.95 363.73 37 5 0
N3C1W1 R 202 (329) 11 (20) 65 (130) 475.19 8.74 450.55 104 10 65
N3C1W2 Q 12 (40) 9 (16) 34 (68) 18.01 7.08 275.96 11 8 34
N3C1W2 R 32 (58) 7 (12) 54 (106) 120.40 7.41 329.22 17 6 53
N3C2W1 F 205 (380) 18 (36) 79 (158) 652.86 9.61 481.32 121 18 79
N3C2W2 P 24 (74) 2 (4) 98 (196) 41.84 7.65 379.38 20 2 98

One can see the size of the tree using the generic scheme is in practice often much
larger than the tree for the Ryan&Foster branching without any fixed factor. This could
depend on the formulation of the binpacking instances as a set cover, since for a set
cover proposition 6 does not hold. Also the fact that sometimes up to four nodes are
computed in one branching step. But the number of total nodes is always smaller than
noted in section 3.3.

But nevertheless the time needed for branching is (except a few slow instances) between
the time for the Ryan&Foster branching and the time needed for the branching on the
original variables. Moreover by applying Ryan&Foster branching or the branching on
the original variables the number of solving nodes is half of the number of total nodes,
while by applying the generic scheme the numbers are nearly the same. This could stand
for a balanced B&P tree. A last thing coming up while testing is the memory use of
the scheme. As Ryan&Foster branching or the branching on original variables does not
need information about data of the ancestor nodes (except the branching constraints),
the generic scheme even does this. And keeping up the old information, say component
bound sequences, the memory use grows quickly.

77

6 Conclusion

6 Conclusion

As seen, the generic branching scheme is a usefull scheme for practice and theory. As the
time is in practice acceptable and even the number of nodes in the B&P tree, even more
like it is in the theory, from the analysis of the scheme we know that each branching
step is a real step towards integrality. Also on a set partitioning (omitting the possible
stronger dual bounds) one would prefer the Ryan&Foster scheme, the generic scheme is
not limited to this kind of instances. But as the numerical tests have shown, the scheme
has it drawback in the use of memory. Even if the induced lexicographic sort is not
needed for binary problems and only in a few leaf nodes for a MIP, the memory of C
resp. component bound sequences of the ancestor nodes are still needed for pruning and
separating. But omitting the large number of nodes and keep an eye on the CPU time
and theory the generic scheme is an even good branching rule for practice like others.

78

References

References

[1] Francois Vanderbeck, Branching in branch-and-price: a generic scheme, Mathe-
matical Programming Society, Ser. A (2011), http://dx.doi.org/10.1007/s10107-
009-0334-1 130:249-294

[2] Gerad 25th anniversary series, Column Generation: edited by Guy Desaulniers,
Jacques Desrosiers, Marius M. Solomon, Springer 2010

[3] Laurence A. Wolsey, Integer Programming, Wiley-Interscience series in discrete
mathematics and optimization, 1998

[4] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-
mization. John Wiley & Sons, 1988

[5] Christian Puchert. Primal Heuristics for Branch-and-Price Algorithms, Masterthe-
sis, Technische Universität Darmstadt, Fachbereich Mathematik, Arbeitsgruppe
Optimierung, Januar 2011

[6] Robert J. Wittrock. Dual nested decomposition of staircase linear programs, Math-
ematical Programming Studies, 1985, Volume 24, 65-86

[7] Gerald Gamrath. Generic Branch-Cut-and-Price. Masterthesis, Technische Uni-
versität Berlin, 2010

[8] Gerald Gamrath and Marco E. Lübbecke. Experiments with a Generic Dantzig-
Wolfe Decomposition for Integer Programs. In Paola Festa, editor, Experimental
Algorithms, volume 6049 of Lecture Notes in Computer Science, pages 239-252.
Springer Berlin / Heidelberg, 2010

[9] Tobias Achterberg. SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation, 1(1), 2009. http://mpc.zib.de/index.php/MPC/ arti-
cle/view/4

[10] Tobias Achterberg, Thorsten Koch, Alexander Martin. Branching rules revisited.
Operations Research Letters 33 (2005) 42-54 , 2004. Elsevier

[11] Alexander Schrijver. Theory of linear and integer programming. Wiley 2000

[12] Marco E. Lübbecke. Lesson: Column Generation and Branch-and-Price. WS
11/12. RWTH Aachen

[13] Bernhard Korte, Jens Vygen. Kombinatorische Optimierung: Theorie und Algo-
rithmen. Springer 2008

79

References

[14] Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In:
Wren, A. (eds.) Computer Scheduling of Public Transport Urban Passenger Vehicle
and Crew Scheduling, pp. 269-280 North-Holland (1981)

[15] A.M. Geoffrion, Lagrangian Relaxation for Integer Programming, Mathematical
Programming Study 2 (1974) 82-114

[16] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, New York, 1988

[17] C. Joncour, S. Michel, Ruslan Sadykov, D. Sverdlov, François Vanderbeck. Col-
umn Generation based Primal Heuristics. International Conference on Combinato-
rial Optimization (ISCO), Electronic Notes in Discrete Mathematics, 36:695-702,
Elsevier 2010

[18] F. Vanderbeck, M.W.P. Savelsbergh. A Generic View of Dantzig-Wolfe De-
composition in Mixed Integer Programming. Operations Research Letters (
http://dx.doi.org/10.1016/j.orl.2005.05.009), Volume 34, Issue 3, Pages 296-306,
May 2006

[19] Jacques Desrosiers and Marco E. Lübbecke. A Primer in Column Generation. In
Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors, Column
Genera- tion, pages 1-32. Springer US, 2005

[20] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin, 2007

[21] F. Vanderbeck. On dantzig-wolfe decomposition in integer program- ming and
ways to perform branching in a branch-and-price algorithm. Operations Research,
48(1):111-128, 2000

[22] Hans D. Mittelmann. Mixed Integer Linear Programming Benchmark (serial
codes). http://plato.asu.edu/ftp/milpf.html.

[23] F. Vanderbeck. IMA (Institute for mathematics and its applications)
University Minnesota. Hot Topics Workshop: Mixed-Integer Program-
ming July 25-29, 2005, Slides: Branching in branch-and.price algo-
rithms. http://www.ima.umn.edu/matter/W7.25-29.05/activities/Vanderbeck-
Francois/gbrsSlides.pdf

[24] P. Schwerin and G. Wäscher. The binpacking problem: A problem genera-
tor and some numerical experiments with ffd packing and mtp. International
Transactions in Operational Research, 4(5-6):377-389, 1997. instances could
be find on a webpage from the university of Jena at: http://www.wiwi.uni-
jena.de/Entscheidung/binpp/

80

7 German Summary

In der vorliegenden Masterarbeit wird die allgemeine Branchingregel von Vanderbeck
wiedergegeben, implementiert und getestet. Dabei wird zunächst im 1. Kapitel die
notwendige Theorie wiederholt und im 2. Kapitel die Hauptquelle [1] wiedergegeben.
Allerdings wird hier direkt auf den Fall eines gemischtganzzahligen Programms mit un-
terschiedlichen aggregierten Blöcken eingegangen. Dies geschieht zunächst so, wie es
in der Quelle im letzten Kapitel beschrieben wird. Die ganzzahligen (bzw gemischt
ganzzahligen) Beispiele sind dort jedoch nicht zu finden, ebenso wie die Analyse der
Baumgröße, die auf der in [1] gegebenen Analyse für binäre Programme mit einem Block
Typ basiert und diese verallgemeinert. Im Abschnitt “Implementation & Testing” wird
dann auf einige Probleme und neue Ideen eingegangen, die während der Implementierung
aufgetreten sind. Zuletzt folgt dann noch der Vergleich mit anderen Branchingregeln an-
hand verschiedenster geeigneter Instanzen.
Der Hauptvorteil dieser Branchingregel ist, dass sie Symmetrie vermeidet durch frühes
pruning, nutzen der Aggregation, das eigentliche Pricing Orakel nicht ändert und durch
nicht disjunkte Branchingungleichungen einen balancierten Baum liefert. Im 3. Kapitel
wird besonders der in [1] gegebene Vergleich zwischen dieser Branchingregel und dem
Ryan-Foster-Branching wiedergegeben. Außerdem ist in der Implementierung das bish-
erige Pricing in GCG unverändert geblieben, d.h. die einzelne Subprobleme werden nicht
wie in [1] noch weiter aufgesplittet, sondern blockweise gelöst.

81

7 German Summary

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig und ohne Hilfe Drit-
ter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die aus Quellen entnommen wurden, sind als solche kenntlich gemacht.

Aachen, den 3. Dezember 2012

(Marcel Schmickerath)

82

	 Introduction
	 Column Generation
	Dantzig-Wolfe Decomposition
	Convexification
	Discretization

	Aggregation
	Column Generation
	Pricing
	Lagrange Dual Bound
	Branch-and-Price
	Branching on original variables
	Branching on master variables
	Other branching schemes

	Pseudocosts
	SCIP & GCG

	The generic Branch-and-Price scheme
	Map to x
	Separation of a fractional solution at…
	…the root node
	…a node after the root node

	Depth of the branch-and-price tree
	Preprocessing at a node
	Pricing
	The dual bound

	Set Partitioning
	Ryan and Foster
	The generic scheme
	comparison

	Implementation & Testing
	Implementation
	Separate with median
	Different blocks
	The Priority
	ILO or not ILO

	Computational Results

	Conclusion
	German Summary

